
ar
X

iv
:1

00
1.

44
31

v2
  [

cs
.IT

]  
14

 J
un

 2
01

0

Algebraic Network Coding Approach to
Deterministic Wireless Relay Networks

MinJi Kim, Muriel Médard

Research Laboratory of Electronics
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
Email: {minjikim, medard}@mit.edu

Abstract—The deterministic wireless relay network model,
introduced by Avestimehr et al., has been proposed for approx-
imating Gaussian relay networks. This model, known as the
ADT network model, takes into account the broadcast nature
of wireless medium and interference. Avestimehret al. showed
that the Min-cut Max-flow theorem holds in the ADT network.

In this paper, we show that the ADT network model can
be described within the algebraic network coding framework
introduced by Koetter and Médard. We prove that the ADT
network problem can be captured by a single matrix, called the
system matrix. We show that the min-cut of an ADT network
is the rank of the system matrix; thus, eliminating the need to
optimize over exponential number of cuts between two nodes to
compute the min-cut of an ADT network.

We extend the capacity characterization for ADT networks
to a more general set of connections. Our algebraic approach
not only provides the Min-cut Max-flow theorem for a single
unicast/multicast connection, but also extends to non-multicast
connections such as multiple multicast, disjoint multicast, and
two-level multicast. We also provide sufficiency conditions for
achievability in ADT networks for any general connection set.
In addition, we show that the random linear network coding, a
randomized distributed algorithm for network code construction,
achieves capacity for the connections listed above.

Finally, we extend the ADT networks to those with random
erasures and cycles (thus, allowing bi-directional links). Note
that ADT network was proposed for approximating the wireless
networks; however, ADT network is acyclic. Furthermore, ADT
network does not model the stochastic nature of the wireless
links. With our algebraic framework, we incorporate both cycles
as well as random failures into ADT network model.

I. I NTRODUCTION

The capacity of the wireless relay networks, unlike its wired
counterparts, is still a generally open problem. Even for a
simple relay network with one source, one sink, and one
relay, the capacity is unknown. In order to better approximate
wireless relay networks, [1][2] proposed a binary linear de-
terministic network model (known as the ADT model), which
incorporates the broadcast nature of the wireless medium as
well as interference. A node within the network receives the
bit if the signal is above the noise level; multiple bits that
simultaneously arrive at a node are superposed. Note that this
model assumes operation under high Signal-to-Noise-Ratio
(SNR) – interference from other users’ dominate the noise.

References [1][2] characterized the capacity of the ADT
networks, and generalized the Min-cut Max-flow theorem for

graphs to ADT networks for single unicast/multicast connec-
tions. Efficient algorithms to compute the coding strategies to
achieve minimum cut has been proposed in [3][4]. Reference
[5] introduced a flow network, calledlinking network, which
generalizes the ADT model, and relates the ADT networks to
matroids; thus, allowing the use of matroid theory to solve
ADT network problems.

In this paper, we make a connection between the ADT
network and algebraic network coding introduced by Koetter
and Médard [6], in which they showed an equivalence between
the solvability of a network problem and certain algebraic
conditions. This paper does not prove or disprove ADT
network model’s ability to approximate the capacity of the
wireless networks, but shows that the ADT network problems,
including that of computing the min-cut and constructing a
code, can be captured by the algebraic framework.

There are several advantages in generalizing ADT networks
to the algebraic network coding formulation. First, this allows
the use of results on network coding to better understand the
ADT networks. Network coding, proposed in [7], allows and
encouragesalgebraic mixingof data at intermediate nodes.
This mixing maximizes throughput for multicast traffic [7],
and is robust against failures and erasures [6]. However, most
of the classic network coding results consider scalar operations
in arbitrary field size,Fq. In order to take advantage of low-
complexity operations inF2, [8] introduces network codes,
called permute-and-add, that only require bit-wise vector
operations, and shows that their performance is still optimal.
This shows that network codes in higher field sizeFq can be
converted to a binary-vector code without loss in performance.
The connection between ADT networks and algebraic network
coding allows the use of existing theorems in the network
coding literature to derive new results for ADT networks.

The paper is organized as follows. We present the network
model in Section II, and an algebraic formulation of the ADT
network in Section III. Using this algebraic formulation, we
provide a definition of min-cut in ADT networks in Section
IV. In Sections V, we restate the Min-cut Max-flow theorem
using our algebraic formulation. In Section VI, we present
new capacity characterizations for ADT networks to a more
general set of traffic requirements, such as two-level multi-
cast, disjoint multicast, and multiple source multicast. Note
that [1][2][3][4][5] consider single unicast or single multicast
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Fig. 1: Additive MAC with two users, and the corresponding
rate region. The triangular region is modeled as a set of finite
field addition MACs.
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Fig. 2: Example network. We omitI(S) and O(T ) in this
diagram as they do not participate in the communication.

connection. Finally, we incorporate random erasures in Section
VII, and extend the ADT networks to networks with cycles in
Section VIII.

II. N ETWORK MODEL

As in [1][2], we shall consider a high SNR regime, in which
interference is the dominating factor. In the high SNR regime,
the Cover-Wyner region may be well approximated by the
combination of two regions, one square and one triangular, as
shown in Figure 1. The square (shaded) part can be modeled
as parallel links for the users, since they do not interfere.
The triangular (unshaded) part can be considered as that of a
noiseless finite-field addition multiple access channel (MAC)
[9]. Note in the high SNR regime, analog network coding,
which allows and encourages strategic interference, is near
optimal [10]. It is important to note that a network operating
in high SNR regime is different from a network with high gain
since a large gain amplifies the noise as well as the signal.

The ADT network model uses binary channels, and thus, a
binary additive MAC is used to model interference. Prior to
[1][2], Effros et al. presented an additive MAC over a finite
field Fq [11]. The Min-cut Max-flow theorem holds for all
of the cases above. It may seem that the ADT network model
differs greatly from that of [11] owing to the difference in field
sizes used. However, we can achieve a higher field size in ADT
networks by combining multiple binary channels and using a
binary-vectorscheme as shown in [8]. In other words, consider
two nodesV1 and V2 with two binary channels connecting
V1 to V2. Now, instead of considering them as two binary
channels, we can “combine” the two channels as one with
capacity of 2-bits. In this case, instead of usingF2, we can
use a larger field size ofF4. Thus, selecting a larger field size
Fq, q > 2 in ADT network model results in fewer but higher
capacity parallel channels. Furthermore, it is known that to
achieve capacity for multicast connections,F2 is not sufficient
[4]; thus, we need to operate in a higher field size. Therefore,
in this work, we shall not restrict ourselves toF2.

We now proceed to defining the network model precisely.
A wireless network is modeled using a directed graphG =

Y (e1) = α(1,e1)X(S, 1) + α(2,e1)X(S, 2)

Y (e2) = α(1,e2)X(S, 1) + α(2,e2)X(S, 2)

Y (e3) = Y (e6) = Y (e1)

Y (e4) = Y (e2)

Y (e5) = Y (e8) = 0

Y (e7) = β(e3,e7)Y (e3) + β(e4,e7)Y (e4)

Y (e9) = Y (e11) = β(e6,e9)Y (e6)

Y (e10) = β(e6,e10)Y (e6)

Y (e12) = Y (e7) + Y (e10)

Z(T, 1) = ǫ(e11,(T,1))Y (e11) + ǫ(e12,(T,1))Y (e12)

Z(T, 2) = ǫ(e11,(T,2))Y (e11) + ǫ(e12,(T,2))Y (e12)

Fig. 3: Equations relating the various processes of Figure 2.

(V , E) with a node setV and an edge setE , as shown in
Figure 2. A nodeV ∈ V consists ofinput ports I(V ) and
output portsO(V ). Let S, T ⊆ V be the set of sources and
destinations. An edge(e1, e2) exists only from an output port
e1 ∈ O(V1) to an input porte2 ∈ I(V2), for anyV1, V2 ∈ V .
Let E(V1, V2) be the set of edges fromO(V1) to I(V2). All
edges are of unit capacity, where capacity is normalized with
respect to the symbol size ofFq. Parallel links ofE(V1, V2)
deterministically model noise betweenV1 andV2.

Given such a wireless networkG = (V , E), a source
node S ∈ S has independentrandom processesX (S) =
[X(S, 1), X(S, 2), ..., X(S, µ(S))], µ(S) ≤ |O(S)|, which it
wishes to communicate to a set of destination nodesT (S) ⊆
T . In other words, we want nodesT ∈ T (S) to replicate a
subset of the random processes, denotedX (S, T ) ⊆ X (S),
by the means of the network. We define aconnectionc
as a triple(S, T,X (S, T )), and the rate ofc is defined as
R(c) =

∑

X(S,i)∈X (S,T )H(X(S, i)) = |X (S, T )| (symbols).
Information is transmitted through the network from the

source to the destinations in the following manner. A nodeV
sends information throughe ∈ O(V ) at a rate at most one
symbol per time unit. LetY (e) denote the random process at
port e. In general,Y (e), e ∈ O(V ), is a function ofY (e′),
e′ ∈ I(V ). In this paper, we consider only linear functions.

Y (e) =
∑

e′∈I(V )

β(e′,e)Y (e′), for e ∈ O(V ). (1)

For a source nodeS, ande ∈ O(S),

Y (e) =
∑

e′∈I(V )

β(e′,e)Y (e′) +
∑

X(S,i)∈X (S)

α(i,e)X(S, i). (2)

Finally, the destinationT receives a collection of input pro-
cessesY (e′), e′ ∈ I(T ). NodeT generates a set of random
processesZ(T ) = [Z(T, 1), Z(T, 2), ..., Z(T, ν(T ))] where

Z(T, i) =
∑

e′∈I(T )

ǫ(e′,(T,i))Y (e′). (3)

A connectionc = (S, T,X (S, T )) is established successfully
if X (S) = Z(T ). A node V is said tobroadcastto a set
V ′ ⊆ V if E(V, V ′) 6= ∅ for all V ′ ∈ V ′. In Figure 2, node
S broadcasts to nodesV1 andV2. Superposition occurs at the
input port e′ ∈ I(V ), i.e. Y (e′) =

∑

(e,e′)∈E Y (e) over a
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Fig. 4: A new interpretation of the example network from
Figure 2.

finite field Fq. We say there is a|V ′|-user MAC channel if
E(V ′, V ) 6= ∅ for all V ′ ∈ V ′. In Figure 2, nodesV1 andV2

are users, andT the receiver in a 2-user MAC.
For a given networkG and a set of connectionsC, we say

that(G, C) is solvableif it is possible to establish successfully
all connectionsc ∈ C. The broadcast and MAC constraints
are given by the network; however, we are free to choose the
variablesα(i,e), β(e′,e), andǫ(e′,i) from Fq. Thus, the problem
of checking whether a given(G, C) is solvable is equivalent to
finding a feasible assignment toα(i,e), β(e′,e), andǫ(e′,(T,i)).

Example 1:The equations in Figure 3 relate the various
processes in the example network in Figure 2. Note that in
Figure 2, we have setY (e1) = a, Y (e2) = b, Y (e7) = c,
Y (e9) = d, andY (e10) = f for notational simplicity.

A. An Interpretation of the Network Model

The ADT network model uses multiple channels from an
output port to model the broadcast channel, and a finite field
additive MAC to model interference, as shown in Figure 2.
Note that, in Figure 2, there are two edges from output port
e1 to input portse3 and e6, respectively; however, due to
the broadcast constraint, the two edges(e1, e3) and (e1, e6)
carry the same informationa. This introduces considerable
complexity in constructing a network code as well as com-
puting min-cut of the network [1][2][3][5]. This is due to the
fact that the multiple edges from a port do not capture the
broadcast dependencies of edges. Furthermore, the broadcast
dependencies have to be propagated through the network.

In our approach, we remedy this by introducing the use of
hyperedges, as shown in Figure 4. An output port’s decision
to transmit affects the entire hyperedge; thus, the output port
transmits to all the input ports connected to the hyperedge
simultaneously. In Section III, we shall include the notion
of hyperedges in our algebraic formulation to capture the
broadcast nature of the wireless medium. This removes the
difficulties of computing the min-cut of ADT networks (Sec-
tion IV), as it naturally captures the dependencies caused by
the broadcasts.

The finite field additive MAC model can be viewed as a set
of codes that an input port may receive. As shown in Figure
4, input porte12 receives one of the four possible codes. The
code thate12 receives depends on output portse7’s and e9’s
decision to transmit or not.

The difficulty in constructing a network code does not come
from any single broadcast or MAC constraint. The difficulty
in constructing a code is in satisfying multiple MAC and
broadcast constraints simultaneously. For example, in Figure
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Fig. 5: An example of finite field additive MAC.
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5, the fact thate4 may receivea + b does not constrain the
choice ofa nor b. The same argument applies toe6 receiving
a+ c. However, the problem arises from the fact that a choice
of value fora at e4 interacts both withb and c. As we shall
see in Section IV, we eliminate this difficulty by allowing the
use of a larger field,Fq.

III. A LGEBRAIC FORMULATION

We provide an algebraic formulation for the ADT network
problem (G, C). For simplicity, we describe the multicast
problem with a single sourceS and a set of destination nodes
T , as in Figure 6. However, this formulation can be extended
to multiple source nodesS1, S2, ...SK by adding a super-
sourceS as in Figure 7.

We define a system matrixM to describe the relationship
between source’s random processesX (S) and the destinations’
processesZ = [Z(T1),Z(T2), ...,Z(T|T |)]. Thus, we want to
characterizeM where

Z = X (S) ·M. (4)

The matrixM is composed of three matrices,A, F , andB.
GivenG, we define the adjacency matrixF as follows:

Fi,j =











1 if (ei, ej) ∈ E ,

β(ei,ej) if ei ∈ I(V ), ej ∈ O(V ) for V ∈ V ,

0 otherwise.

(5)

Matrix F is defined on the ports, rather than on the nodes.
This is because, in the ADT model, each port is the basic
receiver/transmitter unit. Each entryFi,j represents the input-
output relationships of the ports. A zero entry indicates that
the ports are not directly connected, while an entry of one
represents that they are connected. The adjacency matrixF
naturally captures the physical structure of the ADT network.
Note that a row with multiple entries of 1 represent the
broadcast hyperedge; while a column with multiple entries of
1 represent the MAC constraint. Note that the 0-1 entries ofF
represent thefixed network topology as well as the broadcast
and MAC constraints. On the other hand,β(ei,ej) are free
variables, representing the coding coefficients used atV to
map the input port processes to the output port processes. This
is the key difference between the work presented here and
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in [6] – F is partially fixed in the ADT network model due
to network topology and broadcast/MAC constraints, while in
[6], only the network topology affectF .

In [1][2], the nodes are allowed to perform any internal
operations; while in [3][5], only permutation matrices (i.e.
routing) are allowed. In their work [1][2], the authors also
show that linear operations are sufficient for achieving capacity
in ADT networks for a single multicast traffic. We propose a
general setup in whichβ(ei,ej) ∈ Fq – thus, allowing any
matrix operation, as in [1][2].

Note thatF k, the k-th power of an adjacency matrix of a
graphG, shows the existence of paths of lengthk between any
two nodes inG. Therefore, the seriesI + F + F 2 + F 3 + ...
represent the connectivity of the network. It can be verified
that F is nilpotent, which means that there exists ak such
thatF k is a zero matrix. As a result,I + F + F 2 + F 3 + ...
can be written as(I − F )−1. Thus,(I − F )−1 represent the
impulse response of the network. Note that,(I − F )−1 exists
for all acyclic network sinceI−F is an upper-triangle matrix
with all diagonal entries equal to 1; thus,det(I − F ) = 1.

Example 2: In Figure 8, we provide the12× 12 adjacency
matrixF for the example network in Figures 2 and 4. Note that
the first row (with two entries of 1) represents the broadcast
hyperedge,e1 connected to bothe3 and e6. The last column
with two entries equal to 1 represents the MAC constraint,
bothe7 ande10 talking toe12. The highlighted elements inF
represent the coding variables,β(e′,e), of V1 andV2 in Figure
4. For some(e′, e), β(e′,e) = 0 since these ports ofV1 andV2

are not used.
Matrix A represents the encoding operations performed at

S. We define a|X (S)| × |E| encoding matrixA as follows:

Ai,j =

{

α(i,ej) if ej ∈ O(S) andX(S, i) ∈ X (S),

0 otherwise.
(6)

Example 3:We provide the2 × 12 encoding matrixA for
the network in Figure 2.

A =

(

α1,e1 α1,e2 0 · · · 0
α2,e1 α2,e2 0 · · · 0

)

.

Matrix B represents the decoding operations performed at
the destination nodesT ∈ T . Since there are|T | destination
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








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Fig. 8: 12× 12 adjacency matrixF for network in Figure 2.

nodes,B is a matrix of size|Z| × |E| whereZ is the set of
random processes derived at the destination nodes. We define
the decoding matrixB as follows:

Bi,(Tj ,k) =

{

ǫ(ei,(Tj ,k)) if ei ∈ I(Tj), Z(Tj, k) ∈ Z(Tj),

0 otherwise.
(7)

Example 4:We provide the2× 12 decoding matrixB for
the example network in Figure 2.

B =

(

0 · · · 0 ǫ(e11,(T,1)) ǫ(e12,(T,1))

0 · · · 0 ǫ(e11,(T,2)) ǫ(e12,(T,2))

)

.

Theorem 1:Given a networkG = (V , E), let A, B,
and F be the encoding, decoding, and adjacency matrices,
respectively. Then, the system matrixM is given by

M = A(1− F )−1BT . (8)

Proof: The proof of this theorem is similar to that of
Theorem 3 in [6]. As previously mentioned,(I − F )−1 =
(I +F +F 2 + ...) always exists for an acyclic networkG.

Note that the algebraic framework shows a clear separation
between the given physical constraints (fixed 0-1 entries ofF
showing the topology and the broadcast/MAC constraints), and
the coding decisions. As mentioned previously, we can freely
choose the coding variablesα(i,ej), ǫ(ei,(Tj,k)), and β(ei,ej).
Thus, solvability of(G, C) is equivalent to assigning values to
α(i,ej), ǫ(ei,(Tj ,k)), andβ(ei,ej) such that each receiverT ∈ T
is able to decode the data it is intended to receive.

Example 5:We can combine the matricesF , A, and B
from Examples 2, 3, and 4 respectively to obtain the system
matrix M = A(I −F )−1BT for the network in Figure 2. We
show a schematic of the system matrixM in Figure 9.

IV. D EFINITION OF M IN-CUT

Consider a sourceS and a destinationT . Reference [1]
proves the maximal achievable rate to be the minimum value
of all S-T cuts, denotedmincut(S, T ), which we reproduce
below in Definition 1.

Definition 1: [1][2] A cut Ω between a sourceS and a
destinationT is a partition of the vertices into two disjoint
setsΩ and Ωc such thatS ∈ Ω and T ∈ Ωc. For any cut,
GΩ is the incidence matrix associated with the bipartite graph
with ports inΩ andΩc. Then, the capacity of the given ADT
network (equivalently,mincut(S, T )) is defined as

mincut(S, T ) = min
Ω

rank(GΩ).
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Fig. 9: The system matrixM and it’s componentsA, (I −
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This capacity ofmincut(S, T ) can be achieved using linear
operations for a single unicast/multicast connection. �

Note that, with the above definition, in order to compute
mincut(S, T ), we need to optimize over all cuts betweenS
and T . In addition, the proof of achievability in [1] is not
constructive, as it assumes infinite block length and does not
consider the details of internal node operations.

We introduce a new algebraic definition of the min-cut, and
show that it is equivalent to that of Definition 1.

Theorem 2:The capacity of the given ADT, equivalently
the minimum value of allS − T cutsmincut(S, T ), is

mincut(S, T ) = min
Ω

rank(GΩ)

= max
α(i,e),β(e′,e),ǫ(e′,i)

rank(M).

Proof: By [1], we know that mincut(S, T ) =
minΩ rank(GΩ). Therefore, we show thatmaxα,β,ǫ rank(M) is
equivalent to the maximal achievable rate in an ADT network.

First, we show thatmincut(S, T ) ≥ maxα,β,ǫ rank(M). In
our algebraic formulation,Z(T ) = X (S)M ; thus, the rank of
M represents the rate achieved. LetR = maxα,β,ǫ rank(M).
Then, there exists an assignment ofα(i,e), β(e′,e), and ǫ(e′,i)
such that the network achieves a rate ofR. By the definition
of min-cut, it must be the case thatmincut(S, T ) ≥ R.

Second, we show thatmincut(S, T ) ≤ maxα,β,ǫ rank(M).
Assume thatR = mincut(S, T ). Then, by [1][2], there exists
a linear configuration of the network such that we can achieve
a rate of R such that the destination nodeT is able to
reproduceX (S, T ). This configuration of the network pro-
vides a linear relationship of the source-destination processes
(actually, the resulting system matrix is an identity matrix);
thus, an assignment of the variablesα(i,e), β(e′,e), and ǫ(e′,i)
for our algebraic framework. We denoteM ′ to be the system
matrix corresponding to this assignment. Note that, by the
definition,M ′ is anR×R matrix with a rank ofR. Therefore,
maxα,β,ǫ rank(M) ≥ rank(M ′) = mincut(S, T ).

The system matrixM depends not only on the structure
of the ADT network, but also on the field size used, nodes’
internal operations, transmission rate, and connectivity. For
example, the network topology may change with a choice
of larger field size, since larger field sizes result in fewer
parallel edges/channels. Another example, if we adjust the

rate such that|X (S)| ≤ mincut(S, T ), thenM has full-rank.
However, if |X (S)| > mincut(S, T ), thenM may have rank
of mincut(S, T ) but not be full-rank. It is important to note
that, in ADT networks, the cut value may not equal to the
graph theoretical cut value (see Figure 2 in [3]).

V. M IN-CUT MAX -FLOW THEOREM

In this section, we provide an algebraic interpretation of
the Min-cut Max-flow theorem for a single unicast connection
and a single multicast connection [1][2]. This result is a direct
consequence of [6] when applied to the algebraic formulation
for the ADT network. In addition, we show that a distributed
randomized coding scheme achieves capacity for these con-
nections.

Theorem 3 (Min-cut Max-flow Theorem):Given an acyclic
networkG with a single connectionc = (S, T,X (S, T )) of
rateR(c) = |X (S, T )|, the following are equivalent.

1) A unicast connectionc is feasible.
2) mincut(S, T ) ≥ R(c).
3) There exists an assignment ofα(i,ej), ǫ(ei,(Tj ,k)), and

β(ei,ej) such that theR(c) × R(c) system matrixM is
invertible in Fq (i.e. det(M) 6= 0).

Proof: Statements 1) and 2) have been shown to
be equivalent in ADT network models [1][3][5]. From
Theorem 2, we have shown the equivalence between
mincut(S, T ) = maxα,β,ǫ rank(M). Therefore, for any rate
R(c) ≤ mincut(S, T ), M is a full-rank square matrix. Thus,
M is invertible.

Corollary 4 (Random Coding for Unicast):Consider
an ADT network problem with a single connectionc =
(S, T,X (S, T )) of rate R(c) = |X (S, T )| ≤ mincut(S, T ).
Then, random linear network coding, where some or all
code variablesα(i,ej), ǫ(ei,(Tj ,k)), and β(ei,ej) are chosen
independently and uniformly over all elements ofFq,
guarantees decodability at destination nodeT with high
probability at least(1 − 1

q
)η, whereη is the number of links

carrying random combinations of the source processes.
Proof: From Theorem 3, there exists an assignment of

α(i,ej), ǫ(ei,(Tj ,k)), andβ(ei,ej) such thatdet(M) 6= 0, which
gives a capacity-achieving network code for the given(G, C).
Thus, this connectionc is feasible for the given network.
Reference [12] proves that random linear network coding
is capacity-achieving and guarantees decodability with high
probability(1− 1

q
)η for such feasible unicast connectionc.

Theorem 5 (Single Multicast Theorem):Given an acyclic
network G and connectionsC = {(S, T1,X (S)), (S, T2,
X (S)), ..., (S, TN ,X (S))}, (G, C) is solvable if and only if
mincut(S, Ti) ≥ |X (S)| for all i.

Proof: If (G, C) is solvable, thenmincut(S, Ti) ≥
|X (S)|. Therefore, we only have to show the converse. As-
sumemincut(S, Ti) ≥ |X (S)| for all i ∈ [1, N ]. The system
matrix M = {Mi} is a concatenation of|X (S)| × |X (S)|
matrix whereZ(Ti) = X (S)Mi, as shown in Figure 9. We
can write M = [M1,M2, ...,MN ] = A(I − F )−1BT =
A(I−F )−1[B1, B2, ..., BN ]. Thus,Mi = A(I−F )−1Bi. Note
thatA andBi’s do not substantially contribute to the system



matrix Mi sinceA andBi only perform linear encoding and
decoding at the source and destinations, respectively.

By Theorem 3, there exists an assignment ofα(i,ej),
ǫ(ei,(Tj ,k)), and β(ei,ej) such that each individual system
submatrixMi is invertible,i.e. det (Mi) 6= 0. However, an as-
signment that makesdet (Mi) 6= 0 may lead todet (Mj) = 0
for i 6= j. Thus, we need to show that it is possible to achieve
simultaneouslydet (Mi) 6= 0 for all i. By [12], we know
that if the field size is larger than the number of receivers
(q > N ), then there exists an assignment ofα(i,ej), ǫ(ei,(Tj ,k)),
andβ(ei,ej) such thatdet (Mi) 6= 0 for all i.

Corollary 6 (Random Coding for Multicast):Consider an
ADT network problem with a single multicast connection
C = {(S, T1,X (S)), (S, T2,X (S)), ..., (S, TN ,X (S))} with
mincut(S, Ti) ≥ |X (S)| for all i. Then, random linear
network coding, where some or all code variablesα(i,ej),
ǫ(ei,(Tj ,k)), and β(ei,ej) are chosen independently and uni-
formly over all elements ofFq, guarantees decodability at des-
tination nodeTi for all i simultaneously with high probability
at least(1 − N

q
)η, whereη is the number of links carrying

random combinations of the source processes; thus,η ≤ |E|.
Proof: Given that the multicast connection is feasible

(which is true by Theorem 5), reference [12] shows that
random linear network coding achieves capacity for multicast
connections, and allows all destination nodes to decode the
source processesX (S) with high probability(1 − N

q
)η.

VI. EXTENSIONS TO OTHER CONNECTIONS

In this section, we extend the ADT network results to a
more general set of traffic requirements. We use the algebraic
formulation and the results from [6] to characterize the feasi-
bility conditions for a given problem(G, C).

Theorem 7 (Multiple Multicast Theorem):Given a network
G and a set of connectionsC = {(Si, Tj,X (Si)) | Si ∈
S, Tj ∈ T }, (G, C) is solvable if and only if Min-cut Max-
flow bound is satisfied for any cut between source nodesS
and a destinationTj , for all Tj ∈ T .

Proof: We first introduce a super-sourceS with |O(S)| =
∑

Si∈S |O(Si)|, and connect eache′j ∈ O(S) to an input of
Si such thatej ∈ O(Si) as shown in Figure 7. Then, we apply
Theorem 5, which proves the statement.

Theorem 8 (Disjoint Multicast Theorem):Given an acyclic
networkG with a set of connectionsC = {(S, Ti, X (S, Ti))
| i = 1, 2, ...,K} is called adisjoint multicastif X (S, Ti) ∩
X (S, Tj) = ∅ for all i 6= j. Then,(G, C) is solvable if and
only if mincut(S, T ′) ≥

∑

Ti∈T ′ |X (S, Ti)| for anyT ′ ⊆ T .
Proof: Create a super-destination nodeT with |I(T )| =

∑K

i=1 |I(Ti)|, and an edge(e, e′) from e ∈ O(Ti), i ∈ [1,K]
to e′ ∈ I(T ), as in Figure 10. This converts the problem
of disjoint multicast to a single-sourceS, single-destination
T problem with rateX (S, T ) =

∑

T ′∈T |X (S, T )|. The
mincut(S, T ) ≥ |X (S, T )|; so, Theorem 3 applies. Thus, it is
possible to achieve a communication of rateX (S, T ) between
S and T . Now, we have to guarantee that the receiverTi is
able to receive the exact subset of processesX (S, Ti). Since
the system matrix toT is full rank, it is possible to carefully
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Fig. 10: Disjoint multicast problem can be converted into a
single destination problem by adding a super-destinationT .
The system matrixM for the disjoint multicast problem is
shown as well.
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Fig. 11: The system matrixM for the two-level multicast prob-
lem. The structure of the system matrixM is a “concatenation”
of the disjoint multicast problem (Figure 10) and the single
multicast problem (Figure 6).

choose the encoding matrixA such that the system matrixM
at super-destination nodeT is an identity matrix. This implies
that for each edge from the output ports ofTi (for all i) to
input ports ofT is carrying a distinct symbol, disjoint from
all the other symbols carried by those edges from output ports
of Tj, for all i 6= j. Thus, by appropriately permuting the
symbols at the source,S can deliver the desired processes to
the intendedTi as shown in Figure 10.

Theorem 9 (Two-level Multicast Theorem):Given an
acyclic networkG with a set of connectionsC = Cd ∪ Cm
where Cd = {(S, Ti,X (S, Ti))|X (S, Ti) ∩ X (S, Tj) = ∅,
i 6= j, i, j ∈ [1,K]} is a set of disjoint multicast connections,
andCm = {(S, Ti,X (S)) | i ∈ [K + 1, N ]} is a set of single
source multicast connections. Then,(G, C) is solvable if and
only if the min-cut betweenS and anyT ′ ⊆ {T1, ..., TK} is
at least

∑

Ti∈T ′ |X (S, Ti)|, and min-cut betweenS andTj is
at least|X (S)| for j ∈ [K + 1, N ].

Proof: We create a super-destinationT for the disjoint
multicast destinations as in the proof for Theorem 8. Then, we
have a single multicast problem with receiversT andTi, i ∈
[K + 1, N ]. Theorem 5 applies. By choosing the appropriate
matrix A, S can satisfy both the disjoint multicast and the
single multicast requirements, as shown in Figure 11.

Theorem 9 does not extend to a three-level multicast.
In the theorem below, we present sufficient conditions for

solvability of a general connection set. This theorem does not
provide necessary conditions, as shown in [13].

Theorem 10 (Generalized Min-cut Max-flow Theorem):
Given an acyclic networkG with a connection setC, let
M = {Mi,j} where Mi,j is the system matrix for source
processesX (Si) to destination processesZ(Tj). Then,(G, C)
is solvable if there exists an assignment ofα(i,ej), ǫ(ei,(Tj ,k)),
andβ(ei,ej) such that



1) Mi,j = 0 for all (Si, Tj,X (Si, Tj)) /∈ C,
2) Let (Sσ(i), Tj ,X (Sσ(i), Tj)) ∈ C for i ∈ [1,K(j)].

Thus, this is the set of connections withTj as a receiver.
Then, [MT

σ(1),j ,M
T
σ(2),j, ..., M

T
σ(Kj),j

] is a |Z(Tj))| ×
|Z(Tj)| is a nonsingularsystem matrix.

Proof: Note that [MT
σ(1),j ,M

T
σ(2),j , ..., MT

σ(Kj),j
] is a

system matrix for source processesX (Sσ(i)), i ∈ [1,K(j)],
to destination processesZ(Tj).

Condition 2) states the Min-cut Max-flow condition; thus,
is necessary to establish the connections. Condition 1) states
that the destination nodeTj should be able to distinguish the
information it is intended to receive from the information that
may have been mixed into the flow it receives. These two
conditions are sufficient to establish all connections inC. We
do not provide the details for want of space; however, the
proof is similar to that of Theorem 6 in [6].

We briefly note the capacity achieving code construction for
the non-multicast connections described in this section. For
multiple multicast, a random linear network coding approach
achieves capacity –i.e. the source nodes and the intermediate
nodes can randomly and uniformly select coding coefficients.
However, a minor modification is necessary for disjoint mul-
ticast and two-level multicast. We note that only the source’s
encoding matrixA needs to be modified. As in the proofs
of Theorems 8 and 9, the intermediate nodes can randomly
and uniformly select coding coefficients; thus, preservingthe
distributed and randomized aspect of the code construction.
Once the coding coefficients at the intermediate nodes are
selected,S carefully chooses the encoding matrixA such that
the system matrix corresponding to the receivers of the disjoint
multicast (in the two-level multicast, these would correspond
to Ti, i ∈ [1,K]) is an identity matrix. This can be done
because the system matrixM is full rank.

VII. N ETWORK WITH RANDOM ERASURES

We consider the algebraic ADT problem where links may
fail randomly, and cause erasures. Wireless networks are
stochastic in nature, and random erasures occur dynamically
over time. However, the original ADT network models noise
deterministically with parallel noise-free bit-pipes. Asa result,
the min-cut (Definition 1) and the network code [3][4][5],
which depend on the hard-coded representation of noise, have
to be recomputed every time the network changes.

We show that the algebraic framework for the ADT network
is robust against random erasures and failures. First, we
show that for some set of link failures, the network code
remain successful. This translate to whether the system matrix
M preserves its full rank even after a subset of variables
α(i,ej), ǫ(ei,(Dj ,k)), andβ(ei,ej) associated with the failed links
is set to zero. Second, we show that the specific instance of
the system matrixM and its rank are not as important as
the averagerank(M) when computing the time average min-
cut. Note that the original min-cut definition (Definition 1)
requires an optimization over exponential number of cuts for
every time step to find the time average min-cut. With this
insight, we shall use the results from [14] to show that random

linear network coding achieves the time-average min-cut,i.e.
is capacity-achieving.

We assume that any link within the network may fail. Given
an ADT networkG and a set of link failuresf , Gf represents
the networkG experiencing failuresf . This can be achieved
by deleting the failing links fromG, which is equivalent to
setting the coding variables inB(f) to zero, whereB(f) is
the set of coding variables associated with the failing links.
We denoteM be the system matrix for networkG. Let Mf

be the system matrix for the networkGf .

A. Robust against Random Erasures

Given an ADT network problem(G, C), let F be the set of
all link failures such that, for anyf ∈ F , the problem(Gf , C)
is solvable. The solvability of a given(Gf , C) can be verified
using resulting in Sections V and VI. We are interested in static
solutions, where the network is oblivious off . In other words,
we are interested in finding the set of link failures such that
the network code is still successful in delivering the source
processes to the destinations. For a multicast connection,we
show the following surprising result.

Theorem 11 (Static Solution for Random Erasures):Given
an ADT network problem(G, C) with a multicast connection
C = {(S, T1,X (S)), (S, T2,X (S)), ..., (S, TN ,X (S))}, there
exists astatic solution to the problem(Gf , C) for all f ∈ F .

Proof: By Theorem 5, we know that for any givenf ∈
F , the problem(Gf , C) is solvable; thus, there exists a code
det (Mf ) 6= 0. Now, we need to show that there exists a code
such thatdet (Mf) 6= 0 for all f ∈ F simultaneously. This
is equivalent to finding a non-zero solution to the following
polynomial:

∏

f∈F det (Mf ) 6= 0. Reference [12] showed that
if the field size is large enough (q > |F||T | = |F|N ), then
there exists an assignment ofα(i,ej), ǫ(ei,(Dj ,k)), andβ(ei,ej)

such thatdet (Mf ) 6= 0 for all f ∈ F .
Corollary 12 (Random Coding against Random Erasures):

Consider an ADT network problem with a multicast connec-
tion C = {(S, T1,X (S)), (S, T2,X (S)), ..., (S, TN ,X (S))},
which is solvable under link failuresf , for all f ∈ F .
Then, random linear network coding, where some or all
code variablesα(i,ej), ǫ(ei,(Dj ,k)), and β(ei,ej) are chosen
independently and uniformly over all elements ofFq

guarantees decodability at destination nodesTi for all
i simultaneously and remains successful regardless of
the failure patternf ∈ F with high probability at least
(1− N |F|

q
)η, whereη is the number of links carrying random

combinations of the source processes.
Proof: Given a multicast connection that is feasible

under any link failuresf ∈ F , reference [12] shows that
random linear network coding achieves capacity for multicast
connections, and is robust against any link failuresf ∈ F with
high probability(1− N |F|

q
)η.

We note that it is unclear whether this can be extended to
the non-multicast connections, as noted in [6]. Reference [6]
shows a simple example network in which no static solution
is available for a set of feasible failure patterns.



B. Time-average Min-cut

In this section, we study the time-average behavior of the
ADT network, given random erasures. We use techniques
from [14], which studies reliable communication over lossy
networks with network coding.

Consider an ADT networkG. In order to study time-average
behavior, we introduce erasure distributions. LetF ′ be a set of
link failure patterns inG. Assume that any set of link failures
f ∈ F ′ may occur with probabilitypf . In this section, we
study the average behavior of the network over a long period
of time; thus, the steady state behavior.

Theorem 13 (Min-cut for Time-varying Network):Assume
an ADT networkG in which link failure patternf ∈ F ′

occurs with probabilitypf . Then, the average min-cut between
two nodesS andT in G, mincutF ′(S, T ) is

mincutF ′(S, T ) =
∑

f∈F ′

pf

(

max
α(i,e),β(e′,e),ǫ(e′,i)

rank(Mf )

)

.

Proof: By Theorem 2, we know that at any given time
instance with failure patternf , the min-cut betweenS andT
is given bymaxα(i,e),β(e′,e),ǫ(e′,i)

rank(Mf ). Then, the above
statement follows naturally by taking a time average of the
min-cut values betweenS andT .

The key difference between Theorem 11 and Theorem 13
is that in Theorem 11, any failure patternf ∈ F may change
the network topology as well as min-cut butmincut(S, T ) ≥
|X (S)| holds for all f ∈ F – i.e. (Gf , C) is assumed to be
solvable. However, in Theorem 13, we make no assumption
about the connection as we are evaluating the average value
of the min-cut.

Unlike the case of static ADT networks, with random
erasures, it is necessary to maintain a queue at each node in
the ADT network. This is because, if a link fails when a node
has data to transmit on it, then it will have to wait until the
link recovers. In addition, a transmitting node needs to be able
to learn whether a packet has been received by the next hop
node, and whether it was innovative – this can be achieved
using channel estimation, feedback and/or redundancy. In the
original ADT network, the issue of feedback was removed by
assuming that the links are noiseless bit-pipes. We presentthe
following corollaries under these assumptions.

Corollary 14 (Multicast in Time-varying Network):
Consider an ADT networkG and a multicast connection
C = {(S, T1,X (S)), ..., (S, TN ,X (S))}. Assume that failures
occur where failure pattenf ∈ F ′ occurs with probability
pf . Then, the multicast connection is feasible if and only if
mincutF ′(S, Ti) ≥ |X (S)| for all i.

Proof: Reference [14] shows that the multicast connection
is feasible if and onlymincutF ′(S, Ti) ≥ |X (S)| for all i. The
proof in [14] relies on the fact that every node behaves like a
stableM/M/1 queuing system in steady-state, and thus, the
queues (or the number of innovative packets to be sent to the
next hop node) has a finite mean if the network is run for
sufficiently long period of time.

Corollary 15 (Random Coding for Time-varying Network):
Consider(G, C) problem whereC is a multicast connection.

Assume failure patternf ∈ F ′ occurs with probabilitypf .
Then, random linear network coding, where some or all
code variablesα(i,ej), β(ei,ej), ǫ(ei,(Dj ,k)) are chosen over
all elements ofFq guarantees decodability at destination
nodesTi for all i simultaneously with arbitrary small error
probability.

Proof: This is a direct consequence of Corollary 14 and
results in [12][14].

VIII. N ETWORK WITH CYCLES

ADT networks are acyclic, with links directed from the
source nodes to the destination nodes. However, wireless
networks intrinsically have cycles as wireless links are bi-
directional by nature. In this section, we extend the ADT
network model to networks with cycles. In order to incorporate
cycles, we need to introduce the notion of time – since, without
the notion of time, the network with cycles may not be casual.
To do so, we introduce delay on the links. As in [6], we model
each link to have the same delay, and express the network
random processes in the delay variableD.

We defineXt(S, i) and Zt(T, j) to be thei-th and j-th
binary random process generated at sourceS and received
at destinationT at time t, for t = 1, 2, .... We define
Yt(e) to be the process on edgee at time t = 1, 2, ...,
respectively. We express the source processes as a power series
in D, X (S,D) = [X(S, 1, D), X(S, 2, D), ..., X(S, µ(S), D)]
whereX(S, i,D) =

∑∞
t=0 Xt(S, i)D

t. Similarly, we express
the destination random processesZ(T,D) = [Z(T, 1, D),
..., Z(T, ν(Z), D)] whereZ(T, i,D) =

∑∞
t=0 Zt(T, i)D

t. In
addition, we express the edge random processes asYt(e,D) =
∑∞

t=0 Yt(e)D
t. Then, we can rewrite Equations (1) and (2) as

Yt+1(e) =
∑

e′∈I(V )

β(e′,e)Yt(e
′) +

∑

Xt(S,i)∈X (S)

α(i,e)Xt(S, i).

Furthermore, the output processesZt(T, i) can be rewritten as

Zt+1(T, i) =
∑

e′∈I(T )

ǫe′,(T,i)Yt(e
′).

Using this formulation, we can extend the results from [6] to
ADT networks with cycles. We show that a system matrix
M(D) captures the input-output relationships of the ADT
networks with delay and/or cycles.

Theorem 16:Given a networkG = (V , E), let A(D),
B(D), and F be the encoding, decoding, and adjacency
matrices, as defined here:

Ai,j =

{

α(i,ej)(D) if ej ∈ O(S) andX(S, i) ∈ X (S),

0 otherwise.

Bi,(Tj ,k) =

{

ǫ(ei,(Tj ,k))(D) if ei ∈ I(Tj), Z(Tj, k) ∈ Z(Tj),

0 otherwise.

and F as in Equation (5). The variablesα(i,ej)(D) and
ǫ(ei,(Tj ,k))(D) can either be constants or rational functions in
D. Then, the system matrix of the ADT network with delay
(and thus, may include cycles) is given as

M(D) = A(D) · (I −DF )−1 · B(D)T . (9)
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Fig. 12:12× 12 matrix (I −DF )−1 for network in Figure 2. The matrixF can be found in Figure 8.

Proof: The proof for this is similar to that of Theorem 1;
thus, we shall not discuss this in detail for want of space.

Similar to Section III,(I −DF )−1 represents the impulse
response of the network with delay. This is because the series
I +DF +D2F 2 +D3F 3 + ... represents the connectivity of
the network while taking delay into account. For example,F k

has a non-zero entry if there exists a path of lengthk between
two port. Now, since we want to represent the time associated
with traversing from portei to ej , we useDkF k, whereDk

signifies that the path is of lengthk. Thus, (I − DF )−1 =
I + DF + D2F 2 + D3F 3 + ... is the impulse response of
the network with delay. An example of(I −DF )−1 for the
example network in Figure 4 is shown in Figure 12.

Using the system matrixM(D) from Theorem 16, we can
extend Theorem 3, Theorem 5, Theorem 7, Theorem 8, and
Theorem 9 to ADT networks with cycles/delay. However,
there is a minor technical change. We now operate in a
difference field – instead of having coding coefficients from
the finite field Fq, the coding coefficientsα(i,ej)(D) and
ǫ((ei,(Tj ,k)))(D) are now fromFq(D), the field of rational
functions of D. We shall not discuss the proofs in detail;
however, this is a direct application of results in [6].

IX. CONCLUSIONS

ADT networks [1][2] have drawn considerable attention for
its potential to approximate the capacity of wireless relay
networks. In this paper, we showed that the ADT network
can be described well within the algebraic network coding
framework [6]. This connection between ADT network and
algebraic network coding allows the use of results on network
coding to understand better the ADT networks. We emphasize
again that the aim of this paper is not to prove or disprove
ADT network model’s ability to approximate the capacity of
the wireless networks, but to show that the ADT network
problems, including that of computing the min-cut and con-
structing a code, can be captured by the algebraic network
coding framework.

In this paper, we derived an algebraic definition of min-
cut for the ADT networks, and provided an algebraic in-
terpretation of the Min-cut Max-flow theorem for a single
unicast/mulciast connection in ADT networks. Furthermore,
by taking advantage of the algebraic structure, we have shown
feasibility conditions for a variety of set of connectionsC,
such as multiple multicast, disjoint multicast, and two-level
multicast. We also showed optimality of linear operations for

the connections listed above in the ADT networks, and showed
that random linear network coding achieves capacity.

We extended the capacity characterization to networks with
cycles and random erasures/failures. Thus, we proved the
optimality of linear operations (as well as random linear
network coding) for multicast connections in ADT networks
with cycles. Furthermore, by incorporating random erasures
into the ADT network model, we showed that random linear
network coding is robust against failures and erasures.
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