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Abstract

In this work we investigate the behavior of the distortiorethold that can be guaranteed in joint source-channel
coding, to within a prescribed excess-distortion proligbiiWe show that the gap between this threshold and the
optimal average distortion is governed by a constant thatalethe joint source-channel dispersion. This constant
can be easily computed, since it is the sum of the source aawtheh dispersions, previously derived. The resulting
performance is shown to be better than that of any separhtised scheme. For the proof, we use unequal error
protection channel coding, thus we also evaluate the dispenf that setting.

. INTRODUCTION

One of the most basic results of Information Theory, joinirse-channel coding, due to Shann@h Etates that
in the limit of large block-lengtn, a discrete memoryless source with distributi®rcan be sent through a discrete
memoryless channel with transition distributidid and reconstructed with some expected average distoRioas
long as

R(P,D) < pC(W), 1)

where R(P, D) is the rate-distortion function of the sourc€(W) is the channel capacity and the bandwidth
expansion ratig is the number of channel uses per source sample. We dend® by D*(P, W, p) the distortion
satisfying () with equality, known as the optimal performance theogadjcattainable (OPTA). Beyond thexpected
distortion, one may be interested in ensuring that the distofor one source block is below some threshold. To
that end, we see aexcess distortiorvent&(D) as

&(D) £ {d(8,8) > D}, )

where

a1y .
d(s,8) = — ; d(sq, 3i) 3)
is the distortion between the source and reproduction weratsds.

We are interested in the probability of this event as a fumctf the block length. We note that two different
approaches can be taken. In the first, the distortion thtddhdixed to someD > D* and one considers how the
excess-distortion probability approaches zero as the block lengtigrows. This leads to the joint source-channel
excess-distortion exponeng]][ [3]

g(n) 2 exp{—n-E(P,W,p,D)}. 4)

One may ask an alternative question: for given excess twmtoprobability ¢, let D,, be the optimal (minimal)
distortion threshold that can be achieved at blocklengthlow does the sequend®, approachD*? In this work
we show, that the sequence behaves as:

VJ(P7I/V7P)

R(P, Dy) = pC(W) — -

Q7 (o), (5)
where Q~1(-) is the inverse of the Gaussian cdf. We cdin(P, W, p) the joint source-channel coding (JSCC)
dispersion.

Similar problems have been stated and solved in the conteXtamnel coding and lossless source codingdin [
In [5] the channel dispersion result is tightened and extendédewn [6] (see also T]) the parallel lossy source
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coding result is derived. In source coding, the rate rednoglabove the rate-distortion function (or entropy in the
lossless case) is measured, for a given excess-distontadrabpility e:

VS(PvD)
n

R, = R(P,D) + Q7' (e), (6)

where Vs (P, D) is the source-coding dispersion. In channel coding, it ésréite gap below capacity, for a given

error probabilitye:
R,=2C(W \/ Q Q)

where V(W) is the channel-coding dispersion. We show that the JSCGadigm is related to the source and
channel dispersions by the following simple formula (sabje certain regularity conditions):

Vi(P,W,p) = Vs(P,D%) + p- Vo (W). (8)

The achievability proof off) is closely related to that of Csiszar for the exponé&pt Namely, multiple source
codebooks are mapped into an unequal error protection ehapding scheme. The converse proof combines the
strong channel coding conversg] with the D-covering of a type class (e.g9]).

The rest of the paper is organized as follows. Sectiodefines the notations. Sectioh revisits the channel
coding problem, and extend the dispersion resilt¢ the unequal error protection (UEP) setting. Sectign
uses this framework to prove our main JSCC dispersion re$hkkn SectionV shows the dispersion loss of
separation-based schemes. Finally in Sectibnve consider a formulation where the distortion ratios aredikut
the bandwidth expansion ratj@varies withn, and apply it to the lossless JSCC dispersion problem.

[I. NOTATIONS

This paper uses lower case letters (exjyto denote a particular value of the corresponding randoralbvie
denoted in capital letters (e.&). Vectors are denoted in bold (exg.or X). caligraphic fonts (e.gX’) represent
a set andpP (X) for all the probability distributions on the alphab&t We useZ. andR. to denote the set of
non-negative integer and real numbers respectively.

Our proofs make use of the method of types, and follow thetioois in [10]. Specifically, thetype of a
sequencex with lengthn is denoted byPy, where the type is the empirical distribution of this seqeen.e.,
Py(a) = N(a|x)/nVa € X, where N(a|x) is the number of occurrences ofin sequencex. The subset of the
probability distributionsP (X') that can be types ai-sequences is denoted as

Pn(X)={PeP(X):nP(x)€Zy,Vz X} 9)

and sometimes’, is used to emphasize the fact thgt € P, (X). A type classT} is defined as the set of
sequences that have typ&. Given some sequencg a sequencg of the same length hasonditional typeP,

if N(a,b|x,y) = y|x(a\b) (a|x). Furthermore, the random variable corresponding to thalitional type of a
random vectofY givenx is denoted as’y|,. In addiiton, the possible conditional type given an inpistribution
Py is denoted as

n (VIPx) & {Pyix : Px X Pyjx € Pu (X x V) }.

A discrete memoryless channel (DM@ : X — Y is defined with its input alphabet, output alphabe,
and conditional distributiodV (- | z) of output letterY” when the channel input letteX equalsz € X. Also, we
abbreviatelV (- | x) asW,(-) for notational simplicity. We define mutual information as

o SOW(ylz)
= 2 W) los =)=

and the channel capacity is given by
cw) = mgx[(@,W),

and the set of capacity-achieving distributiondigV) = {® : I (&, W) = C(W)}.



A discrete memoryless source (DMS) is defined with sourcéadlptS, reproduction alphabe$, source
distribution P and a distortion measuré : S x S — R.. Without loss of generality, we assume that for any
s € S there iss € S such thatd(s, §) = 0. The rate-distortion function (RDF) of a DM, S, P, d) is given by

R(P,D) = min  I(P,A),
A:Ep 2d(S,9)<D
whereI(P, A) is the mutual information over a channel with input disttibo (.S) and conditional distribution
A:S—S.

A discrete memoryless joint source-channel coding (JSAGhlem consists of a DM$S,S‘,P, d), a DMC
W . X — Y and abandwidth expansion factgs € R.. A JSCC scheme is comprised of an encoder mapping
frm : 8" — xlenl and decoder mappingy., : ylenl 5 8. Given a source block, the encoder maps it to a
sequence = f.,(s) € xlrn) and transmits this sequence through the channel. The detecisves a sequence
y € Ylenl distributed according téV (-|x), and maps it to a source reconstructiorThe corresponding distortion
is given by @).

For our analysis, we also define the following informatiorantities p]: given input distribution® and channel
W, we define the information density of a channel as

dW(ylz) dI(®,W) 0I(®,W)

Z( ) é log - - ’
d®W (y) AW oW

divergence variance as

V@]%) = 3 5) |log w)]Q—[D«PHwn?,

reX l’)

unconditional information variance as
U@ W)= Var[i(X,Y)] =V (@ x W | & x W),
where X x Y has joint distribution® x W], conditional information variance as
V(®,W) 2 E[Var[i(X,Y)|X]]

=V (®|dW|)

_ (y|x)

—;;D {Z%}W y|x) [log Wy )]
~[D (W, [ oW},

and maximal/minimal conditional information variance as
Vinax(W) & max V (@, W),
Dell(W)
Viin(W) & min V (&, W).
Dell(W)
For simplicity, we assume all channels in this paper stisif;,, > 0, which holds for most channels (seg [
Appendix H] for detailed discussion).

In this paper, we use the notatioh(-), 2 (-) and®© (-), wheref(n) = O (¢g(n)) if and only if lim sup,,_, . ‘f Z
00, f(n) = Q(g(n)) if and only if lim inf,,_, @ > 1,andf(n) = © (g(n)) if and only if f(n) = O (g(n)) and

(n)
f(n) = Q(g(n)). In addition, f(n) < O(g(n)) means thatf(n) < cg(n) for somec > 0 and sufficiently large.
And we use the notatiopoly(n) to denote a sequence of numbers that is polynomial ine., poly(n) = © (n?)

if the polynomial has degreé

<




IIl. THE DISPERSION OFUEP CHANNEL CODING

In this section we introduce the dispersion of unequal gorotection (UEP) coding. We use this framework in
the next section to prove our main JSCC result, though wetlirase one lemma proven here instead of the UEP
dispersion theorem

Givenk classes of messagéd, M, ..., My, where|M;| = N;, we can represent a messages M = U; M;
by its classi andcontentj, i.e.,m = (i,7), wherei € {1,2,...,k} andj € {1,2,..., N;}. A scheme is comprised
of an encoding functiorfc., : M — X" and a decoder mapping-., : Y* — M. The error probability for
messagen is P, (m) = P [ # m], wheren is the decoder output. We say that a scheifie,, gc.) is a UEP
schemewith error probabilitiesey, es, . .., e, and ratesRy, R, ..., Ry if

Pe(m = (i,j)) < e
for all messages, and .
R, = ElOgNi forallie {1,2,...,k},
wheren is the block length. We denote the codewords for messagé/sély A;, i.e.,
Ai & {fom(m = (i,7)),5 =1,2,--- , Ni}.

As discussed ing], dispersion gives a meaningful characterization on the I@ss at a certain block length and
error probability. Here, we show that similar results hatd YEP channel codes.

Theorem 1 (UEP Dispersion, Achievability)Given a DMC (X, Y, W), a sequence of integers, = poly(n),

an infinite sequence of real numbefs; € (0,1),7 € ZT} and an infinite sequence of (not necessarily distinct)
distributions{cb(") EP(X),icZt}, itV (@U), W) >0V i, then there exists a sequence of UEP schemes with
k, classes of messages and error probabilities< ¢; such that for alll <i < k,,,

Ri=1 (qﬂ), W) _ \/%Q‘l(ei) i) (%") , (10)

whereV; £ V (2@, W) is the conditional information variance if}.

The following corollary is immediate, substituting typé®; € II(W)}.

Corollary 2. In the setting of Theorerh, there exists a sequence of UEP codes with error probadslitj < ¢;
such that

Ri= o) - \[*q7 )+ 0 ().

where
V7 = len(W) & <
VmaX(W) g; >

D= N[

Remark 1. In the theorem, the coefficient of the correction tethilogn/n) is unbounded for error probabilities
that approach zero or one.

Remark 2. In the theorem, the message classes are cumulative, r.eaéh codeword length, k,, message classes
are used, which include thk,_; classes used fon — 1. Trivially, at least the same performance is achievable
where only the message clas¢gs; +1,. .., k, are used. Thus, the theorem also applies to disjoint messeige
as long as their size is polynomial in

Remark 3. The rates of Corollary2 are also necessary (up to the correction term). That is, aBPl¢tode with
error probabilitiesey, ea, ..., e, such thate; < ¢; must satisfy

re< o) -\ ) 4o (K1),

In this section we use: to denote the channel code block length, while in Sectidhso VI we usem = |pn| as the channel code
block length in the JSCC setting.



This is straightforward to see, as Theorem 48 &if §hows that this is a bound in the single-codebook case.

Remark 4. When taking a single codebook, i, = 1 for all n, Corollary 2 reduces to the achievability part of
the channel dispersion resuls] Theorem 49]. However, we have taken a slightly differenh:pae use constant-
composition codebooks, resulting in the conditional infation varianceV (®, W), rather than i.i.d. codebooks
which result in the generally higher (worse) unconditiomdbrmation variance. As discussed i) [these quantities
are equal when a capacity-achieving distribution is usad,dscheme achieving (®, W) may have an advantage
under a cost constraint. Furthermore, we feel that our ajpiois more insightful, since it demonstrates that the
stochastic effect that governs the dispersion is in the nbhrealization only, and not in the channel input (dual
to the source dispersion being set by the source type only).

The proof of Theorenl is based on the same construction used for the UEP expong¢gt iA decoder that
operates based on empirical mutual information (with vagythreshold according to the codebook) is used, and if
there is a unique codeword that has high enough empiricalahinnformation, it is declared; otherwise an error
will be reported. This decoding rule may introduce two typésrrors: the empirical mutual information for the
actual codeword is not high enough, or the empirical mutofrmation for a wrong codeword is too high.

The following two lemmas address the effect of these errentss Lemma3 shows that the empirical mutual
information of the correct codeword is approximately ndrefiatributed via the Central Limit Theorem, hence the
probability of the first type of error (the empirical mutuafarmation falls below the expected mutual information)
is governed by thé&)-function, from which we can obtain expression for the raundancy w.r.t. empirical mutual
information. Lemmad shows that if we choose the codebook properly, the prolalufithe second type of error
can be made negligible, relative to the probability of thstftype of error.

Lemma 3 (Rate redundancyyor a DMC (X, ), W), given a an arbitrary distributiord € P (X') with V (&, V) >
0, and a fixed probability, let ®,, € P, (X') be ann-type that approximate® as

1
”(I)_(I)nHoo < - (11)
n
Let therate redundancA R be the infimal value such that for € 73’ ,
P [I(®n, Pyjx) <I(®,W)—ARY ~W"(:[x)] =¢, (12)
then
AR = @Q-l () +0 <10fj;"> . (13)

Furthermore, the result holds if we repladey] with
P[I (<I>n,Py|x) <I(®,W)—ARY ~W"(|x)] =€ + 6n, (14)

as long ass, = O (sz_">

Proof sketch for Lemma&: Applying Taylor expansion to the empirical mutual informeat /(®,, Pyx),
whereY is the channel output corresponding to channel inputve have

I((I)na PY\X) ~ [((I)na W)

+ Y (Pyix(ylz) = W(yle) Iy (y]e),
zeX,ye)
where the higher order terms only contribute to the comecterm in the desired result, and
s 0I(®,,V)

Ly (yla) = VW) |y

These first order terms can be represetned by sum of indepierhelom variables with total variangg ®,,, W) /n
and finite third moment, which faciliates the applicationBerry-Esseen theorem (see, e.d1,[Ch. XVI.5]) and



gives

P [I (®n, Pyjx) < I(®,,W) — AR]

~Q <(AH+AR) \/§> ,

whereA,, = O (log n/n). Finally, we can show that givea(), |V (®, W) — V(®,, W)| and
|1 (®,W)—1I(P,,W)| are small enough fol@) to hold. [ |

Lemma 4. For a DMC (X, )Y, W), there exists a sequence of UEP codes Wijth= poly(n) classes of messages,
A, €TH B and ratesR;, Ry, ..., Ry, , whereR;, < H ((I)Sf)) — Dns

2
o 22 <|X|2+log(n—|—1)—|—logkn—|—1), (15)
such that for any givex € A;,i € {1,2,...,k,}, anyx’ #x andx’ € A;, i € {1,2,...,k,}, and anyy € R,
P [I <<I>,(f/), PY‘X,) Ry >4, Y ~ WP (-\x)} <

(n+ D) Plexp {—n [|Ry +~ —m|" — Ri]}.

Proof sketch for Lemma& This proof is based on the coding scheme in Lemma &pflii that construction,
given channel conditional typ#, the fraction of the output sequences correspondlfothat overlaps with the
output sequences of another codewardn a message sefl; decays exponentially with the empirical mutual
information 7 @,(f), V). Then by using a decoder based on empirical mutual infoomatnd by bounding the size
of the output sequences that cause errors for the empirigadahinformation decoder, we can show the desired
result. [ |

The detailed proofs of Lemmdasand4 are given in AppendibA-B. Below we present the proof for Theorein

Proof of Theoreni: Fix some codeword length. Without loss of generality, assume that the message is
m = (i, 7) in classi, which is mapped to a channel inputi, j) € A;. Each codeboold; is drawn uniformly over
the type class oﬁ%) € P, (X), Where<I>(’) relates to®(®) (which is a general probability distribution that is not
necessarily irP,, (X)) by

23 () — 29(2)| <

S

For anyy € )", define the measure for message
am(y) £ I((I)gf)>Py\x(2,j)) — Ry,
and let the decoder mapping:, : V" — M be defined as follows, using threshotlgs to be specified:

m  am(y) 2 Yn > MaXyy£m G (Y

() o.w. (declares a decoding failure)

The error event is the union of the following two events:

& ={am(y) <m} (16)
={3m' #meMstan(y) >m}. 17)
Let m’ = (¢, ;') be a generic codeword different from. For simplicity, we denote(i, j) andx(¢', ;') by x and

x’ respectively in the rest of the proof. Note thamay be equal ta.
We now choose

Vn = 20p —l— — log ky +— logn (18)



wheren,, is defined by{5) in Lemma4 anda = (d+1)/2, whered is the degree of the polynomial,. Note that
Yn = O (logn/n). Lemma4 shows

ZP [ <<I>(Z Ple') — Ry >y, X € A Y ~ WHX)]
exp {—n Hilll [[Rir + v — ™ — Ri’]}
< Ep(n+ 1)‘)“/‘2‘3/|

1 log n®
exp{—n [nn—l— —logk,, + g T }}
2n n

-5 -o(7)
na Ny
To analyzef,, let
AR; =1 (cp@, W) — Ri — . (19)

Note thatP [£;] may be written as
P [1 (<1>§j>,Py|x> I (<1><i>, W) < —AR,Y ~W" (-|x)] .

Now employing (4) in Lemma3 with ¢ = ¢; and

%:—Ma:o<%9,

AR, = /Y@YW o) 1o <loin>

n

we have

is achievable. By the union bound, the error probabilitiess @0 more thar;, as required. Finally]©) leads to
1
R = 1 VAL Q ( o8 ") .
n

IV. MAIN RESULT: JSCC DSPERSION

We now utilize the UEP framework in Sectioh to arrive at our main result.

For the sake of investigating the finite block-length bebguie consider thexcess distortioevent&(D) defined
in(2). When the distortion level is held fixed, Csiszar givesdowand upper bounds on the exponential decay of
the excess distortion probabilitg][ In this work, we fix the excess distortion probability to benstant with the
blocklengthn

P[ED)] =« (20)

and examine how the distortion thresholdg approach the OPTA* (the distortion achieving equality if)), or
equivalently, howR (P, D,,) approache®(P, D*) = pC(W'). We find that it is governed by the joint source-channel
dispersion®). In this formula, the source dispersion is given B} [

Vs(P, D) = Var

0
0Qi
and the channel dispersidix: (W) is given by Vi, (1), which is assumed to be equal ¥,..(WW).

Theorem 5. Consider a JSCC problem with a DMS, S, P, d), aDMC (X, Y, W) and bandwidth expansion factor
p. Let the corresponding OPTA We*. Assume thaR(Q, D) is differentiable w.r.t.D and twice differentiable w.r.t.

R(Q7D)‘Q_P] , (21)



pl (D, W)

R(Q, D)

0 R(P, D)

Fig. 1. Heuristic view of the main JSCC excess distortiomév&he ellipse denotes the approximate one-standaraitaviregion of the
source-channel pair, while the gray area denotes the setuofes-channel realizations leading to excess distortion.

@ in some neighborhood @, D*). Also assume that the channel dispersign, (W) = Vinax(W) > 0. Then for
a fixed excess distortion probability< ¢ < 1, the optimal distortion threshold®),, satisfy:

VJ(Pa W7p)
n

R(P.D,) = p- C(W) ~ Q') +0 ("5,

whereV; (P, W, p) is the JSCC dispersioB)

We can give a heuristic explanation to this result, graglyickepicted in Fig.1. We know that the rate needed for
describing the source is approximately Guassian, with mie@? D,,) and variancé/s(P, D,,)/n. Similarly, the
mutual information supplied by the channel is approxima@hussian, with meapC' (W) and variance Ve (W) /n.

We can now construct a codebook per source type, and mapethe$ sodebooks to a channel UEP code. According
to Sectionlll, the dispersion of UEP given the rate of the chosen codelsoiieisame as only having that codebook.
Consequently, an error occurs if the source and channelreapibehavior(Fs, Pyx) is such that

R(Ps,Dy) > p- I(®, Pyy).

The difference between the left and right hand sides is tfferdince of two independent approximately-Gaussian
random variables, thus is approximately Gaussian with nfe@h D,,) — pC and variancé/;(P, W, D), yielding
(22) up to the correction term. However, for the proof we needaefully consider the deviations from Gaussianity
of both source and channel behaviors.

Remark 5. In the (rather pathological) case whetg,i, (W) # Vinax (W), we cannot draw anymore the ellipse of
Fig. 1. This is since the variance of the channel mutual infornmatigll be different between codebooks that have
error probability smaller or larger thanl /2. We can usé/,,;, and V;,.x for upper and lower bounds on the JSCC
dispersion. Also, when is close to zero or one, the dispersion of the channel parery well approximated by
Vinin OF Vinax, respectively.

Remark 6. The source and channel dispersions are known to be the setemdhtives (with respect to the rate)
of the source exponent at rafe(P, D) and of the channel exponent at rat§ W), respectively. Interestingly, the
JSCC dispersior}) is also connected to the second derivative of the JISCC exypd8l:

E(P,W,D,p)= R(P,gl)lgRgc[ES(P’D) + pEc(W)]



(whereEg and E¢ are the lossy source coding and sphere-packing expohaetpectively) via

O?E(P,W, D, p)

—1
)
D=D*(P,W,p)

where in the derivative’ is held fixed.
The achievability part of Theoref relies on the following lemma.

Lemma 6 (JSCC Distortion Redundancytonsider a JSCC problem with a DIV(S,S, P,d), aDMC (X, Y, W)
and bandwidth expansion factgr Letn be the length of the source block length, andiie® |pn| be the length
of the channel block length. L& be an arbitrary distribution onX’, and let®,, € P,,(X) be anm-type that

approximatesb as

1
[~ Doc < =
m

Let the channel inpuk € X™ have type®,,. Further, let D*(®) be the solution toR(P, D(®)) = pI(®, W).
Assume thai?(Q, D), the RDF of a sourc&) with the same distortion measure, is twice differentiabletwD
and the elements @ at some neighborhood ¢, D*(®)). Lete be a given probability and leD,, > 0 be the
infimal value s.t.

P [R(Ps, Dy) > pI(®m, Py|x)] = ¢. (22)

Then, asn grows,

R(P,Dy) = pI(®,W) — \/VS<P) * f?;Vc(@’ W)Q_l(g)

Lo (k’g”) . (23)

n

In addition, for any channel input (i.e®,, is not restricted and may also depend upon the source seguenc

R(P.Dy) < pC ) - [ PO g1y 4 o (252 (24)

whereV; (P, W, p) is given by8). Furthermore, all the above holds even if repla2g)(with
P [R(Ps, D) > pI(®m, Py|x) + &) = € + (a, (25)
for any given (vanishing) sequencgs ¢,, as long as,, = O (10%) and¢, = O (1‘\’%’””).

Proof sketch for Lemme&: Similar to Lemma3, we apply Taylor expansion t&(Ps, D,,) and show that the
first order term again can be expressed as sum ofdependent random variables, and neglecting higher order
terms does not affect the statement. The(¥s, D,,) — pI(®,,, Py|x) can be shown to be the sum of+ m
indenpdent random variables, with total variance esdgnti¥ls + pV(®, W))/n. Finally, similar to the derivation
in Lemma3, we apply the Berry-Esseen theorem and sy and @5) are true. [ |

The detailed proof of Lemmaé is given in AppendixB-B.

The converse part of Theorefmbuilds upon the following result, which states that for aCL scheme, the
excess-distortion probability must be very high if the erigal mutual information over the channel is higher than
the empirical source RDF.

Lemma 7 (Joint source channel coding converse with fixed typ&sy a JSCC problem, given a source type
Q € P, (S) and a channel input typ@ € P, (X), let G(Q, ®) be the set of source seqeuencesjh that are
mapped (via JISCC encodé¢.,) to channel codewords with typg, i.e.,

G(Q,®) = {s €T :x = frn(s) € Tg} )

Define all the channel outputs that coversvith distortion D as B(s, D), i.e,

A

B(s,D) ={y € Y™ : d(s, gsn(y)) < D} (26)

2Sphere-packing exponent is only achievable wiieis close toC', but this is sufficient for the derivative & = C.



10

wherem = |pn| and g, is the JSCC decoder. If

G(Q, ?)| = (27)

1
e | 7dl

then for a given distortiorD and a channel with constant composition conditional disttion V' € P,,,()|®), we
have R
T (£(s) 1 Blsi, D)

1
GQal, 2 [ e

wherep(n) is a polynomial that depends only on the source, channel andnstruction alphabet sizes apd

The detailed proof of Lemma is given in AppendixB-B. The proof uses an approach similar to that in the
strong channel coding converss.|

Below we present the proof for Theorein The achievability proof is based on Lemméaand6, where we do
not use directly Lemm& or Theoreml, thus we do not suffer from the non-uniformity problem (sesnfarkl).
In other words, rather than evaluating the error probgbpier UEP codebook, we directly evaluate the average
over all codebooks.

Proof: Achievability: Let
kyn = (n + 1)ISHL = poly(n). (29)

At each block lengthm, we construct a source code= {C;} as follows (the index: is omitted for notational
simplicity). Each cod&; corresponds to one typ@; € (P, (X)), where

I
Q= {Q NP- QI3 <) Og"}.

n

According to the refined type-covering Lemm?], there exists codes; of rates

s < R(Qi D) + 0 (2E1)), (30

that completelyD,,-cover the corresponding types (where the redundancy tewrmiform). We choose these to be
the rates of the source code. The chosen codebook and cabimdares are then communicated using a dispersion-
optimal UEP scheme as described in Sectibrwith a capacity-achieving channel input distributiéne I1(1).
Specifically, each source codebook is mapped into a chamdebook of block lengthpn| and rate

as long as )
Ry < H(®) — 1n, (32)

wheren,, is defined in Lemma. Otherwise, the mapping is arbitrary and we assume thatran will occur. The
UEP scheme is thus used with different message classes lateaach a scheme can only perform better than
a scheme where the message classes accumulate, see Rerfark we can use the results of Sectitinwith
number of codebooks:

ST Pu ()l <0 [P (X) | < (n 4+ 1)ISH = &y,

whereP, (X) is defined in).
Error analysis: an excess-distortion event can occur dniyé of the following events happened:
1) Ps ¢ Q,, whereP; is the type ofs.
2) Rz > H((I)) — n-
3) & (17): an unrelated channel codeword had high empirical mutifarmation.
4) &;(16): the true channel codeword had low empirical mutual infation.
We show that the first three events only contribute to theemtion term. According tod, Lemma 2],
2|S

P[Ps ¢ Q) < 7
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By our assumption on the differentiability d¥(P, D), for large enough the second event does not happen for
any type in(2,,. By Lemmad4, the probability of the third event is at mo&t{(1/,/n), uniformly. Thus, by the union
bound, we need the probability of the last event to be at mpst ¢ — O(1/y/n).

Now following the analysis of; in the proof of Theoreni, (19) indicates that everd; is equivalent to

I ((I),Py‘x) < Rz + T

where~,, is defined in{8).(30) and @1) indicates this is equivalent to

pI (¥, Pyy) < R(Ps, D)) + O <loi"> :

On account of Lemm@, this can indeed be satisfied with as required.

Converse: At the first stage of the proof we suppress the dependenceeobldick lengthn for conciseness. We
first lower-bound the excess-distortion probability givbat the source type is sonig € P, (5).

Let a(Q,®) 2 P[Px = ®|Ps = Q] be the probability of having input typ@ giving that the source type i§.
Noting that given a source type, all strings within a typesslare equally likely, we have

{s €74 :x=finls) €T3} |G(Q,®)]

o) — _
@ ®) 73] 73

Now we have

PED)Ps=0Ql= Y aQ,®PED)|Ps=Q,Px =]

PP, (X)
Define the class of “frequent types” based @@, ¢):
A . 1
A(Q) = {(I) € P (X): a(Q,®) > m}

Note that
1 1

<
(n+DIXH = n4 17

P[Px ¢ AQ)|Ps = Q] < [Pn (X) ]|

thus A(Q) is nonempty. Trivially, we have:

PED)Ps=Ql> > a@ P)PED)Ps=Q, Py =2

PEA(Q)
= Y a@®) > P[Py=V|P=0P[D)|Ps=Q,Px=d Py =V].
PecA(Q) VeP,.(Y|P)

Next we use Lemmd to assert, for allb € A(Q):

1
PED)|Ps =Q, Pk =@, Pyx =V] > 1 - ——— —
Y GQ, )] SieGZm) [T (£
> 1 —p(n) exp{-n[R(Q, D) = pI(®,V)]},
wherep(n) is given in@.77). Since}_sc 4(g) (@, ®) < 1, we further have:

1

PED)IPs = Q1> 1 —
(n)

Y P[Pyx = VIP = ®*(Q)] exp{—n[R(Q, D) — pI(2"(Q),V)]},

VEPL(V2*(Q))

where®*(Q)) minimizes the expression over dlc A(Q) (if there are multiple maximizers, it is chosen arbitrayily
Collecting all source types we have:

PIED)] > —— —p(n) > P[Ps=Q|P[Pyx =V|Px =%*(Q)]

QEP (S) VEP,.(V|2*(Q))

exp{—n[R(Q, D) — pI(®*(Q), V)]}.
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At this point we return the block length index Let A,, be some vanishing sequence to be specified later. Define
the set

B(Ay) 2{Q € Pu(S),V € Pu (V|21,(Q)) : R(Q, D) — I(2,(Q),V) > Ay}
For any sequencd,, we can write:

nj— . —p(n) exp{—nAn}] )

whereP [B(A,)] =P [S: Py, (s) € B(A,)]. Now choosenA,, = (1 + p(n))log(n + 1) to obtain:

P[B(An)]
P[&(D)] > (1 — )P[B(An)] > Tz

Since we demand th&[£(D)] < ¢ for all n, and inserting the definition aB(A,,) it must be that

PIE(D)] > PB(A,) [

n—+1

2
P[R(Ps, D) — pl(5(Ps),V) > Ag] < & (1 + 2 1) .
Seeing thatA,, = O (legn/»), the desired result follows on account ) in Lemmae. [ |

V. THE LOSS OFSEPARATION

In this section we quantify the dispersion loss of a sepamatiased scheme with respect to the JSCC one. Using
the separation approach, the interface between the sondcehmnnel parts is a fixed-rate message, as opposed to
the variable-rate interface used in conjunction with nplétiquantizers and UEP, shown in this work to achieve the
JSCC dispersion.

Formally, we define a separation-based encoder as the ematian of the following elements.

1) A source encodefs., : S — M,,.

2) A source-channel mappiniyt,, — M.,.

3) A channel encodefc.,, : M,, — Sl

The interface rate ik, = log|M,|/n. Finally, the source-channel mapping is randomized, ireotd avoid
“lucky” source-channel matching that leads to an effectjoint” scheme® We assume that it is uniform over
all permutations ofM,,, and that it is known at the decoder as well. Consequentty,décoder is the obvious
concatenation of elements in reversed order. The excesstitia probability of the scheme is defined as the mean
over all permutations.

In a separation-based scheme, an excess-distortion eseuntsdf one of the following: either the source coding
results in excess distortion, or the channel coding results decoding error. Though it is possible that no excess
distortion will occur when a channel error occurs (whethee source code has excess distortion or not), the
probability of this event is exponentially small. Thus aepyblock-lengthn, the excess-distortion probability
satisfies

€ =E€Sn *EC:n — On (33)

wherea * b = a+ b — ab, 5., andec., are the source excess-distortion probability and charmet probability,
repectively, at blocklengtiu, andd,, is exponentially decaying withu. In this expression we take a fixed in
accordance with the dispersion setting; the system desigrstill free to chooses.,, andec., by adjusting the
ratesR,,, as long as33) is maintained.

We now employ the source and channel dispersion reshig), which hold up to a correction ter@ (log(n)/n),*
to see that that for the optimal separation-based scheme:

R(Dy) = pC(W) — _ mmin @Q‘l (es:n)
+ p‘/;(W) Q_l (5C;n) + 9] <10gn> ) (34)
n n

®For instance, the UEP scheme could be presented as a separaé if not for the randomized mapping.
“The redundancy terms are in general functions of the ermisahilities, but for probabilities bounded away from zenul @ne they can
be uniformly bounded; it will become evident that for postiand finite source and channel dispersions, this is indeeddse.



13

pl (D, W)

R(Q, D)

Fig. 2. Main JSCC excess distortion event: the loss of séipara

It follows, that up to the correction term it is optimal to dsefixed probabilitieses., = g andec., = ec.
Furthermore, the dependancy anis the same as in the joint source-channel dispergigyn put with different
coefficient for thel /\/n term, i.e.,

RD,) = pC(W) /2201 0+ 0 (V5T ). (@)
Note that in the limits: — 0, \/Veep= v/Vs + V0V

In order to see why separation must have a loss, considerlFighe separation scheme designer is free to
choose the digital interface rafe. Now whenever the random source-channel pair is eithergaigfint of the point
(R, R) due to a source type witik(Ps, D) > R, or below it due to channel behavié(®, Py|;) < R, an excess
distortion event will occur. Comparing to optimal JSCC stlsidds the chessboard-pattern area on the plot. The
designer may optimizé? such that the probability of this area is minimized, but fay a&hoice ofR it will still
have a strictly positive probability.

For quantifying the loss, it is tempting to look at the ratietween the coefficients of the/\/n terms. However,
this ratio may be in general infinite or negative, making tbmparison difficult. We choose to define the equivalent
probability £ by rewriting (35) as

R(Dy,) = pC — WQ‘I @) +0 <1°i"> . (36)

Thus,é < ¢ is the excess-distortion probability that a JSCC schem&daxhieve under the same conditions, when
the seperation scheme achievesSubstitution reveals that

i <[ Q1 () + VAQ (=)

(e, A) = , 37
where
A2 p&/c. (38)

In general, numerical optimization is needed in order t@ivbthe equivalent probability. However, cleaflfe, \) =
£(e,1/)). In the special symmetric case= 1 one may verify that the optimal probabilities are

€s=¢c.=1—-+v1—g,
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
€

Fig. 3. £(e,A) as a function of for different values ofA. From bottom to top curve) = {1, 2, 3, 5, 10, 30, 100, 1000}.

thus

e 1) =Q (\/iQ—l (1-vI= e)) .
This reflects a large loss for low error probabilities. On tilkeer hand,
/1\1_)1110 E(e,A) = AILH;O E(e,\) =e.

It seems that the symmetric case is the worst for separatibite when\ grows away froml, either the source

or the channel behave deterministically in the scale ofré@sie making the JSCC problem practically a digital one,
i.e., either source coding over a clean channel or chanrdihgoof equi-probable messages. This is somewhat
similar to the loss of separation in terms of excess distoréxponent. This behavior is depicted in Fig.

VI. BW EXPANSION AND LOSSLESSISCC

We now wish to change the rules, by allowing the BW expansitio p, which was hitherto considered constant,
to vary with the blocklengtm. More specically, we takes some sequepgewith lim,, .., p, = p. It is not hard
to verify that the results of Sectiolv remain valid, andp, and D,, are related via:

R(P.D) = (W) = | L g 4 0 (B2, 39)

where for the calculation of the JSCC dispersion we D$€P, W, p). In particular, one may choose to work with
a fixed distortion thresholdD = D*(P, W, p), and theng9) describes the convergence of the BW expansion ratio
sequence to its limip.

Equipped with this, we can now formulate a meaningful lossl8SCC dispersion problem. In (nearly) lossless
coding we deman& = S, otherwise we say that agrror event€ has occurred. We can see this as a special case
of the lossy JSCC problem with Hamming distortion:

1 8 =s
d(8i7§i) = { 5 y

0 otherwise

® Note that now the application of Berry-Esseen theorem iseniomolved, as we are now summipgn+n independent random variables.
However, its application still holds and results in Sectighcan be proved by keeping track pf, explicitly.
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and with distortion threshold = 0. While this setting does not allow for varying distortiorrébholds, one may
be interested in the number of channel uses needed to endixedaerror probabilitye, as a function of the
blocklengthn. As an immediate corollary 080), this is given by:

_ H(P) Vi(P,W,p) Q" (e) log n
on = M) n C<W>+O< ) (40)

In lossless JSCC dispersion, the source pait gfP, W, p) simplifies toVar [log P], in agreement with the lossless
source coding dispersion of Strassdh [
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APPENDIXA
PROOFS FORUEP CHANNEL CODING DISPERSION

In this appendix we provides proofs for results in Sectibn We start by analyzing the Taylor expansion of
empirical mutual information in Appendi®-A, which is crucial for proving Lemma&, then we proceed to prove
Lemmas3 and4 in AppendixA-B.

A. Analysis of the empirical mutual information

In this section, we investigate the Taylor expansion of thepieical mutual information at expected mutual
information, i.e.,

[(®, Py) = H(@,W) + Y (Py(ylz) — W(yla) Ly (ylo) (A.41)
zeX ,yey
+O0| Y (Pyxlyle) = W(yle)? |, (A.42)
zeX,yey
where Iy, (y|x) = ‘g{/(q’y“;)‘ Specifically, we characterize the first-order and higheep correction terms of

the Taylor expansion via Kemm&and 10.

Lemma 8 (First order correction term for mutual informatiorj Y ~ W™ (-|x), then

> (Pyyle) = Wyla) iy () =Y > Zs

TzEX YEY T jij€ET.

where7, = {j : x; = 2}, {Z,;,x € X, j € J,} are independent random variables, and for a givedZ, ;,j € J,}
are identically distributed. Furthermore,

Z Z Var [Z, ;] V((I)’W),

T jij€ET.

> 3 e[z, -E1Zf] :0<%>.

T JyeTs
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Proof of Lemma8: Note

Y Pyx(yle) = Wlylo) Ly (yle) = D | > (Pyj(yle) - W(ylw))fév(ylw)]

TEX yEY z Ly
=> ZPY\X yl) Ly (ylz) — > W (y|x) Iw(y\w)]

L Y Y

=2 m Y Nay(x,Y) Iy (ylz) — ElLy (Y |2)]
z L Y

:Zm 3 [T (Yle) - Bl (Y1) -

JiJETs

Let Z,; = Iy, (Yj|z) — B[l (Y]e) and Zy,; = xiiy Zu.» thenE [Z, ;] = 0 and

Var [Zm] = Var [Ty (Y;]2)] = Var [T (Y|z)] .

By straightforward differentiation,

’ _0I(®,V) _ W(y|x)
Ly (ylz) = W) |y @ () log S (y)’
ths ~ , : W)
Var [Zw} = Var [T (Y |z)] = ®*(z)Var [log i (YJ .
Therefore

> varlze] =Y Y goraVer 2]

r jij€Ts z Jyejx
W(Y|z)
2
- Z n<I> Var [log @W(Y)]

Ylz)] _ V(e,W)
:—ZCP Var[log(I)W(Y)]: .

Finally, since anyZ, ; is discrete and finite valued variables, the sum of the absdhird moment of these variables
is bounded by some function, = © (). |

To investigate the higher order terms, we partition the oeanealizations by its closeness to the true channel
distribution . Given input distribution®,,, we define

n

L
n=

[1]
[1]

n<<1>n>é{Vepno;m):Z<v<y|x>—w<y|x>>2s|X|-|y|-1°i”- S } (A.43)

¢mll’l
z,y n

wherecpﬁin £ mingex ®,(z). As shown below in Lemma4, =, is “typical” in the sense that it contains a channel
realization with high probability.

Lemma 9. If x € X" has a type®?,, andY € Y" is the output of the chann&’" with inputx, then

2l¢]- [

n2

P[Py ¢ En] <
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Proof of Lemmad: Let 5% = |X|-|))| - h’%'qwi_l-

| I—

acX,be)y

P [PY|x g—f En] =P [ Z (PY\x(b‘a) - W(b‘a))z > 52

Yp { U {(Pyixtla) - w(bla))* > Xﬁzy}]

acX,bey

—

) 2
< > e[t - W)’ > ]
eX,b
bey

P [!PYx(b\a) — W(bla)| > \/ﬁ—w] : (A.44)

ac
where (a) follows from the fact that in order for a sum ¢X'||)| elements to be abovg?, then at least one of
the summands must be abo9&/(|X||)|). (b) follows from the union bound. For any€ X,b € ), we have

X,be

P [!Pyx<b|a> ~ W(bla)| > \/vfw]

_P ﬁxrz (Ly.—p — W (bla)) >\/wa]

@, 26N, <>>

er( 21V

B 28°n®,,(a)

=2exp (‘W) ’ (A.45)

where (a) follows from Hoeffding’s inequality (see, e.gl3, p. 191]). Applying A.45) to each of the summands
of (A.44) gives

P [Pyx ¢ En] < Z P |:‘PYx(b|a) — W(bla)| > ﬁw]

acX,be)y )
2p°n®,(a)
< 2 ew (- DI )
acX .
< 21| [V]exp (—%)
= 20] |V . (A.46)

[ |
With Lemma9, we can show that the higher order termsAn{(l) is in some sense negligible via Lemrhé.

Lemma 10 (Second order correction term for mutual informatiolf)Y ~ W™ (-|x), then exists/ = J(|X|, |V|, Px)
such that

PlOY (Prlyle) - W(pla)? > T2 i
zeX,yey

Proof of Lemmal0O: Let

logn] 2|X| |V

logn 2
’ (I)win

= [ X[ Y]



then the lemma follows from the definition &, and Lemmad.
Finally, we show the following lemma that is useful for asyotc analysis.

Lemma 11. If f,, = O (g,), then there exist,, andI"}, = © (T',,) such that

P[fn>T}] <Plgn =Ty
P [fn < _P;L] < ]P)[gn > Pn]

whenn sufficiently large.
Proof of Lemmal0: By definition there existg > 0 such that whem sufficiently large,
—cgn < fn < cgn

Then lettingl"}, = cI',, completes the proof.

B. Proofs for UEP channel coding lemmas

In this section we provide proofs for Lemmasand 4.
Proof for Lemma3: We directly prove the stronger result whetgr is defined according td.¢).
By Taylor expansion, we have

I(@, Pyp) = 1@, W)+ Y (Py(yle) = W(yla) Ly (ylz)

zEX,YeY
0| X (Pylyln) = Wyla)® |
zeX ,yey
where I, (y|z) = g{/(((l;l‘;)) V=W et

AY) = Y (Pyi(yle) = W(yl2)) Iy (ylo)

TeX ,yey
and
B(Y)=0 ( > (Pyjx(yl) - W(yw))Q) :
zeX ,yey
then
e+ 6p =P [I(®Pn, Pyix) <I(®,W)—ARY ~ W"([x)]
=P[A(Y) + B(Y) < —AR, Y ~ W" (|x)]
(§) PIA(Y)+Tn < —ARY ~W" (x)] = P[B(Y) > [, Y ~ W" (-x)]

wherel’,, > 0 and (a) follows from (D.81). Similarly, (D.81) indicates

e+ 6, =P[AY) + B(Y) < ~AR,Y ~ W" (-|x)]
<PAY)-Tp < —ARY ~ W™ (|x)] + P[B(Y) < —T', Y ~ W™ ()]

Let T/, = J(®,,|X|,|Y|) in Lemmal0, then from Lemmas0 and 11, there existd’, = © (I',)) = O (k’g”)

such that

PIBY) 2 00 Y ~ W7 (b0 £ 0 (o5 ).

P[B(Y) < T, Y ~ W" (:x)] < O <i> .

18

(A.47)

(A.48)

n

(A.49)

(A.50)
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In addition, based on Lemm@&and Q(z) = 1 — Q(—x), we can apply Berry-Esseen theorem (see, e.g., [3, Ch.
XVL1.5]) and have for any—co < A < o0,

IN

PIACY) 2 Ao, Y ~ W ([z)] = Q (V)] (A.51)

PIACY) < =X, Y ~ W™ (|z)] = Q (M)

IN

T
o3’
T
= (A52)

whereo? = V(®,W)/n and T is bounded byc/n?, wherec is some constant. Denofé (®, W) as V, apply
A =(AR+T,)/o and)\, = (AR -T,)/0 to(A.51) and A.52) respectively,

PIACY) > AR+ T Y ~ W7 ()] - Q ((AR i) %) ' < (A53)
FLAGY) < (@R =T Y ~ W7 (0] - Q (R =T )] £ (A54)
nV
Therefore,
n c (AD3) .
Q <(AR+FH) V) - T < PIAYY)>AR+T,, Y ~W"(:x)]
n
(A.4AT)
< e+ +PBY) =T, Y ~W"(x)]
(A.49) logn
Likewise,
A.54
Q <(AR— I'y) %) + nCV3( > )IP’[A(Y) < —(AR-T,), Y ~W"(x)]
(A.48)
> e+6, —P[B(Y)<-T,,Y ~W"(:|x)]
(A.50) logn
Pero (R
From the smoothness @f~! arounde,
n -1 logn c P logn
anenfF2a (-0 (52 e ) - 00 ().
n 1 logn c PN logn
st o (o(5)- ) -0 (%)
Therefore,
v v 1 \% 1
ARZ\[=Q7 (o) + \/%o ( %) T, = \/;Q_l(s)JrO ( 05”) ,
V 1 V. (logn _ V4 logn
ARg\/%Q (e)+\/;O< \/ﬁ>+rn_\/:c2 (€)+O< - )
and finally
AR = \/gQ—l () +0 <1°i”>
[ |

Before proving Lemmal, we include the following lemma2] for completeness.

Lemma 12 ( [2, Lemma 6]) Given X and positive integers, k,, let

2
o 2 = <|X|2 +log(n + 1) + log ky, + 1) :
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Then for arbitrary (not necessarily distinct) distributis ®; € P,, (X) and positive integersV; with
%logNi < H(®)—n,, i=1,2,...,m,
there existm disjoint setsA; C X™ such that
A C T, |Ail =N;, i=1,2,...,m,

and
Ty (x)| < Njexp{—n[I(®;,V) —n,]} if x € A

for everyi,j andV : X" — X", except for the caseé= j and V is the identity matrix.

Proof for Lemmad: For x’ € A;, X' # x, let the joint type for the triplex,x’,y) be given as the joint

C . 1
distribution of RV’s X, X', Y. Then from Lemmal2, we can find{A;} such that4; C 7§ and —log N; <
¢ n
H (®;) — ny, thus X has distribution®; and X’ has distribution®;. In addition, define

By £ By(x) £ {y € Ty (x) : 3x” # x such thatx’ € A; andI (x' Ay) — Rj > v},
then the cardinality ofJy By is upper bounded by
UyBy| < Njexp{—n[I (X,X";Y) - H(Y|X)—n,]}
< Njexp {nH(Y|X) —n|I(X,X;Y) - W*}
Then fory € By,
W (y|x) = exp{—n[D (V[ W|®;) + H(V|®;)]}
Note that! (x' Ay) — R; > v impliesI (X";Y) - R; >, andl (X, X";Y) > I (X;Y),
I(X,X',Y)-R; >I(X;Y)—R; >~
Hence,
W™ (By|x) < Njexp {nH(Y|X) —n|I(X,X;Y) - m!*} exp {—n[D (V|| W|®;) + H(V|®:)]}
= Nyexp {—n |D (V] W|®;) + |1 (X, X;Y) = na| "]}
< Njexp {—n[D (V|| W|®;) + |R; +~ —na| "] }
P[I(x'Ay)—R; >~ <W" (UBV x>
v

<(n+ 1)‘X‘2‘y|Nj exp {—n [|Rj +v - 77n|+]}

And

APPENDIX B
PROOFS FORJISCCDISPERSION

This appendix contains proofs for results in Section Similar to the development in Appendi¥, we start
by analyzing the Taylor expansion of the distortion-rataction in AppendixB-A, then prove the relevant key
lemmas AppendiB-B.
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A. Analysis of the distortion-rate function

In this section, we investigate that Taylor expansiorR0fs, D,,). Denote the partial derivatives @¥(P, R) at
R=1I(®,W)andQ =P as

0D (P, R)
OR
0D(Q, R) '
2Q(s) Q:P‘

AssumingD(-, -) is smooth, Taylor expansion gives

D(Ps, pI(®, Pyjx) +&,) = D(P, pI(®,W))

VAN
DR:

)

R=I(®,W)

Dip(s) £

S|
+0 (Z(PS(S) — P())* + (pI(®, Pyj) + &, — pl (@, W))2>

s=1

= D(P, pI(®,W))

S|

+Y " (Ps(s) — P(s)) Dp(s) + pDr > _ (Pyix(yle) — W(ylz)) Iy (ylx)  (B.55)
s=1 €,y

+ B(S,Y,gg), (B.56)

where¢], = O (logn/n), and the correction term is

B(Sv Y, é;L) é&;’LD/R +0 (Z(PYx(ykL') - W(y|$))2>

S|
+0 (Z(&(s) = P(5))* + (pI(®, Pyx) + &, — pI(2, W)>2) : (B.57)
s=1
For notational simplicity, we define
||
A(8,Y) £ " (Ps(s) — P(s)) Dp(s) + pD Y (Pyp(yla) = W(ylz)) Ly (ylo) (B.58)
s=1 z,Y

The lemmas in this subsection is organized as follows. Ler#shows that the first order terms of the Taylor
expansion ofR(Ps, D,,) with respect toP can be represented as the sumnof.i.d. random variables. Then
Lemmal4 shows thatA(S,Y) can be represented represented as the sumtof: i.i.d. random variables. Finally,
Lemmasl5 and 16 together with Lemma$ and 11 shows that the higher order terms in the Taylor expansion is
negligible, as summarized in Lemnig.

Lemma 13. Under the conditions of Lemnta

> (Ps(s) = P(s))Dp(s) = > Zi
i=1

SES
where{Z;,i =1,2,--- ,n} are i.i.d. random variables such that
E {Z} ~0
Var [Z} = V—g
n
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whereVp = Vg - (D)%

Proof:
S (Ps(s) ~ P()Dp(s) = = 3" Dp(S) — 3 Pls)Di(s)
seES =1 SES
1 n

Let Z; £ D)x(S;) — E[D»(S)], then

and
Var [Dpp(8;) — E[D}p(8)]] = Var [Dp(S)] -
By elementary calculus it can be shown that fora#t S,

(o _ OD(P.R) _ OR(P,D) 9D(P. R)
P =P~ oPls) R

= —R'(s)Dj.
Therefore,
Vp = Var [Dp(S)] = Var [R'(S)] (Dy)* = Vs - (DR)*.
[ |

Lemma 14 (First order correction term for distortion-rate functjonder the conditions of Lemn& (B.59), i.e.,
A(S,Y) is the sum of» + m independent random variables, whose sum of variance is

% [p(DjR)?VS +p(DR)*V (2, W) + O <107gzn>]

and sum of the absolute third moment is bounded by some cnsta

Proof for Lemmal4: According to Lemmas3 and 13, (B.58) can be interpreted as the sum wof+ m
independent random variables. L&t be the sum of the variance of theser m variables, then

52 —ni m . & i T
=+ X ) (o) veto)
1 (pD)”
= EVD + ;\/ m<I>mR(x) Ve(z).
= (Vo + oD}V (@, )]
1 [p( DLV 5 p(D 2V (.11 4 O <1Oin>} (B.59)

Definer to be the sum of the absolute third moment of these variaBliese these are discrete and finite valued
variables, is bounded by%Jg, for some constanfs.
[ |
To investigate the higher order terms, we partition the s®type by its closeness to the source distributitin
Given source distributior?, we define

0, 2 Q,(P) 2 {@ T IP- QI < |S|1°g”}. (8.60)

n

In addition, we show the following property of sgt, (defined inf.43) in AppendixA-A):
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Lemma 15. If Pyx € En, then

(I(®, Pypy) — I(D, W) <1°g”> (B.61)
Proof: By definition of =,,,
logn
S (Pyelola) ~ W) =0 (<£2), (B.62)
x7y
and therefore |
ogn
max(Pye(yle) — Whe))? = 0 (<27 ). B.:63)
The zero-th order Taylor approximation 6f®, Py, ) aroundW = Py, is given by
J@Jgg_m¢Wf+o<Zﬁﬂxwm—W@mD (B.64)
=I(®,W)+ 0 (max‘ yvix(ylT) — (y|:n)‘> , (B.65)
therefore
2
(10 Pyp) = 100, = O (x| Bytole) ~ Wslo)| ) (8.66)
and the required result follows frord (63). [ |

The bounding ofB(S,Y,¢/,) is mainly based on the following lemma.

Lemma 16. There exists constant > 0 such that

S|
logn
P [Z(Pyx(yw W (y|z))* Z + (P1(®, Py|x) + &, — pI(®,W))* > Ji]
x7y
1
<o)
Proof: Based on Lemméd5, we have
151 logn
P> (Py(ylz) — W(ylx))? Z + (pI(®, Pyix) + &, — pI(®,W))* > J—— -
x7y
S]P’[PS%QH OrPY\xgé‘:n]
(“ 25| 21x] - Y]
— n? m2
1
(a) follows from Lemmad and |6, Lemma 2]. [ |
Lemma 17 (Second order correction term for distortion-rate funeyidor &/, = <1°g"> there existd,, 1 =
0 (k’f’;") andT,, 5 = O <1°i”> such that
1
P[B(S,Y,&) > 1] <O <n2> (B.67)
1
PB(S,Y,€,) < —Tya] <0 (E) (8.69)

Proof: LetT', 1 = &, Dy + (J +|D;|) log n/n andl'y, o = —¢], D'y + (J + | D’;|) log n/n, where theJ is given
by Lemmals, then the proof follows from Lemma&6 and Lemmall [ |
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B. Proofs for JSCC lemmas

This section first shows Lemmé@ (JSCC Distortion Redundancy Lemma), upon which proofs foththe
achievability and converse of the main theorem builds. Tihesmows the proof for Lemma, which is essential
for establishing the converse result.

Proof for Lemma6: We directly prove the stronger result whelbg, is defined according t@f).

We first note that forD,,,

P [R(PS7Dn) > p[(CI)m, PY\x) + gn] > e+ (n (B.69)

By Lemmal9, for any conditional typé/, there is a constant; = J;(|X|,|Y]|) such that

1[(®p, V) — [(®,V)] < Jllogm

Therefore,
( > pl(®pm, Py|x) + &n]
<P [R(Ps w) 2 pI(®, Pypy) = 78 4,
=P [R(Ps, Dy) > pI(®, Pyx) + &,
=P [D, < D (Ps, pI(®, Pyy) +&,)] (B.70)
wherexi!, = O (logn/n). Let AD,, £ D,, — D*,(B.70) now becomes

etG =P [Dn < D(P57pl((1)>PY|x) +£;L)]
—P[AD, < A(S,Y)+ B(S,Y,£,)] .

(
(

Applying (D.78) and 0.79) gives

€+ Cn SP [A(S, Y) + Fn,l 2 ADn] + P [B(Sv Y, é;b) > Fn,l]
e+(n >PIA(S,Y) —T,2 > AD,] —P[B(S,Y,&,) < —Thn2)

From Lemmasl1l and17 we have

P [B(S,Y,¢,) < rn2]§0<1>

n2

P[B(S,Y,¢,) >Th1] <O (i)

n2

Since¢, = O (f’}”) we absorb the (1/n?) terms and have:

logn
> > —
E+O< \/ﬁ> >P[A(S,Y) > AD, —T', 1]

logn
<P[A(S,Y) > AD, +T,5],
s+o(ﬁ>_ [A(S.Y) > AD, + ')

Based on Lemmad4, by the (non-i.i.d. version of the) Berry-Esseen theorerhl{ XVI.5, Theorem 2]) we have
that for anya andn,

67, 1
> N-op] — s —= =0\—=
IP[A(S,Y) > X 0,] — Q(V)] < ] 0 <\/5>
whereT;, is bounded by/n?, with ¢ being a constant. Lex; = (AD,, — T'y1)/0 and Az = (AD,, + T'n)/0,
then,

£+ 0 @%”) > Q((ADy = T1)/0) + O <%> ,

e+ 0 (k’%") < Q(AD, +Typ)/0) + 0 (%) ,
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absorbing theD ( on the right hand side, we have

)

£+ 0 (1\%) > QUAD, — Tui)/ow),

e+0 <1\§ﬁ"> < QUADy +Th2)/00n).

From the smoothness @§~! arounde, notingT,,; = O (logn/n),i = 1,2 and replacer,, as in Lemmal4, we
obtain

AD, > D}z\/VC + pxg(cp, M) o1 e)+0 <10i”> . (B.72)
Therefore,
AD, = D;%\/VC + p‘;(q)’ Y)o-1e)+0 <loi"> . (B.73)

We addD* and applyR(P, D) to both sides off.71). With the Taylor approximation we have

R(P,D,,) :[(CI)’I/V)+\/‘/S—i_p‘;(<I> W) ( )‘DR‘RD—FO(lOin) .

2 OR(P,D)
oD

where R’
required

. Finally, note thatD’, is negative, and combined with the fact tHa}, R, = 1 we have the

R(P,D,) =1(®,W) — \/
In order to establist?d), write:

en 2 P [R(Ps,Dy) > pI(®m(S), Pyj) + &) = > P[S I(®(s), Pypx) < Tn(P)],
sesSn

Vs +PV((I>,W)Q_1 (6)+0 <logn> .

n n

where
R(PS7 Dn) - fn

P
Clearly, the optimal®,,(s) is only a function ofT,,(Ps). Thus,

en > Y P[T(Ps) = )P [I(®m(t), Pypx) <t]. (B.74)

To(Ps) =

Without loss of generality we restrict the thresholds tosthsatisfying

t>C(W)-0 <1°g”> , (B.75)

n

since otherwise the theorem is satisfied trivially. Now define set
H(W,8) £ {® € P(X):30* c TI(W) : ||® — &*|| < 6}
SinceI(®, W) is concave ind, it follows that

sup I(®,W)=C(W)—¢€(0)
BELII(W,5)
wheree(d) > 0 for any é > 0. Thus, for thresholds that satisf.(/5) and for ® ¢ II(1W,0) (for any choice of
6> 0):
lim P[I(®, Pyx) <t] =1.

n—oo
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It follows that we may restrictp,,,(¢t) in(B.74) to any setll(WW,¢) with § > 0. Since inside that set the Hessian
of I(P,W) (as a function ofi¥’) can be uniformly bounded (seb, [Appendix I]), we have tha#{.53) and A.54)
holds uniformly (i.e. with the same constasj for all & € II(WW, §). Consequently,

n 1
P|I(®,(t), Pyix) <t| >1-— t—1(Dp(t), W _— —
1@t Pre) <1 = 1@ ( (¢~ 1@n0), [ ) 0 (2
Since without the last correction term the probability ismmized by any®* (1) € II(W) and that correction
term is uniform, we have that

P [I(®m(t), Pyix) < t] > P [I(®"(W), Pyx) <t] = O <%> :

Then, B8.74) becomes:
0+ 0 () 2 S PIEAP) = B (10" (W), Pyje) < 1] =B [R(Ps, Da) > pI(@* (W), Pry) + &

Since theO (1/,/=) term may be included in &, sequence, it follows that one cannot do better, to the appeation
required, then using a fixed input tyde (V) for all source strings, resulting i&4).
[ |
To show the converse of the JSCC problem define in Sedtiawe first upper bound the fraction of source
codeword that isD-covered by a given reconstruction sequence.

Lemma 18 (RestrictedD-ball size) Given source typé and a reconstruction sequenggedefine restricted)-ball
as
B(3,P,D) = {sc T} :d(s,8) < D}.

Then
1B, P,D)| < (n+ 1)SISlexp {n [H(P) — R(P,D)]}

Proof: Let P € P, (S) be a given type and l&p be the type o&. Then the size of the set of source codewords
with type P that areD-covered bys is

|B(§, P,D)| = U {s€TP :Psg=PxA}

AE[d(5,9)]<D,
" PA=Q

Note there are at mosk + 1)!5/1%] joint types, and
{SGT]_Z}:PSS:PXA}:’]XL(é),
whereA is the reverse channel frod to S such thatQ x A = P x A. Therefore,

BEPDIS Y |G

AE, 3[d(S,9)]<D,

< (n+ 1)‘S‘|S| exp |n max H </~X|Q)
AR 3[d(S,9)]<D,

Note
R(P,D) = min I(P,A)
A:Ep A [d(S,S)]<D
—H(P)—  max H (Aycg) ,
AEg 5[d(S,9)]<D
hence

1B, P,D)| < (n+ 1)IS18| exp {n [H(P) — R(P,D)]}
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Remark 7. Lemma 3 in 9], is similar to Lemmal8. However, it does not bound the size of the restridtedall
uniformly, and we choose to prove Lemifg which is necessary for proving Lemria

Proof for Lemmar: In our proof, we first bound the denominator 28| uniformly for all s;, and then bound
the sum of the numerator over all, as done in§] for the channel error exponent.
a) Bounding the denominatoBased on standard results in method of type4, [for f(s) € T4,

(m+ 1)~ Wlexp {mH (V|®)} < [T (f(s))]

Hence
Ty = o 0 e o (Vi)
b) Bounding the sum of numeratoNote that sinces € G(Q, ®),
y € Tv (f(8)) N B(s, D) = s € Blgsn(y), Q. D) N G(Q. D), (B.76)

hence anyy will be counted at mostB(g,..(y), Q, D) N G(Q, ®)| times. According to Lemmas, this is upper
bounded byB,, = (n + 1)!SI8| exp {n [H(Q) — R(Q, D)]}. In addition, it is obvious that
U 7v(f(s)nB(si.D) T3,
s, €G(Q,P)
where¥ = ®V is the channel output distribution correspondingitoTherefore,

1 R 4 1 | X|+1
m ‘TV (f(s,-))ﬂB(si,D)‘ < (717 U Tv (f ﬂB(s,,D)
’ 5.€G(Q,P) ‘Tn si€TY
|| +1
et BT
73
Noting
(n+1)"Slexp{nH (Q)} < |75
| Tg"| < exp{mH (¥)},
we have
|X|+1
—log (TILBH 7o < [l +1 log(n+1) + @ log(n+1) — H(Q)
Q
MM
+ log(n+ 1)+ H(Q) — R(Q, D)
+ pH(\II)
< pH(¥) - R(Q, D)
S[|S
+ ‘ ‘logn+1)+WT+110g(n+1)+‘i—llog(n+l)
Combining the bounds for both numerator and denominatorhane
| | 70 (£(s:)) N Bs:, D)
% | ag e 2 T (7))
n | " seq(Q,@) VTS
< pH(¥) - pH (V|®) - R(Q, D)
8|S
‘ ’ VI log(m+1) + ‘ ‘ log(n+1) + 7’/1)‘;_ 1 log(n+1) + % log(n + 1)
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Notem = [pn] < pn, let
p(n) = (pn + 1)PIXIVI (5 1 1)n[1SISPAXIFDASD] (B.77)
and the proof is completed. |

APPENDIXC
CONTINUITY OF THE MUTUAL INFORMATION FUNCTION

In this section we show the continuity of the mutual inforimatfunction, which shows that for investigation in
dispersion, arguments based on types is essentially the aamrguments based on general probability distributions.

Lemma 19. For P,Q € P (X), if ||[P — Q| <8 < 1/(2]X]]Y)), then
[L(P,W) = 1(Q,W)] < d|X|log|V] - |V]|X[5log |X|d.
Therefore, wher = © (1),

T - 1wy -0 ()

n
Proof: Let Py = [P x W]y andQy = [Q x W]y, note
1Py = Qv <d|X[V].
Let &' = |X| ¢, then Lemma 1.2.7 in1j0] shows,

[L(P,W) = 1(Q,W)| = |(H (Py) — H(WI|P)) - (H (Qy) — H(WI|Q))|
< |[(H (Py) = H (Qy))| + [(H (W|P) — H(W|Q))|
< — V|8 logd + 6 |X|log |V
= 6| X[log|¥| — [V|[X]dlog|X] 0.

APPENDIXD
ELEMENTARY PROBABILITY INEQUALITIES

In this section we prove several simple probability inedies used in our derivation.

Lemma 20. Let A and B be two (generally dependent) random variables andclee a constant. Then for any
valuesI'y, 'y, '3, I'y, the following holds:

PA+B>c <P[A>c-T4]+P[B>T4], (D.78)
P[A+B>c]>P[A>c+Ty —P[B< -y, (D.79)
P[A+B<c]<P[A<c+TI3]+P[B < -TI}y], (D.80)
P[A+B<c]>P[A<c—Ty4]—P[B>T4]. (D.81)

Proof: To show.78), let€4 = {A >c—T1}, Eg ={B >T1}, and€ = {A + B > c}. Note that
Ea°( €6 C €,
hence by De Morgan’s law,
éal Jes 2 €.

We prove D.78) by the union bound
PE] <P[Es]+P[EB].

Apply(D.78) on —A, —B, —c andT'y, we obtainD.79) after rearrangement.
Subtract 1 from both sides dd(79) and replacd’s by I's, we obtainD.80) after rearrangement.
Apply(D.79 on — A, —B, —c andT'y, we obtain obtain.81) after rearrangement.



29

REFERENCES

[1] C. E. Shannon. Coding theorems for a discrete source avitielity criterion. Ininstitute of Radio Engineers, International Convention
Record, Vol. 7 pages 142-163, 1959.
[2] I Csiszar. Joint source-channel error expond®ob. of Cont. and Info. Th9(5):315-328, 1980.
[3] I. Csiszar. On the error exponent of source-channeisirassion with a distortion thresholtEEE Trans. Info. Theoryl T-28:823-838,
Nov. 1982.
[4] V. Strassen. Asymptotische abschatzungen in shasnmfi@rmationstheorie. Ifrans. Third Prague Conf. Information Theonyages
679-723, 1962.
[5] Y. Polyanskiy, H.V. Poor, and S. Verdd. Channel codiagerin the finite blocklength regiméEEE Trans. Info. Theory56(5):2307—
2359, May 2010.
[6] A. Ingber and Y. Kochman. The dispersion of lossy souroding. InProc. of the Data Compression Conferen&nowbird, Utah,
March 2011.
[7] V. Kostina and S. Verdu. Fixed-length lossy compressiorhe finite blocklength regime: Discrete memoryless sesircin IEEE
International Symposium on Information Theory Proceeslii®IT), St. Petersburg, Russigages 41-45, Aug. 2011.
[8] G. Dueck and J. Korner. Reliability function of a dis@anemoryless channel at rates above capadeifiatheory, 25(1):82-85, jan
1979.
[9] Z. Zhang, E.H. Yang, and V. Wei. The redundancy of souregirg with a fidelity criterion - Part one: Known statistidEEE Trans.
Info. Theory IT-43:71-91, Jan. 1997.
[10] I. Csiszar and J. Korneinformation Theory - Coding Theorems for Discrete Memayl8ystemsAcademic Press, New York, 1981.
[11] W. Feller. An Introduction to Probability Theory and Its Applicatignmlume 2. Wiley, New York, 2nd edition, 1971.
[12] B. Yu and T.P. Speed. A rate of convergence result for isensal d-semifaithful codelEEE Trans. Info. Theory39(3):813 —820,
may. 1993.
[13] David Pollard.Convergence of stochastic process8gringer, 1984.
[14] I. Csiszar and J. Korneinformation Theory - Coding Theorems for Discrete Memayl8ystemsAcademic Press, New York, 1981.



