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Abstract—The deterministic wireless relay network model,
introduced by Avestimehr et al., has been proposed for approx-
imating Gaussian relay networks. This model, known as the
ADT network model, takes into account the broadcast nature
of wireless medium and interference. Avestimehret al. showed
that the Min-cut Max-flow theorem holds in the ADT network.

In this paper, we show that the ADT network model can
be described within the algebraic network coding framework
introduced by Koetter and Médard. We prove that the ADT
network problem can be captured by a single matrix, called tke
system matrix. We show that the min-cut of an ADT network
is the rank of the system matrix; thus, eliminating the need ©
optimize over exponential number of cuts between two nodet
compute the min-cut of an ADT network.

We extend the capacity characterization for ADT networks
to a more general set of connections. Our algebraic approach
not only provides the Min-cut Max-flow theorem for a single
unicast/multicast connection, but also extends to non-mtitast
connections such as multiple multicast, disjoint multicas and
two-level multicast. We also provide sufficiency conditioa for
achievability in ADT networks for any general connection sé
In addition, we show that the random linear network coding, a
randomized distributed algorithm for network code construction,
achieves capacity for the connections listed above.

Finally, we extend the ADT networks to those with random
erasures and cycles (thus, allowing bi-directional links) Note
that ADT network was proposed for approximating the wireless
networks; however, ADT network is acyclic. Furthermore, ADT

network does not model the stochastic nature of the wireless

links. With our algebraic framework, we incorporate both cycles
as well as random failures into ADT network model.

. INTRODUCTION

graphs to ADT networks for single unicast/multicast cornec
tions. Efficient algorithms to compute the coding strategie
achieve minimum cut has been proposed_in[]3][4]. Reference
[5] introduced a flow network, callelinking network which
generalizes the ADT model, and relates the ADT networks to
matroids; thus, allowing the use of matroid theory to solve
ADT network problems.

In this paper, we make a connection between the ADT
network and algebraic network coding introduced by Koetter
and Médard([6], in which they showed an equivalence between
the solvability of a network problem and certain algebraic
conditions. This paper does not prove or disprove ADT
network model’s ability to approximate the capacity of the
wireless networks, but shows that the ADT network problems,
including that of computing the min-cut and constructing a
code, can be captured by the algebraic framework.

There are several advantages in generalizing ADT networks
to the algebraic network coding formulation. First, thiats
the use of results on network coding to better understand the
ADT networks. Network coding, proposed in [7], allows and
encourageslgebraic mixingof data at intermediate nodes.
This mixing maximizes throughput for multicast traffic [7],
and is robust against failures and erasurés [6]. Howevest mo
of the classic network coding results consider scalar dipers
in arbitrary field sizeJF,. In order to take advantage of low-
complexity operations iy, [8] introduces network codes,
called permute-and-addthat only require bit-wise vector
operations, and shows that their performance is still ogitim
This shows that network codes in higher field sizgcan be

The capacity of the wireless relay networks, unlike its wireconverted to a binary-vector code without loss in perforogan
counterparts, is still a generally open problem. Even for Bhe connection between ADT networks and algebraic network
simple relay network with one source, one sink, and ommding allows the use of existing theorems in the network
relay, the capacity is unknown. In order to better approxémacoding literature to derive new results for ADT networks.
wireless relay networks| [1][2] proposed a binary linear de The paper is organized as follows. We present the network
terministic network model (known as the ADT model), whicimodel in Sectiofi ]I, and an algebraic formulation of the ADT
incorporates the broadcast nature of the wireless mediumraswork in Sectiod_Ill. Using this algebraic formulationew
well as interference. A node within the network receives thgrovide a definition of min-cut in ADT networks in Section
bit if the signal is above the noise level; multiple bits thdl] In SectiondV, we restate the Min-cut Max-flow theorem
simultaneously arrive at a node are superposed. Note tisat iising our algebraic formulation. In Sectibn]VI, we present
model assumes operation under high Signal-to-Noise-Ratiew capacity characterizations for ADT networks to a more
(SNR) — interference from other users’ dominate the noisegeneral set of traffic requirements, such as two-level multi

References[]1][2] characterized the capacity of the AD@ast, disjoint multicast, and multiple source multicasoteN
networks, and generalized the Min-cut Max-flow theorem fdahat [1][2][3][4][5] consider single unicast or single ntichst
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Fig. 1: Additive MAC with two users, and the corresponding Y(e1) = Bieg,em Y (€3) + Biey,em Y (€a)
rate region. The triangular region is modeled as a set o&finit Y(eg) = Y(e11) = Bleg.eq)Y (€6)
field addition MACs. Y (e10) = Bleg.e10) Y (€6)
Iv,) o(V,) Y(e12) =Y (er) + Y(e1o)

a o c; | e, @ Z(T,1) = €(eqq (T,1)) Y (€11) + €(eqn,(7,1)) Y (€12)

¢
X(S, 1)| e, b 1®¢ |¢ ® @ ¢, | Z(T 1) Z(T,2) = €(eyy,(r,2)) Y (€11) + €(eyq.(7,2)) Y (€12)
X(5,2)[© 07 [oc: ¢ ol b ¢/o| Z(T, 2)

o(s) 1® ¢ €@ f KT) Fig. 3: Equations relating the various processes of Figllire 2
1(Vy) O(Vy)
Fig. 2: Example network. We omif(S) and O(T) in this (V.€) with a node set) and an edge sef, as shown in

diagram as they do not participate in the communication. Figure[2. A nodeV’ € V consists ofinput ports /(V)) and
output portsO(V). Let S,7 C V be the set of sources and

. . . . destinations. An edgée, e2) exists only from an output port
connection. Finally, we incorporate random erasures itiG@ec e1 € O(V4) to an input porte, € I(V4), for any Vi, Vs € V.

Igiggd extend the ADT networks to networks with cycles i ot £(V1,V4) be the set of edges fro@(V1) to I(Va). Al

edges are of unit capacity, where capacity is normalized wit
respect to the symbol size &,. Parallel links ofE(V4, 14)
deterministically model noise betweéfn and V5.

As in [1][2], we shall consider a high SNR regime, in which  Given such a wireless networ — (V,€), a source
interference is the dominating factor. In the high SNR regim4e § ¢ S has independentrandom processeg’(S) =
the Cover-Wyner region may be well approximated by ther (g 1), x(S,2), ..., X(S, u(S))], u(S) < |O(S)|, which it
combination of two regions, one square and one trianguar, gishes to communicate to a set of destination nofés) C
shown in Figuré L. The square (shaded) part can be modeled|n other words, we want nodeg ¢ T(S) to replicate a
as parallel links for the users, since they do not interferg,pset of the random processes, denotdd, T) C X(S),
The triangular (unshaded) part can be considered as that ¢fyathe means of the network. We define cannectionc
noiseless finite-field addition multiple access channel YA a5 5 triple (S, T, X'(S,T)), and the rate of is defined as
[9. Note in the high SNR regime, analog network codingp ) — Y s.ayersr HX(S,1) = |X(S,T)| (symbols).
which allows and encourages strategic interference, i$ neajnformation is transmitted through the network from the
optimal [10]. It is important to note that a network opergtinggrce to the destinations in the following manner. A nbde
in high SNR regime is different from a network with high gainsends information through € O(V) at a rate at most one
since a large gain amplifies the noise as well as the signalsymbo| per time unit. Let’ (¢) denote the random process at

The ADT network model uses binary channels, and thus@t . In general,Y (e), e € O(V), is a function ofY (¢'),
binary additive MAC is used to model interference. Prior tor ¢ 7(v/). In this paper, we consider only linear functions.
[1][2], Effros et al. presented an additive MAC over a finite
field F, [11]. The Min-cut Max-flow theorem holds for all Y(e) = Z B(elﬁe)Y(e’), fore e O(V). (1)
of the cases above. It may seem that the ADT network model erel(V)
differs greatly from that of [111] owing to the difference ielil
sizes used. However, we can achieve a higher field size in A
networks by combining multiple binary channels and using &(¢) — Z B oY (€)+ Z 0.0 X (S,7). (2)
binary-vectorscheme as shown inl[8]. In other words, consider cer vy X(SDex(s)

two nodesV; and 1, with two binary channels connecting o _ . _
Vi to Va. Now, instead of considering them as two binar{f'na”yy the destinatiorf” receives a collection of input pro-

channels, we can “combine” the two channels as one witgSSest’ (¢'), ¢’ € I(T). NodeT" generates a set of random
capacity of 2-bits. In this case, instead of usifig we can ProcessesZ(T) = [Z(T,1), Z(T,2),..., Z(T,v(T))] where
use a larger field size df4. Thus, selecting a larger field size N /
F,, ¢ > 2 in ADT network model results in fewer but higher Z(T0) = ) e mapY () )
capacity parallel channels. Furthermore, it is known tluat t
achieve capacity for multicast connectiofis,is not sufficient A connectionc = (S,T, X (S,T)) is established successfully
[4]; thus, we need to operate in a higher field size. Therefoie X'(S) = Z(T). A nodeV is said tobroadcastto a set
in this work, we shall not restrict ourselves fg. V' CVif &V, V') £ 0 for all V' € V'. In Figure[2, node
We now proceed to defining the network model precisely. broadcasts to noddg and V5. Superposition occurs at the
A wireless network is modeled using a directed graph= input porte’ € I(V), i.e. Y(e') = 3 . .yee Y(e) Over a

II. NETWORK MODEL

S?r a source nod#, ande € O(S),

e’cI(T)
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Fig. 4: A new interpretation of the example network from
Figure[2.
€4

finite field F,. We say there is &/'|-user MAC channel if
EWV', V) #£forall V/ € V. In Figure[2, noded; and V5 0 If;;)
are users, and’ the receiver in a 2-user MAC.

For a given networlG and a set of connectionty we say
that (G, C) is solvableif it is possible to establish successfullyTl’
all connectionsc € C. The broadcast and MAC constraint
are given by the network; however, we are free to choose %@
variableso; ¢y, B(er ), ande(. ;) fromF,. Thus, the problem
of checking whether a givef(7, C) is solvable is equivalentto o 46 for g at ¢, interacts both withh and . As we shall
finding a feasible assignment t; ), fe,)» @ndee (1.6)-  see in Sectiof IV, we eliminate this difficulty by allowingeth

Example 1:The equations in Figurgl 3 relate the Variou§ge of 4 larger fieldF, .
processes in the example network in Figlite 2. Note that in a
Figure[2, we have seY(e1) = a, Y(e2) = b, Y(er) = ¢, I1l. ALGEBRAIC FORMULATION

Y(eg) = d, andY (e19) = f for notational simplicity. We provide an algebraic formulation for the ADT network
A. An Interpretation of the Network Model problem (G, C). For simplicity, we describe the multicast
oblem with a single sourc& and a set of destination nodes

. r
The ADT network model uses multiple channels _fr(_)m T, as in Figurd b. However, this formulation can be extended
output port to model the broadcast channel, and a finite fle[ multiple source nodes,Ss,...Sx by adding a super-
additive MAC to model interference, as shown in Figlie ources as in Figurdy 1,02, .OK

Note that, in Figurél2, there are two edges from output POt\ve define a system matriX/ to describe the relationship

c1 10 input portse; and eq, respectively; however, due 10y een source’s random procesads) and the destinations’

the broadcast co_nstralnt,_ the tW.O gdgjeg es) and (6_1766) processe€ = [Z(T1), Z(T»), ..., Z(T}7|)]. Thus, we want to
carry the same information. This introduces Cons'derablecharacterizdw where

complexity in constructing a network code as well as com-
puting min-cut of the networK J1]|2][3][5]. This is due to¢h Z=X(5) M. 4)
fact that the multiple edges from a port do not capture thlen
broadcast dependencies of edges. Furthermore, the bstad
dependencies have to be propagated through the network.
In our approach, we remedy this by introducing the use of 1 if (e;,e;) €&,
hyperedg(_es, as shown in _FlglEIe 4. An output port’'s demsmqmw = Blerey e €I(V), e;€0V) for VeV, (5)
to transmit affects the entire hyperedge; thus, the outpuit p Y '
transmits to all the input ports connected to the hyperedge
simultaneously. In SectiopJIl, we shall include the notion Matrix F' is defined on the ports, rather than on the nodes.
of hyperedges in our algebraic formulation to capture thehis is because, in the ADT model, each port is the basic
broadcast nature of the wireless medium. This removes teeeiver/transmitter unit. Each entfy ; represents the input-
difficulties of computing the min-cut of ADT networks (Sec-output relationships of the ports. A zero entry indicateat th
tion[[V), as it naturally captures the dependencies cauged the ports are not directly connected, while an entry of one
the broadcasts. represents that they are connected. The adjacency natrix
The finite field additive MAC model can be viewed as a setaturally captures the physical structure of the ADT nekwor
of codes that an input port may receive. As shown in Figuidote that a row with multiple entries of 1 represent the
[, input porte,, receives one of the four possible codes. Thieroadcast hyperedge; while a column with multiple entries o
code thate;, receives depends on output poetss andeg’s 1 represent the MAC constraint. Note that the 0-1 entrieg of
decision to transmit or not. represent thdixed network topology as well as the broadcast
The difficulty in constructing a network code does not com&nd MAC constraints. On the other hang, .,) are free
from any single broadcast or MAC constraint. The difficultyariables, representing the coding coefficients used” a@b
in constructing a code is in satisfying multiple MAC andnap the input port processes to the output port processes. Th
broadcast constraints simultaneously. For example, inirEig is the key difference between the work presented here and

Multicast
Network

€43

Fig. 6: Single multicast network with sourceand receivers
,Tn.

the fact thate, may receivea + b does not constrain the
oice ofa norb. The same argument appliesdg receiving
a+ c. However, the problem arises from the fact that a choice

Lhe matrix M is composed of three matriced, F', and B.
“Given G, we define the adjacency matrix as follows:

0 otherwise.
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converted to a single source problem by adding a super-sourg ©
S with |O(S)| = Zfil |O(S;)|. Eache); € O(S) has a “one- Fig. 8:12 x 12 adjacency matrix for network in FigurdR.
to-one connection” to a; € O(S;), fori € [1, K. Matrix A;
represent the encoding matrix for sourgg while B; is the

P g ol " Jodes,B is a matrix of size|Z| x |€] where Z is the set of

decoding matrix at destinatidfl;. The white area represent . o )
the zero elements, and the shaded area represents the cof Hgom processes derived at the destination nodes. We define

coefficients. the decoding matrix3 as follows:

in [6] — F is partially fixed in the ADT network model due B, ;. ;) = Clei(mby) T €i € _I(Tj)’ 2(Tj, k) € 2(Ty),

to network topology and broadcast/MAC constraints, while i ! 0 otherwise.

[6], only the network topology affeck’. _ _ B
In [][2], the nodes are allowed to perform any internal Example 4:We provide the2 x 12 decoding matrix3 for

operations; while in[[3][5], only permutation matricese( the example network in Figufd 2.

routing) are allowed. !n their WorH:[ﬂIZ], the .au.thors. also B 0 o 0 €en(T1) Eers(T1))

show that linear operations are sufficient for achievingacitp 0 o 0 €en(m2) Clerni(T2))

in ADT networks for a single multicast traffic. We propose a Theorem 1:Given a networkG — (V,£), let A, B,

general setup in whicfd., ., € F, — thus, allowing any and F' be the encoding, decoding, and adjacency matrices,

matrix operation, as il [1][2]. . S
Note thatF*, the k-th power of an adjacency matrix of arespectlvely. Then, the system matix is given by

graphG, shows the existence of paths of lengthetween any M=A(1-F)"'BT. (8)
two nodes inG. Therefore, the serieb+ F + F2 + 3 + ..
represent the connectivity of the network. It can be verifieﬁqe
that F' is nilpotent, which means that there exists: asuch
that F* is a zero matrix. As a resulf, + F + 2 + F3 + ...
can be written a¢/ — F)~'. Thus, (I — )~ represent the
impulse response of the network. Note thdt— F)~! exists
for all acyclic network sincd — F' is an upper-triangle matrix

with all diagonal entries equal to 1; thuset( — F') = 1. choose the coding variables;...). (. (z,.r))» and fc,.c ).

Etx_ar;r:cle tzr;m F|gurei\|3, V\t/e pLO.V'dFe. thﬁz %g%aﬁe?cilh 'I:[hus, solvability of(G, C) is equivalent to assigning values to
matrix F' for the example network in Figur . Note tha s €ler (7, k> ANAB, ) such that each receivat e T

the first row (with two entries of 1) represents the broadca%fable to decode the data it is intended to receive
hyperedgeg; connected to botles and eg. The last column Example 5:We can combine the matriceB, A énd B
with two entries equal to 1 represents the MAC constrairﬁom Exampled P13, and 4 respectively to ot,)tair,1 the system
bothe; ande; talking toe;5. The highlighted elements iR’ matrix M = A(I — stlBT for the network in Figur&l2. We

represent the coding variable%, ., of V1 andVz in Figure show a schematic of the svstem matii in Eigure
[@. For somge’, ), (e ) = 0 since these ports df; andV; y gure[9.
are not used. V. DEFINITION OF MIN-CUT
Matrix A represents the encoding operations performed atConsider a sourceS and a destinatiorl’. Reference[]1]
S. We define dX'(S5)| x [£] encoding matrix4 as follows:  proves the maximal achievable rate to be the minimum value
N {a(mj) if ¢; € O(S) and X (S, ) € X(S), of all S-T cuts, denotednincut(S,T'), which we reproduce
ij =

Proof: The proof of this theorem is similar to that of

orem 3 in[[B]. As previously mentioned] — F)~! =

(I +F + F? +...) always exists for an acyclic network. m
Note that the algebraic framework shows a clear separation

etween the given physical constraints (fixed 0-1 entrieB of

showing the topology and the broadcast/MAC constraints}, a

the coding decisions. As mentioned previously, we can yreel

(6) below in Definition[1.

0 otherwise Definition 1: [I][2] A cut Q between a sourcé and a
Example 3:We provide the2 x 12 encoding matrix4 for destinationT is a partition of the vertices into two disjoint
the network in Figurél2. sets() and Q¢ such thatS € Q andT € Q¢. For any cut,
a a 0 ... 0 Gq is the incidence matrix associated with the bipartite graph
A= <a27: aQ’: 0 - O> with ports inQ2 andQ°. Then, the capacity of the given ADT

. ) ) network (equivalentlymincut(S,T)) is defined as
Matrix B represents the decoding operations performed at

the destination node® € 7. Since there ar¢7 | destination mincut(S,T) = minrank(Go).



System matrix M =4 (1F) 5 rate such that¥'(S)| < mincut(S,T), thenM has full-rank.

_ |x<5)|1 A ‘ However, if | X(S)| > mincut(S,T), thenM may have rank
2 €] (I-F)! €] of mincut(S,T) but not be full-rank. It is important to note
% 7 that, in ADT networks, the cut value may not equal to the

'N

graph theoretical cut value (see Figure 2[ih [3]).

z
“l < V. MIN-CUT MAX-FLOW THEOREM
In this section, we provide an algebraic interpretation of
the Min-cut Max-flow theorem for a single unicast connection
and a single multicast connectidn [1][2]. This result is eedi
consequence of [6] when applied to the algebraic formufatio
for the ADT network. In addition, we show that a distributed
randomized coding scheme achieves capacity for these con-
nections.
This capacity ofmincut(S,T) can be achieved using linear Theorem 3 (Min-cut Max-flow Theorem@iven an acyclic
operations for a single unicast/multicast connection. B network G’ with a single connectior = (5,7, X(S,T)) of
Note that, with the above definition, in order to computgate R(c) = |X (S, T)|, the following are equivalent.
mincut(S,T), we need to optimize over all cuts betweSn 1) A ynicast connection is feasible.
and 7. In addition, the proof of achievability if[1] is not 2) mincut(S,T) > R(c).
constructive, as it assumes infinite block length and doés nog) There exists an assignment Ofic,)s €cr(T,4)) and

consider the details of internal node operations. Bles.e;) SUch that theR(c) x R(c) system matrix} is
We introduce a new algebraic definition of the min-cut, and  jnvertible in F, (i.e. det(M) # 0).

show that it is equivalent to that of Definitigh 1. Proof: Statements 1) and 2) have been shown to
The_orem 2:The capacity of the g|yen ADT, eq_uwalentlylOe equivalent in ADT network models[L[3][5]. From
the minimum value of all§ — T cutsmincut(S,T), is Theorem [2, we have shown the equivalence between

1
X
in
é
=]
H
=]

<> <—>
|2 12(Tw)
=1
Fig. 9: The system matriX/ and it's componentsi, (I —
F)~!, andB for a single multicast connection with sour6e
and destinationd;, i € [1, N].

mincut(S,T) = minrankGq) mincut(S,T) = max, . rankM). Therefore, for any rate
Q R(c) < mincut(S,T), M is a full-rank square matrix. Thus,
= o, fmax - rank(M). M is invertible. ]
(epeherntehn Corollary 4 (Random Coding for UnicastConsider
Proof: By [1], we know that mincut(S,T) = an ADT network problem with a single connectian =

ming rank G ). Therefore, we show thatax, s, rankM)is (S, T, x(S,T)) of rate R(c) = |X(S,T)| < mincut(S,T).
equivalent to the maximal achievable rate in an ADT networhen, random linear network coding, where some or all
First, we show thatnincut(S,T') > maxq g, rankKM). In - code variablesa(; ,), €, (r,x)), and B, .,y are chosen
our algebraic formulationZ(7") = X' (S)M; thus, the rank of independently and uniformly over all elements &f,,
M represents the rate achieved. lRt= max, g.rank ). guarantees decodability at destination ndflewith high
Then, there exists an assignmentaf ), B ), and e ;) probability at leas{1 — %)”, wheren is the number of links
such that the network achieves a ratefdfBy the definition carrying random combinations of the source processes.
of min-cut, it must be the case thatincut(S,T) > R. Proof: From Theoreni13, there exists an assignment of
Second, we show thatincut(S,T') < maxa,g,c ranKM). e,)s €, (1;,k))» @NA B, ¢,y Such thatdet(M) # 0, which
Assume thatR = mincut(S,T). Then, by [1][2], there exists gives a capacity-achieving network code for the givénC).
a linear configuration of the network such that we can achieVéus, this connectior: is feasible for the given network.
a rate of R such that the destination nodE is able to Reference [[12] proves that random linear network coding
reproduceX (S, T). This configuration of the network pro-is capacity-achieving and guarantees decodability witgh hi
vides a linear relationship of the source-destination @ssees probability (1 —1)7 for such feasible unicast connectionm
(actually, the resulting system matrix is an identity mgtri  Theorem 5 (gingle Multicast Theorentkiven an acyclic
thus, an assignment of the variableg ., 5’ ), ande. ;) network G and connections® = {(S,71,X(5)), (5,15,
for our algebraic framework. We denolé’ to be the system X(S5)), ..., (S,Tn, X(S))}, (G,C) is solvable if and only if
matrix corresponding to this assignment. Note that, by theincut(S,T;) > |X'(S)| for all 4.
definition, M’ is an R x R matrix with a rank ofR. Therefore, Proof: If (G,C) is solvable, thenmincut(S,T;) >
maxg, g, rank M) > rank M’) = mincut(S, T). B |X(S)|. Therefore, we only have to show the converse. As-
The system matrix}\/ depends not only on the structuresumemincut(S,T;) > |X(S)| for all i € [1, N]. The system
of the ADT network, but also on the field size used, nodemiatrix M = {M,} is a concatenation ofX'(S)| x |X(9)|
internal operations, transmission rate, and connectiitgr matrix whereZ(7;) = X(S)M;, as shown in Figurg]9. We
example, the network topology may change with a choi@an write M = [M;, My, ..., My] = A(I — F)"'BT =
of larger field size, since larger field sizes result in fewed(I—F)~![By, Bs, ..., By]. Thus,M; = A(I-F)~'B;. Note
parallel edges/channels. Another example, if we adjust thiieat A and B;’s do not substantially contribute to the system



IT,) 1)

matrix M; since A and B; only perform linear encoding and g1)  System matrix M

. . . . O ¢ _O\’Q_ f

decoding at the source and destinations, respectively. O e € = BT
: ; O & et ez A (1-F)! g
By Theorem[B, there eX|sths an ars]&.gr(;m%nt Tin,ej), FO—387 o o
€(e;,(Ty,k))» and B, .,y such that each individual system
submfaltrixMi is invertfble,i.e. det (M;) # 0. However, an as- 9 - ﬁ i;ij _ . _
X O ey, o = 3 =1

signment that makedet (1£;) # 0 may lead todet (A/;) =0 Ode| [o—81°

for i # j. Thus, we need to show that it is possible to achieve 4Ty O(Ty)

simultaneouslydet (M;) # 0 for all i. By [12], we know Fig. 10: Disjoint multicast problem can be converted into a
that if the field size is larger than the number of receivegingle destination problem by adding a super-destinafion
(¢ > N), then there exists an assignmentof. ), €, (;,x))» The system matrix\/ for the disjoint multicast problem is

and B, ;) such thatdet (1;) # 0 for all 4. B  shown as well.

Corollary 6 (Random Coding for Multicast)Consider an 4

. . . . System matrix M

ADT network problem with a single multicast connectic B ™
C = {(S,Tl,X(S)),(S,TQ,X(S)),...,(S,TN,X(S))} with _M (I-F)! I/>D e My, || My
mincut(S,T;) > |X(S)| for all . Then, random linear o Bed
network coding, where some or all code variabtes, ), 8 My
€(es,(T;,k))» and B, .,y are chosen independently and ur B

formly over all elements of,, guarantees decodability at de:
tination nodeT; for all i simultaneously with high probability Fig. 11: The system matriX/ for the two-level multicast prob-
at least(1 — %)", wheren is the number of links carrying lem. The structure of the system matfix is a “concatenation”
random combinations of the source processes; thus)&|. of the disjoint multicast problem (Figufe]10) and the single
Proof: Given that the multicast connection is feasib multicast problem (Figurgl 6).
(which is true by Theoreni5), reference [12] shows tt
random linear network coding achieves capacity for muitic choose the encoding matrix such that the system matrid
connections, and allows all destination nodes to decode at super-destination nodeis an identity matrix. This implies
source processe¥ (S) with high probability (1 — %)". m that for each edge from the output ports’Gf (for all i) to
input ports of T is carrying a distinct symbol, disjoint from
all the other symbols carried by those edges from outpusport
In this section, we extend the ADT network results to of T}, for all i # j. Thus, by appropriately permuting the
more general set of traffic requirements. We use the algeb symbols at the sources can deliver the desired processes to
formulation and the results froml[6] to characterize thesiee the intendedl; as shown in Figure10. ]
bility conditions for a given probleniG, C). Theorem 9 (Two-level Multicast TheorenGiven an
Theorem 7 (Multiple Multicast Theoremiziven a network acyclic networkG with a set of connection€ = C4 U C,,
G and a set of connection = {(S;,T;, X(S;)) | Si € whereCq = {(S,T;, X(S,T:))|X(S,T;) N X(S,T;) = 0,
S,T; € T}, (G,C) is solvable if and only if Min-cut Max- i # j, 4,5 € [1, K]} is a set of disjoint multicast connections,
flow bound is satisfied for any cut between source naflesandC,, = {(S,T;, X(S)) | i € [K + 1, N]} is a set of single
and a destinatiod;, for all 7 € 7. source multicast connections. Theis, C) is solvable if and
Proof: We first introduce a super-sourSewith |O(S)| = only if the min-cut betweers' and any7’ C {Ty,...,Tx} is
>s,es10(8i)], and connect each; € O(S) to an input of at leasty_,. . |X(S,Ti)|, and min-cut betwees' and T} is
S; such thak; € O(S;) as shown in Figurgl7. Then, we applyat least| X (S)| for j € [K + 1, N].
Theorenb, which proves the statement. [ | Proof: We create a super-destinatidn for the disjoint
Theorem 8 (Disjoint Multicast TheoremBiven an acyclic multicast destinations as in the proof for Theofdm 8. Them, w
network G with a set of connection§ = {(S5,T;, X(5,T;)) have a single multicast problem with receivétsandT;, i €
| i =1,2,..,K} is called adisjoint multicastif X'(S,7;) N [K + 1, N|. Theorenb applies. By choosing the appropriate
X(S,T;) = 0 for all ¢ # j. Then,(G,C) is solvable if and matrix A, S can satisfy both the disjoint multicast and the
only if mincut(S,T") > > 7 . |X(S,Ti)| forany 7" C 7.  single multicast requirements, as shown in Fidure 11. m
Proof: Create a super-destination no@lewith |1(T")| = TheorenTP does not extend to a three-level multicast.
Zfil |I(T;)|, and an edgée, ¢’) from e € O(T;), i € [1, K] In the theorem below, we present sufficient conditions for
to ¢/ € I(T), as in Figure10. This converts the problensolvability of a general connection set. This theorem dags n
of disjoint multicast to a single-sourcg, single-destination provide necessary conditions, as shown(in [13].
T problem with rateX(S,T) = > o |X(S,T). The Theorem 10 (Generalized Min-cut Max-flow Theorem):
mincut(S,T) > |X(S,T)|; so, Theorer]3 applies. Thus, it isGiven an acyclic networkG with a connection seC, let
possible to achieve a communication of ratesS, T') between M = {M; ;} where M, ; is the system matrix for source
S andT'. Now, we have to guarantee that the recei¥elis processest(S;) to destination processe¥(T;). Then,(G,C)
able to receive the exact subset of procesegS, 7;). Since is solvable if there exists an assignmentof. ), €., (1, k)
the system matrix td" is full rank, it is possible to carefully and 3., .,) such that

VI. EXTENSIONS TO OTHER CONNECTIONS



1) M, ; =0 for all (S;,T;,X(S:,T;)) ¢C, linear network coding achieves the time-average min-iceit,
2) Let (S,q),Tj, X(S,),Ty)) € C for i € [1,K(j)]. is capacity-achieving.

Thus, this is the set of connections with as a receiver.  We assume that any link within the network may fail. Given
Then, [M(,T(lm, MUT@)J, v M,,T(Kj),j] is a|Z(T;))| x an ADT networkG and a set of link failureg, G represents
|Z(T})| is anonsingularsystem matrix. the networkG experiencing failureg. This can be achieved
Proof: Note that [M7Z,, . MT_ . .. ML ]is a by deleting the failing links from, which is equivalent to
X o(1),5° 7" 0(2),50 0 o (Ky).j . . . . .
system matrix for source process&§S, ), i € |1, K(j)], Setting the coding variables if(f) to zero, whereB(f) is
to destination processes(T}). the set of coding variables associated with the failing dink

Condition 2) states the Min-cut Max-flow condition; thusWe denote)M be the system matrix for network. Let My

is necessary to establish the connections. Condition 1@sstab€ the system matrix for the netwotk;.
that the destination nodg; should be able to distinguish the
information it is intended to receive from the informatidrat A. Robust against Random Erasures

may have been mixed into the flow it receives. These tWO Given an ADT network problemG, C), let F be the set of
conditions are sufficient to establish all connectiong inWe all link failures such that, for any e }- t,he problem(G 7, C)
do nfo_t pr_oy||de theh deta;llshfor want ,Of space; however, the s aple. The solvability of a givefGy,C) can be verified
proof is similar to that of Theorem 6 iJ[6]. using resulting in Sections]V abdVI. We are interested iticsta

We briefly note the capacity achieving code construction fg{)lutions, where the network is oblivious 6f In other words,

the non-multicast connections described in this sectiar. I:we are interested in finding the set of link failures such that

mul_t|ple muI'uca_st, a random linear network cod|_ng appfo_aqhe network code is still successful in delivering the seurc
achieves capacity e. the source nodes and the intermedia rocesses to the destinations. For a multicast conneatien
nodes can randomly and uniformly select coding coefficieng10W the following surprising result. '
However, a minor modification is necessary for disjoint mul- Theorem 11 (Static Solution for Random Erasuregjven

ticast and two-level multicast. We note that only the soisrcean ADT network problen{c, ¢) with a multicast connection
encoding matrixA needs to. be mod_ified. As in the proofsc — (S, Ty, X(S)), (S, T2,27((S)),..., (S, T, X(S))}, there
of Theoremd 8 anfll9, the intermediate nodes can randome%sts astatic solution to the problemiG,,C) for all f € F.

and uniformly select coding coefficients; thus, presentimg Proof: By TheorenTh, we know that for any givehe

distributed and randomized aspect of the code constructi the problem(G;, C) is solvable: thus, there exists a code
Once the coding coefficients at the intermediate nodes %é P S ' ’

selected,S carefully chooses the encoding matrixsuch that SSEE{%@,{? S'( Al\jjm;v;vg ?greg”to shog Z:érﬁ;:::;eegjgts ?h(i:gde
the system matrix corresponding to the receivers of theidisj © Y fe Y-

multicast (in the two-level multicast, these would cor is equiva}lent to finding a non-zero solution to the following
to T;, i € [1,K]) is an identity matrix. This can be donepdynom'al:Hfo det (My) # 0. Referencel[12] showed that

because the system matt{ is full rank. if the ﬁe_ld size is Iz_;trge enougly (> |7[[T] = |7|N), then
there exists an assignment @f; ., €(c,,(p; k), @and B, ¢;)
VIl. NETWORK WITH RANDOM ERASURES such thatdet (My) # 0 for all f € F. [ |
We consider the algebraic ADT problem where links may Corollary 12 (Random Coding against Random Erasures):
fail randomly, and cause erasures. Wireless networks &r@nsider an ADT network problem with a multicast connec-
stochastic in nature, and random erasures occur dynagnicdiPn C = {(5,T1, X(5)), (5,12, X(9)), ..., (S, Tn, X(5))},
over time. However, the original ADT network models nois#hich is solvable under link failure¢, for all f € F.
deterministically with parallel noise-free bit-pipes. Asesult, Then, random linear network coding, where some or all
the min-cut (Definition(Jl) and the network code [3][4][5],code variablesa; . ), €, (p; k), and B, ;) are chosen
which depend on the hard-coded representation of noise, h#ydependently and uniformly over all elements df,
to be recomputed every time the network Changes_ guarantees decodability at destination nodgs for all
We show that the algebraic framework for the ADT network Simultaneously and remains successful regardless of
is robust against random erasures and failures. First, { failure patternf € F with high probability at least
show that for some set of link failures, the network codel — 1Z1)7, wherer is the number of links carrying random
remain successful. This translate to whether the systemixnagombinations of the source processes.
M preserves its full rank even after a subset of variables Proof: Given a multicast connection that is feasible
Qie;)> E(err(Dy k) ANAB(e, ) @ssociated with the failed links under any link failuresf € F, reference[[12] shows that
is set to zero. Second, we show that the specific instancerafdom linear network coding achieves capacity for mudtica
the system matrix\/ and its rank are not as important agonnections, and is robust against any link failufes 7 with
the averagerank( M) when computing the time average minigh probability (1 — %)’7. [
cut. Note that the original min-cut definition (Definitidd 1) We note that it is unclear whether this can be extended to
requires an optimization over exponential number of cuts fthe non-multicast connections, as noted[ih [6]. RefereBte [
every time step to find the time average min-cut. With thishows a simple example network in which no static solution
insight, we shall use the results from[14] to show that randois available for a set of feasible failure patterns.



B. Time-average Min-cut Assume failure patterrf € F’' occurs with probabilityp;.

In this section, we study the time-average behavior of tH'en, random linear network coding, where some or all
ADT network, given random erasures. We use techniquédde variablesa; ), (e, .c;): €(e,(p,.k)) @ré chosen over
from [14], which studies reliable communication over loss@ll elements of F, guarantees decodability at destination
networks with network coding. nodesT; for all ¢+ simultaneously with arbitrary small error

Consider an ADT network. In order to study time-averageProbability.
behavior, we introduce erasure distributions. Féthe a set of Proof: This is a direct consequence of Corollany 14 and
link failure patterns inG. Assume that any set of link failuresresults in [12][14]. u
f € F may occur with _probabilitypf. In this section, we VIII. N ETWORK WITH CYCLES
study the average behavior of the network over a long period

of time; thus, the steady state behavior. ADT networks are acyclic, with links directed from the

: : . ) source nodes to the destination nodes. However, wireless
Theorem 13 (Min-cut for Time-varying Networkkssume T ; . .
networks intrinsically have cycles as wireless links are bi

i H H H !
an ADT _networkG”m which link failure pattgrnf €7 directional by nature. In this section, we extend the ADT
occurs with probability ;. Then, the average min-cut betweer ) .
two nodesS and ' in G, mincut#(S,T) is network model to networks with cycles. In order to incorgera
' T cycles, we need to introduce the notion of time — since, witho
mincut £ (S, T) = Z P < max rank( M) ) . the notion of time, the network with cycles may not be casual.

A(ise) Bel o) €(e i) To do so, we introduce delay on the links. Aslin [6], we model

fer’ .
Proof: By Theoreni®, we know that at any given timeeach link to have the same delay, and express the network

. . . . random processes in the delay variable

instance with failure patterifi, the min-cut betwee andT . . _ . .

is given bymax P f rank(M,). Then, the above _We define X,(S,¢) and Z,(T,j) to be thei-th andj_-th
i,e) B ) €er i - ' binary random process generated at souscand received

stgtement follows naturally by taking a time average of thaet destinationT’ at time ¢, for ¢ — 1.2.... We define
min-cut values betweef andT.

The key difference between Theorém 11 and Thedréim 1/3(6) to be the process on edge at time ¢ = 1,2, ..
is that in TheoreniCl1, any failure pattefne F may change _respectlvely. We express the source processes as a povesr ser
the network topology as well as min-cut butincut(S,T) > in D, X(5, D_) - [X(S’i)’ D), X(S’ 2;D).’ ":’X(S’“(S)’ D)l
. . where X (S,4, D) = Y~ , X¢(S,i)D". Similarly, we express
|X(S)| holds for all f € F —i.e. (G;,C) is assumed to be dosti ’t.’ . t=0 ' T D) — (Z2(T1.D
solvable. However, in Theorem113, we make no assumptighe estination random processé{T, D) = [Z(T,1, D),

. _ o0 . t
about the connection as we are evaluating the average vaTU’eZ.(.T’V(Z)’D)] where Z(T, i, D) = 34— Z:(T;3)D". In
of the min-cut. addition, we express the edge random process&g(asD) =

Unlike the case of static ADT networks, with randorrE::io Yi(e)D". Then, we can rewrite Equatiorid (1) addl (2) as

erasures, it is necessary to maintain a queue at each nodeyjn, (¢) = Z By Yile') + Z (i) X1 (S, ).
the ADT network. This is because, if a link fails when a node verv) X.(Shex(s)

has data to transmit on it, then it will have to wait until th
link recovers. In addition, a transmitting node needs toltle a
to learn whether a packet has been received by the next hop Zya (T, i) = Z Ee/,(T,i)Yt(e').
node, and whether it was innovative — this can be achieved e €I(T)

using channel estimation, feedback and/or redundancyen b

original ADT network, the issue of feedback was removed b}é(;n_g nt:tlvsv ;?;?wﬁﬂog’gr: scweeétﬁ;ve tt?\(;trzsiltztggnnﬁ]t rEg
assuming that the links are noiseless bit-pipes. We prékent ycies. 4

following corollaries under these assumptions. M (D) captures the input-output relationships of the ADT

Corollary 14 (Multicast in Time-varying Network): ne_'i_v%/orks W|t1hG.dGe_Iay and/ort\?a/clfg B &) let A(D
Consider an ADT networkiG and a multicast connection eorerg 'blveﬂ ane d(')r d_ ((jV, ), % (g ),
C={(5,T1,X(S)), ..., (S, Tn, X(S))}. Assume that failures B(D.>' an Fd f_e tdeh en.co Ing, decoding, and adjacency
occur where failure patterff € F’ occurs with probability matrices, as defined here:
p¢. Then, the multicast connection is feasible if and only if . {a(i,ej)(D) if e; € O(S) and X (S,17) € X(9),
mincutp(S,Ti) > |X(S)| for all 1. hy 0 otherwise.

Proof: Referencel[14] shows that the multicast connection
is feasible if and onlynincutz (S, T;) > |X(S)| for all i. The
proof in [14] relies on the fact that every node behaves like
stable M /M/1 queuing system in steady-state, and thus, thend F as in Equation[[5). The variables;, (D) and
gueues (or the number of innovative packets to be sent to the qua ’ (8:€5) ! .

(D) can either be constants or rational functions in

.. . . €le; (T;,
next hop node) has a finite mean if the network is run foﬂé 'ﬁ]]ekr)l) the system matrix of the ADT network with delay
sufficiently long period of time. : '

Corollary 15 (Random Coding for Time-varying Network).(and thus, may include cycles) is given as

Consider(G,C) problem whereC is a multicast connection. M(D) = A(D)- (I -DF)™'-B(D). 9)

?—urthermore, the output processgg7, i) can be rewritten as

B; (1, ) =
av(ijk)

€es (Tyk) (D) i e; € I(T}), Z(Ty, k) € Z(T),
0 otherwise



1 0 D 0 0 D D25(€3w€7) 0 Dzﬁ(esveg) Dzﬁ(esvelo) Dgﬁ(eﬁveg) D35(€3w€73) + Dsﬁ(eswem)
001 0 D 0 0 D?bBeyen O 0 0 0 D®Bley en)

00 1 0 0 0 DBegesy O 0 0 0 D?Bleg,en)

00 0 1 0 0 DBeyey O 0 0 0 D?Bley . en)

00 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 DBeg,e9) DBeg.e10) Dzﬁ(esveg) Dzﬁ(eﬁwem)

00 0 0 0 0 1 0 0 0 0 D

00 0 0 0 O 0 1 0 0 0 0

00 0 0 0 0 0 0 1 0 D 0

00 0 0 0 0 0 0 0 1 0 D

00 0 0 0 0 0 0 0 0 1 0

00 0 0 0 0 0 0 0 0 0 1

Fig. 12:12 x 12 matrix (I — DF)~! for network in Figurd 2. The matri¥’ can be found in Figurgl8.

Proof: The proof for this is similar to that of Theordm 1;the connections listed above in the ADT networks, and showed
thus, we shall not discuss this in detail for want of spame. that random linear network coding achieves capacity.

Similar to Sectiori 1ll,(I — DF)~! represents the impulse We extended the capacity characterization to networks with
response of the network with delay. This is because thessenycles and random erasures/failures. Thus, we proved the
I+ DF + D*F? + D3F3 + ... represents the connectivity ofoptimality of linear operations (as well as random linear
the network while taking delay into account. For examplé, network coding) for multicast connections in ADT networks
has a non-zero entry if there exists a path of lerigtietween with cycles. Furthermore, by incorporating random erasure
two port. Now, since we want to represent the time associatiedio the ADT network model, we showed that random linear
with traversing from port; to e;, we useD*F*, where D¥  network coding is robust against failures and erasures.
signifies that the path is of length Thus, (I — DF)~! =
I + DF 4+ D?F? + D3F3 + ... is the impulse response of

the network with delay. An example OW _ DF)_l for the [1] A. S. Avestime_hr, S. N. Diggavi, and D. N. C: Tse, “A deténiatic
approach to wireless relay networks,” Rroceedings of Allerton Con-
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