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Abstract—This paper addresses the prediction of error floors
of low-density parity-check (LDPC) codes with variable nodes of
constant degree in the additive white Gaussian noise (AWGN)
channel. Specifically, we focus on the performance of the sum-
product algorithm (SPA) decoder formulated in the log-likelihood
ratio (LLR) domain. We hypothesize that several published
error floor levels are due to the manner in which decoder
implementations handled the LLRs at high SNRs. We employ
an LLR-domain SPA decoder that does not saturate near-certain
messages and find the error rates of our decoder to be lower by
at least several orders of magnitude. We study the behavior of
trapping sets (or near-codewords) that are the dominant cause
of the reported error floors.

We develop a refined linear model, based on the work of
Sun and others, that accurately predicts error floors caused by
elementary tapping sets for saturating decoders. Performance
results of several codes at several levels of decoder saturation
are presented.

Index Terms—Low-density parity-check (LDPC) code, belief
propagation (BP), error floor, linear analysis, Margulis code,
absorbing set, near-codeword, trapping set.

I. INTRODUCTION

A very important class of modern codes, the low-density
parity-check (LDPC) codes, was first published by Gal-

lager in 1962 [1], [2]. LDPC codes are linear block codes de-
scribed by a sparse parity-check matrix. Decoding algorithms
for LDPC codes are generally iterative. The renaissance of
interest in these codes began with work by MacKay, Neal, and
Wiberg in the late 1990s [3]–[5]. Progress has been rapid, with
information-theoretic channel capacity essentially reached in
some applications of LDPC codes and standardization com-
plete for their commercial use in others, e.g., DVB-S2 for
satellite broadcast and IEEE 802.3an for 10 Gbit/s Ethernet.

The graph of an iteratively decoded code’s error rate perfor-
mance versus the channel quality is typically divided into two
regions. The first region, termed the waterfall region, occurs at
poorer channel quality, close to the decoding threshold, and is
characterized by a rapid drop in error rate as channel quality
improves. The second region, called the error floor region,
is the focus of the present paper. The error floor appears
at higher channel quality and is characterized by a more
gradual decrease in error rate as channel quality improves. For
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message-passing iterative decoders the error floor is apparently
determined by small structures within the code that are specific
to the selected graphical description of the code.

The understanding of the LDPC code error floor has pro-
gressed significantly, but issues remain. For the binary erasure
channel (BEC), the structures that limit the performance
of message-passing iterative decoders as channel conditions
improve are known as stopping sets [6]. These sets have a
combinatorial description and can be enumerated to accurately
predict the error floor for the BEC.

Other memoryless channels are more difficult to character-
ize and the presence of error floors has limited the adoption
of LDPC codes in some applications. For example, in the
DVB-S2 standard, an outer algebraic code is concatenated
with an LDPC code to ensure a low error floor. For Margulis-
type codes, MacKay and Postol found that the error floors
seen in the additive white Gaussian noise (AWGN) channel
with sum-product algorithm (SPA) decoding were caused by
near-codewords in the Tanner graph [7]. Richardson wrote
a seminal paper on the error floors of memoryless channels
shortly afterward [8]. In it, he called near-codewords trapping
sets and defined them with respect to the decoder in use as
the error-causing structures. The parameters (a, b) are used to
characterize both near-codewords and trapping sets, where a
is the number of variable nodes in the set and b is the number
of unsatisfied check nodes when just those variable nodes are
in error. The (a, b) parameters of error-floor-causing structures
are typically small.

In [8], Richardson emphasized error-floor analysis tech-
niques for the AWGN channel . He detailed a methodology to
estimate a trapping set’s impact on the error rate by simulating
the AWGN channel in the neighborhood of the set. His semi-
analytical technique was shown to be accurate at predicting
the error floors given that the trapping sets were known. The
method involved significant simulation, but much less than
standard Monte Carlo simulation. Roughly speaking, error
floors can be measured down to frame error rates of about
10−8 in standard computer simulation and about 10−10 in
hardware simulation, depending on code complexity and the
computational resources available. Richardson’s method al-
lows us to reach orders of magnitude further in characterizing
the error floor.

Further work on trapping sets includes algorithms to enu-
merate the occurrence of small trapping sets in specific codes
[9]–[13] and the characterization of trapping set parameters in
random ensembles of LDPC codes [14], [15].

Several other significant works on error floors in the AWGN
channel exist. For example, Dolecek et al. noted empirically
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that the trapping sets dominating the error floor, termed
absorbing sets, had a combinatorial description [16]. Their
study made use of hardware-oriented SPA decoders. A variety
of works describe techniques to overcome error floors. With
respect to these, we note that [17] proposes several different
techniques, [18] slows decoder convergence using averaged
decoding, [19] selectively biases the messages from check
nodes, [20] employs informed scheduling of nodes for updat-
ing, [21] adds check equations to the parity-check matrix, and
[22] replaces traditional BP with a “difference-map” message
passing algorithm. In contrast to these, we present in this paper
an error floor reduction technique that makes no changes to the
standard SPA decoding aside from fixing common numerical
problems.

Following the pioneering work of Richardson, several au-
thors have proposed analytical techniques to predict error
floors in AWGN. In his Ph.D. thesis [23], Sun developed a
model of elementary trapping set behavior based on a linear
state-space model of decoder dynamics on the trapping set,
using density evolution (DE) to approximate decoder behavior
outside of the trapping set [23], [24]. This work has gained
little attention, even though it reaches a conclusion contrary
to prior results. Specifically, Sun’s model shows no error floor
for elementary trapping sets (excluding codewords) in regular,
infinite-length LDPC codes if the variable-degree of the code
is at least three and the decoder’s metrics are allowed to grow
very large. Sun is able to make similar claims for irregular
LDPC codes under certain conditions. In these cases, Sun
shows that the graph outside of the trapping set will eventually
correct the trapping set errors; in his example, using a (3, 1)
trapping set, this occurred at a mean log-likelihood ratio (LLR)
of about 1010 after about 40 iterations.

Sun’s analytical development was asymptotic in the number
of iterations and the block length of the code. When applied
to finite-length codes with cycles, we show that the model
breaks down due to strongly correlated LLR messages when
the decoder is non-saturating.

Schlegel and Zhang [10] extended Sun’s work by adding
time-variant gains and channel errors from outside of the
trapping set to the model. For the 802.an code, using a model
specific to the dominant (8, 8) trapping set, they then com-
pared their analytically predicted error floors to error floors
found by FPGA-based simulation and importance sampling
simulation. Their results show that the external errors have
very little impact and that the error floor can be predicted
quite accurately.

We generalize their model and compare predicted error
floors to simulations for four different codes with several LLR
limits. We find the model estimates the error floor to within
0.15 dB for three of the four codes that we examine. We also
show how a model that breaks down for finite-length codes in
a non-saturating scenario may work fairly well when saturated
LLRs are introduced.

Brevik and O’Sullivan developed a new mathematical de-
scription of decoder convergence on elementary trapping sets
using a model of the probability-domain SPA decoder [25].
While considering just the channel inputs, they are able to
find regions of convergence to the correct codeword, regions
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Fig. 1. FER vs. Eb/N0 for (2640,1320) Margulis LDPC code in AWGN.

of convergence to the trapping set, and regions of non-
convergence typified by an oscillatory behavior.

Xiao et al. [26] have developed a technique to estimate the
error floor in the quantized decoder case using a binary input
AWGN channel. In contrast, the present paper focuses on un-
quantized decoders and different floor-estimation techniques.

Several authors have found empirically that increasing LLR
limits in the SPA decoder lowers the error floor [27]–[30].
Our findings concur with theirs. Furthermore, our results show
that when care is taken to implement the SPA decoder without
saturation, error floors can be lowered quite dramatically, often
by as much as several orders of magnitude. In the cases
we examine, the error floors are reduced by many orders of
magnitude. Recent independent work by Zhang and Schlegel
confirms this [31], [32].

Fig. 1 illustrates the improvement in performance that non-
saturating decoders can provide. The curves represent the
frame error rate (FER) reported in [7] for the (2640, 1320)
Margulis code and the corresponding results obtained from
our simulation of a non-saturating SPA decoder. The error floor
found in [7] starts at an FER of about 10−6 with an Eb/N0 of
2.4 dB. The dominant errors corresponded to near-codewords.
(It should be noted that others have reported even higher error
floors for this code, with an FER of 10−6 appearing at an
Eb/N0 of 2.8 dB [8], [17].) Our simulation, on the other hand,
shows no evidence of an error floor. The lowest simulated
point at an FER of 1.8 · 10−8 represents 154 error events
observed in 8600 hours of floating-point simulation, with a
maximum of 200 iterations per decoded frame. Just one of the
error events was a (14, 4) near-codeword, which is one of the
two dominant errors floor causing structures in the previously
reported results. Thus, we see very little of the usual early
signs that an error floor is developing, suggesting that any
error floor would manifest itself only at a substantially lower
FER.

The framework we develop in this paper will help to ex-
plain the empirically observed error floor properties described
above. Our focus will be on the prediction of error floors
for binary LDPC codes with constant variable node degree
when used on the AWGN channel. The results presented
here are an extension of those discussed in [8], [10], [23],
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[31]. Section II introduces the general terminology related to
nonnegative matrices, graphs, trapping sets, and SPA decoders.
We introduce message saturation as a technique to avoid
numerical overflow in the SPA decoder and then describe
the non-saturating decoding algorithm that will provide our
performance benchmarks. Section III develops the state-space
model of decoder dynamics on the trapping set we will be
using for the analytical results of this paper. It also devel-
ops approximations to the dominant eigenvalue required to
characterize the system, using connections to graph theory.
Section IV develops the probability that the state-space model
fails to converge to the correct decoding solution and the
related error-rate estimates for the error floor. Section V dis-
cusses the use of the Gaussian approximation for DE to model
the unsatisfied-check LLR values to determine the ultimate
error floor bounds of non-saturating decoders. Section VI
applies a modified version of Richardson’s semi-analytical
technique to estimate the error floor of a non-saturating SPA
decoder. Section VII demonstrates the accuracy of the state-
space model’s predictions of saturated decoder performance by
comparing them to simulation results for four LDPC codes.
Finally, we draw our conclusions. Several additional related
topics are covered in the appendices.

II. PRELIMINARIES

A. Nonnegative Matrices

In this subsection we introduce the terminology of Perron-
Frobenius theory of nonnegative matrices [33]–[36].

A vector v ∈ Rn is said to be positive if every element is
strictly greater than zero. Likewise, the vector v is said to be
nonnegative if every element is greater than or equal to zero.
In the present paper, we use column vectors by default.

A matrix M ∈ Rm×n is said to be a positive matrix if every
entry is strictly greater than zero. Likewise, the matrix M is
said to be a nonnegative matrix if every entry is greater than
or equal to zero. Moreover, the nonnegative matrix M is said
to be a (0, 1)-matrix if every entry belongs to the set {0, 1}.

A permutation matrix P is a square (0, 1)-matrix, in which
each row and each column contains a single 1 entry. The
symmetric permutation of the square matrix M by P is
PMPT . The nonnegative square matrix M is said to be a
reducible matrix if there exists a permutation matrix P such
that PMPT =

[
X Y
0 Z

]
where X and Z are square submatrices.

Otherwise, the matrix M is said to be an irreducible matrix.
Given M ∈ Rm×m, the set of distinct eigenvalues is called

the spectrum of M, denoted σ(M) = {µ1, . . . , µn}, where
µk ∈ C. The spectral radius of M is the real number ρ(M) =
max {|µ| : µ ∈ σ(M)}. The spectral circle is a circle in the
complex plane about the origin with radius ρ(M).

The following are a few important results from the theory
of nonnegative matrices. Let M be an irreducible nonnegative
matrix. The matrix M has a simple, real eigenvalue r on the
spectral circle. Also, there exists a positive vector w1 such that
wT

1 M = rwT
1 , which is the unique positive left eigenvector of

M up to a positive scale factor. If M has only one eigenvalue
on the spectral circle, then it is said to be primitive. If M has
h > 1 eigenvalues with modulus equal to ρ(M), then it is said

to be imprimitive or a cyclic matrix. The value h is known as
the index of imprimitivity or period.

B. General Graph Theory

An undirected graph G = (V,E) consists of a finite set of
vertices V and a finite collection of edges E. Each edge is
an unordered pair of vertices {vi, vj} such that the edge joins
vertices vi and vj . Given the edge {vi, vj}, we say that vertex
vi is adjacent to vertex vj , and vice versa. A vertex and edge
are incident with one another if the vertex is contained in the
edge.

We do not give further consideration to graphs with self-
loops. A self-loop is an edge joining a vertex to itself. Loopless
graphs are commonly known as multigraphs, which may
contain parallel edges. Parallel edges are multiple inclusions
of an edge in the edge collection. A simple graph has neither
self-loops nor parallel edges.

The order of a graph is the number of vertices and the size
is the number of edges. The degree d(vi) of vertex vi is the
number of edges incident with vi. Euler’s handshaking lemma
states that the sum of all degrees of a graph must be twice its
number of edges. It follows from the fact that each edge in
the graph must contribute 2 to the sum of all degrees. Thus,
in equation form for the undirected graph G = (V,E), it may
be stated that

order (G) = |V | and

size (G) = |E| = 1

2

∑
vi∈V

d(vi).

A regular graph is a graph whose vertices are all of equal
degree.

In an undirected graph G, a walk between two vertices is
an alternating sequence of incident vertices and edges. The
vertices and edges in a walk need not be distinct. The number
of edges in a walk is its length. The vertices vi and vj are said
to be connected if the graph contains a walk of any length from
vi to vj , noting that every vertex is considered connected to
itself. A graph is said to be connected if every pair of vertices
is connected, otherwise the graph is said to be disconnected.
The vertices of a disconnected graph may be partitioned into
connected components.

Unique edges are those edges which appear only once in
the edge collection of the graph. A walk that backtracks is a
walk in which a unique edge appears twice or more in-a-row
in the walk.

A closed walk is a walk that begins and ends on the same
vertex. A cycle is a closed walk with no repeated edges or
vertices (except the initial and final vertex) of length at least
two. The girth of a graph is the length of its shortest cycle,
if it has cycles. If every vertex in a multigraph has at least
degree two, then the graph contains one or more cycles.

A leaf is a vertex of degree one. A tree is a connected graph
without cycles. Trees, with at least two vertices, have leaves.
We call an undirected graph leafless if it does not contain
leaves.

We will say that two graphs are identical if they have equal
vertex sets and equal edge collections. Two graphs are said
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to be isomorphic if there exists between their vertex sets a
one-to-one correspondence having the property that whenever
two vertices are adjacent in one graph, the corresponding two
vertices are adjacent in the other graph. This correspondence
relationship is called an isomorphism. The isomorphism is a
relabeling of the vertices that preserves the graph’s structure.

The adjacency matrix A(G) of any simple graph G of
order n is the n × n symmetric (0, 1)-matrix whose (i, j)
entry is 1 if and only if {vi, vj} is an edge of G. More
generally, the adjacency matrix A(G′) of any multigraph G′ is
the symmetric nonnegative matrix whose (i, j) entry indicates
the number of edges joining vi and vj in G′. The number of
walks of exactly length p between vertices vi and vj , in graph
G, is the (i, j) entry of A(G)p. Two graphs are isomorphic if
and only if there exists a symmetric permutation that relates
their adjacency matrices.

The incidence matrix N(G) of any multigraph G of order
n and size m is the n×m (0, 1)-matrix whose (i, j) entry is
1 if and only if the ith vertex is incident with jth edge of G.
It then follows that the multigraph’s adjacency matrix may be
stated as

A(G) = N(G)N(G)T − diag (d(v1), d(v2), . . . , d(vn)).

A cycle graph, denoted Cn, is a graph of order n ≥ 2,
in which the distinct vertices of the set {v1, v2, . . . , vn}
are joined by the edges from the collection {{v1, v2},
. . . , {vn−1, vn}, {vn, v1}}. A cycle graph is a single cycle.

A bipartite graph B = (V,C,E) is a special case of
an undirected graph in which the graph’s vertices may be
partitioned into two disjoint sets V and C. Each edge e ∈ E
of a bipartite graph joins a vertex from V to a vertex from C.
Hence, bipartite graphs cannot have self-loops by definition.
The parity-check matrix H over F2 describes a bipartite graph
B, called the Tanner graph of H, in which the vertices are
known as variable nodes V and check nodes C. Tanner graphs
of binary codes do not have parallel edges. The parity-check
matrix H is related to the adjacency matrix A(B) of the
Tanner graph B as

A(B) =

[
0 HT

H 0

]
. (1)

A dv-variable-regular Tanner graph is a Tanner graph
whose variable nodes all have equal degree dv, and a (dv, dc)
regular Tanner graph is both dv-variable-regular and has check
nodes all of degree dc.

Given a subset of the variable nodes S ⊆ V , we use
N (S) to denote the set of adjacent check nodes. Given a
Tanner graph B = (V,C,E) and any set of variable nodes
S ⊆ V , let BS represents the induced subgraph of S. That
is, BS = (S,N (S), ES) is a bipartite graph containing the
variable nodes S, the check nodes N (S), and the edges
between them ES . We will frequently refer to these induced
subgraphs as Tanner subgraphs with parity-check submatrix
HS . The submatrix HS is formed by selecting the columns
of H as indexed by the members of the set S and optionally
removing any resulting all-zero rows.

The line graph L(G) of a multigraph G is the graph whose
vertices are the edges of G. Two vertices of L(G) are adjacent

if and only if their corresponding edges in G have a vertex (or
two) in common. In fact, two parallel edges connect vertices in
L(G) if and only if their corresponding edges in G are parallel.
We find that the line graph’s adjacency matrix is related to the
incidence matrix of G by A(L(G)) = N(G)TN(G)− 2 I.

For the line graph L(G) of multigraph G = (V,E),

order (L(G)) = |E| = 1

2

∑
vi∈V

d(vi) and (2)

size (L(G)) =
1

2

∑
vi∈V

d(vi) (d(vi)− 1) (3)

=
1

2

∑
vi∈V

d(vi)
2 − |E|.

The spectral radius ρ(G) of a multigraph G = (V,E) is
defined to be the spectral radius of the matrix A(G), and it is
bounded by

1

|V |
∑
vi∈V

d(vi) ≤ ρ(G) ≤ max
vi∈V

d(vi). (4)

Note that d(vi) is just the ith row (or column) sum of A(G).
Since the matrix A(G) is symmetric, the lower bound follows
by applying the Rayleigh quotient to A(G) with an all-one
vector [33, pp. 176–181]. The upper bound applies since the
matrix A(G) is nonnegative, and is due to Frobenius [33,
p. 492]. The lower bound holds with equality if and only if
the all-one vector is an eigenvector of A(G) corresponding to
the eigenvalue ρ(G). If G is connected, then the upper bound
holds with equality if and only if G is regular. When G is
connected these conditions are equivalent.

A directed graph or digraph D = (Z,A) consists of a set of
vertices Z and a collection of directed edges or arcs A. Each
arc is an ordered pair of vertices (zi, zj) such that the arc is
directed from vertex zi to vertex zj . For arc (zi, zj), we call
the first vertex zi its initial vertex and the second vertex zj
its terminal vertex. We will focus on simple digraphs which
exclude self-loops and parallel arcs.

In a digraph D, a directed walk is an alternating sequence
of vertices and arcs from zi to zj in D such that every arc ai in
the sequence is preceded by its initial vertex and is followed
by its terminal vertex. A digraph D is said to be strongly
connected if for any ordered pair of distinct vertices (zi, zj)
there is a directed walk in D from zi to zj . For example, the
digraph in Fig. 4d is strongly connected.

The adjacency matrix A(D) of any simple digraph D is
the (0, 1)-matrix whose (i, j) entry is 1 if and only if (zi, zj)
is an arc of D.

Lemma 1. A (0, 1)-matrix is irreducible if and only if the
associated digraph is strongly connected.

Proof: See [36, p. 78].
The outdegree d+i of vertex zi is the number of arcs in

digraph D with initial vertex zi. Likewise, the indegree d−i of
vertex zi is the number of arcs with terminal vertex zi. For
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the digraph D = (Z,A), we note that

order (D) = |Z| and

size (D) = |A| =
∑
zi∈Z

d+i =
∑
zi∈Z

d−i .

A regular digraph is a digraph whose vertices are all of equal
indegree and outdegree. The spectral radius ρ(D) of a digraph
D is defined to be the spectral radius of its matrix A(D), and
it is bounded in the following lemma.

Lemma 2. Let the ith vertex zi of digraph D = (Z,A) have
outdegree d+i . Then the spectral radius ρ(D) of D is bounded
above and below by

min
zi∈Z

d+i ≤ ρ(D) ≤ max
zi∈Z

d+i . (5)

If D is strongly connected, then the inequalities are strict un-
less the digraph has regular outdegree. Analogous statements
hold for the indegrees.

Proof: See [33, p. 492] and [35, pp. 8 and 22].
The interested reader is referred to [36]–[39], etc., for a

more complete treatment of the subject. Our use of graph
theory has parallels to [25].

C. LDPC Codes, the AWGN Channel, and SPA Decoding

LDPC codes are defined by the null space of a parity-check
matrix H. The codewords are the set of column vectors C,
such that c ∈ C satisfies Hc = 0 over a particular field. A
given code can be described by many different parity-check
matrices.

The H matrix over F2 may be associated with a bipartite
graph B = (V,C,E) termed a Tanner graph described in the
previous subsection. The set of variable nodes V represent
the symbols of the codeword that are sent over the channel
and correspond to the columns of the parity-check matrix.
The set of check nodes C enforce the parity-check equations
represented by the rows of H.

Assumption 1. We are only concerned with LDPC codes over
the binary field F2 and with binary antipodal signaling over
the AWGN channel.

The SPA decoder would be optimal with respect to min-
imizing the symbol error rate, if the Tanner graph had no
cycles. In any “good” finite-length code, the Tanner graph will
indeed have cycles [40], but we generally find that the SPA
decoder does quite well. Like many, we prefer to implement
our decoder simulation in the LLR-domain, as it is close to
the approximations typically used in building hardware. Since
we will assume that the reader is familiar with SPA decoding
of LDPC codes over the AWGN channel (see [41, § 5.4] and
[42]), the remainder of this subsection is presented merely to
clarify notation.

We take the channel SNR to be 1/σ2 = 2REb/N0. We
denote the intrinsic channel LLR for the ith received symbol
by λi, and perform check node updates according to

λ
[i←j]
l = 2 tanh−1

 ∏
k∈N (j)\i

tanh
λ
[k→j]
l−1
2

 , (6)

which computes the message to be sent from the jth check
node to the adjacent ith variable node, during the first-half
of the lth iteration. We update variable nodes in the usual
way during the second-half of every iteration. In (6), we use
N (j)\i to indicate all variable nodes adjacent to check node j,
excluding variable node i. We denote the sum of the decoder’s
intrinsic and extrinsic LLRs at the ith variable node at the
completion of the lth iteration by λ̃[i]l .

D. SPA Decoder without Saturation

Direct implementation of (6) yields numerical problems at
high LLRs. As specified in IEEE 754 [43], double-precision
floating-point (i.e., 64-bit) computer computations maintain
53-bits of precision, while the remaining bits are for the sign
and exponent. Thus, such a computer implementation results
in tanh(λ/2) being rounded to ±1 for any LLR magnitude
|λ| > 38.1230949 = 55 ln 2.

As an argument of ±1 will cause the tanh−1 function
to overflow, protection from high magnitude LLRs must be
added to (6) or the variable node update expression to ensure
numerical integrity or an alternative solution not using tanh−1

must be found. Thus, preventing tanh−1 overflow by limiting
LLRs will result in an upper limit on LLR magnitude. This
is what we refer to as “saturating” in an LLR-domain SPA
decoder. Our examination of published error floor results
suggests that LLR saturation is commonly employed.

Decoder hardware implementations also typically saturate
the LLRs, although for different reasons. Hardware saturation
is usually at LLR levels less than the 38.1 mentioned above.
This leads to the situation where both floating-point simulation
and hardware designs produce error floors at performance
levels with minor variation. The efforts to explore beyond
these barriers have primarily appeared only in the very recent
literature, including [32], [44], [45].

The non-saturating SPA decoder simulation we have used
is based on a pairwise check node reduction [46], [47] which
includes a small approximation [48]. Its implementation in
double-precision floating-point contains no numerical issues
until LLR magnitudes reach approximately 1.79 · 10308. For
a detailed examination of the numerical issues of the SPA
decoder in several domains of floating-point computation, see
[45].

E. Trapping Sets and Absorbing Sets

Definition 1 (Richardson [8]). A trapping set is an error-
prone set of variable nodes T that depends upon the decoder’s
input space and decoding algorithm. Let λ̃[i]l (r) denote the ith
soft output symbol at the lth iteration given the decoder input
vector r. We say that symbol i is eventually correct if there
exists L such that, for all l ≥ L, λ̃[i]l (r) is correct. If the set of
symbols that is not eventually correct is not the empty set, we
call it a trapping set, T (r). It is called an (a, b) trapping set if
the set has a = |T | variable nodes and the induced subgraph
BT contains exactly b check nodes of odd degree.

From here on this paper will use the term trapping set,
unqualified, to mean the trapping sets defined above with
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respect to the AWGN channel decoded by an LLR-domain
SPA decoder with saturating LLRs. Note, that while near-
codewords are distinct from codewords, the trapping set defi-
nition includes codewords.

Definition 2. A Tanner subgraph or trapping set is called
elementary if all the check nodes are of degree one or two
[49].

Elementary trapping sets are simple enough to be modeled
with linear systems and also account for most of the error
floors seen in practice. In [8], [14], [17], [49]–[51], the authors
observe that the majority of trapping sets contributing to the
error floors of belief propagation decoders are elementary
trapping sets.

Example 1. Four sample elementary Tanner subgraphs are
shown in Fig. 2 for a code of variable-degree three. These are
all trapping sets if they satisfy the “not eventually correct”
condition of Definition 1.

We will define absorbing sets as they dominate the error
floor of SPA decoders with saturating LLRs. Absorbing sets
are a particular type of near-codeword or trapping set. The
fully absorbing definition adds conditions beyond the subgraph
itself to the remaining Tanner graph.

Definition 3 (Dolecek et al. [16]). Let S be a subset of the
variable nodes V of the Tanner graph B = (V,C,E) and
let S induce a subgraph having a set of odd-degree check
nodes No(S) and a set of even-degree check nodes Ne(S). If
S has cardinality a and induces a subgraph with |No(S)| =
b, in which each node in S has strictly fewer neighbors in
No(S) than neighbors in Ne(S), then we say that S is an
(a, b) absorbing set. If, in addition, each node in V has strictly
fewer neighbors in No(S) than neighbors in the set C\No(S),
then we say that S is an (a, b) fully absorbing set.

Fully absorbing sets are stable structures during decoding
using the bit-flipping algorithm [16]. This results from every
variable node of the set neighboring strictly more checks
which reinforce the incorrect value than checks working to
correct the variable node.

III. STATE-SPACE MODEL

In this section we refine and justify the existing linear sys-
tem model which closely approximates the non-linear message
passing of the LLR-domain SPA decoder described earlier, as
applied to an elementary trapping set. Since this is a linear
block code, with no loss of generality, we will frequently
assume for convenience that the all-zero codeword has been
sent.

The state-space model was introduced in [23], [24] to
analyze elementary trapping sets. Identifying and modeling
trapping sets are of interest so as to explain the observed phe-
nomenon of the trapping sets’ variable nodes being decoded
incorrectly, while the variable nodes outside of the set are
eventually decoded correctly by an LLR-domain SPA decoder.

Assumption 2. All trapping sets of interest are elementary
and contain more than one variable node. We do not consider

subgraphs with a single variable node as they would not have
states in the state-space model. For trapping-like behavior of
single degree-1 variable nodes, see [52, p. 24].

First, we review the failure state of an elementary trapping
set. Let the variable nodes of the trapping set S ⊂ V induce
the Tanner subgraph BS . In later iterations the condition is
reached where the variable nodes S within the trapping set
are in error and those variable nodes outside the trapping set
(i.e., V \S) are correct. In this condition, the subgraph’s check
nodes of degree one are unsatisfied and those of degree two
are satisfied.

The vector of messages from the degree-one (i.e., un-
satisfied) check nodes λ

(ex)
l at iteration l are taken to be

stochastic system inputs to the state-space model and are
therefore modeled separately. We will use density evolution
and simulation techniques, described in later sections, to model
this input vector. The other system input vector is the intrinsic
information λ provided by the channel to be used in variable
node updates at every iteration. For the AWGN channel model,
each element of λ is an independent and identically distributed
(i.i.d.) Gaussian random variable. Both of these system inputs
will be treated as column vectors of LLRs; the vector λ has a
entries and the vector λ(ex)

l has b entries for an (a, b) trapping
set.

A. Check Node Gain Model

Sun’s linear model included the asymptotic approximation
that every degree-two (i.e., satisfied) check node output mes-
sage is equal to the input message at the other edge [23].
This is based on the conditions of correct variable nodes and
very high LLR values outside of the trapping set. Schlegel and
Zhang introduced more accuracy to this model by applying a
multiplicative gain gl at the degree-two check nodes, where
0 < gl ≤ 1 [10]. This gain models the effect of the
dc−2 external variable nodes lowering the magnitude of LLR
messages as they pass through the degree-two check nodes.
This is illustrated in Fig. 3. This approach adds accuracy to
modeling the early iterations, and after several iterations these
gains approach 1.

Assumption 3. We will assume that the external inputs to
the trapping set’s degree-two check nodes are i.i.d. This
is generally a reasonable assumption to make as the gain
computations are most significant at early iterations. By the
iteration count in which significant message correlation is
present on the check nodes’ inputs, the gains are approximately
unity.

Schlegel and Zhang compute the mean gain ḡl correspond-
ing to each iteration count l ≥ 1 [10]. Thus, the gain model
turns the state updates into a time-varying process. We have
tried introducing a gain variance to the model, but found the
effect to be very small, so we present their mean gain model1,
for which the gain of the jth check node during the lth iteration

1The following includes a correction to the gain expressions of [10] related
to the iteration count dependencies
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(a) a = 3, b = 1 (b) a = 4, b = 2 (c) a = 5, b = 3 (d) a = 4, b = 4

Fig. 2. Four sample elementary Tanner subgraphs of a code with dv = 3. Odd-degree check nodes are shown shaded.

Check nodeVN VN1 2

... d c

... ...

-2

ji i

Fig. 3. Illustration of a check node of degree two in the trapping set and
degree dc in the Tanner graph.

is

g
[j]
l ,

∏
k∈N (j)\{i1,i2}

tanh

(
λ
[k→j]
l−1
2

)
. (7)

Then the expected value of the check node’s gain over all
realizations of the channel noise vector n and all check nodes
cj , such that d(cj) = dc, is ḡl(dc) = En,j

[
g
[j]
l

]
. Using

Assumption 3, one forms the following simplification with
respect to ḡl(dc)

ḡl(dc) = En,j,k

[
tanh

(
λ
[k→j]
l−1
2

)]dc−2
, (8)

over all j such that d(cj) = dc and all k ∈ N (j).
The application of gain at the check node may be justified

using a Taylor series expansion of (6) that begins with letting

λoutl , f(λ) = 2 tanh−1
[
tanh

(
λ

2

)
gl

]
, (9)

where gl is the check node’s gain (7), λ is the check node’s
input LLR from the trapping set, and λoutl is the check node’s
output LLR on the other edge within the trapping set. Noting
that the first two partial derivatives of (9) evaluated at λ = 0
are

∂f(λ)

∂λ

∣∣∣∣
λ=0

= g and
∂2f(λ)

∂λ2

∣∣∣∣
λ=0

= 0,

one produces the truncated series approximation λout ≈ gλ.
The approximation is good for |λ| ≤ 2 tanh−1(g). The exact
expression for λout (9) saturates at an output of ±2 tanh−1(g),
while the approximation is linear in λ. Since we expect the
LLRs outside of the trapping set to grow quite fast, we believe
this to be an adequate approximation.

We now extend the check node gain model to include
inversions through the degree-two check nodes caused by
erroneous messages from outside of the trapping set. This

occurs primarily during early iterations and is illustrated in
Fig. 3. When an odd number of the dc − 2 messages from
outside of the trapping set into a degree-two check node within
the trapping set are erroneous, then that check node will invert
the polarity of the LLR message sent from variable node i1
to i2, as well as the message sent in the opposite direction.

We will present a simplification of the method used by
Schlegel and Zhang to account for these inversions [10].
Moreover, they present a small rise in their predicted error
floor instead of lowering it as we find with our technique.
Schlegel and Zhang injected a stochastic cancellation signal
into the state update equations, while we choose to modify
the mean check node gains.

During the first iteration, messages from variable nodes may
contain inversions due to channel errors. The probability that
a specific input to the check node contains an inversion during
iteration l = 1 is just the uncoded symbol error rate

Pe,1 = Q

(√
2REb

N0

)
. (10)

Thus, utilizing Assumption 3, the probability of a polarity
inversion in a specific check node is given at iteration l by

Pinv,l =
∑
k odd

(
dc − 2

k

)
P ke,l(1− Pe,l)

dc−2−k

=
1− (1− 2Pe,l)

dc−2

2
,

(11)

which is the probability of an odd number of errors in the
dc − 2 input messages at iteration l. The final simplification
in (11) is from [2, p. 38].

For additional iterations we can use density evolution [53],
[54] to predict an effective Eb/N0 at the output of the variable
nodes and reuse equations (10) and (11). When there is a
channel inversion, the output message magnitude will likely
be very low, as suggested in [10]. Hence, to model this we
will equate random channel inversions to randomly setting the
check node gain to zero with probability Pinv,l. We introduce
the check node’s modified mean gain as simply

ḡ′l = ḡl(1− Pinv,l). (12)

For an LDPC code with regular check node degree dc, the
scalar gain ḡ′l of (12) may be applied at each iteration l to
model the external influence on the subgraph’s degree-two
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check nodes. For an LDPC code with irregular check degree,
we have a few options. If the check node degree spread is
small, we may generalize (8) and (12) by also taking the
expectation over the degree distribution of all the degree-two
check nodes in the subgraph. Alternatively, we may maintain
several versions of gain ḡ′l, one for each check-degree that
appears in the subgraph.

Assumption 4. We assume that all the degree-two check
nodes in the subgraph may be modeled by the modified mean
gain ḡ′l.

One may criticize this gain model with inversions as double-
counting. First, inversions from outside the trapping set will
reduce the check node gain through (8). Then, the same
inversions reduce the check node gain again in (12). Heuris-
tically, one may consider this as just adding weight to the
significance of these inversions. We find it justified empirically
in Section VII and note that our earlier arguments paralleled
those in [10].

B. Linear State-Space Model

Assumption 5. We consider only codes described by dv-
variable-regular Tanner graphs with dv ≥ 3. For an exami-
nation of irregular codes, see [23].

Assumption 6. In justifying the model it is assumed that the
messages within the trapping set under study have little impact
on the rest of the Tanner graph. This seems reasonable given
that the number of unsatisfied check nodes which form the
main interface between the trapping set and the rest of the
Tanner graph is small.

The state-space modeling equations are shown below for
input column vectors λ(ex)

l and λ and for output column vector
λ̃l, whose entries are the LLR-domain soft output decisions
at iteration l [10], [23].

x0 = Bλ

xl = ḡ′lAxl−1 + Bλ + Bexλ
(ex)
l for l ≥ 1 (13)

λ̃l = ḡ′lCxl−1 + λ + Dexλ
(ex)
l for l ≥ 1 (14)

The central part of the state-space model, of course, is the
updating of the state xl. The state vector xl represents the
vector of LLR messages sent along the edges from the
subgraph’s variable nodes toward the degree-two check nodes.
The state is updated once per full iteration. One may consider
that ḡ′lxl−1 represents the LLR messages after passing through
the degree-two check nodes during the first half-iteration, and
ḡ′lAxl−1 represents their contribution to the variable node
update during the second half-iteration of iteration l. Since
adv equals the number of edges of the variable-regular Tanner
subgraph of a variable nodes, the number of states in the model
of a subgraph is m = adv − b. For an elementary subgraph,
these m edges are incident on the subgraph’s degree-two check
nodes, forcing m to be an even integer.

The m × a matrix B and the m × b matrix Bex are used
to map λ and λ

(ex)
l , respectively, to the appropriate entries

of the state vector to match the set of variable node update

equations. Since every variable node has exactly one element
from λ participating, B has a single 1 in every row, and
is zero otherwise. The number of 1 entries per row of Bex

corresponds to the number of degree-one check nodes adjacent
to the corresponding variable node, which may be none. Like
all the matrices appearing in the state-space equations, they
are (0, 1)-matrices.

The m × m matrix A describes the dependence of the
state update upon the prior state vector. Each nonzero entry
[A]ij = 1 indicates the jth edge of the prior iteration
contributes to the variable node update computation of the
ith edge. Thus, the matrix AT may be taken as the adjacency
matrix associated with a simple digraph of order m which
describes the state-variable update relationships. Given our
dv-variable-regular codes, the row weight of A and the row
weight of Bex will sum to dv − 1 for every row.

Finally, the a × m matrix C and the a × b matrix Dex

are used to map xl−1 and λ
(ex)
l entries, respectively, to the

corresponding entry of the soft output decision vector λ̃l. The
row weight of C and the row weight of Dex will sum to the
variable node degree dv for every row.

If there is a single degree-one check node neighboring
every variable node in the subgraph, such as in the (8, 8)
trapping set of 802.3an, then (13) degenerates to the case
where B = Bex and B has regular column weight as derived
in [10]. Furthermore, this degenerate case produces only A
matrices which have uniform row and column sums with a
dominant eigenvalue r = dv − 2. Thus, our development will
be significantly more general than [10].

Again, note that the check node gains form our approximate
model for the behavior of degree-two check nodes within the
trapping set. One drawback to any linear system approach is
that saturation cannot be introduced to the state variables. Any
saturation effects must be applied to the linear system inputs.

Example 2. For the (4, 2) trapping set with dv = 3, we label
with integers all the edges into every degree-two check node
as depicted in Fig. 4a. Now, we can set up the matrices used
to make the linear system. We have numbered the edges in
Fig. 4a to correspond to the order that the edges will appear
in the state vector xl. The matrix A describes the updating
relationship of the state vector in a full iteration of the SPA
decoder. Since edge 1 depends only on edges 6 and 9 during
one iteration, we fill the first row of A to indicate such. All the
matrices associated with the trapping set of Fig. 4 are given
below. Additionally, treating the matrix AT as an adjacency
matrix, it describes the simple digraph shown in Fig. 4d.

A =


0 0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0

 B =


1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1

 Bex =


0 0
0 0
0 0
1 0
1 0
0 0
0 0
0 0
0 1
0 1


C =

[ 0 0 0 1 0 1 0 0 1 0
1 0 0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1 0 0

]
Dex =

[ 0 0
1 0
0 0
0 1

]
If we remove the gains ḡ′l from the linear state-space

equations, we have a linear time-invariant (LTI) system for
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(d) Simple digraph, D

Fig. 4. Several graphical descriptions of the (4, 2) trapping set with model’s states numbered. Arrows have been added to the Tanner subgraph in (a) only
to emphasize the direction of state variable flow. The spectral radii of G, L(G), and D are 2.5616, 3.2316, and 1.5214, respectively.

which we can write a transfer function. Let the unilateral Z-
transform of the state xl be denoted by X(z) and the Z-
transform of the input vector λ

(ex)
l be denoted by Λex(z),

where X(z) =
∑∞
k=0 xkz

−k [55]. Note that the other input
vector λ is not a function of iteration number. Finally, letting
the soft output vector λ̃l of the system be denoted in the Z-
domain by Λ̃(z), yields

Λ̃(z) =
[
C (zI−A)

−1
B + I

] λ

1− z−1

+
[
C (zI−A)

−1
Bex + Dex

]
Λex(z).

(15)

This makes evident the importance of the eigenvalues of A.
As the eigenvalues are the roots of the characteristic equation
det(A−µI) = 0, they correspond directly to the poles of the
discrete-time LTI system in (15). We find that for the trapping
sets addressed herein, the dominant poles are on or outside
the unit circle. Hence, the LTI system is marginally stable or
(more often) unstable.

We wish to take the recursive state-update equation (13) and
develop it into an expression without feedback. The first two
iterations are easy to express term-by-term, as

x1 = ḡ′1ABλ + Bλ + Bexλ
(ex)
1 and

x2 = ḡ′1ḡ
′
2A

2Bλ + ḡ′2ABλ + Bλ

+ ḡ′2ABexλ
(ex)
1 + Bexλ

(ex)
2 .

Generalizing to an arbitrary iteration l > 0, we have

xl = AlBλ

l∏
j=1

ḡ′j +

l∑
i=1

Al−i
(
Bλ + Bexλ

(ex)
i

) l∏
j=i+1

ḡ′j .

(16)

C. Graphical Assumptions and Interrelationships

We have already proposed two graphical restrictions in
Assumptions 2 and 5. This subsection notes some further
assumptions we wish to place on the trapping sets and de-
scribes the interrelationships among several useful graphical
descriptions of the trapping set: the Tanner subgraph, its
corresponding undirected multigraph, the line graph of the
multigraph, and the simple digraph that corresponds directly
to the state update model. Finally, we form estimates of the
dominate eigenvalue for the trapping set.

Lemma 3. There exists a bijective map between the set of
dv-variable-regular elementary Tanner subgraphs (up to a
relabeling of the check nodes) and the set of multigraphs
G = (V,E) with vertex degrees upper bounded by dv, i.e.,
d(vi) ≤ dv∀ vi ∈ V .

Proof: Given the elementary Tanner subgraph BS =
(S,N (S), ES), each variable node v ∈ S becomes a vertex
v ∈ V of G, that is V = S, and the degree-one check nodes are
discarded. The check nodes of degree two become the edges
of G, each joining a pair of vertices. Alternatively, let parity-
check submatrix HS describe BS ; then A(G) = HT

SHS−dvI.
Given the multigraph G, each vertex v ∈ V of G becomes

a variable node v ∈ S of BS . So, again V = S. Each edge of
G is replaced by a degree-two check node (with an arbitrary
label) and two edges in BS . Finally, degree-one check nodes
are attached with single edges to variable nodes as needed
until every variable node has dv neighbors.

In creating the multigraph G, we have a more basic de-
scription of the potential elementary trapping set. This is
illustrated in creating Fig. 4b from Fig. 4a. Either one of these
graphs is sufficient to characterize the iteration-to-iteration
dependencies among the state variables in the model. The
multigraph G = (V,E) corresponding to BS has

order (G) =|V | = a and

size (G) =|E| = adv − b
2

.
(17)

Tanner graphs with cycles of length 4, the smallest permitted
in a Tanner graph, will map to parallel edges in G. Cycles of
length k in BS map to cycles of length k/2 in G. The 4-cycles
in the Tanner graph are often avoided by code designers.

Example 3. The multigraph corresponding to the Tanner
subgraph of Fig. 2d is the cycle graph of order 4, C4.

Assumption 7. Tanner subgraphs of interest and their associ-
ated multigraphs are connected. Those trapping sets described
by disconnected Tanner subgraphs can instead be analyzed
component by component. The main reason for this simpli-
fication is to reduce the number of cases in which the state
update expression contains a reducible A matrix.

Assumption 8. We further assume that the variable nodes
within the Tanner subgraphs contain from zero to dv − 2
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adjacent degree-one check nodes. Equivalently, we assume
that the associated multigraphs are leafless; that is, they
do not contain vertices of degree one. For consideration of
multigraphs with leaves, see Appendix B.

A leaf in the multigraph maps to a variable node in the
Tanner subgraph neighboring one degree-two check node and
dv − 1 degree-one check nodes. Thus, we require here that
every variable node in the Tanner subgraph must neighbor at
least two degree-two check nodes. The multigraphs allowed
by Assumptions 7 and 8 will be connected, leafless graphs,
containing one or more cycles.

The conditions described here, Sun termed “simple trapping
sets” in [23]. Our Assumption 8 is equivalent to elementary
absorbing sets for codes of variable-degree three. However, our
Assumption 8 is less restrictive in some ways than absorbing
sets for dv ≥ 4 as we allow for more degree-one check nodes
per variable node.

Finally, we describe how to create the simple digraph
D = (Z,A) from an undirected multigraph G = (V,E) which
meets Assumptions 7 and 8. This is illustrated in creating
Fig. 4d from Fig. 4b. Each edge of a connected leafless
multigraph G corresponds to two vertices in D, representing
the two directions of LLR message flow in the original Tanner
graph. That is, the number of vertices m in D is simply

m = order (D) = 2 size (G) = adv − b.

The digraph D is a representation of the message updating
process with respect to the output of the trapping set’s variable
nodes in one full iteration of the SPA decoder. Let edge ei =
{vj , vk} ∈ E map to vertices zi, zi′ ∈ Z, with zi representing
the direction of ei flowing from vj to vk and zi′ representing
the other direction. No arcs in D join zi to zi′ . Arcs initiating
in zi are directed to vertices corresponding to other edges in
G flowing out of vk and arcs terminating in zi are directed
from vertices corresponding to other edges in G flowing into
vj . Hence,

d+i = d(vk)− 1 = d−i′ , (18)

d−i = d(vj)− 1 = d+i′ , and (19)

size (D) =
∑
zi∈Z

d−i =
∑
vj∈V

d(vj) [d(vj)− 1] .

With respect to a Tanner subgraph that meets Assumption 8,
induced from a code of variable-degree three, the size of the
associated digraph simplifies to 6a−4b. In our (4, 2) example,
the digraph of Fig. 4d has order 10 and size 16.

We now describe a second version of the construction of
the simple digraph. From the multigraph G, shown in Fig. 4b,
we create the line graph L(G) shown in Fig. 4c as described
in Section II-B. Next, we perform a special directed lifting
of L(G) to form the simple digraph D, shown in Fig. 4d.
This lifting by a factor of two replaces each vertex with a
pair of vertices and each edge with a pair of arcs, oriented
in opposite directions. Thus, if the (i, j) entry of A(L(G))
is w it is replaced with a 2 × 2 submatrix containing w
ones, where the line graph limits w to the values 0, 1, and
2. When the 2 × 2 submatrix which replaces the (i, j) entry
of A(L(G)) is determined, the selection of the corresponding

TABLE I
SUBMATRIX CORRESPONDENCE RULES OF THE DIRECTED LIFTING OF

THE LINE GRAPH (FOR i = j , ONLY THE ALL-ZERO MATRIX IS ALLOWED)

Entry (i, j) Entry (j, i)(
1 0
0 0

) (
0 0
0 1

)(
0 1
0 0

) (
0 1
0 0

)(
0 0
1 0

) (
0 0
1 0

)(
1 0
0 1

) (
1 0
0 1

)(
0 1
1 0

) (
0 1
1 0

)

(j, i) submatrix follows a set of rules of correspondence, listed
in Table I, which ensure that the new pair of arcs are oriented
in opposite directions. Thus, the subdiagonal elements can
be easily determined from the superdiagonal elements. The
exact construction of either one of these is more involved
and requires a direction assignment consistency between, for
example, Fig. 4a and the lifting of Fig. 4c.

All directed walks in D will correspond to walks in G.
All walks in G that do not backtrack will correspond to
directed walks in D. Backtracking is prohibited here due to the
structure of SPA decoder as expressed in the message update
rules, which exclude an edge’s own incoming LLR from its
outgoing LLR computation.

The adjacency matrix of D is A(D), which is an m ×m
(0, 1)-matrix. The matrix A used in state space model (13) is
equal to AT (D) as D describes the flow of messages within
the model. This connection will be convenient when discussing
the properties of A.

Example 4. Figs. 2a, 2b, 2c, 2d, and 5c meet Assumptions 7
and 8. Of these, only Fig. 2d has a reducible A(D) matrix and
it may be analyzed in this paper as explained in Appendix A.
The graphs of Figs. 5a and 5b fail Assumption 8 and have
reducible A(D) matrices. In the case of Fig. 5a, the graph may
first be analyzed without the leaf, and then the leaf considered
as explained in Appendix B. The case of Fig. 5b has all zero
eigenvalues as no amount of leaf removal creates a satisfactory
structure. Thus, it is not analyzed in this paper.

We are now ready to bound the spectral radius of the graphs
presented in this subsection in order to closely approximate
the dominate eigenvalues of A(D) and hence A. Using (4)
and (17), we may bound the spectral radius of the starting
multigraph G = (V,E) as

dv − b/a ≤ ρ(G) ≤ max
vi∈V

d(vi), (20)

where both equalities hold for connected G if and only if G is
regular. The maximum value of d(vi) is limited by the parent
Tanner graph to be no greater than dv.

To bound the spectrum of the line graph L(G), we may use
the relation

ρ(L(G)) = ρ(A(G) + D)− 2, (21)

where D = diag (d(v1), d(v2), . . . , d(vn)). This follows from
the incidence matrix related expressions for each type of graph
and the following fact which is easy to show: Given any real
matrix M, the two products MTM and MMT have identical
nonzero eigenvalues.
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(a) cycles and a leaf (b) tree (c) bridged cycles

Fig. 5. Three sample diagrams of undirected multigraphs.

It is now easy to address the case when G is regular of
degree k. Then, ρ(G) = k and k = dv− b/a, where b/a must
be an integer. Additionally, (21) implies that ρ(L(G)) = 2k−2
for the line graph which is itself regular [38, p. 36]. Further-
more, we find that the corresponding digraph D is regular
with indegree k − 1 and outdegree k − 1, implying that its
spectral radius must be ρ(D) = k − 1 = dv − 1 − b/a. This
value corresponds to Schlegel and Zhang’s approximation to
the spectral radius of any absorbing set [10] which is

ρ(D) ≈ dv − 1− b/a. (22)

Alternatively, one can view (22) as arising from the lower
bound of (20), which is fairly tight, and the fact that ρ(D) =
ρ(G) − ∆, where ∆ is typically 1 or a little greater. This
difference between ρ(D) and ρ(G) stems from the vertex-
degree relationships in (18) and (19). We empirically examine
the accuracy of (22) in Appendix C.

We can derive an alternative approximation based on bound-
ing ρ(L(G)). From (2) and (17), we find the order of L(G)
to be (adv − b)/2. For the following few calculations, we
assume that typically no more than one unsatisfied check node
is adjacent to any variable node. This is always the case for
absorbing sets with dv = 3 or 4, and likely mostly true in
many other cases. Thus, we have that G contains b nodes of
degree dv − 1 and a − b nodes of degree dv. This yields the
approximation to (3) that

size (L(G)) ≈ (dv − 1)(adv − 2b)/2

and the approximate bound to the spectral radius of L(G)

ρ(L(G)) ' 2

(
dv − 1− b− b/dv

a− b/dv

)
.

Finally, since the directional lifting technique of creating
A(D) from A(L(G)) roughly halves the weight of each row
and column, we form the new approximation

ρ(D) ≈ dv − 1− b− b/dv
a− b/dv

, (23)

which is also examined in Appendix C. Note that when b/a
equals 0 or 1 the two approximations, (22) and (23), are equal.

IV. DOMINANT EIGENVALUES AND PROBABILITY MODEL

This section will simplify the linear equation used to update
the states developed in the prior section to the point that we
can easily apply a probability model and predict failure rates
for specific trapping sets.

A. Utilizing Dominant Eigenvalues

For analysis of the model, we need to simplify the powers
of the matrix A that appear in (16). This section largely
generalizes the development by Schlegel and Zhang [10]
with a focus on the dominant eigenvalues of the nonnegative
m × m matrix A and its left eigenvectors. This approach
will avoid using the assumption made by Sun, which was
that A is diagonalizable [23]. In our extensive search of
potential trapping sets, shown in Appendix C, we found a
small fraction of the trapping sets have A matrices which
cannot be diagonalized.

Let µk ∈ C be an eigenvalue of matrix A, and let wk be the
left eigenvector associated with µk, such that w∗kA = µkw

∗
k,

where w∗k is the conjugate transpose of column vector wk.
Then, by induction, for any positive integer i,

w∗kA
i = µikw

∗
k. (24)

Left-multiplying (16) by w∗k and using (24) to simplify, we
derive the scalar quantity

w∗kxl = µlkw
∗
kBλ

l∏
j=1

ḡ′j

+

l∑
i=1

µl−ik w∗k

(
Bλ + Bexλ

(ex)
i

) l∏
j=i+1

ḡ′j .

(25)

We now shift to using a specific left eigenvector of the
nonnegative matrix A, the left eigenvector w1 associated with
the eigenvalue of maximum modulus r. Dividing the m×m
nonnegative matrix A into the following two cases, the theory
of nonnegative matrices allows us to make certain statements
regarding w1 and r [33]–[36]:

1) Let the nonnegative matrix A be irreducible. There is a
simple eigenvalue r, such that r = ρ(A) and r > 0. The
associated left eigenvector w1 of r is positive. There are
no other nonnegative left eigenvectors of A, except for
positive multiples of w1.

2) Let the nonnegative matrix A be reducible. Letting P
be an m×m permutation matrix, the matrix A may be
symmetrically permuted to A′ = PAPT , where A′ is
in block upper triangular form. The block diagonal sub-
matrices A′i are either irreducible square matrices or the
1-by-1 zero matrix. The spectrum of A is thus the union
of the individual spectra σ(A′i). Appendix A explains
that the reducible cases allowed by Assumptions 7 and
8 have all their eigenvalues located on the unit circle,
each with multiplicity two. For these cases, we can
associate the positive left eigenvector w1 = [1, 1, . . . 1]T



12 submitted to IEEE TRANSACTIONS ON INFORMATION THEORY VERSION: JUNE 4, 2013

with the eigenvalue r = 1. Of course there exist other
nonnegative eigenvectors.

Thus, given our prior assumptions, we may associate a positive
left eigenvector w1 with the real eigenvalue r, and this r is
real with magnitude greater than or equal to that of all other
eigenvalues.

Generalizing the β that appeared in [10], we define the
error indicator βl , wT

1 xl. We define βl this way to create a
scalar indicator of trapping set error. Consider βl as the scaled
projection of the state vector xl onto the positive vector w1.
Since the state vector xl contains the internal messages of
the trapping set, the projection onto a positive vector indicates
the trapping set’s messages are generally either in the positive
(correct) direction or negative (erroneous) direction.

Thus βl is only approximately indicative of the variable
nodes’ decisions. Especially in the case where the system is
inherently unstable, r > 1, the state variables will tend to
all move toward positive or negative infinity and dominate the
soft output expression (14). The domination of (14) by xl−1 is
obvious in the case that the λ

(ex)
l entries are saturated to finite

values. Even when this is not the case, the xl−1 terms still
dominate the soft output expression (14) as the state update
equation (13) is much like (14), but (14) puts even more weight
on the states.

Example 5. We continue the on-going example. The non-
negative matrices A describing the state update operations of
Figs. 2a and 2b are both primitive, with r = 1.6956 and
1.5214, respectively. The nonnegative matrix A describing
Fig. 2c is imprimitive with h = 4 and r =

√
2. This means

the four eigenvalues on the spectral circle are ±
√

2 and ±
√

2i.
One may find that h = 4 by visual inspection of Fig. 2c, noting
that every cycle length (measured in full iterations) is divisible
by four. The matrix A describing the state update of Fig. 2d
is reducible with r = 1.

Our error indicator expression simplifies if we rescale βl by
a positive constant to β

′

l , βl/
(
rl
∏l
j=1 ḡ

′
j

)
, so

βl
′ = wT

1 Bλ +

l∑
i=1

wT
1

(
Bλ + Bexλ

(ex)
i

)
ri
∏i
j=1 ḡ

′
j

. (26)

This expression is similar to, but more general than (1) in
[10], which was derived for a specific degenerate trapping set
as previously described.

B. Probability of Error Model

The expression for β
′

l in (26) is a linear combination of
stochastic vectors λ and λ

(ex)
l . Since elements of λ are i.i.d.

Gaussian, linear operations on λ will produce a Gaussian
distribution. Several authors [10], [53] have used the approx-
imation that the check node output LLRs, such as λ

(ex)
l ,

are Gaussian, too. The central limit theorem implies that the
distribution of a linear combination of several independent
check node output messages with the elements of λ will be
nearly Gaussian, even if the check node output LLRs are only
approximately Gaussian.

Assumption 9. We assume that β
′

l has a Gaussian distribution.

Under this assumption, the probability of the failure event,
ξ(S), corresponding to trapping set S, at iteration l, is then
simply

Pr {ξ(S)} = Pr
{
β

′

l < 0
}

= Q

 E[β
′

l ]√
VAR[β

′
l ]

. (27)

If {Si} enumerates all potential trapping sets, the union bound
provides an upper bound on the error floor of the block error
rate

Pf /
∑
i

Pr {ξ(Si)} . (28)

The block error rate of (28) is also commonly called the frame
error rate (FER) or codeword error rate. Next, we wish to
express the error floor as an information bit error rate (BER).
Letting âi represent the maximum number of information bits
associated with trapping set failure Si for the specific encoding
technique used, we may express the BER union bound as

Pb ≤
∑
i

âi
k

Pr {ξ(Si)} , (29)

where k is the number of information bits per codeword. When
the codeword is encoded systematically the codeword bit
locations are partitioned between information bits and parity
bits. For a systematic encoding, in which the bit error positions
are spread uniformly with no preference to information and
parity locations, we may state E[âi] = aik/n, where ai is the
number of variable nodes in trapping set Si and n is the block
length of the codeword. In this case2, (29) simplifies to

Pb ≤
∑
i

ai
n

Pr {ξ(Si)} . (30)

C. Codewords

In the case of elementary trapping sets that are also code-
words, b = 0 and Bex is not used since there are no unsatisfied
check nodes. We find that the failure probability (27) of the
codeword simplifies to

Pr {ξ(Si)} = Q

√2REb

N0

∑a
k=1(wT

1 B)k√∑a
k=1(wT

1 B)2k

. (31)

This reduces further as the eigensystem of A for codewords is
rather simple. Every row sum and column sum of the matrix
A is dv− 1, so the spectral radius is r = dv− 1. The positive
left eigenvector associated with r is proportional to the all-one
vector, w1 ∝ [1, 1, . . . 1]T . Also, B has uniform row weight
one and column weight dv. Therefore, (wT

1 B)k = dv ∀ k ∈
{1, . . . , a}. Upon recognizing that a is just the Hamming
weight wH in the context of codewords, (31) simplifies to the
more recognizable

Pr {ξ(Si)} = Q

(√
2REb

N0
wH

)
,

independent of iteration count l.

2We offer (30) as a correction to [10] which uses k in the denominator
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D. Non-codewords

To further understand the general behavior of (27), we
examine the numerator and denominator terms. Letting m(l)

λ(ex)

be the expected value of each entry of λ(ex)
l , we can write the

numerator of the Q-function argument as

E[β
′

l ] = mλ

(
1 +

l∑
i=1

1

ri
∏i
j=1 ḡ

′
j

)
a∑
k=1

(wT
1 B)k

+

l∑
i=1

m
(i)
λ(ex)

ri
∏i
j=1 ḡ

′
j

b∑
k=1

(wT
1 Bex)k.

(32)

Assumption 10. We will assume that the entries of λ and
λ
(ex)
l are statistically independent of each other at a given

iteration l as is often done in density evolution (DE) studies.
Further, we assume that the entries of λ

(ex)
l are independent

from iteration to iteration, as was implicitly assumed in [10].

Letting σ2
l be the variance of each entry of the vector

λ
(ex)
l , we can write the squared-denominator of the Q-function

argument as

VAR[β
′

l ] = 2mλ

(
1 +

l∑
i=1

1

ri
∏i
j=1 ḡ

′
j

)2 a∑
k=1

(wT
1 B)2k

+

l∑
i=1

σ2
i

(ri
∏i
j=1 ḡ

′
j)

2

b∑
k=1

(wT
1 Bex)2k.

(33)

We are interested in the behavior of (32) and (33) as the
number of iterations goes toward infinity. The divergence of
the first series within (32) is not of interest as its effect will be
canceled by the first series within (33) when they are combined
into (27). We will apply the Ratio Test to the second series
within (32) to evaluate its convergence. In general, the Ratio
Test is applied to the terms of a series a1, . . . , ai, ai+1, . . . by
evaluating the ratio ρ = limi→∞ |ai+1/ai|. Then, the series∑∞
i=1 ai converges absolutely if ρ < 1 and diverges if ρ > 1.

Now, applied to the second series within (32),

ρ = lim
i→∞

∣∣∣∣∣∣ m
(i+1)
λ(ex)r

i
∏i
j=1 ḡ

′
j

m
(i)
λ(ex)r

i+1
∏i+1
j=1 ḡ

′
j

∣∣∣∣∣∣ = lim
i→∞

∣∣∣∣∣∣ m
(i+1)
λ(ex)

m
(i)
λ(ex)r

∣∣∣∣∣∣ . (34)

The right-most expression follows by noting that the gains ḡ′l
approach 1 rapidly with increasing iteration count l. Thus, if
the mean unsatisfied-check LLR m

(i)
λ(ex) dominates ri asymp-

totically (i.e., m(i)
λ(ex) > Cri for every positive constant C and

sufficiently large i), then ρ > 1 and (32) will grow without
bound.

If we can be assured that (33) does not grow as fast as the
square of (32), then the entire argument to the Q-function will
grow without bound, driving the failure rate of the potential
elementary trapping set toward zero. In that case, sufficient
iterations and headroom for λ(ex)

l growth are the requirements
for the model to achieve as low an error floor as desired.

Other models of error floor behavior [10], [23] have used the
Gaussian approximation to LLR densities [53], which implies
σ2
l = 2m

(l)
λ(ex). Moreover, using a numerical version of DE, Fu

found that σ2
l < 2m

(l)
λ(ex) as the LLRs get large [56]. With such

an LLR variance, i.e., σ2
l ≤ cm

(l)
λ(ex) for some positive c, we

find that the entire argument to the Q-function grows without
bound in the cases that satisfy m(i)

λ(ex) > Cri. We will find in
the following sections that this latter condition is true within
the assumptions identified. However, if the variance grows as
the square of the mean, then the argument to the Q-function
reaches a finite limit and a nonzero error floor is produced.
This is a very important issue that we will revisit later in the
paper.

E. Bounds on Spectral Radius of the Matrix A

We now need some bounds on r, the spectral radius of the A

matrix, in order to compare it with the growth rate of m(i)
λ(ex)

which we will develop later. The classic bounds of Frobenius,
from Lemma 2, are sufficient for our needs—merely note the
equivalence between the outdegrees of a digraph and the row-
sums of the associated adjacency matrix.

Theorem 4. Consider a variable-regular LDPC code with
variable-degree dv ≥ 3. Let the trapping set S induce an
elementary connected subgraph BS with a ≥ 2 variable nodes
and b > 0 degree-one check nodes. Further, let the associated
undirected multigraph G be leafless. Then, the adjacency
matrix A(D) of the associated simple digraph D must have
spectral radius r such that 1 ≤ r < dv − 1.

Proof: The proof follows from Lemma 2 if we defer to
Appendix A the equality conditions for the cases in which the
matrix A is reducible.

V. ANALYSIS USING DE WITHOUT SATURATION

This section analyzes LLR-domain SPA decoding without
saturation to make ultimate error floor predictions. First, we
must apply DE to model the contributions from nodes outside
of the trapping set relevant to the behavior of our trapping set.
Then we will refer back to the divergence condition of (34)
to see if error floors are produced.

Assumption 11. Density evolution (DE) assumes that the
Tanner graph has no cycles and the code’s block length is
infinite. For our purposes, this is equivalent to the assumed
independence among incoming LLRs of Assumption 10.

SPA decoding of LDPC codes exhibits a threshold phe-
nomenon as the block length tends to infinity. The error rate
drops very dramatically as the SNR exceeds the decoding
threshold which can be found using DE [53]. As we are
interested in the behavior of the error floor in this work, we
assume that the channel SNR is always above the decoding
threshold.

The application of this DE technique produces an analytical
expression for the LLRs of the SPA decoder. As DE progresses
above the decoding threshold, LLR values grow fast, but the
question is how fast. In [23], Sun showed that mean check
node outputs, mλ(ex), grow from iteration l − 1 to l as

m
(l)
λ(ex) = (dv − 1)m

(l−1)
λ(ex) + “some small value terms.” (35)

In [57], the present authors seek to bound the effect of
Sun’s “small value terms,” by developing tighter asymptotic
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Fig. 6. Check node output LLR mean and variance versus iteration number
for the Margulis code at Eb/N0 of 2.8 dB.

expressions. In fact, we are able to develop bounds on the
SNR region in which we can expect the growth rate of the
mean extrinsic LLRs m(l)

λ(ex) to exceed the internal trapping set
LLR growth rate. In any case, DE analysis in the high Eb/N0

regime leads to m(l)
λ(ex) > Crl for every positive constant C,

any r, such that 1 ≤ r < dv − 1, and sufficiently large l.
When combined with (34) developed in Section IV, the

growth rates of this section show that every potential (non-
codeword) elementary trapping-set error can be corrected by
a non-saturating LLR-domain SPA decoder after a sufficient
number of iterations, provided we can rely upon DE as a model
for LLR growth outside of the trapping set for variable-regular
(dv ≥ 3) LDPC codes.

In Fig. 6 we plot the mean check node output LLRs from
the SPA decoder simulation of the (2640, 1320) Margulis code,
which is (3, 6)-regular, and from DE of a (3, 6)-regular code.
In this simulation the all-zero codeword is transmitted over
the AWGN channel and early termination of the LLR-domain
decoder is disabled. We note that the mean LLR follows
very closely the mean LLR predicted by DE. The variance
of the check-node output LLRs, however, shows a problem.
For the first seven iterations, the variance is approximately
twice the mean, as predicted by the Gaussian approximation
to DE. However, by the ninth iteration, the variance has clearly
taken on the trend of the square of the mean. As discussed in
Section IV, this trend can generate an error floor as the mean
to standard deviation ratio of β

′

l in (27) reaches a fixed value
rather than growing as iterations get large, i.e.,

E[β
′

l ]√
VAR[β

′
l ]

= Ol(1). (36)

The cause of the variance’s departure from the behavior
predicted by DE is the positively correlated nature of the
LLRs after several iterations. In Fig. 7 we plot the average
of the off-diagonal values from the 4 × 4 matrix of correla-
tion coefficients of the four LLR check node output metrics
used as linear model inputs versus the iteration number for
the (12, 4) trapping sets of the Margulis code. This shows
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Fig. 7. Correlation coefficient among the four LLR check node output metrics
used as linear model inputs versus iteration number for (12, 4) trapping sets
of the Margulis code as measured in LLR-domain SPA simulation.

significant positive correlation appearing in the sixth iteration
and progressing rapidly. Thus, the assumptions used to justify
(33) do not hold in this case. The (640, 192) QC code, which
is studied later, also shows similar variance and correlation
behavior just with an earlier onset, due to its smaller girth (6
iterations vs. 8).

Also exposing flaws in our probability of error model is the
skewness of β

′

l . We have measured its skewness in the range
of 0.6 to 1.8 as the correlated LLRs propagate through an SPA
simulation of the Margulis code. Skewness is a measure of the
asymmetry of the probability distribution of a random variable.
Of course, (27) assumed a Gaussian distribution, which is
symmetric about the mean and has a skewness of zero. We
consider such large skews a significant complication for this
case.

The problems presented here make it impossible to accu-
rately use the probability model that we presented beyond
the seventh iteration of decoding the Margulis code without
saturation. However, in the following sections we are able
to find applications of this model and use other techniques
to estimate the error floor for non-saturated decoding of the
Margulis code.

VI. MODIFYING AND APPLYING RICHARDSON’S
SEMI-ANALYTICAL TECHNIQUE WITHOUT SATURATION

In this section, we briefly introduce Richardson’s semi-
analytical technique to estimate the error floor by simulating
in the vicinity of trapping sets [8]. Then, we describe potential
improvements to the technique for it to be effective in the case
of the non-saturating decoder, and present results for the error
floor of the Margulis code.

Richardson’s technique biases the noise in the direction of
the trapping set (TS), much like importance sampling. (Al-
ternatively, one may employ importance sampling techniques
to estimate the error rates of particular trapping sets, as in
[31], [50], [58].) Richardson effectively utilizes an orthogonal
transform on the noise samples within the TS to represent
its noise with a new set of basis vectors in which each
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dimension is still i.i.d. Gaussian noise. This allows us to treat
the Gaussian random variable s in the direction of the noise
separately, while we perform Monte-Carlo simulation on the
other a− 1 dimensions of the noise subvectors with variance
σ2.

We fix s at several negative values and run simulations,
finding the conditional TS failure probability Pr {ξT |s} for
each s value. Then, the overall TS failure probability Pr {ξT }
may be computed using total probability, as

Pr {ξT } =

∫
Pr {ξT |s}pS(s) ds. (37)

Due to the high degree of overlap among TSs, when counting
failures for Pr {ξT |s}, Richardson only counts a frame as a
failure if the set of symbols which are not eventually correct
exactly matches the symbol locations of T , the specific TS
under test.

The dominant TSs of the (2640, 1320) Margulis LDPC
code are the (12, 4) and (14, 4) elementary TSs, shown in
Figs. 8a and 8b [7], [8], [17]. In the case of the (14, 4) TS of
the Margulis code, the not-eventually-correct symbols exactly
match the symbols in T , when testing the saturated decoder at
a rate of about 3 in 4 failures or greater (at s = −1.35). Note
that this rate drops substantially as s approaches −1. However,
for a non-saturating decoder, this ratio became less than 1
in 105 (at s = −1.35) in our tests, indicating that the not-
eventually-correct condition is not effective when saturation is
eliminated. This ratio was so low when running Richardson’s
technique for T set to a (12, 4) TS without saturation, that we
could not measure it. When saturation is present, failures are
generally forced to occur on absorbing sets, and this is often
the set under test when s ≤ −1.25. Without saturation present,
the failures occur on a wide variety of Tanner subgraphs. Most
of the failing subgraphs during non-saturating simulation are
not absorbing sets and most are larger than the original a
variables under test. In fact, the two smallest failing structures
that we captured at high SNR were the (14, 4) absorbing set
of Fig. 8b and the (18, 8) subgraph shown in Fig. 8c. Since
the set of general Tanner subgraphs within the Margulis code
is vast [13], rerunning the error floor estimate for each type of
subgraph with such a low capture rate would be impractical.
We propose two solutions to this.

The first solution would be to ignore the not-eventually-
correct criteria and simply count all failures at the risk of
overestimating the error floor. Instead, we propose to estimate
the error floor by introducing saturation in the final iterations
of failed frames so that they may fail on absorbing sets. For
example, iterations with LLR saturation would force correc-
tions to the labeled variable nodes of Fig. 8c, as the unsatisfied
check nodes outnumber the satisfied checks, driving the failed
structure to the (14, 4) absorbing set contained within. Since
this approach reduces the number of incorrect bits per failure,
it perhaps has useful applications. It appears effective, as we
see that most failures are reduced to small absorbing sets in
practice. We prefer this strategy because we are interested in
establishing a lower bound on the floor for the non-saturating
case.

As there may be many variable nodes to correct to get
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Fig. 9. FER vs. Eb/N0 in dB for Margulis LDPC Code in AWGN. The
semi-analytical (SA) technique only estimates errors due to the (12,4) and
(14,4) trapping sets at Eb/N0 = 2.8 dB.

to the absorbing set contained within the failed structure
we allow for 20 iterations of saturated SPA decoding before
beginning the “eventually correct” logic which runs for 12
additional iterations. We chose to run the saturation phase at
an LLR limit of 25. Our results are shown in Fig. 9 where
all simulations were run for a maximum of 200 iterations,
except that the non-saturating semi-analytical simulations were
run for 32 additional iterations as just described. The semi-
analytical technique was run at Eb/N0 = 2.8 dB in all cases,
and was extrapolated locally as suggested in [8]. Richardson’s
extrapolation assumes that the conditional failure probability
Pr {ξT |s} is insensitive to SNR changes. The extrapolations
appear to produce parallel lines in the log-log plot (i.e., the
logarithm of the error rate versus the Eb/N0 measured in
decibels, which is also logarithmic) due to the character of
the integration in (37). The dominating part of the integrand
is about 5 standard deviations of s below the zero-mean
point in all the conditions studied. Thus, small changes to the
standard deviation of s in (37) produce a multiplicative effect
on the estimated error rate regardless of the specific decoder
configuration.

Fig. 9 shows an estimated error floor at Eb/N0 = 2.8 dB
of 2 ·10−11 FER due to these two TSs, which is incrementally
better than the 6 · 10−11 achieved by limiting the LLR
magnitudes to 200 at the check node output. In making this
error floor prediction we assume that no other TSs become
dominant in these conditions.

Several additional observations are worth noting. Increasing
the maximum number of iterations of the non-saturating sim-
ulation to 1000 reduces the error floor by about a factor of 3.
Additionally, we have applied the semi-analytical techniques
of this section to estimate the combined FER contributions of
the (12, 4) and (14, 4) TSs to be 4 ·10−17 FER at Eb/N0 = 4
dB. This shows that the error floor falls significantly faster
than Richardson’s extrapolation predicts, since the conditional
failure probability Pr {ξT |s} appears to decrease significantly
with increasing SNR. From the DE expressions, at higher
SNR, the beneficial LLR growth starts earlier and grows faster
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(a) (12, 4) (b) (14, 4)

A BC

D

(c) (18, 8)

Fig. 8. Three elementary TSs of a dv = 3 code shown with degree-one check nodes shaded and with degree-two check nodes omitted. The two on the left
are absorbing sets and dominate the error floor of the saturated SPA decoder for the Margulis code, while the one on the right fails is not an absorbing set.

TABLE II
RATIO OF (12, 4) TRAPPING SET ERROR FLOOR CONTRIBUTION TO (14, 4)

FOR THE MARGULIS CODE AT Eb/N0 = 2.8 DB USING RICHARDSON’S
SEMI-ANALYTICAL TECHNIQUE.

Decoder Ratio

Saturated SPA, at ±7 CN out 4.6 : 1

Richardson’s 5-bit [8] 3.3 : 1

Saturated SPA, at ±15 CN out 3.3 : 1

Saturated SPA, at ±25 CN out 1.7 : 1

Saturated SPA, at ±50 CN out 0.7 : 1

Saturated SPA, at ±100 CN out 0.6 : 1

Saturated SPA, at ±200 CN out 0.46 : 1

Non-saturating SPA decoder 0.4 : 1

giving the code beyond the TS a higher probability to correct
the channel error along a TS for a non-saturating decoder.
However, an SPA decoder with limited LLR dynamic range
will not leverage these effects that depend on SNR.

Table II shows the ratio of the error floor contributions of the
(12, 4) TS to the contributions of the (14, 4) TS at Eb/N0 =
2.8 dB. We note that when saturation limits are low the (12, 4)
TS dominates the error floor, but when the limits are raised
(14, 4) dominates. There are two potential reasons for this. The
first is that the larger maximum eigenvalue value of (14, 4) is
more sensitive to saturation even though it is less likely to
initially trigger due to the greater number of variable nodes
involved. Secondly, an effect we have noticed is that a growing
fraction of (12, 4) TS failures are subsumed by the (14, 4)
absorbing sets which contain them as LLR limits are raised.
Additionally, we notice that the (14, 4) TSs dominate even
more as the SNR is increased for a non-saturating decoder.

Finally, we would like to know if we are seeing a “floor”
or not for the non-saturating SPA simulation results. Extrapo-
lating the FER of the waterfall region of Fig. 9 at a constant
log-log slope out to Eb/N0 = 4.0 dB yields an FER of about
5·10−20. Thus, the FER contribution of the (12, 4) and (14, 4)
TSs at 4 · 10−17 FER overpowers the FER of the extrapolated
waterfall region at an Eb/N0 of 4.0 dB. Therefore, early
evidence predicts that we will indeed see a floor, but this
floor is much lower and has about twice the log-log slope
versus SNR than what was previously referred to as a “floor”
for the Margulis code. Thus, our floor estimates are about 5
orders of magnitude lower at Eb/N0 = 2.8 dB than prior SPA
simulation results, and about 8 orders of magnitude lower at
4.0 dB.

VII. NUMERICAL RESULTS WITH SATURATION

This section readdresses the prediction model, this time for
the case of saturated decoding. We present the techniques
used to produce the linear system’s inputs, and then compare
predicted error floors to simulation results for four LDPC
codes. Two numerical models are described for use as system
inputs for the mean and variance of the unsatisfied, degree-
one check nodes within the trapping set (TS). These models
also generate the mean gain ḡl of the degree-two check nodes
required by the model presented in Section III. This completes
the necessary tools to produce error floor predictions when
the LLR metrics are saturated within the LLR-domain SPA
decoder.

The first technique is the numerical version of density
evolution (DE) known as discretized density evolution (DDE)
described in [54]. This technique utilizes a probability mass
function (pmf) that closely approximates the continuous proba-
bility density function (pdf) of node input messages and output
messages. This technique is selected for the saturated case as
it allows us to precisely model the behavior of LLRs as they
saturate since it works directly on the pmfs. At a particular
Eb/N0 value, we capture the mean and variance of the values
we require at each iteration for insertion into the model. See
Table III for an example, which also lists the mean check node
gain, which have been computed following (8).

We present our technique to contrast it with that presented
in [10]. Schlegel and Zhang suggest recording only the mean
LLRs from a (continuous) DE analysis and computing the
variance based on the consistent Gaussian distribution as-
sumption [53]. The consistent Gaussian approximation3 is that
σ2
l = 2m

(l)
λ(ex). In this section, we have purposely avoided the

consistency assumption since the effect of LLR saturation will
void it as seen in Table III.

The second technique is to simply run the LLR-domain
SPA decoder with early termination turned off and collect
the required statistics. Configuring the AWGN channel for a
particular Eb/N0 value, we capture the mean and variance of
the check nodes’ output LLRs and the mean check node gain
computed as in (8) at each iteration. For an example of the
results using this technique see Table IV. We find 100 frames
to be sufficient, and of course very quick to produce.

3The mean and variance relationship of the LLRs was printed erroneously
in [10] as m = 2σ2
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TABLE III
DDE NUMERICAL RESULTS BY ITERATION FOR (3, 6)-REGULAR CODE AT

AN Eb/N0 OF 2.8 DB WITH LLR SATURATION SET TO ±25 AT CHECK
NODE OUTPUT. LLR PDFS DISCRETIZED TO PMFS WITH A RESOLUTION OF

50/2047. IN THIS CASE, mλ = 3.8109.

l m
(l)
λ(ex)

σ2
l ḡl

1 0.669 1.47 0.3242

2 1.315 2.81 0.4898

3 2.08 4.24 0.6243

4 3.11 5.94 0.7472

5 4.66 8.05 0.8586

6 7.21 10.74 0.9446

7 11.66 14.22 0.9891

8 19.67 16.59 0.9995

9 24.91 0.47 1.0000

10 25.00 0.00 1.0000

TABLE IV
SPA SIMULATION RESULTS BY ITERATION FOR THE (2640, 1320)

MARGULIS CODE WHICH IS (3, 6)-REGULAR AT AN Eb/N0 OF 2.8 DB
WITH LLR SATURATION SET TO ±25 AT CHECK NODE OUTPUT. IN THIS

CASE, mλ = 3.8109.

l m
(l)
λ(ex)

σ2
l ḡl

1 0.675 1.49 0.3245

2 1.324 2.88 0.4897

3 2.09 4.36 0.6219

4 3.14 6.19 0.7425

5 4.73 8.83 0.8505

6 7.37 13.65 0.9338

7 12.08 25.82 0.9793

8 19.13 33.94 0.9956

9 23.66 11.86 0.9995

10 24.83 1.31 1.0000

The results in the two tables are similar, as expected.
Starting at iteration six or seven, the LLR variance from the
SPA simulation is significantly larger than from the DDE
technique, due to cycles present in the simulation of the finite
length code. This is similar to Fig. 6, but under different
saturation conditions. We would expect that a code with an
even a larger girth would have an even later onset of variance
divergence. Interestingly, it was found the two techniques
produced nearly identical error floor predictions in spite of
the differences. We chose to present the results obtained using
the SPA simulation technique in the figures that follow.

The first code we examine is the (640, 192) quasi-cyclic
(QC) LDPC code from [17], with dv = 5 and irregular check
degree. The dominant TS for a saturating LLR-domain SPA
decoder is the (5, 5) elementary TS shown in [17]. The A
matrix for this TS is primitive and has maximum eigenvalue
r = 3. The multiplicity of this TS in the code is just 64 and all
such sets have disjoint sets of variable nodes. Figs. 10, 11 and
12 show FER results for simulation and error floor prediction
for this code at two levels of LLR saturation. Our error floor
prediction model shows very fast convergence, attributed to
the large eigenvalue (i.e., r � 1), so we stop the model at 14
iterations.

The FER simulation results shown in these figures are
produced by our LLR-domain SPA decoder, running on
a computer, implemented in double-precision floating-point.

Ryan 640-192 schlegel analysis C FER chb

Brian K. Butler 1/26/2013 5:28 PM
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Fig. 10. FER vs. Eb/N0 in dB for the (640, 192) QC code with simulation
and the TS model for predicting error floors using unit gains in the model
and no check node inversions.
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Fig. 11. FER vs. Eb/N0 in dB for the (640, 192) QC code with simulation
and the TS model for predicting error floors using mean gains in the model
and no check node inversions.
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Fig. 12. FER vs. Eb/N0 in dB for the (640, 192) QC code by simulation
and the TS model for predicting error floors using the modified mean gains
of (12) in the model which takes into account check node inversions.
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This SPA decoder is non-saturating, in that computations are
organized such that saturation will not occur (see §II-D). We
have not witnessed our non-saturating decoder fail on the
(5, 5) TSs, which were reported to dominate in [17]. Next,
saturation was intentionally introduced into our decoder at
levels shown in the figures’ legends. The intentional saturation
was introduced at a point corresponding to the output of the
complete check node update. We simulate the transmission
of the all-zero codeword for simplicity and take any other
decoding result to be decoding failure or frame error. The
simulations were run for a maximum of 200 iterations.

Fig. 10 shows the error floors predicted by (28), but with
all check node gains forced to unity. Fig. 11 shows the same
conditions, but now with the mean gains of (8) applied to
the model. Fig. 12 again shows the same conditions, but
this time with the modified mean gains of (12) applied to
account for polarity inversions within the degree-two check
nodes. Comparing the first two figures, one notices that the
mean gains provide a significant improvement in the model’s
accuracy, to within 0.5 dB of simulation. Comparing Figs. 11
and 12, one notices that the channel polarity model represents
an improvement in the model’s accuracy to within ±0.1 dB
of simulation.

Heuristically, the reason that error floor predictions drop
when check node gains are introduced has to do with incorrect
state buildup in early iterations. With unity gains, incorrect
channel inputs may propagate rapidly in the highly intercon-
nected states of the TS. With small gains in early iterations this
is held off for several iterations, giving the unsatisfied check
nodes a better chance to correct the system. As we previously
noted, during early iterations polarity inversions through the
degree-two check nodes act to effectively lower the check
node gain. Therefore, as we would expect, introducing the
inversions lowers the predicted error floor.

The SPA decoder results presented in [17] would appear
slightly above the simulation curves with saturation set to 15
shown in Figs. 10 to 12. The FER ratio between our non-
saturated SPA simulation and the SPA simulation of [17] is
three orders of magnitude at an Eb/N0 of 5 dB and growing
very rapidly.

The second code analyzed is the (2640, 1320) Margulis
LDPC code. Recall that it is a (3, 6)-regular code with
dominant TSs reported to be the (12, 4) and (14, 4) elementary
TSs [7], [8], [17]. The A matrices for these two TSs are both
imprimitive, with h = 2, and have maximum eigenvalues r
of 1.6956 and 1.7606, respectively. We ran the model for 16
iterations. The multiplicity of each of these TSs is 1320 with
lots of overlap between variable nodes of differing sets. In
fact, each (14, 4) TS contains all 12 variable nodes and 2 of
the unsatisfied check nodes of a (12, 4) TS, as can be seen
in Fig. 8. Thus, when we compute the failure probability of
one (12, 4) TS, it largely includes the failure probability of
the (14, 4) TS that contains it. Therefore, Fig. 13 shows the
error floors predicted for just the (12, 4) TSs, utilizing the
model with modified mean gains. We applied the inversion
model at every iteration. We find that the state-space model
overestimates the simulation’s error floor by 0.15 dB or less.

The third code analyzed is the (2048, 1723) Reed-Solomon
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Fig. 13. FER vs. Eb/N0 in dB for (2640, 1320) Margulis code with
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Fig. 14. BER vs. Eb/N0 in dB for (2048, 1723) LDPC code from 802.3an
with simulation, Richardson’s semi-analytical (8, 8) floor estimation, and TS
model predicted (8, 8) floor using modified mean gains.

based LDPC code [59] from the 802.3an standard. It is a
(6, 32)-regular code with dominant TSs reported to be the
(8, 8) elementary TS [10], [30]. The A matrix for this TS
is primitive, with a maximum eigenvalue r = 4. The linear
model for this TS converges very fast, in just 3 iterations
when saturation is set to 15 and a few more iterations at
higher saturation limits. We conservatively ran the model for
16 iterations, including the inversions at every iteration. The
multiplicity of the (8, 8) TS is 14 272 [10]. Fig. 14 shows the
predicted BER error floors of this code utilizing the model
with modified mean gains if we assume there are no other
TSs present in this code.

Since a standard Monte Carlo simulation of this low error
floor takes a prohibitively large amount of CPU time, we have
used Richardson’s semi-analytical technique to estimate the
error floor [8]. We have run this semi-analytical technique,
which was introduced in Section VI, at an Eb/N0 of 5.0 dB
(the solid circles on Fig. 14) and used Richardson’s method
of extrapolating the results to 5.4 dB (the solid lines). We
have only configured the semi-analytical technique to measure
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Fig. 15. FER vs. Eb/N0 in dB for (155, 64) QC-LDPC code with simulation
and TS model predicted floor using modified mean gains.

the (8, 8) TSs. For the saturation levels of 15, 100, and 800,
Richardson’s technique required 0.9, 9.5, and 1300 hours of
CPU time, respectively. We used less than 2 minutes of CPU
time to collect the 1000-frames worth of LLR statistics that we
used to produce each error floor prediction point. Our model’s
predictions appear to have an accuracy of better than 0.1 dB
at 5.0 dB.

The fourth code analyzed is the (155, 64) QC-LDPC code
by Tanner et al. [60]. It is a (3, 5)-regular code with the
dominant TS reported to be an (8, 2) elementary TS, with
multiplicity 465 [31], [32], despite the presence of several
other small TSs. Additionally, Declercq et al. worked to reduce
the floor of this code for the BSC channel in [61]. We are
interested in understanding if the model breaks down for
a code of such short block length. The A matrix for this
TS is primitive, with a maximum eigenvalue r = 1.7870.
Fig. 15 shows that the predicted FER error floors of this code
utilizing the (8, 2) model with modified mean gains agrees
with simulation to within 0.2 dB at an LLR saturation level
of 7. At this level of saturation an error floor is created; for
Eb/N0 values of at least 4.86 dB, we measure 69% percent
of the failures to be the (8, 2) TSs and most of the remaining
failures to be other small TSs. However, at an LLR saturation
level of 25, the error floor appears to be overcome since
we measure only 6.8% of the failed frames are on (8, 2)
TSs. Given this small fraction of (8, 2) failures captured in
simulation, we must say that the linear model overestimated
TS failures by about 0.9 dB at 10−7.

Our findings lead us to remark that the error rate results
for this (155, 64) code in [31], [32] may be misleading. In
that work an error floor is plotted at a saturation level of 100
based only on the (8, 2) TSs in an SNR region where we
believe they will only cause a small fraction of the overall
errors observed in practice (5 to 7% perhaps). In fact, we find
that some 55% of the failed frames at a saturation level of 100
contain 11 or more symbols in error. Another odd feature of
Fig. 15 is that for the simulation without a saturation limit, the
FER actually degrades a little compared to a saturation level
of 25. Although it is not shown, the simulation of an LLR

saturation level of 100 overlaps the non-saturating simulation.
We attribute the oddities of this example to the shallow nature
of waterfall region of the performance curve.

We chose these four LDPC codes as they are quite different
and their error floors have appeared in prior studies. The TSs
in these codes have a broad range of multiplicities and degree
of overlap among them. Interestingly, the Margulis code has
two dominant TSs, both with imprimitive A matrices, while
the other codes are dominated by single TSs with primitive
A matrices. Regardless, we find that the state-space model
with modified mean gains estimates the simulation’s error floor
reasonably well and very quickly.

Surprisingly, we find that there are situations in which LLR
saturation at the fairly high values of 25, 50 and 100 produce
noticeable error floors in simulation and model prediction.
Finally, we note that the terms in (33) containing σ2

i have
a small impact on the overall results.

VIII. CONCLUSION

We have drawn into question the error floor levels published
in [7], [8], [17] and their root cause. We have shown that
the error floor levels are caused by the interaction of non-
codeword trapping sets and the numerical effects of handling
highly-certain messages in a belief propagation decoder, such
as the LLR-domain SPA decoder. We have shown that when
care is taken in processing those messages the error floor level
may be lowered by many orders of magnitude.

We have added some clarity to the situation of two distinctly
different applications of the linear system model. On one
hand, Sun introduced the state-space model and proved that
many error floors do not exist for infinite-length codes without
cycles [23]. On the other hand, Schlegel and Zhang improved
upon the model and predicted nonzero error floors due to the
dominant (8, 8) trapping sets of the 802.3an code [10].

With respect to Sun’s work, we are in agreement with Sun’s
conclusion as applied to variable-regular LDPC codes without
cycles. We have shown empirically that the assumptions in the
probability of error model do not hold for codes with cycles.
For these codes, we showed that the effects of positively
correlated LLRs when allowed to grow (without saturation)
drive the ratio of the mean to standard deviation to a finite
value possibly implying an error floor. This error floor level
is difficult to estimate due to the positively correlated LLRs
and the substantially non-Gaussian distribution of our error
indicator.

We are also able to put Schlegel and Zhang’s work into
perspective. While not emphasized, their error rate results
showing a nonzero error floor for a trapping set were for
a decoder that saturated (i.e., “clipped”) the LLR values.
They made no claims with regard to the effects of removing
saturation in [10]. Their addition of mean gains to the model
makes a substantial improvement to error floor prediction as
we have shown. Our realization of the model is more general
than theirs, in that we do not require that B = Bex, that B
has regular column weight, and that A has regular row and
column weight4. Additionally, we have simplified considerably

4If A has regular row or column weight, then its spectral radius ρ(A) is
integral.
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the incorporation of polarity inversion by the degree-two check
nodes into the model. We have presented two new methods to
collect the statistics needed to drive the model. We have shown
that the reason that the model predicts saturated performance
relatively well is that by the iteration count at which LLRs
become substantially correlated, their variance is driven to zero
by the effect of saturation. This means that the model derived
for the case with no cycles actually works rather well for the
case with cycles when there is a significant saturation effect
present. In our experiments the model with modified mean
gains estimated the FER floor of floating-point simulation to
within 0.2 dB for several different LDPC codes.

Altogether, we have reached a better understanding of the
trapping set failure mechanisms. Trapping set failures can
be frequently corrected when the beneficial unsatisfied check
LLRs eventually overpower the trapping set’s own detrimental
LLR growth. Achieving this reliably can take significant LLR
metric dynamic range. The greater the LLRs are allowed to
grow the more often channel inversions aligned to trapping sets
can be overcome. Chen et al. had the insightful observation in
[28], “...that the error floor is caused by the combined effects
of short cycles in the graph representation of the code and of
clipping.”

This phenomenon also helps explain prior observations.
Others have noted that “stable” trapping set failures converge
very rapidly (cf. §15.3.1 of [41]), often in less than ten
iterations. We now realize that this is due to the saturation
point of the beneficial unsatisfied check nodes being reached
and bringing the correction process to a halt. When it is
reached and the states are still in error the structure is very
stable when it is an absorbing set. Absorbing sets guarantee
that unsatisfied check messages are always outnumbered by
internal messages at any variable node within the set. Metric
saturation is why the bit-flipping decoder analogy was made
in [16] to explain absorbing sets. The process of passing real-
valued messages in an LLR-domain SPA decoder degenerates
to passing positively or negatively saturated messages where
the outcomes can be explained by bit-flipping decoder logic.
We have shown that when saturation degenerates the SPA
decoder to a bit flipping decoder, it actually helps to correct
variable nodes in the trapping set until an absorbing set is
reached. We have used this observation to modify Richardson’s
semi-analytical technique so that it may estimate error floors
of a non-saturating SPA decoder.

The results make clear that when presenting error floors,
future researchers should document the levels of any LLR
saturation.

Future work may include extensions to more channels, to
non-elementary trapping sets, and to account for correlations
among LLRs. We hope that many of the techniques covered
in this paper generalize to variable-irregular codes, but we
recognize that the issues of bounding and approximating the
trapping sets’ spectral radii must be reconsidered.

APPENDIX A
REDUCIBLE A MATRICES

In this Appendix we address the special case of reducible
A matrices.

Lemma 5. Let G be a connected multigraph of order n ≥ 2.
Then G is isomorphic to the cycle graph Cn if and only if
every vertex is degree two.

Proof: Omitted.

Theorem 6. Consider a connected multigraph G which meets
Assumption 8. G is either a cycle graph or has an associated
A(D) matrix that is irreducible.

Proof: Multigraphs with any vertices of degree one are
not allowed by Assumption 8. Connected multigraphs with
all vertices of degree two are cyclic by Lemma 5. So now we
will show any possible remaining connected multigraphs must
have an irreducible adjacency matrix A(D).

The remaining multigraphs must have at least one vertex
of degree greater than two. Also, all vertex degrees must sum
to an even number, as every edge joins two vertices. This
yields a connected multigraph with at least two cycles. Since
a walk without backtracking through a connected multigraph
with two cycles is able to reverse direction, every edge may
be visited in either direction. Thus, when the edges of G are
expanded to be vertices of the digraph D, D will be strongly
connected. Since D it is strongly connected, its associated
adjacency matrix A(D) will be irreducible by Lemma 1.

Of course, since A(D) is irreducible so must be A(D)T ,
which we use as A in our state-space model.

Therefore, the remainder of this appendix need only address
the properties of cycle graphs. The expansion of the edges
of cycle graph G = Ca to a digraph D will produce two
disconnected directed cycles of length a, one associated with
the clockwise non-backtracking walk of G and one with the
counter-clockwise non-backtracking walk of G. Thus, A(D)
may be symmetrically permuted to PA(D)PT =

[
A1 0
0 A2

]
, in

which both A1 and A2 are irreducible. Since the component
digraphs are each directed cycles of length a, for some P,
both adjacency submatrices A1 and A2 are a×a permutation
matrices that implement a circular shift by one position. Thus,
both A1 and A2 are imprimitive with h = a. Since every
row and column of A1 and A2 have weight one, all their
eigenvalues lie on the unit circle, r = ρ(A1) = ρ(A2) = 1.
The eigenvectors of A1 and A2 must be identical. The
eigenvectors of A1 may be enlarged to be the eigenvectors of
A by appending a zeros. As A1 is a permutation matrix, the
eigenvalue r = 1 is associated with the all-one eigenvector
(or a scalar multiple thereof): A1v1,1 = r v1,1, where
v1,1 = [1, 1, . . . 1]T . By a similar argument the associated left
eigenvector of A1 is w1,1 = [1, 1, . . . 1]T . Similar statements
hold for A2.

Define w̃1,1 to be w1,1 appended with a zeros, and w̃2,1 to
be w2,1 prefixed with a zeros. Now, let us complete the deriva-
tions in Section IV using βl , wT

1 xl, with w1 , w̃1,1+w̃2,1.
Since w̃1,1 and w̃2,1 are associated with the same eigenvalue,
their sum w1 = [1, 1, . . . 1]T is also a left eigenvector of A.
Note that w1 is not the only positive left eigenvector of A,
as any linear combination c1w̃1,1 + c2w̃2,1 with ci > 0 would
also be a positive left eigenvector. For the cycle graphs under
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consideration, (26) becomes

β
′

l =
(
w̃T

1,1 + w̃T
2,1

)
Bλ

l∏
j=1

gj

+

l∑
i=1

(
w̃T

1,1 + w̃T
2,1

) (
Bλ + Bexλ

(ex)
i

) l∏
j=i+1

gj .

(38)

This is equivalent to the other expressions derived in Sec-
tion IV since w1 = w̃1,1 + w̃2,1, noting that r = 1 here. With
these considerations we may use the results of Section IV
and later for the allowed reducible A matrices. Relative to
the variable-regular codes addressed in this paper, the cycle
graph Ca corresponds to the (a, b) trapping set with a ≥ 2
and b = (dv − 2)a.

APPENDIX B
ADDING LEAVES AND BRANCHES

We now expand the set of multigraphs addressed in this
work to include those with leaves and branches, which were
previously eliminated by Assumption 8. Thus, the variable
nodes in the associated Tanner subgraphs will be permitted
to have dv − 1 adjacent degree-one check nodes. In [23], Sun
referred to the graphs addressed in this appendix as “trapping
sets with external data nodes.”

We will describe the elementary Tanner graphs of this
appendix from the perspective of their associated multigraphs
using the mapping of Lemma 3. Let a base graph be a
multigraph that meets Assumptions 2, 7, and 8. Such a graph
contains one or more cycles. A leaf is a vertex of degree one.
A branch is a vertex of degree two or more outside of the
base graph, and is not contained in any cycles.

Example 6. Fig. 5a contains one leaf on a base graph and
Fig. 5b contains just three leaves and no base graph. The
(18, 8) failing structure of Fig. 8c has leaves A, B, and D
and branch C on a base graph that is the (14, 4) trapping set
of Fig. 8b.

Assumption 12 (Replacement for Assumption 8). Multigraphs
of interest must contain a base graph and zero or more leaves
and branches.

We require a base graph because without a base graph the
eigenvalues would all be zero, as will become apparent shortly.
Our new assumption allows the variable nodes within the
associated Tanner subgraphs to neighbor up to dv− 1 degree-
one check nodes.

Theorem 7. Let G = (V,E) be a multigraph meeting
Assumptions 2, 7, and 12 containing base graph GB , n leaves,
with n ≥ 1, and zero or more branches. Let D = (Z,A)
and DB be the associated digraphs, created as described in
Section III-C. Then, the adjacency matrix A(D) is reducible
and its spectrum contains the eigenvalues of A(DB) and
zeros.

Proof: Each additional leaf in G adds one edge to G. Let
the edge ei ∈ E join leaf vk to vertex vj in G, where vj is not
a leaf. The edge ei maps to vertices zi, zi′ ∈ Z in D. These

vertices are not strongly connected to the digraph as d+i = 0
and d−i′ = 0, and hence A(D) must be reducible by Lemma 1.

Every leaf in G creates an all-zero column in A(D) due
to d−i′ = 0 and an all-zero row due to d+i = 0. The all-zero
columns may be symmetrically permuted to the left (i.e., their
corresponding vertices are relabeled with the lowest possible
values) and the all-zero rows to the bottom to form

P A(D) PT =

[
0 Y1 Y2

0 B Y3

0 0 0

]
, (39)

where the block diagonal contains square submatrices. The n×
n zero matrices at both ends of the block diagonal correspond
to the n leaves in D.

The eigenvalues of A(D) are the roots of the characteristic
equation det(A(D) − µI) = 0, which simplifies to det(B −
µI)µ2n = 0 by use of the expansion by minors along every
zero row and column. Thus, the eigenvalues of A(D) are the
eigenvalues of B and 2n zeros. In case G contains both leaves
and branches, the removal of one layer of leaves exposes a new
layer of leaves and the operations in this paragraph must be
repeated until we work down to B = A(DB), which will be
irreducible except for the case addressed in Appendix A in
which GB is a cycle graph.

By showing that the nonzero eigenvalues are preserved by
the addition of leaves and branches, it is simple to argue that
Theorem 4, which bound the spectral radius of A(D), still
hold if Assumption 8 is replaced by 12.

The only weakness with respect to our prior development
is that we can no longer assume that the left eigenvector w1

is positive as A(D) may now be reducible. In practice, we
have found that the new entries added to w1 by the addition
of leaves and branches are half zero and half positive. This
may be proved by applying the Subinvariance Theorem in [35,
p. 23] to (39). The presence of zero entries in w1 weakens our
prior claims on the error indicator βl , wT

1 xl. Now, the error
indicator is most effective on the variable nodes corresponding
to the base graph and less effective on the variable nodes
corresponding to the branches and leaves.

Finally, we do not see much practical motivation to predict
the error floors of graphs with branches and leaves. We would
prefer to run predictions on the base graphs contained within.
Since the graphs with branches and leaves have the same
spectral radius as their base graph they are no more likely
to fail in theory. In fact, they should be less likely to fail as
more channel values are involved and more unsatisfied check
nodes are working to correct the graph.

APPENDIX C
TABLES OF ABSORBING SET STRUCTURE

As opposed to studying the trapping sets that dominate
several specific codes, in this appendix we present an overview
of all subgraphs that may become troublesome trapping sets
which meet specific conditions for particular large classes of
codes. This can serve to put some perspective on the structural
parameters that have been discussed in this paper such as: a,
b, the index of imprimitivity h, and the spectral radius r.
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TABLE V
CONNECTED, ELEMENTARY ABSORBING SETS FROM THE SET OF

4-CYCLE-FREE dv = 3 VARIABLE-REGULAR CODES, WITH rmax > 1.3

(a, b) Num. hmax rmin rmax

4,0 1 1 2 2
4,2 1 1 1.521 1.521
5,1 1 1 1.829 1.829
5,3 2 4 1.414 1.424
6,0 2 2 2 2
6,2 4 2 1.696 1.729
6,4 4 2 1.348 1.361
7,1 4 1 1.883 1.888
7,3 10 2 1.599 1.665
7,5 6 2 1.298 1.316
8,0 5 2 2 2
8,2 19 2 1.780 1.870
8,4 25 2 1.521 1.622
9,1 19 1 1.911 1.929
9,3 63 2 1.696 1.851
9,5 52 2 1.463 1.592

10,0 19 2 2 2
10,2 113 2 1.829 1.911
10,4 198 2 1.629 1.841
10,6 109 4 1.414 1.570
11,1 114 1 1.929 1.947
11,3 482 2 1.758 1.899
11,5 536 2 1.571 1.836
11,7 197 2 1.379 1.555
12,0 85 2 2 2
12,2 835 2 1.861 1.940
12,4 1,892 2 1.696 1.894
12,6 1,373 2 1.521 1.833
12,8 351 2 1.348 1.545
13,1 839 1 1.941 1.961
13,3 4,541 2 1.799 1.934
13,5 6,374 2 1.645 1.891
13,7 3,159 2 1.481 1.831
13,9 581 2 1.321 1.537
14,0 509 2 2 2
14,2 7,589 2 1.883 1.954
14,4 21,434 2 1.745 1.931
14,6 19,587 2 1.599 1.889
14,8 6,879 2 1.446 1.830
14,10 931 4 1.298 1.532

The variable-regular codes we examine are assumed to be
described by Tanner graphs that are 4-cycle-free. We divide the
information into tables by their variable-degree dv. The further
conditions we put on the subgraphs of interest are described
in Assumptions 2 and 7 and Definition 3; the subgraphs must
be elementary, connected and absorbing, respectively.

Rather than find every single graph that meets our parame-
ters we can simplify the search considerably. As we are just
interested in a graph’s structure as opposed to its labeling we
need only identify one of the graphs among several that are
isomorphic to the others. This is known as partitioning the
graphs into equivalence classes.

Graph theory tools such as “geng” [62] can generate non-
isomorphic simple graph descriptions very quickly satisfying
sets of parameters such as ours. We run this tool once for each
row of the tables. Each time we configure it to find undirected
graphs of order a, size (adv − b)/2, and with vertex degrees
in the interval [ddv/2e , dv]. The size we have specified is a
direct result of Euler’s handshaking lemma. By limiting the
tool output to simple graphs, we eliminate multigraphs of girth
2 and their equivalent Tanner subgraphs of girth 4. The range
of vertex degrees specified ensures that we get absorbing sets.
We then process each graph in a custom tool that converts it to
the adjacency matrix of the associated directed graph to find
its spectral radius r and index of imprimitivity h.

TABLE VI
CONNECTED, ELEMENTARY ABSORBING SETS FROM THE SET OF

4-CYCLE-FREE dv = 4 VARIABLE-REGULAR CODES

(a, b) Num. hmax rmin rmax

4,4 1 1 2 2
5,0 1 1 3 3
5,2 1 1 2.629 2.629
5,4 1 1 2.219 2.219
6,0 1 1 3 3
6,2 2 1 2.697 2.710
6,4 3 1 2.355 2.367
6,6 2 2 2 2
7,0 2 1 3 3
7,2 7 1 2.744 2.762
7,4 11 2 2.449 2.480
7,6 4 1 2.159 2.160
8,0 6 2 3 3
8,2 28 2 2.778 2.805
8,4 50 2 2.525 2.585
8,6 28 2 2.272 2.296
8,8 5 2 2 2
9,0 16 1 3 3
9,2 126 1 2.805 2.850
9,4 285 2 2.584 2.728
9,6 177 2 2.355 2.429
9,8 27 1 2.126 2.141

10,0 59 2 3 3
10,2 719 2 2.826 2.886
10,4 1,915 2 2.629 2.821
10,6 1,404 2 2.422 2.648
10,8 298 2 2.219 2.313

10,10 19 2 2 2
11,0 265 1 3 3
11,2 4,721 1 2.843 2.903
11,4 14,569 2 2.667 2.852
11,6 12,458 2 2.478 2.788
11,8 3,231 2 2.295 2.458

11,10 208 1 2.104 2.127

Table V shows the graphs found based on the set of 4-
cycle-free codes with dv = 3. The graphical equivalence
classes found are divided into rows by their (a, b) parameters
listed in the first column. The second column of each row
presents the number of equivalence classes found that meet
the (a, b) parameters and all our other assumptions. The third
column shows the maximum index of imprimitivity h over
the (a, b) equivalence classes. The fourth and fifth columns
show the minimum and maximum spectral radius r over the
(a, b) equivalence classes. To save space we have left out the
weakest (a, b) pairs with rmax ≤ 1.3. Tables VI and VII
present similar results based on codes with dv = 4 and 5,
respectively, omitting the (a, b) pairs with rmax ≤ 2.6 for
dv = 5.

These tables present enough information to comment on
the approximations to the spectral radius r developed in
Section III-C. The extreme relative estimation errors are
summarized in Table VIII. We find empirically that the ap-
proximation of (22) does not overestimate the spectral radius,
but generally underestimates it. For 90% of the dv = 3
equivalence classes, this approximation deviates by no more
than 6.0% below the true value of the spectral radius. The
approximation of (23) generally produces larger estimates of
the spectral radius, sometimes overestimating the true value.
For the dv = 3 equivalence classes shown in Table V, the
mean approximation error is −3.5% for (22) and +1.3% for
(23). For both estimators, we measure a standard deviation
of the relative error of about 2.0%. Since we find that the
correlation coefficient between the relative errors of these two
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TABLE VII
CONNECTED, ELEMENTARY ABSORBING SETS FROM THE SET OF

4-CYCLE-FREE dv = 5 VARIABLE-REGULAR CODES, WITH rmax > 2.6

(a, b) Num. hmax rmin rmax

5,5 1 1 3 3
5,7 1 1 2.629 2.629
6,0 1 1 4 4
6,2 1 1 3.693 3.693
6,4 2 1 3.360 3.403
6,6 4 1 3 3.112
6,8 5 1 2.697 2.767
7,1 1 1 3.875 3.875
7,3 5 1 3.596 3.669
7,5 14 1 3.307 3.427
7,7 23 1 3 3.130
7,9 25 1 2.744 2.827
8,0 3 1 4 4
8,2 16 1 3.775 3.827
8,4 68 1 3.522 3.673
8,6 165 1 3.271 3.465
8,8 252 2 3 3.208

8,10 232 2 2.778 2.918
8,12 124 2 2.525 2.619
9,1 28 1 3.904 3.905
9,3 276 1 3.693 3.769
9,5 1,151 2 3.464 3.665
9,7 2,541 2 3.243 3.521
9,9 3,284 2 3 3.289

9,11 2,541 2 2.805 3.071
9,13 1,150 2 2.584 2.751
10,0 60 2 4 4
10,2 1,188 2 3.822 3.870
10,4 8,435 2 3.626 3.789
10,6 27,706 2 3.421 3.810
10,8 49,991 2 3.220 3.717
10,10 53,884 2 3 3.440
10,12 35,721 2 2.826 3.191
10,14 14,308 2 2.629 3.009
10,16 3,224 2 2.422 2.652

TABLE VIII
EXTREME RELATIVE ESTIMATION ERRORS FOR THE SPECTRAL RADIUS

Originating With respect With respect
Table to (22) and to (23) and

rmin rmax rmin rmax

V (dv = 3) 0.0% −21.9% 6.1% −16.4%

VI (dv = 4) 0.0% −12.0% 2.1% −9.4%

VII (dv = 5) 0.0% −13.9% 1.0% −20.2%a

VII with b ≤ a 0.0% −13.9% 1.0% −12.9%
aDiscovered over the relatively weak (10, 16) trapping sets.

estimates to be 0.732, we may reduce the standard deviation
and bias by combining them. In summary, it appears that (23)
and the combined estimator are marginally better estimators
than (22).

As discussed in Section III-C, the approximation (23)
assumes that the trapping set contains mostly zero or one
unsatisfied check node per variable node, which is not always
true in Table VII (i.e., dv = 5). When the assumption does not
hold, the approximation of (23) can underestimate the spectral
radius significantly, as demonstrated by the extreme value
within Table VIII. In this case, the −20.2% error occurred
over the relatively weak (10, 16) trapping sets. If we limit the
processing of Table VII to its rows such that b ≤ a, i.e., the
strong trapping sets, then the extreme relative error for this
estimator would be reduced to −12.9% as shown in the final
row of Table VIII.
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“Analysis of absorbing sets and fully absorbing sets of array-based
LDPC codes,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 181–201,
Jan. 2010.

[17] Y. Han and W. E. Ryan, “Low-floor decoders for LDPC codes,” IEEE
Trans. Commun., vol. 57, no. 6, pp. 1663–1673, Jun. 2009.

[18] S. Laendner and O. Milenkovic, “Algorithmic and combinatorial analysis
of trapping sets in structured LDPC codes,” in Proc. Int. Conf. on
Wireless Netw., Commun. and Mobile Computing, Maui, HI, Jun. 2005,
pp. 630–635 vol.1.

[19] Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolić, “An
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