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The Dispersion of Joint Source-Channel Coding
Da Wang, Amir Ingber, Yuval Kochman

Abstract

In this work we investigate the behavior of the distortion threshold that can be guaranteed in joint source-channel
coding, to within a prescribed excess-distortion probability. We show that the gap between this threshold and the
optimal average distortion is governed by a constant that wecall the joint source-channel dispersion. This constant
can be easily computed, since it is the sum of the source and channel dispersions, previously derived. The resulting
performance is shown to be better than that of any separation-based scheme. For the proof, we use unequal error
protection channel coding, thus we also evaluate the dispersion of that setting.

I. INTRODUCTION

One of the most basic results of Information Theory, joint source-channel coding, due to Shannon [1], states that
in the limit of large block-lengthn, a discrete memoryless source with distributionP can be sent through a discrete
memoryless channel with transition distributionW and reconstructed with some expected average distortionD, as
long as

R(P,D) < ρC(W ), (1)

whereR(P,D) is the rate-distortion function of the source,C(W ) is the channel capacity and the bandwidth
expansion ratioρ is the number of channel uses per source sample. We denote byD∗ = D∗(P,W, ρ) the distortion
satisfying(1) with equality, known as the optimal performance theoretically attainable (OPTA). Beyond theexpected
distortion, one may be interested in ensuring that the distortion for one source block is below some threshold. To
that end, we see anexcess distortioneventE(D) as

E(D) , {d(S, Ŝ) > D}, (2)

where

d(s, ŝ) ,
1

n

n
∑

i=1

d(si, ŝi) (3)

is the distortion between the source and reproduction wordss and ŝ.
We are interested in the probability of this event as a function of the block length. We note that two different

approaches can be taken. In the first, the distortion threshold is fixed to someD ≥ D∗ and one considers how the
excess-distortion probabilityε approaches zero as the block lengthn grows. This leads to the joint source-channel
excess-distortion exponent: [2], [3]

ε(n) ∼= exp{−n ·E(P,W, ρ,D)}. (4)

One may ask an alternative question: for given excess distortion probabilityε, let Dn be the optimal (minimal)
distortion threshold that can be achieved at blocklengthn. How does the sequenceDn approachD∗? In this work
we show, that the sequence behaves as:

R(P,Dn) ∼= ρC(W )−
√

VJ(P,W, ρ)

n
Q−1(ε), (5)

whereQ−1(·) is the inverse of the Gaussian cdf. We coinVJ(P,W, ρ) the joint source-channel coding (JSCC)
dispersion.

Similar problems have been stated and solved in the context of channel coding and lossless source coding in [4].
In [5] the channel dispersion result is tightened and extended, while in [6] (see also [7]) the parallel lossy source
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coding result is derived. In source coding, the rate redundancy above the rate-distortion function (or entropy in the
lossless case) is measured, for a given excess-distortion probability ε:

Rn
∼= R(P,D) +

√

VS(P,D)

n
Q−1(ε), (6)

whereVS(P,D) is the source-coding dispersion. In channel coding, it is the rate gap below capacity, for a given
error probabilityε:

Rn
∼= C(W )−

√

VC(W )

n
Q−1(ε), (7)

whereVC(W ) is the channel-coding dispersion. We show that the JSCC dispersion is related to the source and
channel dispersions by the following simple formula (subject to certain regularity conditions):

VJ(P,W, ρ) = VS(P,D
∗) + ρ · VC(W ). (8)

The achievability proof of (8) is closely related to that of Csiszár for the exponent [3]. Namely, multiple source
codebooks are mapped into an unequal error protection channel coding scheme. The converse proof combines the
strong channel coding converse [8] with the D-covering of a type class (e.g., [9]).

The rest of the paper is organized as follows. SectionII defines the notations. SectionIII revisits the channel
coding problem, and extend the dispersion result (7) to the unequal error protection (UEP) setting. SectionIV
uses this framework to prove our main JSCC dispersion result. Then SectionV shows the dispersion loss of
separation-based schemes. Finally in SectionVI we consider a formulation where the distortion ratios are fixed but
the bandwidth expansion ratioρ varies withn, and apply it to the lossless JSCC dispersion problem.

II. N OTATIONS

This paper uses lower case letters (e.g.x) to denote a particular value of the corresponding random variable
denoted in capital letters (e.g.X). Vectors are denoted in bold (e.g.x or X). caligraphic fonts (e.g.X ) represent
a set andP (X ) for all the probability distributions on the alphabetX . We useZ+ andR+ to denote the set of
non-negative integer and real numbers respectively.

Our proofs make use of the method of types, and follow the notations in [10]. Specifically, thetype of a
sequencex with length n is denoted byPx, where the type is the empirical distribution of this sequence, i.e.,
Px(a) = N(a|x)/n ∀a ∈ X , whereN(a|x) is the number of occurrences ofa in sequencex. The subset of the
probability distributionsP (X ) that can be types ofn-sequences is denoted as

Pn (X ) , {P ∈ P (X ) : nP (x) ∈ Z+, ∀x ∈ X} (9)

and sometimesPn is used to emphasize the fact thatPn ∈ Pn (X ). A type classT n
Px

is defined as the set of
sequences that have typePx. Given some sequencex, a sequencey of the same length hasconditional typePy|x
if N(a, b|x,y) = Py|x(a|b)N(a|x). Furthermore, the random variable corresponding to the conditional type of a
random vectorY givenx is denoted asPY|x. In addiiton, the possible conditional type given an input distribution
Px is denoted as

Pn (Y|Px) ,
{

Py|x : Px × Py|x ∈ Pn (X × Y)
}

.

A discrete memoryless channel (DMC)W : X → Y is defined with its input alphabetX , output alphabetY,
and conditional distributionW ( · |x) of output letterY when the channel input letterX equalsx ∈ X . Also, we
abbreviateW ( · | x) asWx(·) for notational simplicity. We define mutual information as

I (Φ,W ) =
∑

x,y

Φ(x)W (y|x) log Φ(x)W (y|x)
ΦW (y)

,

and the channel capacity is given by
C(W ) = max

Φ
I (Φ,W ) ,

and the set of capacity-achieving distributions isΠ(W ) , {Φ : I (Φ,W ) = C(W )}.
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A discrete memoryless source (DMS) is defined with source alphabetS, reproduction alphabet̂S, source
distribution P and a distortion measured : S × Ŝ → R+. Without loss of generality, we assume that for any
s ∈ S there isŝ ∈ Ŝ such thatd(s, ŝ) = 0. The rate-distortion function (RDF) of a DMS(S, Ŝ , P, d) is given by

R(P,D) = min
Λ:EP,Λd(S,Ŝ)≤D

I(P,Λ),

whereI(P,Λ) is the mutual information over a channel with input distribution P (S) and conditional distribution
Λ : S → Ŝ.

A discrete memoryless joint source-channel coding (JSCC) problem consists of a DMS(S, Ŝ, P, d), a DMC
W : X → Y and abandwidth expansion factorρ ∈ R+. A JSCC scheme is comprised of an encoder mapping
fJ ;n : Sn → X ⌊ρn⌋ and decoder mappinggJ ;n : Y⌊ρn⌋ → Ŝn. Given a source blocks, the encoder maps it to a
sequencex = fJ ;n(s) ∈ X ⌊ρn⌋ and transmits this sequence through the channel. The decoder receives a sequence
y ∈ Y⌊ρn⌋ distributed according toW (·|x), and maps it to a source reconstructionŝ. The corresponding distortion
is given by(3).

For our analysis, we also define the following information quantities [5]: given input distributionΦ and channel
W , we define the information density of a channel as

i(x, y) , log
dW (y |x)
dΦW (y)

=
d I (Φ,W )

dW
=

∂ I (Φ,W )

∂ W
,

divergence variance as

V (Φ ‖Ψ) =
∑

x∈X
Φ(x)

[

log
Φ(x)

Ψ(x)

]2

− [D (Φ ‖Ψ)]2,

unconditional information variance as

U (Φ,W ) , Var [i(X,Y )] = V (Φ×W ‖Φ× ΦW ) ,

whereX × Y has joint distribution[Φ×W ], conditional information variance as

V (Φ,W ) , E [Var [i(X,Y )|X ]]

= V (Φ ‖ΦW |Φ)

=
∑

x∈X
Φ(x)

{

∑

y∈Y
W (y | x)

[

log
W (y |x)
ΦW (y)

]2

− [D (Wx ‖ΦW )]2
}

,

and maximal/minimal conditional information variance as

Vmax(W ) , max
Φ∈Π(W )

V (Φ,W ) ,

Vmin(W ) , min
Φ∈Π(W )

V (Φ,W ) .

For simplicity, we assume all channels in this paper satisify Vmin > 0, which holds for most channels (see [5,
Appendix H] for detailed discussion).

In this paper, we use the notationO (·),Ω (·) andΘ(·), wheref(n) = O (g(n)) if and only if lim supn→∞

∣

∣

∣

f(n)
g(n)

∣

∣

∣ <

∞, f(n) = Ω (g(n)) if and only if lim infn→∞
∣

∣

∣

f(n)
g(n)

∣

∣

∣
≥ 1, andf(n) = Θ (g(n)) if and only if f(n) = O (g(n)) and

f(n) = Ω (g(n)). In addition,f(n) ≤ O(g(n)) means thatf(n) ≤ cg(n) for somec > 0 and sufficiently largen.
And we use the notationpoly(n) to denote a sequence of numbers that is polynomial inn, i.e.,poly(n) = Θ

(

nd
)

if the polynomial has degreed.
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III. T HE DISPERSION OFUEP CHANNEL CODING

In this section we introduce the dispersion of unequal errorprotection (UEP) coding. We use this framework in
the next section to prove our main JSCC result, though we directly use one lemma proven here instead of the UEP
dispersion theorem1.

Givenk classes of messagesM1,M2, . . . ,Mk, where|Mi| = Ni, we can represent a messagem ∈ M , ∪iMi

by its classi andcontentj, i.e.,m = (i, j), wherei ∈ {1, 2, . . . , k} andj ∈ {1, 2, . . . , Ni}. A scheme is comprised
of an encoding functionfC;n : M → X n and a decoder mappinggC;n : Yn → M. The error probability for
messagem is Pe (m) , P [m̂ 6= m], wherem̂ is the decoder output. We say that a scheme(fC;n, gC;n) is a UEP
schemewith error probabilitiese1, e2, . . . , ek and ratesR1, R2, . . . , Rk if

Pe (m = (i, j)) ≤ ei

for all messages, and

Ri =
1

n
logNi for all i ∈ {1, 2, . . . , k} ,

wheren is the block length. We denote the codewords for message setMi by Ai, i.e.,

Ai , {fC;n(m = (i, j)), j = 1, 2, · · · , Ni} .
As discussed in [5], dispersion gives a meaningful characterization on the rate loss at a certain block length and

error probability. Here, we show that similar results hold for UEP channel codes.

Theorem 1 (UEP Dispersion, Achievability). Given a DMC(X ,Y,W ), a sequence of integerskn = poly(n),
an infinite sequence of real numbers{εi ∈ (0, 1), i ∈ Z

+} and an infinite sequence of (not necessarily distinct)
distributions

{

Φ(i) ∈ P (X ) , i ∈ Z
+
}

, if V
(

Φ(i),W
)

> 0 ∀ i , then there exists a sequence of UEP schemes with
kn classes of messages and error probabilitiesei ≤ εi such that for all1 ≤ i ≤ kn,

Ri = I
(

Φ(i),W
)

−
√

Vi

n
Q−1(εi) +O

(

log n

n

)

, (10)

whereVi , V
(

Φ(i),W
)

is the conditional information variance in (9).

The following corollary is immediate, substituting types{Φi ∈ Π(W )}.

Corollary 2. In the setting of Theorem1, there exists a sequence of UEP codes with error probabilities ei ≤ εi
such that

Ri = C(W )−
√

VCi

n
Q−1 (εi) +O

(

log n

n

)

,

where

VCi
=

{

Vmin(W ) εi ≤ 1
2

Vmax(W ) εi >
1
2

.

Remark 1. In the theorem, the coefficient of the correction termO (log n/n) is unbounded for error probabilities
that approach zero or one.

Remark 2. In the theorem, the message classes are cumulative, i.e., for each codeword lengthn, kn message classes
are used, which include thekn−1 classes used forn − 1. Trivially, at least the same performance is achievable
where only the message classeskn−1+1, . . . , kn are used. Thus, the theorem also applies to disjoint messagesets,
as long as their size is polynomial inn.

Remark 3. The rates of Corollary2 are also necessary (up to the correction term). That is, any UEP code with
error probabilitiese1, e2, . . . , ekn

such thatei ≤ εi must satisfy

Ri ≤ C(W )−
√

VCi

n
Q−1 (εi) +O

(

log n

n

)

.

1In this section we usen to denote the channel code block length, while in SectionsIV to VI we usem = ⌊ρn⌋ as the channel code
block length in the JSCC setting.
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This is straightforward to see, as Theorem 48 of [5] shows that this is a bound in the single-codebook case.

Remark 4. When taking a single codebook, i.e.kn = 1 for all n, Corollary 2 reduces to the achievability part of
the channel dispersion result [5, Theorem 49]. However, we have taken a slightly different path: we use constant-
composition codebooks, resulting in the conditional information varianceV (Φ,W ), rather than i.i.d. codebooks
which result in the generally higher (worse) unconditionalinformation variance. As discussed in [5], these quantities
are equal when a capacity-achieving distribution is used, but a scheme achievingV (Φ,W ) may have an advantage
under a cost constraint. Furthermore, we feel that our approach is more insightful, since it demonstrates that the
stochastic effect that governs the dispersion is in the channel realization only, and not in the channel input (dual
to the source dispersion being set by the source type only).

The proof of Theorem1 is based on the same construction used for the UEP exponent in[2]. A decoder that
operates based on empirical mutual information (with varying threshold according to the codebook) is used, and if
there is a unique codeword that has high enough empirical mutual information, it is declared; otherwise an error
will be reported. This decoding rule may introduce two typesof errors: the empirical mutual information for the
actual codeword is not high enough, or the empirical mutual information for a wrong codeword is too high.

The following two lemmas address the effect of these error events. Lemma3 shows that the empirical mutual
information of the correct codeword is approximately normal distributed via the Central Limit Theorem, hence the
probability of the first type of error (the empirical mutual information falls below the expected mutual information)
is governed by theQ-function, from which we can obtain expression for the rate redundancy w.r.t. empirical mutual
information. Lemma4 shows that if we choose the codebook properly, the probability of the second type of error
can be made negligible, relative to the probability of the first type of error.

Lemma 3 (Rate redundancy). For a DMC (X ,Y,W ), given a an arbitrary distributionΦ ∈ P (X ) with V (Φ, V ) >
0, and a fixed probabilityε, let Φn ∈ Pn (X ) be ann-type that approximatesΦ as

‖Φ− Φn‖∞ ≤ 1

n
. (11)

Let therate redundancy∆R be the infimal value such that forx ∈ T n
Φn

,

P
[

I
(

Φn, PY|x
)

≤ I (Φ,W )−∆R,Y ∼ W n (·|x)
]

= ε, (12)

then

∆R =

√

V (Φ,W )

n
Q−1 (ε) +O

(

log n

n

)

. (13)

Furthermore, the result holds if we replace (12) with

P
[

I
(

Φn, PY|x
)

≤ I (Φ,W )−∆R,Y ∼ W n (·|x)
]

= ε+ δn, (14)

as long asδn = O
(

logn√
n

)

.

Proof sketch for Lemma3: Applying Taylor expansion to the empirical mutual information I(Φn, PY|x),
whereY is the channel output corresponding to channel inputx, we have

I(Φn, PY|x) ≈ I(Φn,W )

+
∑

x∈X ,y∈Y
(PY|x(y|x)−W (y|x))I ′W (y|x),

where the higher order terms only contribute to the correction term in the desired result, and

I ′W (y|x) , ∂I(Φn, V )

∂V (y|x)

∣

∣

∣

∣

V=W

.

These first order terms can be represetned by sum of independent random variables with total varianceV (Φn,W )/n
and finite third moment, which faciliates the application ofBerry-Esseen theorem (see, e.g., [11, Ch. XVI.5]) and
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gives

P
[

I
(

Φn, PY|x
)

≤ I (Φn,W )−∆R
]

≈ Q

(

(∆n +∆R)

√

n

V

)

,

where∆n = O (log n/n). Finally, we can show that given(11), |V (Φ,W )− V (Φn,W )| and
|I (Φ,W )− I (Φn,W )| are small enough for (13) to hold.

Lemma 4. For a DMC (X ,Y,W ), there exists a sequence of UEP codes withkn = poly(n) classes of messages,

Ai ∈ T n
Φ

(i)
n

, and ratesR1, R2, . . . , Rkn
, whereRi ≤ H

(

Φ
(i)
n

)

− ηn,

ηn ,
2

n

(

|X |2 + log(n+ 1) + log kn + 1
)

, (15)

such that for any givenx ∈ Ai, i ∈ {1, 2, . . . , kn}, anyx′ 6= x andx′ ∈ Ai′ , i′ ∈ {1, 2, . . . , kn}, and anyγ ∈ R,

P

[

I
(

Φ(i′)
n , PY|x′

)

−Ri′ ≥ γ,Y ∼ W n (·|x)
]

≤

(n+ 1)|X |2|Y| exp
{

−n
[

|Ri′ + γ − ηn|+ −Ri′
]}

.

Proof sketch for Lemma4: This proof is based on the coding scheme in Lemma 6 of [2]. In that construction,
given channel conditional typeV , the fraction of the output sequences correspond toAi′ that overlaps with the
output sequences of another codewordx in a message setAi decays exponentially with the empirical mutual
informationI

(

Φ
(i)
n , V

)

. Then by using a decoder based on empirical mutual information and by bounding the size
of the output sequences that cause errors for the empirical mutual information decoder, we can show the desired
result.

The detailed proofs of Lemmas3 and4 are given in AppendixA-B. Below we present the proof for Theorem1.
Proof of Theorem1: Fix some codeword lengthn. Without loss of generality, assume that the message is

m = (i, j) in classi, which is mapped to a channel inputx(i, j) ∈ Ai. Each codebookAi is drawn uniformly over
the type class ofΦ(i)

n ∈ Pn (X ), whereΦ(i)
n relates toΦ(i) (which is a general probability distribution that is not

necessarily inPn (X )) by

|Φ(i)
n (x)− Φ(i)(x)|∞ ≤ 1

n
.

For anyy ∈ Yn, define the measure for messagem:

am(y) , I(Φ(i)
n , Py|x(i,j))−Ri,

and let the decoder mappinggC;n : Yn → M be defined as follows, using thresholdsγn to be specified:

gC;n(y) =

{

m am(y) ≥ γn > maxm′ 6=m am′(y)

∅ o.w. (declares a decoding failure)

The error event is the union of the following two events:

E1 = {am(y) < γn} (16)

E2 =
{

∃m′ 6= m ∈ M s.t. am′(y) ≥ γn
}

. (17)

Let m′ = (i′, j′) be a generic codeword different fromm. For simplicity, we denotex(i, j) andx(i′, j′) by x and
x′ respectively in the rest of the proof. Note thati′ may be equal toi.

We now choose
γn = 2ηn +

1

2n
log kn +

a

n
log n, (18)
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whereηn is defined by (15) in Lemma4 anda = (d+1)/2, whered is the degree of the polynomialkn. Note that
γn = O (logn/n). Lemma4 shows

P [E2] =
∑

j

P

[

I
(

Φ(i′)
n , PY|x′

)

−Ri′ ≥ γn,x
′ ∈ Ai′ ,Y ∼ W ( · |x)

]

≤ kn(n+ 1)|X |2|Y|

exp
{

−nmin
i′

[

|Ri′ + γn − ηn|+ −Ri′
]

}

≤ kn(n+ 1)|X |2|Y|

exp

{

−n

[

ηn +
1

2n
log kn +

log na

n

]}

=

√
kn
na

= O

(

1√
n

)

.

To analyzeE1, let
∆Ri = I

(

Φ(i),W
)

−Ri − γn. (19)

Note thatP [E1] may be written as

P

[

I
(

Φ(i)
n , PY|x

)

− I
(

Φ(i),W
)

≤ −∆Ri,Y ∼ W n (·|x)
]

.

Now employing(14) in Lemma3 with ε = εi and

δn = −P [E2] = O

(

1√
n

)

,

we have

∆Ri =

√

V (Φ(i),W )

n
Q−1 (ε) +O

(

log n

n

)

is achievable. By the union bound, the error probabilities are no more thanεi, as required. Finally, (19) leads to

Ri = I
(

Φ(i),W
)

−
√

Vi

n
Q−1(εi) +O

(

log n

n

)

.

IV. M AIN RESULT: JSCC DISPERSION

We now utilize the UEP framework in SectionIII to arrive at our main result.
For the sake of investigating the finite block-length behavior, we consider theexcess distortioneventE(D) defined

in (2). When the distortion level is held fixed, Csiszár gives lower and upper bounds on the exponential decay of
the excess distortion probability [3]. In this work, we fix the excess distortion probability to beconstant with the
blocklengthn

P [E(D)] = ε (20)

and examine how the distortion thresholdsDn approach the OPTAD∗ (the distortion achieving equality in(1)), or
equivalently, howR(P,Dn) approachesR(P,D∗) = ρC(W ). We find that it is governed by the joint source-channel
dispersion(8). In this formula, the source dispersion is given by [6]:

VS(P,D) = Var

[

∂

∂Qi
R(Q,D)

∣

∣

∣

∣

Q=P

]

, (21)

and the channel dispersionVC(W ) is given byVmin(W ), which is assumed to be equal toVmax(W ).

Theorem 5. Consider a JSCC problem with a DMS(S, Ŝ , P, d), a DMC(X ,Y,W ) and bandwidth expansion factor
ρ. Let the corresponding OPTA beD∗. Assume thatR(Q,D) is differentiable w.r.t.D and twice differentiable w.r.t.
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0 R(P,D)

C

√

Vs/n

√

ρVc/n

R(Q,D)

ρI(Φ,W )

Fig. 1. Heuristic view of the main JSCC excess distortion event. The ellipse denotes the approximate one-standard-deviation region of the
source-channel pair, while the gray area denotes the set of source-channel realizations leading to excess distortion.

Q in some neighborhood of(P,D∗). Also assume that the channel dispersionVmin(W ) = Vmax(W ) > 0. Then for
a fixed excess distortion probability0 < ε < 1, the optimal distortion thresholdsDn satisfy:

R(P,Dn) = ρ · C(W )−
√

VJ(P,W, ρ)

n
Q−1(ε) +O

(

logn
n

)

,

whereVJ(P,W, ρ) is the JSCC dispersion (8).

We can give a heuristic explanation to this result, graphically depicted in Fig.1. We know that the rate needed for
describing the source is approximately Guassian, with meanR(P,Dn) and varianceVS(P,Dn)/n. Similarly, the
mutual information supplied by the channel is approximately Gaussian, with meanρC(W ) and varianceρVC(W )/n.
We can now construct a codebook per source type, and map this set of codebooks to a channel UEP code. According
to SectionIII , the dispersion of UEP given the rate of the chosen codebook is the same as only having that codebook.
Consequently, an error occurs if the source and channel empirical behavior(Ps, Py|x) is such that

R(Ps,Dn) > ρ · I(Φ, Py|x).

The difference between the left and right hand sides is the difference of two independent approximately-Gaussian
random variables, thus is approximately Gaussian with meanR(P,Dn)− ρC and varianceVJ(P,W,D), yielding
(22) up to the correction term. However, for the proof we need to carefully consider the deviations from Gaussianity
of both source and channel behaviors.

Remark 5. In the (rather pathological) case whereVmin(W ) 6= Vmax(W ), we cannot draw anymore the ellipse of
Fig. 1. This is since the variance of the channel mutual information will be different between codebooks that have
error probability smaller or larger than1/2. We can useVmin andVmax for upper and lower bounds on the JSCC
dispersion. Also, whenε is close to zero or one, the dispersion of the channel part is very well approximated by
Vmin or Vmax, respectively.

Remark 6. The source and channel dispersions are known to be the secondderivatives (with respect to the rate)
of the source exponent at rateR(P,D) and of the channel exponent at rateC(W ), respectively. Interestingly, the
JSCC dispersion (8) is also connected to the second derivative of the JSCC exponent [3]:

E(P,W,D, ρ)= min
R(P,D)≤R≤C

[ES(P,D) + ρEC(W )]
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(whereES andEC are the lossy source coding and sphere-packing exponents2, respectively) via

VJ(P,W, ρ) =

[

∂2E(P,W,D, ρ)

∂R(P,D)2

∣

∣

∣

∣

D=D∗(P,W,ρ)

]−1

,

where in the derivativeP is held fixed.

The achievability part of Theorem5 relies on the following lemma.

Lemma 6 (JSCC Distortion Redundancy). Consider a JSCC problem with a DMS(S, Ŝ, P, d), a DMC (X ,Y,W )
and bandwidth expansion factorρ. Let n be the length of the source block length, and letm , ⌊ρn⌋ be the length
of the channel block length. LetΦ be an arbitrary distribution onX , and letΦm ∈ Pm(X ) be anm-type that
approximatesΦ as

‖Φ− Φm‖∞ ≤ 1

m
.

Let the channel inputx ∈ Xm have typeΦm. Further, letD∗(Φ) be the solution toR(P,D(Φ)) = ρI(Φ,W ).
Assume thatR(Q,D), the RDF of a sourceQ with the same distortion measure, is twice differentiable w.r.t. D
and the elements ofQ at some neighborhood of(P,D∗(Φ)). Let ε be a given probability and letDn > 0 be the
infimal value s.t.

P
[

R(PS,Dn) > ρI(Φm, PY|x)
]

= ε. (22)

Then, asn grows,

R(P,Dn) = ρI(Φ,W )−
√

VS(P ) + ρVC(Φ,W )

n
Q−1(ε)

+O

(

log n

n

)

. (23)

In addition, for any channel input (i.e.,Φm is not restricted and may also depend upon the source sequence),

R(P,Dn) ≤ ρC(W )−
√

VJ(P,W, ρ)

n
Q−1(ε) +O

(

log n

n

)

, (24)

whereVJ(P,W, ρ) is given by (8). Furthermore, all the above holds even if replace (22) with

P
[

R(PS,Dn) > ρI(Φm, PY|x) + ξn
]

= ε+ ζn, (25)

for any given (vanishing) sequencesξn, ζn, as long asξn = O
(

logn
n

)

and ζn = O
(

logn√
n

)

.

Proof sketch for Lemma6: Similar to Lemma3, we apply Taylor expansion toR(PS,Dn) and show that the
first order term again can be expressed as sum ofn independent random variables, and neglecting higher order
terms does not affect the statement. ThenR(PS,Dn) − ρI(Φm, PY|x) can be shown to be the sum ofn + m
indenpdent random variables, with total variance essentially (VS +ρVC(Φ,W ))/n. Finally, similar to the derivation
in Lemma3, we apply the Berry-Esseen theorem and show(23) and(25) are true.

The detailed proof of Lemma6 is given in AppendixB-B.
The converse part of Theorem5 builds upon the following result, which states that for any JSCC scheme, the

excess-distortion probability must be very high if the empirical mutual information over the channel is higher than
the empirical source RDF.

Lemma 7 (Joint source channel coding converse with fixed types). For a JSCC problem, given a source type
Q ∈ Pn (S) and a channel input typeΦ ∈ Pn (X ), let G(Q,Φ) be the set of source seqeuences inT n

Q that are
mapped (via JSCC encoderfJ ;n) to channel codewords with typeΦ, i.e.,

G(Q,Φ) ,
{

s ∈ T n
Q : x = fJ ;n(s) ∈ T n

Φ

}

.

Define all the channel outputs that coverss with distortionD as B̂(s,D), i.e.,

B̂(s,D) = {y ∈ Ym : d(s, gJ ;n(y)) ≤ D} (26)

2Sphere-packing exponent is only achievable whenR is close toC, but this is sufficient for the derivative atR = C.
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wherem = ⌊ρn⌋ and gJ ;n is the JSCC decoder. If

|G(Q,Φ)| ≥ 1

(n+ 1)|X |+1

∣

∣T n
Q

∣

∣ , (27)

then for a given distortionD and a channel with constant composition conditional distributionV ∈ Pm(Y|Φ), we
have

1

|G(Q,Φ)|
∑

si∈G(Q,Φ)

∣

∣

∣T m
V (f(si)) ∩ B̂(si,D)

∣

∣

∣

∣

∣T m
V (f(si))

∣

∣

≤ p(n) exp−n[R(Q,D)−ρI(Φ,V )]+ (28)

wherep(n) is a polynomial that depends only on the source, channel and reconstruction alphabet sizes andρ.

The detailed proof of Lemma7 is given in AppendixB-B. The proof uses an approach similar to that in the
strong channel coding converse [8].

Below we present the proof for Theorem5. The achievability proof is based on Lemmas4 and6, where we do
not use directly Lemma3 or Theorem1, thus we do not suffer from the non-uniformity problem (see Remark1).
In other words, rather than evaluating the error probability per UEP codebook, we directly evaluate the average
over all codebooks.

Proof: Achievability: Let
kn = (n+ 1)|S|+1 = poly(n). (29)

At each block lengthn, we construct a source codeC = {Ci} as follows (the indexn is omitted for notational
simplicity). Each codeCi corresponds to one typeQi ∈ (Pn (X )

⋂

Ωn), where

Ωn =

{

Q : ‖P −Q‖22 ≤ |S| log n
n

}

.

According to the refined type-covering Lemma [12], there exists codesCi of rates

Ri ≤ R(Qi,Dn) +O

(

log n

n

)

, (30)

that completelyDn-cover the corresponding types (where the redundancy term is uniform). We choose these to be
the rates of the source code. The chosen codebook and codeword indices are then communicated using a dispersion-
optimal UEP scheme as described in SectionIII with a capacity-achieving channel input distributionΦ ∈ Π(W ).
Specifically, each source codebook is mapped into a channel codebook of block length⌊ρn⌋ and rate

R̃i =
Ri

ρ
, (31)

as long as
R̃i ≤ H(Φ)− ηn, (32)

whereηn is defined in Lemma3. Otherwise, the mapping is arbitrary and we assume that an error will occur. The
UEP scheme is thus used with different message classes at each n; such a scheme can only perform better than
a scheme where the message classes accumulate, see Remark2, thus we can use the results of SectionIII with
number of codebooks:

n
∑

n′=1

|Pn (X )
⋃

Ωn′ | ≤ n · |Pn (X ) | ≤ (n + 1)|S|+1 = kn,

wherePn (X ) is defined in (9).
Error analysis: an excess-distortion event can occur only if one of the following events happened:
1) Ps /∈ Ωn, wherePs is the type ofs.
2) R̃i ≥ H(Φ)− ηn.
3) E2 (17): an unrelated channel codeword had high empirical mutual information.
4) E1 (16): the true channel codeword had low empirical mutual information.

We show that the first three events only contribute to the correction term. According to [6, Lemma 2],

P [Ps /∈ Ωn] ≤
2|S|
n2

.
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By our assumption on the differentiability ofR(P,D), for large enoughn the second event does not happen for
any type inΩn. By Lemma4, the probability of the third event is at mostO(1/

√
n), uniformly. Thus, by the union

bound, we need the probability of the last event to be at mostεn = ε−O(1/
√
n).

Now following the analysis ofE1 in the proof of Theorem1, (19) indicates that eventE1 is equivalent to

I
(

Φ, PY|x
)

≤ R̃i + γn

whereγn is defined in (18). (30) and(31) indicates this is equivalent to

ρI
(

Φ, PY|x
)

≤ R(Ps,Dn) +O

(

log n

n

)

.

On account of Lemma6, this can indeed be satisfied withεn as required.
Converse: At the first stage of the proof we suppress the dependence on the block lengthn for conciseness. We

first lower-bound the excess-distortion probability giventhat the source type is someQ ∈ Pn (S).
Let α(Q,Φ) , P [PX = Φ|PS = Q] be the probability of having input typeΦ giving that the source type isQ.

Noting that given a source type, all strings within a type class are equally likely, we have

α(Q,Φ) =
|{s ∈ T n

Q : x = fJ ;n(s) ∈ T n
Φ}|

|T n
Q | =

|G(Q,Φ)|
|T n

Q | .

Now we have
P [E(D)|PS = Q] =

∑

Φ∈Pn(X )

α(Q,Φ)P [E(D)|PS = Q,PX = Φ] .

Define the class of “frequent types” based onα(Q,Φ):

A(Q) ,

{

Φ ∈ Pn (X ) : α(Q,Φ) ≥ 1

(n+ 1)|X |+1

}

.

Note that
P [PX /∈ A(Q)|PS = Q] ≤ |Pn (X ) | 1

(n + 1)|X |+1
≤ 1

n+ 1
,

thusA(Q) is nonempty. Trivially, we have:

P [E(D)|PS = Q] ≥
∑

Φ∈A(Q)

α(Q,Φ)P [E(D)|PS = Q,Px = Φ]

=
∑

Φ∈A(Q)

α(Q,Φ)
∑

V ∈Pn(Y|Φ)

P
[

Py|x = V |Px = Φ
]

P
[

E(D)|PS = Q,Px = Φ, Py|x = V
]

.

Next we use Lemma7 to assert, for allΦ ∈ A(Q):

P
[

E(D)|PS = Q,Px = Φ, Py|x = V
]

≥ 1− 1

|G(Q,Φ)|
∑

si∈G(Q,Φ)

∣

∣

∣
T m
V (f(si)) ∩ B̂(si,D)

∣

∣

∣

∣

∣T m
V (f(si))

∣

∣

≥ 1− p(n) exp{−n[R(Q,D)− ρI(Φ, V )]},
wherep(n) is given in (B.77). Since

∑

Φ∈A(Q) α(Q,Φ) ≤ 1, we further have:

P [E(D)|PS = Q] ≥ 1− 1

n+ 1

+ p(n)
∑

V ∈Pn(Y|Φ∗(Q))

P
[

Py|x = V |Px = Φ∗(Q)
]

exp{−n[R(Q,D)− ρI(Φ∗(Q), V )]},

whereΦ∗(Q) minimizes the expression over allΦ ∈ A(Q) (if there are multiple maximizers, it is chosen arbitrarily).
Collecting all source types, we have:

P [E(D)] ≥ n

n+ 1
− p(n)

∑

Q∈Pn(S)

∑

V ∈Pn(Y|Φ∗(Q))

P [PS = Q]P
[

PY|X = V |PX = Φ∗(Q)
]

·

exp{−n[R(Q,D)− ρI(Φ∗(Q), V )]}.
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At this point we return the block length indexn. Let ∆n be some vanishing sequence to be specified later. Define
the set

B(∆n) , {Q ∈ Pn (S) , V ∈ Pn (Y|Φ∗
n(Q)) : R(Q,D)− I(Φ∗

n(Q), V ) > ∆n}.
For any sequence∆n we can write:

P [E(D)] ≥ P [B(∆n)]

[

n

n+ 1
− p(n) exp{−n∆n}

]

,

whereP [B(∆n)] = P
[

S : PfJ;n(S) ∈ B(∆n)
]

. Now choosen∆n = (1 + p(n)) log(n+ 1) to obtain:

P [E(D)] ≥
(

1− 2

n+ 1

)

P [B(∆n)] ≥
P [B(∆n)]

1 + 2
n−1

.

Since we demand thatP [E(D)] ≤ ε for all n, and inserting the definition ofB(∆n) it must be that

P [R(PS,D)− ρI(Φ∗
n(PS), V ) > ∆n] ≤ ε

(

1 +
2

n− 1

)

.

Seeing that∆n = O (logn/n), the desired result follows on account of (24) in Lemma6.

V. THE LOSS OFSEPARATION

In this section we quantify the dispersion loss of a separation-based scheme with respect to the JSCC one. Using
the separation approach, the interface between the source and channel parts is a fixed-rate message, as opposed to
the variable-rate interface used in conjunction with multiple quantizers and UEP, shown in this work to achieve the
JSCC dispersion.

Formally, we define a separation-based encoder as the concatenation of the following elements.
1) A source encoderfS;n : Sn → Mn.
2) A source-channel mappingMn → Mn.
3) A channel encoderfC;n : Mn → S⌊ρn⌋.
The interface rate isRn = log |Mn|/n. Finally, the source-channel mapping is randomized, in order to avoid

“lucky” source-channel matching that leads to an effective“joint” scheme.3 We assume that it is uniform over
all permutations ofMn, and that it is known at the decoder as well. Consequently, the decoder is the obvious
concatenation of elements in reversed order. The excess distortion probability of the scheme is defined as the mean
over all permutations.

In a separation-based scheme, an excess-distortion event occurs if one of the following: either the source coding
results in excess distortion, or the channel coding resultsin a decoding error. Though it is possible that no excess
distortion will occur when a channel error occurs (whether the source code has excess distortion or not), the
probability of this event is exponentially small. Thus at every block-lengthn, the excess-distortion probabilityε
satisfies

ε = εS;n ∗ εC;n − δn (33)

wherea ∗ b = a+ b− ab, εS;n andεC;n are the source excess-distortion probability and channel error probability,
repectively, at blocklengthn, and δn is exponentially decaying withn. In this expression we take a fixedε, in
accordance with the dispersion setting; the system designer is still free to chooseεS;n and εC;n by adjusting the
ratesRn, as long as(33) is maintained.

We now employ the source and channel dispersion results(6),(7), which hold up to a correction termO (log(n)/n),4

to see that that for the optimal separation-based scheme:

R(Dn) = ρC(W )− min
εS;n∗εC;n≤ε

[
√

Vs(P,D∗)
n

Q−1 (εS;n)

+

√

ρVc(W )

n
Q−1 (εC;n)

]

+O

(

log n

n

)

. (34)

3For instance, the UEP scheme could be presented as a separation one if not for the randomized mapping.
4The redundancy terms are in general functions of the error probabilities, but for probabilities bounded away from zero and one they can

be uniformly bounded; it will become evident that for positive and finite source and channel dispersions, this is indeed the case.
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0 R(P,D) R

R

C

√

Vs/n

√

ρVc/n

R(Q,D)

ρI(Φ,W )

Fig. 2. Main JSCC excess distortion event: the loss of separation.

It follows, that up to the correction term it is optimal to choosefixed probabilitiesεS;n = εS and εC;n = εC .
Furthermore, the dependancy onn is the same as in the joint source-channel dispersion (23), but with different
coefficient for the1/

√
n term, i.e.,

R(Dn) = ρC(W )−
√

Vsep

n
Q−1 (ε) +O

(

log n

n

)

. (35)

Note that in the limitε → 0,
√

Vsep=
√
VS +

√
ρVC .

In order to see why separation must have a loss, consider Fig.1. The separation scheme designer is free to
choose the digital interface rateR. Now whenever the random source-channel pair is either to the right of the point
(R,R) due to a source type withR(PS,D) > R, or below it due to channel behaviorI(Φ, PY|x) < R, an excess
distortion event will occur. Comparing to optimal JSCC, this adds the chessboard-pattern area on the plot. The
designer may optimizeR such that the probability of this area is minimized, but for any choice ofR it will still
have a strictly positive probability.

For quantifying the loss, it is tempting to look at the ratio between the coefficients of the1/
√
n terms. However,

this ratio may be in general infinite or negative, making the comparison difficult. We choose to define the equivalent
probability ε̃ by rewriting (35) as

R(Dn) = ρC −
√

V (P,D,W, ρ)

n
Q−1 (ε̃) +O

(

log n

n

)

. (36)

Thus,ε̃ < ε is the excess-distortion probability that a JSCC scheme could achieve under the same conditions, when
the seperation scheme achievesε. Substitution reveals that

ε̃(ε, λ) = Q





minεs∗εc≤ε

[

Q−1 (εs) +
√
λQ−1 (εc)

]

√
1 + λ



 , (37)

where

λ ,
ρVc

Vs
. (38)

In general, numerical optimization is needed in order to obtain the equivalent probability. However, clearlyε̃(ε, λ) =
ε̃(ε, 1/λ). In the special symmetric caseλ = 1 one may verify that the optimal probabilities are

εs = εc = 1−
√
1− ε,
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Fig. 3. ε̃(ε, λ) as a function ofε for different values ofλ. From bottom to top curve,λ = {1, 2, 3, 5, 10, 30, 100, 1000}.

thus
ε̃(ε, 1) = Q

(√
2Q−1

(

1−
√
1− ε

)

)

.

This reflects a large loss for low error probabilities. On theother hand,

lim
λ→0

ε̃(ε, λ) = lim
λ→∞

ε̃(ε, λ) = ε.

It seems that the symmetric case is the worst for separation,while whenλ grows away from1, either the source
or the channel behave deterministically in the scale of interest, making the JSCC problem practically a digital one,
i.e., either source coding over a clean channel or channel coding of equi-probable messages. This is somewhat
similar to the loss of separation in terms of excess distortion exponent. This behavior is depicted in Fig.3.

VI. BW EXPANSION AND LOSSLESSJSCC

We now wish to change the rules, by allowing the BW expansion ratio ρ, which was hitherto considered constant,
to vary with the blocklengthn. More specically, we takes some sequenceρn with limn→∞ ρn = ρ. It is not hard
to verify that the results of SectionIV remain valid5, andρn andDn are related via:

R(P,Dn) = ρnC(W )−
√

VJ(P,W, ρ)

n
Q−1(ε) +O

(

log n

n

)

, (39)

where for the calculation of the JSCC dispersion we useD∗(P,W, ρ). In particular, one may choose to work with
a fixed distortion thresholdD = D∗(P,W, ρ), and then (39) describes the convergence of the BW expansion ratio
sequence to its limitρ.

Equipped with this, we can now formulate a meaningful lossless JSCC dispersion problem. In (nearly) lossless
coding we demand̂S = S, otherwise we say that anerror eventE has occurred. We can see this as a special case
of the lossy JSCC problem with Hamming distortion:

d(si, ŝi) =

{

1 ŝi = si

0 otherwise,

5 Note that now the application of Berry-Esseen theorem is more involved, as we are now summingρnn+n independent random variables.
However, its application still holds and results in SectionIV can be proved by keeping track ofρn explicitly.
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and with distortion thresholdD = 0. While this setting does not allow for varying distortion thresholds, one may
be interested in the number of channel uses needed to ensure afixed error probabilityε, as a function of the
blocklengthn. As an immediate corollary of (39), this is given by:

ρn =
H(P )

C(W )
+

√

VJ(P,W, ρ)

n

Q−1(ε)

C(W )
+O

(

log n

n

)

. (40)

In lossless JSCC dispersion, the source part ofVJ(P,W, ρ) simplifies toVar [logP ], in agreement with the lossless
source coding dispersion of Strassen [4].
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APPENDIX A
PROOFS FORUEP CHANNEL CODING DISPERSION

In this appendix we provides proofs for results in SectionIII . We start by analyzing the Taylor expansion of
empirical mutual information in AppendixA-A, which is crucial for proving Lemma3, then we proceed to prove
Lemmas3 and4 in AppendixA-B.

A. Analysis of the empirical mutual information

In this section, we investigate the Taylor expansion of the empirical mutual information at expected mutual
information, i.e.,

I(Φ, PY|x) = I(Φ,W ) +
∑

x∈X ,y∈Y
(PY|x(y|x)−W (y|x))I ′W (y|x) (A.41)

+O





∑

x∈X ,y∈Y
(PY|x(y|x)−W (y|x))2



 , (A.42)

whereI ′W (y|x) , ∂I(Φ,V )
∂V (y|x)

∣

∣

∣

V=W
. Specifically, we characterize the first-order and higher-order correction terms of

the Taylor expansion via Lemmas8 and10.

Lemma 8 (First order correction term for mutual information). If Y ∼ W n (·|x), then
∑

x∈X ,y∈Y
(PY|x(y|x)−W (y|x))I ′W (y|x) =

∑

x

∑

j:j∈Jx

Zx,j

whereJx , {j : xj = x}, {Zx,j, x ∈ X , j ∈ Jx} are independent random variables, and for a givenx, {Zx,j, j ∈ Jx}
are identically distributed. Furthermore,

E [Zx,j] = 0, ∀x, j
∑

x

∑

j:j∈Jx

Var [Zx,j] =
V (Φ,W )

n
,

∑

x

∑

j:j∈Jx

E

[

|Zx,j − E [Zx,j]|3
]

= O

(

1

n2

)

.
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Proof of Lemma8: Note

∑

x∈X ,y∈Y
(PY|x(y|x)−W (y|x))I ′W (y|x) =

∑

x

[

∑

y

(PY|x(y|x)−W (y|x))I ′W (y|x)
]

=
∑

x

[

∑

y

PY|x(y|x)I ′W (y|x)−
∑

y

W (y|x)I ′W (y|x)
]

=
∑

x

[

1

N(x|x)
∑

y

Nx,y(x,Y)I ′W (y|x)− E[I ′W (Y |x)]
]

=
∑

x

1

N(x|x)
∑

j:j∈Jx

[

I ′W (Yj|x)− E[I ′W (Y |x)]
]

.

Let Z̃x,j , I ′W (Yj|x)− E[I ′W (Y |x) andZx,j =
1

N(x|x) Z̃x,j, thenE [Zx,j] = 0 and

Var
[

Z̃x,j

]

= Var
[

I ′W (Yj |x)
]

= Var
[

I ′W (Y |x)
]

.

By straightforward differentiation,

I ′W (y|x) = ∂I(Φ, V )

∂V (y|x)

∣

∣

∣

∣

V=W

= Φ(x) log
W (y|x)
ΦW (y)

,

thus

Var
[

Z̃x,j

]

= Var
[

I ′W (Y |x)
]

= Φ2(x)Var

[

log
W (Y |x)
ΦW (Y )

]

.

Therefore
∑

x

∑

j:j∈Jx

Var [Zx,j] =
∑

x

∑

j:j∈Jx

1

N(x|x)2Var
[

Z̃x,j

]

=
∑

x

1

nΦ(x)
Φ(x)2Var

[

log
W (Y |x)
ΦW (Y )

]

=
1

n

∑

x

Φ(x)Var

[

log
W (Y |x)
ΦW (Y )

]

=
V (Φ,W )

n
.

Finally, since anyZx,j is discrete and finite valued variables, the sum of the absolute third moment of these variables
is bounded by some functionrn = Θ

(

1
n2

)

.
To investigate the higher order terms, we partition the channel realizations by its closeness to the true channel

distributionW . Given input distributionΦn, we define

Ξn , Ξn (Φn) ,

{

V ∈ Pn (Y|Φn) :
∑

x,y

(V (y|x)−W (y|x))2 ≤ |X | · |Y| · log n
n

· 1

Φmin
n

}

, (A.43)

whereΦmin
n , minx∈X Φn(x). As shown below in Lemma9, Ξn is “typical” in the sense that it contains a channel

realization with high probability.

Lemma 9. If x ∈ X n has a typeΦn andY ∈ Yn is the output of the channelW n with inputx, then

P
[

PY|x /∈ Ξn

]

≤ 2|X | · |Y|
n2

.
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Proof of Lemma9: Let β2 = |X | · |Y| · logn
n · 1

Φmin
n − 1

n

.

P
[

PY|x /∈ Ξn

]

= P





∑

a∈X ,b∈Y

(

PY|x(b|a) −W (b|a)
)2

> β2





(a)

≤ P





⋃

a∈X ,b∈Y

{

(

PY|x(b|a)−W (b|a)
)2

> β2

|X ||Y|

}





(b)

≤
∑

a∈X ,b∈Y
P

[

(

PY|x(b|a)−W (b|a)
)2

> β2

|X ||Y|

]

=
∑

a∈X ,b∈Y
P

[

∣

∣PY|x(b|a) −W (b|a)
∣

∣ > β√
|X ||Y|

]

, (A.44)

where(a) follows from the fact that in order for a sum of|X ||Y| elements to be aboveβ2, then at least one of
the summands must be aboveβ2/(|X ||Y|). (b) follows from the union bound. For anya ∈ X , b ∈ Y, we have

P

[

∣

∣PY|x(b|a)−W (b|a)
∣

∣ > β√
|X ||Y|

]

=P

[∣

∣

∣

∣

∣

1
Na(x)

∑

i:xi=a

(1Yi=b −W (b|a))
∣

∣

∣

∣

∣

> β√
|X ||Y|

]

(a)

≤2 exp

(

−2β2Na(x)

|X | · |Y|

)

=2exp

(

−2β2nΦn(a)

|X | · |Y|

)

, (A.45)

where(a) follows from Hoeffding’s inequality (see, e.g. [13, p. 191]). Applying (A.45) to each of the summands
of (A.44) gives

P
[

PY|x /∈ Ξn

]

≤
∑

a∈X ,b∈Y
P

[

∣

∣PY|x(b|a)−W (b|a)
∣

∣ > β√
|X ||Y|

]

≤
∑

a∈X ,b∈Y
2 exp

(

−2β2nΦn(a)

|X | · |Y|

)

≤ 2|Y|
∑

a∈X
exp

(

−2β2nΦn(a)

|X | · |Y|

)

≤ 2|X | · |Y| exp
(

−2β2nΦmin
n

|X | · |Y|

)

= 2|X | · |Y| 1
n2

. (A.46)

With Lemma9, we can show that the higher order terms in (A.41) is in some sense negligible via Lemma10.

Lemma 10 (Second order correction term for mutual information). If Y ∼ W n (·|x), then existsJ = J(|X | , |Y| , Px)
such that

P





∑

x∈X ,y∈Y
(PY|x(y|x)−W (y|x))2 ≥ J

log n

n



 ≤ 2 |X | |Y|
n2

Proof of Lemma10: Let

J = |X | · |Y| · log n
n

· 2

Φmin
n
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then the lemma follows from the definition ofΞn and Lemma9.
Finally, we show the following lemma that is useful for asymptotic analysis.

Lemma 11. If fn = O (gn), then there existΓn andΓ′
n = Θ(Γn) such that

P
[

fn ≥ Γ′
n

]

≤ P [gn ≥ Γn]

P
[

fn ≤ −Γ′
n

]

≤ P [gn ≥ Γn]

whenn sufficiently large.

Proof of Lemma10: By definition there existsc > 0 such that whenn sufficiently large,

−cgn ≤ fn ≤ cgn

Then lettingΓ′
n = cΓn completes the proof.

B. Proofs for UEP channel coding lemmas

In this section we provide proofs for Lemmas3 and4.
Proof for Lemma3: We directly prove the stronger result where∆R is defined according to (14).

By Taylor expansion, we have

I(Φ, PY|x) = I(Φ,W ) +
∑

x∈X ,y∈Y
(PY|x(y|x)−W (y|x))I ′W (y|x)

+O





∑

x∈X ,y∈Y
(PY|x(y|x)−W (y|x))2



 ,

whereI ′W (y|x) , ∂I(Φ,V )
∂V (y|x)

∣

∣

∣

V=W
. Let

A(Y) =
∑

x∈X ,y∈Y
(PY|x(y|x)−W (y|x))I ′W (y|x)

and

B(Y) = O





∑

x∈X ,y∈Y
(PY|x(y|x)−W (y|x))2



 ,

then

ε+ δn = P
[

I
(

Φn, PY|x
)

≤ I (Φ,W )−∆R,Y ∼ W n (·|x)
]

= P [A(Y) +B(Y) ≤ −∆R,Y ∼ W n (·|x)]
(a)

≥ P [A(Y) + Γn ≤ −∆R,Y ∼ W n (·|x)]− P [B(Y) ≥ Γn,Y ∼ W n (·|x)] (A.47)

whereΓn > 0 and (a) follows from(D.81). Similarly, (D.81) indicates

ε+ δn = P [A(Y) +B(Y) ≤ −∆R,Y ∼ W n (·|x)]
≤ P [A(Y)− Γn ≤ −∆R,Y ∼ W n (·|x)] + P [B(Y) ≤ −Γn,Y ∼ W n (·|x)] (A.48)

Let Γ′
n = J(Φn, |X | , |Y|) in Lemma10, then from Lemmas10 and 11, there existsΓn = Θ(Γ′

n) = O
(

logn
n

)

such that

P [B(Y) ≥ Γn,Y ∼ W n (·|x)] ≤ O

(

1

n2

)

, (A.49)

P [B(Y) ≤ −Γn,Y ∼ W n (·|x)] ≤ O

(

1

n2

)

. (A.50)
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In addition, based on Lemma8 andQ(x) = 1 − Q(−x), we can apply Berry-Esseen theorem (see, e.g., [3, Ch.
XVI.5]) and have for any−∞ < λ < ∞,

|P [A(Y) ≥ λσ,Y ∼ W n (·|x)]−Q (λ)| ≤ T

σ3
, (A.51)

|P [A(Y) ≤ −λσ,Y ∼ W n (·|x)]−Q (λ)| ≤ T

σ3
, (A.52)

whereσ2 = V (Φ,W )/n and T is bounded byc/n2, wherec is some constant. DenoteV (Φ,W ) as V , apply
λ1 = (∆R+ Γn)/σ andλ2 = (∆R− Γn)/σ to (A.51) and(A.52) respectively,

∣

∣

∣

∣

P [A(Y) ≥ ∆R+ Γn,Y ∼ W n (·|x)]−Q

(

(∆R+ Γn)

√

n

V

)∣

∣

∣

∣

≤ c√
nV 3

, (A.53)
∣

∣

∣

∣

P [A(Y) ≤ −(∆R− Γn),Y ∼ W n (·|x)]−Q

(

(∆R− Γn)

√

n

V

)∣

∣

∣

∣

≤ c√
nV 3

. (A.54)

Therefore,

Q

(

(∆R+ Γn)

√

n

V

)

− c√
nV 3

(A.53)
≤ P [A(Y) ≥ ∆R+ Γn,Y ∼ W n (·|x)]

(A.47)
≤ ε+ δn + P [B(Y) ≥ Γn,Y ∼ W n (·|x)]

(A.49)
= ε+O

(

log n√
n

)

.

Likewise,

Q

(

(∆R− Γn)

√

n

V

)

+
c√
nV 3

(A.54)
≥ P [A(Y) ≤ −(∆R− Γn),Y ∼ W n (·|x)]

(A.48)
≥ ε+ δn − P [B(Y) ≤ −Γn,Y ∼ W n (·|x)]

(A.50)
= ε+O

(

log n√
n

)

.

From the smoothness ofQ−1 aroundε,

(∆R+ Γn)

√

n

V
≥ Q−1

(

ε+O

(

log n√
n

)

+
c√
nV 3

)

= Q−1 (ε) +O

(

log n√
n

)

,

(∆R− Γn)

√

n

V
≤ Q−1

(

ε+O

(

log n√
n

)

− c√
nV 3

)

= Q−1 (ε) +O

(

log n√
n

)

.

Therefore,

∆R ≥
√

V

n
Q−1 (ε) +

√

V

n
O

(

log n√
n

)

− Γn =

√

V

n
Q−1 (ε) +O

(

log n

n

)

,

∆R ≤
√

V

n
Q−1 (ε) +

√

V

n
O

(

log n√
n

)

+ Γn =

√

V

n
Q−1 (ε) +O

(

log n

n

)

,

and finally

∆R =

√

V

n
Q−1 (ε) +O

(

log n

n

)

.

Before proving Lemma4, we include the following lemma [2] for completeness.

Lemma 12 ( [2, Lemma 6]). GivenX and positive integersn, kn, let

ηn ,
2

n

(

|X |2 + log(n+ 1) + log kn + 1
)

.
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Then for arbitrary (not necessarily distinct) distributionsΦi ∈ Pn (X ) and positive integersNi with

1

n
logNi ≤ H (Φi)− ηn, i = 1, 2, . . . ,m,

there existm disjoint setsAi ⊂ X n such that

Ai ⊂ T n
Φi
, |Ai| = Ni, i = 1, 2, . . . ,m,

and
|TV̄ (x)| ≤ Nj exp

{

−n
[

I
(

Φi, V̄
)

− ηn
]}

if x ∈ Ai

for everyi, j and V̄ : X n → X n, except for the casei = j and V̄ is the identity matrix.

Proof for Lemma4: For x′ ∈ Aj, x′ 6= x, let the joint type for the triple(x,x′,y) be given as the joint

distribution of RV’s X,X ′, Y . Then from Lemma12, we can find{Ai} such thatAi ⊂ T n
Φi

and
1

n
logNi ≤

H (Φi)− ηn, thusX has distributionΦi andX ′ has distributionΦj. In addition, define

BV , BV (x) ,
{

y ∈ T n
V (x) : ∃x′ 6= x such thatx′ ∈ Aj andI

(

x′ ∧ y
)

−Rj ≥ γ
}

,

then the cardinality of∪V BV is upper bounded by

|∪V BV | ≤ Nj exp
{

−n
[

I
(

X,X ′;Y
)

−H(Y |X)− ηn
]}

≤ Nj exp
{

nH(Y |X) − n
∣

∣I
(

X,X ′;Y
)

− ηn
∣

∣

+
}

Then fory ∈ BV ,

W (y |x) = exp {−n [D (V ‖W |Φi) +H(V |Φi)]}
Note thatI (x′ ∧ y)−Rj ≥ γ implies I (X ′;Y )−Rj ≥ γ, andI (X,X ′;Y ) ≥ I (X;Y ),

I
(

X,X ′;Y
)

−Rj ≥ I
(

X ′;Y
)

−Rj ≥ γ

Hence,

W n (BV |x) ≤ Nj exp
{

nH(Y |X) − n
∣

∣I
(

X,X ′;Y
)

− ηn
∣

∣

+
}

exp {−n [D (V ‖W |Φi) +H(V |Φi)]}

= Nj exp
{

−n
[

D (V ‖W |Φi) +
∣

∣I
(

X,X ′;Y
)

− ηn
∣

∣

+
]}

≤ Nj exp
{

−n
[

D (V ‖W |Φi) + |Rj + γ − ηn|+
]}

And

P
[

I
(

x′ ∧ y
)

−Rj ≥ γ
]

≤ W n

(

⋃

V

BV

∣

∣

∣

∣

∣

x

)

≤ (n+ 1)|X |2|Y|Nj exp
{

−n
[

|Rj + γ − ηn|+
]}

APPENDIX B
PROOFS FORJSCCDISPERSION

This appendix contains proofs for results in SectionIV. Similar to the development in AppendixA, we start
by analyzing the Taylor expansion of the distortion-rate function in AppendixB-A, then prove the relevant key
lemmas AppendixB-B.
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A. Analysis of the distortion-rate function

In this section, we investigate that Taylor expansion ofR(PS,Dn). Denote the partial derivatives ofD(P,R) at
R = I(Φ,W ) andQ = P as

D′
R ,

∂D(P,R)

∂R

∣

∣

∣

∣

R=I(Φ,W )

,

D′
P (s) ,

∂D(Q,R)

∂Q(s)

∣

∣

∣

∣

Q=P

.

AssumingD(·, ·) is smooth, Taylor expansion gives

D(PS, ρI(Φ, PY|x) + ξ′n) = D(P, ρI(Φ,W ))

+

|S|
∑

s=1

(PS(s)− P (s))D′
P (s)

+ (ρI(Φ, PY|x) + ξ′n − ρI(Φ,W ))D′
R

+O





|S|
∑

s=1

(Ps(s)− P (s))2 + (ρI(Φ, PY|x) + ξ′n − ρI(Φ,W ))2





= D(P, ρI(Φ,W ))

+

|S|
∑

s=1

(PS(s)− P (s))D′
P (s) + ρD′

R

∑

x,y

(

PY|x(y|x)−W (y|x)
)

I ′W (y|x) (B.55)

+B(S,Y, ξ′n), (B.56)

whereξ′n = O (log n/n), and the correction term is

B(S,Y, ξ′n) ,ξ′nD
′
R +O

(

∑

x,y

(PY|x(y|x)−W (y|x))2
)

+O





|S|
∑

s=1

(Ps(s)− P (s))2 + (ρI(Φ, PY|x) + ξ′n − ρI(Φ,W ))2



 . (B.57)

For notational simplicity, we define

A(S,Y) ,

|S|
∑

s=1

(PS(s)− P (s))D′
P (s) + ρD′

R

∑

x,y

(

PY|x(y|x)−W (y|x)
)

I ′W (y|x) (B.58)

The lemmas in this subsection is organized as follows. Lemma13 shows that the first order terms of the Taylor
expansion ofR(PS,Dn) with respect toP can be represented as the sum ofn i.i.d. random variables. Then
Lemma14 shows thatA(S,Y) can be represented represented as the sum ofn+m i.i.d. random variables. Finally,
Lemmas15 and16 together with Lemmas9 and11 shows that the higher order terms in the Taylor expansion is
negligible, as summarized in Lemma17.

Lemma 13. Under the conditions of Lemma6,

∑

s∈S
(PS(s)− P (s))D′

P (s) =

n
∑

i=1

Z̃i

where{Z̃i, i = 1, 2, · · · , n} are i.i.d. random variables such that

E

[

Z̃i

]

= 0

Var
[

Z̃i

]

=
VD

n2
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whereVD = VS · (D′
R)

2.

Proof:

∑

s∈S
(PS(s)− P (s))D′

P (s) =
1

n

n
∑

i=1

D′
P (Si)−

∑

s∈S
P (s)D′

P (s)

=
1

n

n
∑

i=1

D′
P (Si)− E[D′

P (S)]

Let Z̃i , D′
P (Si)− E[D′

P (S)], then

E

[

Z̃i

]

= 0,

and

Var
[

D′
P (Si)− E[D′

P (S)]
]

= Var
[

D′
P (S)

]

.

By elementary calculus it can be shown that for alls ∈ S,

D′
P (s) =

∂D(P,R)

∂P (s)
= −∂R(P,D)

∂P (s)

∂D(P,R)

∂R
= −R′(s)D′

R.

Therefore,
VD = Var

[

D′
P (S)

]

= Var
[

R′(S)
]

(D′
R)

2 = VS · (D′
R)

2.

Lemma 14 (First order correction term for distortion-rate function). Under the conditions of Lemma6,(B.58), i.e.,
A(S,Y) is the sum ofn+m independent random variables, whose sum of variance is

1

n

[

ρ(D′
R)

2VS + ρ(D′
R)

2V (Φ,W ) +O

(

log n

n

)]

and sum of the absolute third moment is bounded by some constant.

Proof for Lemma14: According to Lemmas8 and 13, (B.58) can be interpreted as the sum ofn + m
independent random variables. Letσ2

n be the sum of the variance of thesen+m variables, then

σ2
n = n

1

n2
VD +

∑

x∈X
mΦm(x)

(

ρD′
R

mΦm(x)

)2

VC(x)

=
1

n
VD +

∑

x∈X

(ρD′
R)

2

mΦm(x)
VC(x).

=
1

n

[

VD + ρ(D′
R)

2V (Φm,W )
]

=
1

n

[

ρ(D′
R)

2VS + ρ(D′
R)

2V (Φ,W ) +O

(

log n

n

)]

(B.59)

Definer to be the sum of the absolute third moment of these variables.Since these are discrete and finite valued
variables,r is bounded by1

n2J3, for some constantJ3.

To investigate the higher order terms, we partition the source type by its closeness to the source distributionP .
Given source distributionP , we define

Ωn , Ωn(P ) ,

{

Q ∈ Tn : ‖P −Q‖22 ≤ |S| log n
n

}

. (B.60)

In addition, we show the following property of setΞn (defined in (A.43) in AppendixA-A):
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Lemma 15. If Py|x ∈ Ξn, then
(

I(Φ, Py|x)− I(Φ,W )
)2

= O

(

log n

n

)

. (B.61)

Proof: By definition ofΞn,
∑

x,y

(Py|x(y|x)−W (y|x))2 = O

(

log n

n

)

, (B.62)

and therefore

max
x,y

(Py|x(y|x)−W (y|x))2 = O

(

log n

n

)

. (B.63)

The zero-th order Taylor approximation ofI(Φ, Py|x) aroundW = Py|x is given by

I(Φ, Py|x) = I(Φ,W ) +O

(

∑

x,y

∣

∣

∣
Py|x(y|x)−W (y|x)

∣

∣

∣

)

(B.64)

= I(Φ,W ) +O

(

max
x,y

∣

∣

∣Py|x(y|x)−W (y|x)
∣

∣

∣

)

, (B.65)

therefore

(I(Φ, Py|x)− I(Φ,W ))2 = O

(

max
x,y

∣

∣

∣
Py|x(y|x)−W (y|x)

∣

∣

∣

2
)

, (B.66)

and the required result follows from(B.63).
The bounding ofB(S,Y, ξ′n) is mainly based on the following lemma.

Lemma 16. There exists constantJ > 0 such that

P





∑

x,y

(PY|x(y|x)−W (y|x))2 +
|S|
∑

s=1

(Ps(s)− P (s))2 + (ρI(Φ, PY|x) + ξ′n − ρI(Φ,W ))2 ≥ J
log n

n





≤ O

(

1

n2

)

Proof: Based on Lemma15, we have

P





∑

x,y

(PY|x(y|x)−W (y|x))2 +
|S|
∑

s=1

(Ps(s)− P (s))2 + (ρI(Φ, PY|x) + ξ′n − ρI(Φ,W ))2 ≥ J
log n

n





≤ P
[

PS /∈ Ωn or PY|x /∈ Ξn

]

≤ P [PS /∈ Ωn] + P
[

PY|x /∈ Ξn

]

(a)

≤ 2|S|
n2

+
2|X | · |Y|

m2

= O

(

1

n2

)

.

(a) follows from Lemma9 and [6, Lemma 2].

Lemma 17 (Second order correction term for distortion-rate function). For ξ′n = O
(

logn
n

)

, there existsΓn,1 =

O
(

logn
n

)

andΓn,2 = O
(

logn
n

)

such that

P
[

B(S,Y, ξ′n) > Γn,1

]

≤ O

(

1

n2

)

(B.67)

P
[

B(S,Y, ξ′n) < −Γn,2

]

≤ O

(

1

n2

)

(B.68)

Proof: Let Γn,1 = ξ′nD
′
R+(J+ |D′

R|) log n/n andΓn,2 = −ξ′nD
′
R+(J+ |D′

R|) log n/n, where theJ is given
by Lemma16, then the proof follows from Lemma16 and Lemma11.
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B. Proofs for JSCC lemmas

This section first shows Lemma6 (JSCC Distortion Redundancy Lemma), upon which proofs for both the
achievability and converse of the main theorem builds. Thenit shows the proof for Lemma7, which is essential
for establishing the converse result.

Proof for Lemma6: We directly prove the stronger result whereDn is defined according to (25).
We first note that forDn,

P
[

R(PS,Dn) ≥ ρI(Φm, PY|x) + ξn
]

≥ ε+ ζn. (B.69)

By Lemma19, for any conditional typeV , there is a constantJ1 = J1(|X |, |Y|) such that

|I(Φm, V )− I(Φ, V )| ≤ J1
logm

m
,

Therefore,

ε+ ζn ≤ P
[

R(PS,Dn) ≥ ρI(Φm, PY|x) + ξn
]

≤ P

[

R(PS,Dn) ≥ ρI(Φ, PY|x)− J1
logm
m + ξn

]

= P
[

R(PS,Dn) ≥ ρI(Φ, PY|x) + ξ′n
]

= P
[

Dn ≤ D
(

PS, ρI(Φ, PY|x) + ξ′n
)]

, (B.70)

wherexi′n = O (log n/n). Let ∆Dn , Dn −D∗, (B.70) now becomes

ε+ ζn = P
[

Dn ≤ D(PS, ρI(Φ, PY|x) + ξ′n)
]

= P
[

∆Dn ≤ A(S,Y) +B(S,Y, ξ′n)
]

.

Applying(D.78) and(D.79) gives

ε+ ζn ≤P [A(S,Y) + Γn,1 ≥ ∆Dn] + P
[

B(S,Y, ξ′n) > Γn,1

]

ε+ ζn ≥P [A(S,Y) − Γn,2 ≥ ∆Dn]− P
[

B(S,Y, ξ′n) < −Γn,2

]

From Lemmas11 and17 we have

P
[

B(S,Y, ξ′n) < −Γn,2

]

≤ O

(

1

n2

)

P
[

B(S,Y, ξ′n) > Γn,1

]

≤ O

(

1

n2

)

Sinceζn = O
(

logn√
n

)

, we absorb theO
(

1/n2
)

terms and have:

ε+O

(

log n√
n

)

≥ P [A(S,Y) ≥ ∆Dn − Γn,1]

ε+O

(

log n√
n

)

≤ P [A(S,Y) ≥ ∆Dn + Γn,2] ,

Based on Lemma14, by the (non-i.i.d. version of the) Berry-Esseen theorem ( [11, XVI.5, Theorem 2]) we have
that for anya andn,

|P [A(S,Y) ≥ λ · σn]−Q(λ)| ≤ 6Tn

σ3
n

= O

(

1√
n

)

,

whereTn is bounded byc/n2, with c being a constant. Letλ1 = (∆Dn − Γn,1)/σ andλ2 = (∆Dn + Γn,2)/σ,
then,

ε+O

(

log n√
n

)

≥ Q((∆Dn − Γn,1)/σ) +O

(

1√
n

)

,

ε+O

(

log n√
n

)

≤ Q((∆Dn + Γn,2)/σ) +O

(

1√
n

)

,



25

absorbing theO
(

1√
n

)

on the right hand side, we have

ε+O

(

log n√
n

)

≥ Q((∆Dn − Γn,1)/σn),

ε+O

(

log n√
n

)

≤ Q((∆Dn + Γn,2)/σn).

From the smoothness ofQ−1 aroundε, notingΓn,i = O (log n/n) , i = 1, 2 and replaceσn as in Lemma14, we
obtain

∆Dn ≤ D′
R

√

VC + ρV (Φ,W )

n
Q−1(ε) +O

(

log n

n

)

, (B.71)

∆Dn ≥ D′
R

√

VC + ρV (Φ,W )

n
Q−1(ε) +O

(

log n

n

)

. (B.72)

Therefore,

∆Dn = D′
R

√

VC + ρV (Φ,W )

n
Q−1(ε) +O

(

log n

n

)

. (B.73)

We addD∗ and applyR(P,D) to both sides of (B.71). With the Taylor approximation we have

R(P,Dn) = I(Φ,W ) +

√

VS + ρV (Φ,W )

n
Q−1(ε)|D′

R|R′
D +O

(

log n

n

)

.

whereR′
D ,

∂R(P,D)
∂D . Finally, note thatD′

R is negative, and combined with the fact thatD′
RR

′
D = 1 we have the

required

R(P,Dn) = I(Φ,W )−
√

VS + ρV (Φ,W )

n
Q−1 (ε) +O

(

log n

n

)

.

In order to establish (24), write:

εn , P
[

R(PS,Dn) > ρI(Φm(S), PY|x) + ξn
]

=
∑

s∈Sn

P [S = s]P
[

I(Φm(s), PY|x) < Tn(Ps)
]

,

where

Tn(Ps) ,
R(Ps,Dn)− ξn

ρ
.

Clearly, the optimalΦm(s) is only a function ofTn(Ps). Thus,

εn ≥
∑

t

P [Tn(Ps) = t]P
[

I(Φm(t), PY|x) < t
]

. (B.74)

Without loss of generality we restrict the thresholds to those satisfying

t ≥ C(W )−O

(

log n

n

)

, (B.75)

since otherwise the theorem is satisfied trivially. Now define the set

Π(W, δ) , {Φ ∈ P (X ) : ∃Φ∗ ∈ Π(W ) : ‖Φ− Φ∗‖ ≤ δ}.
SinceI(Φ,W ) is concave inΦ, it follows that

sup
Φ/∈Π(W,δ)

I(Φ,W ) = C(W )− ǫ(δ)

whereǫ(δ) > 0 for any δ > 0. Thus, for thresholds that satisfy (B.75) and forΦ /∈ Π(W, δ) (for any choice of
δ > 0):

lim
n→∞

P
[

I(Φ, PY|x) < t
]

= 1.
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It follows that we may restrictΦm(t) in (B.74) to any setΠ(W, δ) with δ > 0. Since inside that set the Hessian
of I(P,W ) (as a function ofW ) can be uniformly bounded (see [5, Appendix I]), we have that (A.53) and(A.54)
holds uniformly (i.e. with the same constantA) for all Φ ∈ Π(W, δ). Consequently,

P
[

I(Φm(t), PY|x) < t
]

≥ 1−Q

(

(

t− I(Φm(t),W )
)

√

n

V (Φm(t),W )

)

+O

(

1√
n

)

Since without the last correction term the probability is minimized by anyΦ∗(W ) ∈ Π(W ) and that correction
term is uniform, we have that

P
[

I(Φm(t), PY|x) < t
]

≥ P
[

I(Φ∗(W ), PY|x) < t
]

−O

(

1√
n

)

.

Then, (B.74) becomes:

εn +O

(

1√
n

)

≥
∑

t

P [Tn(Ps) = t]P
[

I(Φ∗(W ), PY|x) < t
]

= P
[

R(PS,Dn) > ρI(Φ∗(W ), PY|x) + ξn
]

Since theO (1/
√
n) term may be included in aξn sequence, it follows that one cannot do better, to the approximation

required, then using a fixed input typeΦ∗(W ) for all source strings, resulting in (24).

To show the converse of the JSCC problem define in SectionI, we first upper bound the fraction of source
codeword that isD-covered by a given reconstruction sequence.

Lemma 18 (RestrictedD-ball size). Given source typeP and a reconstruction sequenceŝ, define restrictedD-ball
as

B(ŝ, P,D) , {s ∈ T n
P : d(s, ŝ) ≤ D} .

Then

|B(ŝ, P,D)| ≤ (n+ 1)|S||Ŝ| exp {n [H(P )−R(P,D)]}
Proof: Let P ∈ Pn (S) be a given type and letQ be the type of̂s. Then the size of the set of source codewords

with typeP that areD-covered bŷs is

|B(ŝ, P,D)| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

⋃

Λ:E[d(S,Ŝ)]≤D,
PΛ=Q

{

s ∈ T n
P : Ps,ŝ = P × Λ

}

∣

∣

∣

∣

∣

∣

∣

∣

∣

Note there are at most(n+ 1)|S||Ŝ| joint types, and
{

s ∈ T n
P : Ps,ŝ = P × Λ

}

= T n
Λ̃
(ŝ) ,

whereΛ̃ is the reverse channel from̂S to S such thatQ× Λ̃ = P × Λ. Therefore,

|B(ŝ, P,D)| ≤
∑

Λ̃:EQ,Λ̃[d(Ŝ,S)]≤D,

∣

∣

∣
T n
Λ̃
(ŝ)
∣

∣

∣

≤ (n+ 1)|S||Ŝ| exp
[

n max
Λ̃:EQ,Λ̃[d(Ŝ,S)]≤D,

H
(

Λ̃|Q
)

]

Note

R(P,D) = min
Λ:EP,Λ[d(S,Ŝ)]≤D

I (P,Λ)

= H(P )− max
Λ̃:EQ,Λ̃[d(Ŝ,S)]≤D

H
(

Λ̃|Q
)

,

hence
|B(ŝ, P,D)| ≤ (n+ 1)|S||Ŝ| exp {n [H(P )−R(P,D)]}



27

Remark 7. Lemma 3 in [9], is similar to Lemma18. However, it does not bound the size of the restrictedD-ball
uniformly, and we choose to prove Lemma18, which is necessary for proving Lemma7.

Proof for Lemma7: In our proof, we first bound the denominator in(28) uniformly for all si, and then bound
the sum of the numerator over allsi, as done in [8] for the channel error exponent.

a) Bounding the denominator:Based on standard results in method of types [14], for f(s) ∈ T n
Φ ,

(m+ 1)−|X ||Y| exp {mH (V |Φ)} ≤ |T m
V (f(s))|

Hence
1

∣

∣T m
V (f(s))

∣

∣

≤ (m+ 1)|X ||Y| exp {−mH (V |Φ)}

b) Bounding the sum of numerator:Note that sinces ∈ G(Q,Φ),

y ∈ TV (f(s)) ∩ B̂(s,D) ⇒ s ∈ B(gJ ;n(y), Q,D) ∩G(Q,Φ), (B.76)

hence anyy will be counted at most|B(gJ ;n(y), Q,D) ∩G(Q,Φ)| times. According to Lemma18, this is upper

bounded byBu = (n+ 1)|S||Ŝ| exp {n [H(Q)−R(Q,D)]} . In addition, it is obvious that
⋃

si∈G(Q,Φ)

TV (f(si)) ∩ B̂(si,D) ⊂ T n
Ψ ,

whereΨ = ΦV is the channel output distribution corresponding toΦ. Therefore,

1

|G(Q,Φ)|
∑

si∈G(Q,Φ)

∣

∣

∣
TV (f(si)) ∩ B̂(si,D)

∣

∣

∣
≤ (n+ 1)|X |+1

∣

∣

∣
T n
Q

∣

∣

∣

Bu

∣

∣

∣

∣

∣

∣

⋃

si∈T n
Q

TV (f(si)) ∩ B̂(si,D)

∣

∣

∣

∣

∣

∣

≤ (n+ 1)|X |+1

∣

∣

∣
T n
Q

∣

∣

∣

Bu |T n
Ψ | .

Noting

(n + 1)−|S| exp {nH (Q)} ≤
∣

∣T n
Q

∣

∣

|T m
Ψ | ≤ exp {mH (Ψ)} ,

we have

1

n
log





(n+ 1)|X |+1

∣

∣

∣
T n
Q

∣

∣

∣

Bu |T n
Ψ |



 ≤ |X |+ 1

n
log(n+ 1) +

|S|
n

log(n+ 1)−H (Q)

+
|S|
∣

∣

∣
Ŝ
∣

∣

∣

n
log(n+ 1) +H(Q)−R(Q,D)

+ ρH(Ψ)

≤ ρH(Ψ)−R(Q,D)

+
|S|
∣

∣

∣
Ŝ
∣

∣

∣

n
log(n+ 1) +

|X |+ 1

n
log(n+ 1) +

|S|
n

log(n+ 1)

Combining the bounds for both numerator and denominator, wehave

1

n
log





1

|G(Q,Φ)|
∑

si∈G(Q,Φ)

∣

∣

∣TV (f(si)) ∩ B̂(si,D)
∣

∣

∣

TV (f(si))





≤ ρH(Ψ)− ρH (V |Φ)−R(Q,D)

+
|X | |Y|

m
log(m+ 1) +

|S|
∣

∣

∣Ŝ
∣

∣

∣

n
log(n+ 1) +

|X |+ 1

n
log(n + 1) +

|S|
n

log(n+ 1)



28

Notem = ⌊ρn⌋ ≤ ρn, let

p(n) = (ρn+ 1)ρn|X ||Y|(n+ 1)n[(|S||Ŝ|)(|X |+1)(|S|)], (B.77)

and the proof is completed.

APPENDIX C
CONTINUITY OF THE MUTUAL INFORMATION FUNCTION

In this section we show the continuity of the mutual information function, which shows that for investigation in
dispersion, arguments based on types is essentially the same as arguments based on general probability distributions.

Lemma 19. For P,Q ∈ P (X ), if ‖P −Q‖∞ ≤ δ ≤ 1/(2 |X | |Y|), then

|I (P,W )− I (Q,W )| ≤ δ |X | log |Y| − |Y| |X | δ log |X | δ.
Therefore, whenδ = Θ

(

1
n

)

,

|I (P,W )− I (Q,W )| = O

(

log n

n

)

Proof: Let PY = [P ×W ]Y andQY = [Q×W ]Y , note

‖PY −QY ‖1 ≤ δ |X | |Y| .
Let δ′ = |X | δ, then Lemma 1.2.7 in [10] shows,

|I (P,W )− I (Q,W )| = |(H (PY )−H (W |P ))− (H (QY )−H (W |Q))|
≤ |(H (PY )−H (QY ))|+ |(H (W |P )−H (W |Q))|
≤ − |Y| δ′ log δ′ + δ |X | log |Y|
= δ |X | log |Y| − |Y| |X | δ log |X | δ.

APPENDIX D
ELEMENTARY PROBABILITY INEQUALITIES

In this section we prove several simple probability inequalities used in our derivation.

Lemma 20. Let A and B be two (generally dependent) random variables and letc be a constant. Then for any
valuesΓ1,Γ2,Γ3,Γ4, the following holds:

P [A+B > c] ≤ P [A > c− Γ1] + P [B > Γ1] , (D.78)

P [A+B > c] ≥ P [A > c+ Γ2]− P [B < −Γ2] , (D.79)

P [A+B < c] ≤ P [A < c+ Γ3] + P [B < −Γ3] , (D.80)

P [A+B < c] ≥ P [A < c− Γ4]− P [B > Γ4] . (D.81)

Proof: To show(D.78), let EA = {A > c− Γ1}, EB = {B > Γ1}, andE = {A+B > c}. Note that

EAc
⋂

EBc ⊆ Ec,

hence by De Morgan’s law,
EA
⋃

EB ⊇ E .
We prove(D.78) by the union bound

P [E ] ≤ P [EA] + P [EB ] .
Apply (D.78) on −A,−B,−c andΓ2, we obtain (D.79) after rearrangement.
Subtract 1 from both sides of (D.79) and replaceΓ2 by Γ3, we obtain (D.80) after rearrangement.
Apply (D.79) on −A,−B,−c andΓ4, we obtain obtain (D.81) after rearrangement.
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