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Abstract—The Internet is plagued with congestion problems
of growing severity which are worst at peak periods. In this
paper, we compare two schemes that incentivize users to shift
part of their usage from the peak-time to the off-peak time. The
traditional time-of-day pricing scheme gives a fixed reward per
unit of shifted usage. Conversely, the raffle-based scheme provides
a random reward distributed in proportion of each user’s fraction
of the total shifted usage. Using a game-theoretic model, we show
that both schemes can achieve an optimal level of decongestion
at a unique Nash equilibrium. We provide a comparison of the
schemes’ sensitivity to uncertainty of the users’ utilities.

Index Terms—congestion pricing; raffle-based incentive
schemes; public good; probabilistic pricing, demand management

I. INTRODUCTION

A. Motivations

The demand for Internet traffic is constantly growing on
both wireless and wired networks. In particular, due to the
increasing popularity of bandwidth-intensive mobile devices
such as smartphones, mobile data traffic nearly tripled in
each of the past 3 years [1]. Numerous independent studies
indicate that this growth will continue, as bandwidth intensive
applications like streaming video become ever more popular
among users [2]. This is forcing providers to address the grow-
ing demand for bandwidth via all means, including capacity
expansion and pricing schemes aimed at congestion reduction.

Historically, telecommunication providers have found that
users prefer flat-rate pricing, and experiments have shown that
users will pay a premium to avoid being metered [3], [4]. How-
ever, with an increased demand for bandwidth, many service
providers are responding by moving away from unlimited data
plans to tiered pricing models [2], [5]. The aforementioned
user preference for flat-rate pricing makes introducing pricing
schemes for congestion management problematic. Thus, the
design of decongestion schemes that would be more acceptable
for users is of great practical interest.

Network congestion is not uniform throughout the course
of a day. It drops at night, after the prime time evening hours.
This phenomenon has prompted renewed research interest in
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using time-of-day pricing to provide users with incentives to
shift some of their demand to off-peak hours [6], [7].

However, such schemes are relatively complex and cumber-
some for users. Also importantly, for the optimal design of the
time-of-day pricing scheme, information about user demand is
required, and in particular, the knowledge of how responsive
users are in shifting their traffic from peak to off-peak times
for a specific scheme [7]. Such information is usually very
difficult to obtain with a good accuracy. In light of these
considerations, a key property of an incentive scheme is its
robustness to incomplete information.

A raffle-based incentive scheme has been recently proposed
for decongestion of a shared resource [8]. This scheme is based
on economic ideas on how to incentivize contributions to a
public good [9]. It works by giving users a reward for reducing
their usage of the shared resource, in a lottery-like manner: the
expected reward of a user is proportional to his usage reduction
and inversely proportional to the total usage reduction.

In this paper, we investigate the benefits of using the raffle-
based scheme in lieu of time-of-day pricing for demand man-
agement in Internet broadband usage. We use a game-theoretic
model with a continuum of non-atomic users choosing a
fraction of their usage that they are willing to shift from peak
to off-peak time. Users are sensitive to the congestion through
delays and each user’s utility is specified with essentially two
terms representing: (i) how much he benefits from the peak-
time decongestion and (ii) his willingness to shift his usage
to the off-peak time. This model allows us to compare the
performance of the raffle-based scheme and of the time-of-day
pricing scheme in terms of their sensitivity to mis-estimation
of the users’ utilities. Our main conclusions are the following.

- With the raffle-based scheme, the provider knows in advance
the total reward that it will give. In contrast, with the time-
of-day pricing, it must rely on an estimation of the users’
responsiveness to estimate the total reward that it will give.

- The raffle-based scheme possesses a self-tuning property
which gives it a higher robustness than the time-of-day pricing
in some situations that we fully characterize.

B. Related work

Over the past decades, many pricing schemes have been pro-
posed to manage quality of services in networks, mainly based



on usage and multiclass models [10], [11], [12], [13]. In [14],
Paschalidis and Tsitsiklis, propose an optimal congestion-
based pricing scheme in the context of phone networks and
show that it can be approximated by time-of-day pricing. An
alternative to congestion pricing based on a trading scheme
has been recently proposed [15].

Two recent papers analyze models of static and dynamic
time-of-day pricing over n time slots [6], [7]. In [6], Jiang,
Parekh and Walrand consider a model where users have unit
demand and choose one time-slot in which to transmit it
entirely based on their own utility and on the effect of latency.
In [7], Wong, Ha and Chiang consider sessions characterized
by waiting functions representing the willingness of a user to
delay its entire session for a given time. However, the effect
of congestion on the users’ utilities is not considered. In this
paper, we consider a model with 2 time slots where users can
shift an arbitrary continuous fraction of their demand from
a peak to an off-peak time. Our model include the effect
of congestion on the users. We show that the problem of
decongesting the peak time can be seen as a public good
provision problem for which a raffle-based incentive scheme
has been recently proposed in [8].

The notion of public good has been used in recent works
[16], [17] in the context of optimal power allocation for
wireless networks. The idea of lottery-based incentive schemes
for congestion management has also been used in prior works.
For example in [18], Merugu, Prabhakar and Rama conduct a
field study where lotteries are used to decongest transportation
networks. Raffle scheduling is also a widely applied technique
in resource scheduling in computer operating systems [19].

C. Outline

We introduce the model in Section II. In Section III, we
prove existence and uniqueness of the Nash equilibrium and
show that social optimum is achievable in Nash equilibrium.
In Section IV, we compare the two schemes in terms of
robustness. We conclude in Section V.

II. MODEL

A. Definitions and notations

We consider two usage periods: a peak period and an off-
peak period. We denote Tp and To their respective durations.

We consider a set of users, sharing a common access point
(wired or wireless) to the Internet. We denote by C the
capacity of this access point. In a real situation, there would be
a finite number of users, each having his own time preferences.
However, to account for a large number of users, we consider
a continuum of non-atomic users (i.e., each user contributes
a negligible fraction of the total usage). Users are indexed by
their type denoted θ which characterizes their time preference
for Internet usage. Let (Θ,F , µ) be a measured space; where
Θ is the set of users’ types, F is a σ−algebra and µ is a finite
measure accounting for the distribution of the users’ types.
Note that we work here directly with the distribution of types,
instead of working with the distribution of users as in [20].
Therefore, measure µ can have atoms without violating the

atomless assumption on the distribution of users. This would
simply mean that a fraction of users of positive measure would
have the same type corresponding to the atom of measure µ.

We assume that all users have identical peak-time demand
and off-peak time demand1. For simplicity, we assume that
the peak-time demand of each user is 1, and his off-peak time
demand is do < 1. Part of the peak-time demand is shiftable
to the off-peak time. We assume that all users have identical
shiftable demand, denoted ds < 1. We denote by

D =

∫
Θ

µ(dθ)

the aggregate peak-time demand and by

Do = do ·D and Ds = ds ·D

the aggregate off-peak time and shiftable demand respectively.
Each user of type θ ∈ Θ chooses a fraction xθ ∈ [0, ds]

of his demand that he shifts to off-peak time. This defines
a measurable function x : Θ → [0, ds] on (Θ,F , µ). We
introduce the public good:

G =

∫
Θ

xθµ(dθ) ∈ [0, Ds] (1)

which corresponds to the total shifted demand. It is a public
good in the sense that when a user shifts part of his demand,
it reduces the congestion at peak-time and therefore it benefits
to all the users. We assume that the total demand is uniformly
spread within each period, so that the effective loads are

ρp =
D −G
CTp

and ρo =
Do +G

CTo

in the peak and off-peak time periods respectively. For ease of
exposition, we assume that ρp < 1 and ρo < 1 for all G ≥ 02.

B. Utilities

We assume that the utility of a user of type θ ∈ Θ who
shifts a fraction xθ of his demand is

Uθ = Pθ (1− xθ) +Oθ (do + xθ)

− (1− xθ) · L (ρp)− (do + xθ) · L (ρo)− p (2)

where Pθ(·) and Oθ(·) are the utilities that the user gets for
his usage in the peak and off-peak periods respectively, L(·)
is a disutility function due to congestion and p is a fixed
subscription price for the Internet access.

In our context, we assume that the utility at peak time is
higher than the utility at off-peak time, so that a user looses
utility when shifting part his demand. We define for all θ ∈ Θ

1If the users differ by their demand in volume, each user could be viewed
as an appropriate number of users with identical demand and the proposed
model still applies with the measure µ defined for all subset Θ1 ∈ F by
µ(Θ1) =

∫
∆ d · ν(Θ1, dd) where ∆ is the set of demands and the measure

ν on Θ×∆ represents the joint distribution of types and demand.
2It is straightforward to generalize our results to the case where ρp < 1

and ρo < 1 only beyond a minimal value Gmin ∈ (0, Ds). Clearly, in this
case, there would not be any equilibrium possible in the range [0, Gmin).



the cost of shifting as the loss of utility that a user of type θ
incurs when shifting a fraction xθ of his demand:

cθ(xθ) = Ūθ − (Pθ (1− xθ) +Oθ (do + xθ)) , (3)

where
Ūθ = Pθ(1) +Oθ(do) (4)

is the maximal utility that a user could get without shifting
any usage if there was no congestion. The cost of shifting
characterizes the time preferences of a user of type θ. We
assume that it is increasing and convex.

Similarly, we assume that despite the effect of users shifting
part of their usage, the off-peak period remains much less
congested that the peak-time, i.e., ρo � ρp. Therefore,

L (ρo) ' 0. (5)

Following [10], we focus on the delay as a measure of the
network quality, and we assume that the disutility function
L(·) is an increasing convex function of the average delay δ.
We will use the most classical model for 3G and 4G networks,
the processor sharing queue [21], for which the average delay
is itself an increasing convex function of the load:

δ (ρp) =
δ0

1− ρp
, (6)

where δ0 is a constant. Therefore, the disutility function L(·)
is also an increasing convex function of the load ρp (it is
also what is assumed in the model of [6]). In [10], Honig
and Steiglitz use the M/D/1 model, more common for wired
networks, for which the average delay is also an increasing
convex function of the load: δ (ρp) =

δ0ρp
2(1−ρp) .

In the rest of the paper, we use the following example:

Example 1. The distribution of types is uniform on Θ = [0, 1],
i.e., µ(dθ) = D · dθ, with D = 99, ds = 0.2, do = 0.5, p = 0,
L(ρp) = L0 · δ(ρp)n, where L0 = 0.5 ·10−5, n = 2 and δ(ρp)
is given by (6) with δ0 = 1, C = 50, Tp = 2, To = 22,
Oθ(·) = 0, and Pθ(y) = θ

(
1− (1− y)2

)
,∀y ∈ [0, 1], which

gives Ūθ = θ and cθ(xθ) = θ · x2
θ.

To use the public goods framework, we introduce function

h(G) = −L
(
D −G
CTp

)
. (7)

It is an increasing concave function of G, which translates
the notion of how much users benefit from the network
decongestion at peak-time. Then, the term −(1−xθ)L(ρp) =
(1 − xθ)h(G) in (2) has the interpretation that the benefit a
user gets from the peak period is the product of the fraction of
demand (1−xθ) he places in that period times the benefit per
unit demand h(G) in the period. Notice that h(G) is typically
negative, but its important characteristic is that it is increasing
and concave with G.

In summary, in view of (2), (3), (4), (5), (7), our peak-time
decongestion model reduces to a public good problem similar
to [8]: the utility of a user of type θ ∈ Θ is

Uθ = Ūθ + (1− xθ)h(G)− cθ(xθ)− p, (8)

where h(·) and cθ(·) are twice continuously differentiable
functions such that

(A1) h′(·) > 0 and h′′(·) < 0,
(A2) c′θ(·) > 0 and c′′θ (·) > 0.

We shall also use the following technical assumption:

(A3) supθ∈Θ c
′
θ(ds) <∞.

C. Incentive schemes
We define the aggregate user welfare as

W =

∫
Θ

Uθµ(dθ) (9)

= (D −G)h(G)−
∫

Θ

cθ(xθ)µ(dθ) +

∫
Θ

Ūθµ(dθ)− pD.

Individual users maximize their own utility (8), which differs
from maximizing (9). Thus, in general, the level of public
good and the aggregate user welfare achieved in the individual
maximization and in the social optimum differ.

In this paper, we compare two different incentive schemes
to align both objectives: a raffle-based scheme and a time-of-
day pricing scheme. Each scheme introduces a reward for the
shifted demand and an increase in the flat subscription price
for the service provider to finance the respective reward. The
reward may be given to users with some randomization. The
expected utility with respect to this randomization becomes
for a user of type θ ∈ Θ:
Uθ = Ūθ + (1− xθ)h(G)− cθ(xθ)− p+ Si(xθ, G), (10)

where the subscript i refers to the scheme considered. The
raffle-based scheme (i = L) consists in giving each user of
type θ ∈ Θ an expected reward of the functional form:

SL(xθ, G) = R · xθ
G
−∆pL. [raffle] (11)

With a finite number of users, it is the simplest type of
lottery that could correspond to organizing a raffle where
each user wins the prize R with a probability equal to his
percentage contribution to the total amount of shifted demand.
An alternative implementation of the scheme for the case of an
infinite number of users would be to give each user a reward
R/G with probability xθ and a reward 0 with probability
(1−xθ). The time-of-day pricing scheme (i = T ) corresponds
to a fixed reward r per unit of shifted demand:

ST (xθ, G) = r · xθ −∆pT . [time-of-day pricing] (12)

Clearly, this scheme is a variation of a conventional time-of-
day pricing scheme, with an off-peak price subsidy.

In (11) and (12), ∆pi denotes the increase in the sub-
scription price that the service provider imposes to finance
the reward mechanism. In the next section, we demonstrate
that both schemes have a unique Nash equilibrium for any
parameters r, R. Let G(eq) denote the level of public good (1)
achieved at the respective equilibrium. We assume that the
price ∆pi is fixed in advance by the service provider to
compensate the reward, i.e.,

∫
Θ
Si(xθ, G

(eq)) = 0. Then,{
∆pL = R

D ,

∆pT = r · G(eq)

D .
(13)



Notice that due to this choice of ∆pi, the expression of the
aggregate welfare (9) is not directly modified by the schemes,
but only through the chosen contributions xθ.

From (13), we immediately see that the service provider
has to know the equilibrium to determine the price ∆pT for
the time-of-day pricing. An error in the estimation of G(eq)

may have a dramatic effect on the service provider budget. In
contrast, such knowledge is not necessary for the raffle-based
scheme where ∆pL only depends on the parameter R chosen
by the service provider.

The derivatives of the utilities in both schemes are
∂Uθ
∂xθ

= −h(G)− c′θ(xθ) + S′i(G), (14)

where {
S′L(G) = R

G ,
S′T (G) = r.

(15)

For each scheme i ∈ {L, T}, the marginal expected reward
S′i does not depend on xθ, due to the non-atomic assumption.
Due to the term −h(G) in (14), the marginal utility decreases
when G increases. Intuitively, if the congestion is lower in
the peak period, a user would want to use it more. Hence he
would want to shift less of his demand. This decrease of the
marginal utility is accentuated by the term S′L(G) = R/G in
the case of the raffle-based scheme.

The specifics of the environment might require modifica-
tions of the proposed scheme. For instance, a provider facing
competition may not be able to increase the monthly price.
Instead the reward could be financed by the provider being
able to accommodate more users with the same infrastructure
due to the reduction of congestion. In addition, the reduction
of congestion could reduce the maintenance cost.

Our setup does not include an explicit model of providers
competition. Still, for any competition structure, the provider
profit maximizing objective forces them to produce efficiently.
Since reducing congestion improves efficiency by means of re-
ducing the gap between individually and socially optimal user
incentives, our scheme works with any competition structure.

For clarity, we will use the following additional notation:
ΓL (Θ, µ, h, {cθ}θ∈Θ, R) and ΓT (Θ, µ, h, {cθ}θ∈Θ, r) are the
games where users selfishly optimize their own utility (10)
in the raffle scheme (i = L) and in the time-of-day pricing
scheme (i = T ) respectively. We denote with the superscript
(eq) the quantities at equilibrium in both games and we
explicitly write their dependence on r and R or on other
parameters whenever necessary to avoid ambiguity. Similarly,
we denote with the superscript ∗ the social optimum quantities
corresponding to the maximization of (9), and denote explicitly
their dependence on parameters whenever necessary.

III. NASH EQUILIBRIUM AND SOCIAL OPTIMUM

In this section, we show that both schemes have a unique
Nash equilibrium. Then, we show that for appropriate values
of the schemes parameters, they achieve social optimum. The
results of this section are similar to those given in [8] for the
raffle-based scheme. We extend them here to the time-of-day
pricing scheme and compare the results of both schemes.

In our non-atomic model, a Nash equilibrium is a function
x : Θ → [0, ds] such that for almost all θ ∈ Θ, Uθ(a,G) ≤
Uθ(xθ, G),∀a ∈ [0, ds] where G is defined by (1) (see [20]).
Due to the strict concavity of the utility Uθ, it is equivalent to
finding a function x that satisfies almost-surely the first-order
conditions (FOCs)

−h(G)−c′θ(xθ)+S′i(G)

 ≤ 0, ∀θ : xθ = 0,
= 0, ∀θ : xθ ∈ (0, ds),
≥ 0, ∀θ : xθ = ds,

(16)

and such that (1) is satisfied.

Remark 1. Due to assumption (A2), it cannot exist a Nash
equilibrium of our model where two users of the same type
choose different contributions. This justifies that we can work
directly at the level of types instead of users.

A. Nash equilibrium: existence and uniqueness

The first proposition establishes existence and uniqueness
of the Nash equilibrium in the games corresponding to both
incentive schemes.

Theorem 1. For any R ≥ 0, there exists a Nash equilib-
rium x(eq)(R) of the raffle-based scheme, uniquely determined
almost-everywhere.
The same result holds for the time-of-day pricing scheme, for
any r ≥ 0.

For the intuition behind Theorem 1, consider scheme i ∈
{L, T}. For a given G, each type chooses its best response
contribution x(resp)(G) ∈ [0, ds] to maximize his utility. Then,
integrating the contribution of each type gives the amount of
public good G(resp)(G) that users want to provide in response
to a given G. An equilibrium occurs when both quantities are
equal, which corresponds to solving the fixed-point equation

G(resp)(G) = G. (17)

Fig. 1 illustrate the two terms of the fixed-point equation for
both schemes. As we mentioned, a key feature of our model is
that the higher the public good G is, the fewer users are willing
to shift their traffic (the marginal utilities of (14) are decreasing
with G). This is accentuated for the raffle scheme for which
the marginal utilities are decreasing faster. Therefore, when the
total amount of public good provided by all users G increases,
the amount of public good G(resp)(G) that users are willing
to shift decreases. Moreover, G(resp)(G) is continuous, which
leads to a unique fixed point. The continuity of G(resp)(G) is
due to the strict convexity of the functions cθ (assumption
(A2)), which prevents situations where a slight modification
of G would make some users to go from wanting to shift none
of their traffic to wanting to shift all of their traffic.

B. Social optimum

We now show that the social optimum is unique and
coincides with the Nash equilibrium of both schemes for
parameters R∗ and r∗ given in the next theorem.

Theorem 2. The following characterize the social optimum:
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Fig. 1. Illustration of the fixed-point equation (17) for Example 1. The
dashdotted line corresponds to the amount G that users shifts (r.h.s. of (17)).
The dashed and solid lines correspond to the aggregate amount G(resp) that
users would want to shift (l.h.s. of (17)) given G has been shifted for the
raffle-based and time-of-day pricing schemes respectively. To obtain G(eq) =
G∗ = 9.59, parameters were set to R = 0.72 and r = 0.075.

(i) There exists a function x∗, uniquely determined almost-
everywhere, for which the aggregate welfare (9) is maximized.

(ii) We have x(eq)(R) = x∗ almost-everywhere and hence
G(eq)(R) = G∗ with the raffle-based scheme for R = R∗,
where

R∗ = G∗h′(G∗)(D −G∗). (18a)

The same result holds for the time-of-day pricing scheme for
r = r∗, where

r∗ = h′(G∗)(D −G∗). (18b)

Intuitively, this result holds because the externality faced
by a user (−h(G) + S′i) in the game corresponding to any
scheme is independent of its type θ. Therefore, by fixing a
reward that is also independent of the type θ, it is possible
to achieve social optimum by making users effectively pay a
Pigovian tax [22].

C. Nash equilibrium: variation with the scheme parameters

Proposition 1. With the raffle scheme, G(eq)(R) > 0 for any
R > 0.

The intuition behind Proposition 1 is that if R > 0, then
the reward per unit of shifted demand is infinite if G = 0.
Then, all users want to contribute. This does not mean that in
equilibrium, all the users will contribute. As G grows, some
users may stop contributing. A similar result does not hold
for the time-of-day pricing scheme where the reward per unit
of shifted demand is constant. There, if for some r ≥ 0, the
marginal utility of almost-all types is negative at zero, the
equilibrium level of public good will be G(eq)(r) = 0. This
can happen even it would be socially optimal that some users
contribute positively, i.e., G∗ > 0.

Note that Proposition 1 is consistent with the result (18a)
of Theorem 2 showing that if G∗ = 0, then R∗ = 0 and it is
the only possible value of R for which the social optimum is
achieved at Nash equilibrium with the raffle-based scheme. In
contrast, if G∗ = 0, the social optimum is achieved at Nash

equilibrium in the time-of-day pricing scheme for any r below
a threshold.

The last proposition of this section shows that the level of
public good at equilibrium increases with the reward.

Proposition 2. For the raffle scheme, we have:

(i) For any R′ > R, G(eq)(R′) ≥ G(eq)(R); and the
inequality is strict if 0 < G(eq)(R) < Ds.

(ii) There exists a threshold R̄ such that G(eq)(R) = Ds for
all R ≥ R̄.

The same results hold for the time-of-day pricing scheme by
changing R to r everywhere.

The existence of the thresholds R̄ and r̄ is due to assumption
(A3) which means that shifting even the last shiftable bit
implies a finite marginal cost which can be compensated by
a large-enough reward. Due to space limitations, we do not
explicitly model the participation constraint, i.e., the constraint
that each user type must have positive utility (if not, such
a user would not buy the service subscription). Instead, we
implicitly assume that the utility ūθ is large enough and the
maximum shiftable demand ds is small enough, so that each
user type still has positive utility when shifting all of his
shiftable demand. Hence all the users will participate for any
parameter R or r. This strong assumption could be relaxed in
many situations. For instance, if users are homogeneous on the
timescale of a month, but heterogeneous in their willingness to
shift on any given day, then all users will have the same utility
on a monthly timescale. If this common utility value were
positive before the introduction of the scheme, implementing
the scheme with reward close to the optimal reward R∗ or
r∗ can only increase social welfare and hence this common
utility value, thus users will continue to participate.

One implication of Proposition 2 is that both schemes can
“overshoot”: if R or r is too large (larger that R∗ or r∗

defined in (18)), G(eq) can be larger than G∗ and the aggregate
user welfare is suboptimal. In an competitive environment,
a provider would not intentionally choose an overshooting
parameter because it would be a competitive disadvantage.
In our model, the reward is financed by increasing the sub-
scription price. Therefore, this “overshooting” would be also
be limited in a real situation with competition because the
service provider would loose its subscribers.

IV. COMPARISON OF THE TWO INCENTIVE SCHEMES

In the previous section, we have shown that both schemes
have a unique Nash equilibrium which achieves social opti-
mum for parameters R∗ and r∗ (see (18)). Next, we consider
the robustness of each scheme when the service provider picks
R∗ and r∗ based on erroneous data. In particular, let the games
ΓL (Θ, µ, h, {cθ}θ∈Θ, R

∗) and ΓT (Θ, µ, h, {cθ}θ∈Θ, r
∗) cor-

respond to the baseline case of perfect information considered
in Section III and suppose that R∗ and r∗ have been chosen
according to (18) to induce an equilibrium amount G∗, the
socially optimal amount of public good. We assume that
G∗ ∈ (0, Ds). We study the change in equilibrium and



in social optimum when R∗ and r∗ are maintained for the
respective schemes and utilities are perturbed.

We consider here the simple case where functions cθ(·)
of the utilities (10) are scaled by a factor γ, that is where
the cost of shifting varies. We denote by G

(eq)
L (γ) and

G
(eq)
T (γ), and by W

(eq)
L (γ) and W

(eq)
T (γ), the equilibrium

amount of public good and popular welfare in the new games
ΓL (Θ, µ, h, {γcθ}θ∈Θ, R

∗) and ΓT (Θ, µ, h, γ{cθ}θ∈Θ, r
∗)

respectively. Let G∗(γ) and W ∗(γ) denote the socially optimal
level of public good with perturbed utility, and the correspond-
ing population welfare, resulting from the maximization of the
aggregate utility (9) when cθ(·) is replaced by γcθ(·).

For the analysis, we will restrict to small perturbations, that
is γ close to 1. A key element to compare the variation of
each scheme’s equilibrium is the unit reward. We introduce
the following notation:

rL(G) =
R

G
, (19a)

rT (G) = r, (19b)
rSO(G) = h′(G)(D −G), (19c)

and we denote by r′L, r′T , r′SO the respective derivatives w.r.t.
to G. By definition (see (15)), rL(G) and rT (G) correspond
to the unit reward of the raffle-based and time-of-day pricing
scheme respectively. From Theorem 2, the social optimum can
also be seen as a Nash equilibrium in a scheme with unit
reward given by (19c).

To evaluate the variations of G(eq) which is defined as
the fixed-point of G(resp) (see (17)), one has to evaluate the
variations of the aggregate best response G(resp). For this
purpose, we introduce for each scheme i ∈ {L, T, SO} the
quantity αi corresponding to the opposite of the derivative of
G(resp) at the common equilibrium point G∗ (when γ = 1). We
define the conditions:

(C1)
∣∣∣∣ 1

1 + αL
− 1

1 + αSO

∣∣∣∣ < ∣∣∣∣ 1

1 + αT
− 1

1 + αSO

∣∣∣∣,
(C2)

∣∣∣∣ 1

1 + αL
− 1

1 + αSO

∣∣∣∣ > ∣∣∣∣ 1

1 + αT
− 1

1 + αSO

∣∣∣∣.
If the slopes αi’s for the different schemes i’s are close
enough, these conditions reduces to the following more in-
tuitive conditions:

(C1′) |r′L(G)− r′SO(G)| < |r′T (G)− r′SO(G)|, at G = G∗(1),
(C2′) |r′L(G)− r′SO(G)| > |r′T (G)− r′SO(G)|, at G = G∗(1).

Then we have the following results.
Proposition 3. For any γ close enough to 1, we have:

(i) If condition (C1) is realized, then
(a) G(eq)

T (γ) = G
(eq)
L (γ) = G∗(γ) if γ = 1 (baseline case);

(b) G(eq)
T (γ) < G

(eq)
L (γ) < G∗(γ) if γ > 1;

(c) G(eq)
T (γ) > G

(eq)
L (γ) > G∗(γ) if γ < 1.

(ii) If condition (C2) is realized, then
(a) G(eq)

L (γ) = G
(eq)
T (γ) = G∗(γ) if γ = 1 (baseline case);

(b) G(eq)
L (γ) < G

(eq)
T (γ) < G∗(γ) if γ > 1;

(c) G(eq)
L (γ) > G

(eq)
T (γ) > G∗(γ) if γ < 1.
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Fig. 2. Variation of the equilibrium amount of public good G(eq) when
functions cθ(·) are scaled by a factor γ starting from the baseline case: (a)
for Example 1 – (b) for Example 2.

Proof: See Appendix A.
The intuition behind Proposition 3 is as follows. The scheme

with the unit reward closer to the optimal unit reward rSO(G)
will have an equilibrium closer to the social optimum equi-
librium G∗(γ). Since rL(G) and rSO(G) are both decreasing
functions, one might expect rL(G) to be closer to rSO(G)
than rT (G). The fact that rL(G) decreases when G increases
is what we call the closed-loop effect: the more users shift, the
lower the incentive to shift is. However, if rL(G) decreases
much more quickly that rSO(G), it can be that rT (G) is
actually closer to rSO(G). This possibility is covered by case
(ii) of Proposition 3 above.

Fig. 2 illustrates the result of Proposition 3 and shows that
the result seem to hold for large perturbations also (γ not close
to 1). As it turns out, Example 1 falls in case (i), where the
raffle-based scheme remains closer to social optimum than the
time-of-day pricing scheme. For the sole purpose of illustrating
numerically case (ii), where the time-of-day pricing scheme is
closer to social optimum, we construct the following example:

Example 2. Everything is defined as in Example 1, but the
disutility function is artificially contrived to have h(G) = 1.1 ·
10−3 · (G0.9−D0.9

s ). (The factor 1.1 has been chosen to yield
the same social optimum level of public good G∗ than in
Example 1 when γ = 1.)



Clearly, Example 2 is a contrived example where h(G) is
almost linear so that the optimal unit reward rSO is almost
constant, as in the time-of-day pricing scheme.

From Proposition 3, we deduce the following robustness
result.

Theorem 3. For any γ 6= 1 close enough to 1, we have:

(i) If condition (C1) is realized, then the raffle-based scheme is
more robust than the time-of-day pricing scheme in the sense
that

W
(eq)
T (γ) < W

(eq)
L (γ) < W ∗(γ);

(ii) If condition (C2) is realized, then the time-of-day pricing
scheme is more robust than the raffle-based scheme in the
sense that

W
(eq)
L (γ) < W

(eq)
T (γ) < W ∗(γ).

Proof: See Appendix B.
Theorem 3, illustrated on Fig. 3, is our main result. It

establishes the ranking of the two incentive schemes in terms
of their robustness with respect to a multiplicative perturbation
of functions cθ(·) of the utilities (10). If the rewards parameters
R and r are set using an erroneous estimation of parameter
γ (i.e., a erroneous estimation of the willingness of the users
to shift their demand to off-peak time), the aggregate welfare
is closer to optimal with the raffle-based scheme in case (i)
and with the time-of-day pricing scheme in case (ii). If the
uncertainty on parameter γ were modeled probabilistically and
parameters R and r were chosen based on its expectation,
a similar result would hold for the average aggregate user
welfare. Finally, note that Fig. 3 shows that the result holds
for large perturbations also (γ not close to 1).

Proposition 3 and Theorem 3 constitute a first robustness
result, when function cθ(·), representing the willingness of
users to shift their demand, is multiplicatively perturbed. In
future work, we will consider more general perturbations of
the utility function.

V. CONCLUDING DISCUSSION

Our raffle-based scheme can be viewed as a time-of-day
pricing scheme with probabilistic prices, since the price de-
pends on the demand realization. This scheme has two main
advantages over standard time-of-day pricing with fixed prices.
Firstly, it is easily implementable via lottery-like mechanisms
with a total given reward known in advance by the provider.
Secondly, it has built-in self-tuning, which we believe is
attractive in environments with imperfectly known demand.

Practical implementation of our scheme requires discerning
how much demand each user shifted from the peak to the off-
peak period. Simply measuring a user’s off-peak traffic may
be insufficient, since a user may try to “game the system”
by generating extra off-peak traffic to increase his expected
reward. However, one could prevent the gaming by keeping
usage statistics and punishing users whose off-peak usage rises
sharply without a commensurate fall in their peak usage. Also,
the presence of a usage cap or of a pricing scheme based on
total demand can also limit gaming behavior.
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Fig. 3. Variation of the aggregate welfare W (eq) when functions cθ(·) are
scaled by a factor γ starting from the baseline case: (a) for Example 1 –
(b) for Example 2. For readability and robustness comparison, the difference
W ∗(γ)−W (eq)(γ) is plotted.
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APPENDIX A
PROOF OF PROPOSITION 3

We prove the results in the case γ < 1. The case γ > 1 is
similar and the case γ = 1 is trivial.

For ease of notation, we use the notation fθ(·) = (c′θ)
−1(·).

Recall that due to assumption (A2), it is a strictly increasing
continuously differentiable function.

From Theorem 1, we know that for scheme i ∈ {L, T},
G

(eq)
i is the fixed-point solution of (17). The individual best

responses for scheme i are defined for all θ ∈ Θ by

x(resp)
i,θ (G) =

 0, if ri(G)− h(G)− c′θ(0) ≤ 0,
ds, if ri(G)− h(G)− c′θ(ds) ≥ 0,
(c′θ)

−1(ri(G)− h(G)), otherwise,
(20)

and the aggregate best response for scheme i is defined by

G(resp)
i (G) =

∫
Θ

x(resp)
i,θ (G)µ(dθ). (21)

From of Theorem 2, we know that G∗ is the fixed-point solu-
tion of the same equation (17) with ri(G) = rSO(G) defined
by (19c). We use the notation G∗ = G

(eq)
SO which emphasizes

this similarity and helps shorten the proof’s notation.
Before evaluating the equilibrium variations with γ, note

that when γ = 1, we have the same equilibrium points:

G
(eq)
L (1) = G

(eq)
T (1) = G

(eq)
SO (1), (22)

and the same unit rewards at equilibrium:

rL(G) = rT (G) = rSO(G) if G = G
(eq)
L (1). (23)

When γ 6= 1, functions cθ are multiplied by γ and functions
fθ are multiplied by 1

γ . For a given G ∈ [0, Ds], the aggregate

best response is modified accordingly. We denote by G(resp)
i,γ (G)

the new aggregate best response. Recall that we also denote
by G(eq)

i (γ) the new equilibrium point which is the fixed point
of G(resp)

i,γ (·).
The next lemma readily implies the result of Proposition 3.

Lemma 1. For any i ∈ {L, T, SO}, we have

G
(eq)
i (γ) = G

(eq)
i (1) +

Jγ
1 + αi

+ o (γ − 1) , (24)

where

Jγ = G(resp)
i,γ

(
G

(eq)
L (1)

)
−G(resp)

i,1

(
G

(eq)
L (1)

)
is a first-order quantity in (γ − 1) independent of the scheme
i, and

αi = −dG(resp)
i

dG

(
G

(eq)
L (1)

)
. (25)

Proof: To evaluate the variation of G(eq)
i defined as a

fixed-point of G(resp)
i,γ (·), we must evaluate the variations of

the function G(resp)
i,γ (·) when γ moves. When γ goes from 1

to a value γ < 1, the aggregate best response for a given G
goes from G(resp)

i,1 (G) to G(resp)
i,γ (G). At G corresponding to the

common equilibrium point (22) (for γ = 1), the aggregate best
response increases from the same amount for all the schemes
due to (23). This “jump” is

Jγ = G(resp)
i,γ

(
G

(eq)
L (1)

)
−G(resp)

i,1

(
G

(eq)
L (1)

)
= −(γ − 1) ·G(eq)

L (1) + o (γ − 1) .

Starting from this point, at the first order, G(resp)
i,γ (G) de-

creases linearly when G increases. Therefore it can be seen
geometrically that it will cross again the first bisector at the
new equilibrium point

G
(eq)
i (γ) = G

(eq)
i (1) +

Jγ
1 + αi,γ

+ o (γ − 1) , (26)

where −αi,γ is the slope of the curve G(resp)
i,γ (G) at G =

G
(eq)
L (1), i.e.,

αi,γ = −
dG(resp)

i,γ

dG

(
G

(eq)
L (1)

)
. (27)

From (26), it is easy to see that since Jγ is first-order in
(γ−1), the first-order term in the Taylor expansion of αi,γ will
give a second-order term in the Taylor expansion of G(eq)

i (γ).
Therefore, we can restrict the expansion of αi,γ (27) at the
order zero: αi,γ = αi + o (1), which directly gives (24).

APPENDIX B
PROOF OF THEOREM 3

We consider the aggregate welfare (9) as a function of G:
W (G) = W (x(resp)(G)). We have dW

dG (G∗(γ)) = 0. The result
of Theorem 3 is then deduced from Proposition 3 using a taylor
expansion around G∗(γ): for i ∈ {L, T},

W (G
(eq)
i (γ)) = W (G∗(γ)) +O

(
(G

(eq)
i (γ)−G∗(γ))2

)
.


