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Abstract—We consider a new fundamental question re-
garding the point-to-point memoryless channel. The
source-channel separation theorem indicates that random
codebook construction for lossy source compression and
channel coding can be independently constructed and
paired to achieve optimal performance for coordinating a
source sequence with a reconstruction sequence. But what
if we want the channel input to also be coordinated with
the source and reconstruction? Such situations arise in
network communication problems, where the correlation
inherent in the information sources can be used to correlate
channel inputs.

Hybrid codes have been shown to be useful in a number
of network communication problems. In this work we
highlight their advantages over purely digital codebook
construction by applying them to the point-to-point setting,
coordinating both the channel input and the reconstruction
with the source.1

INTRODUCTION

In point-to-point communication, one is usually con-
cerned with minimizing the distortion between the source
sequence Sn and the reproduction sequence Ŝn. In
common parlance, we desire necessary and sufficient
conditions such that E[d(Sn, Ŝn)] ≤ D. In the language
of coordination [6], we seek necessary and sufficient con-
ditions such that the empirical distribution of (Sn, Ŝn)
is close to a given PSŜ in total variation. Both of these
notions consider the source sequence and reproduction
sequence, but fail to include the channel input and output
sequences, Xn and Y n. We wish to understand the nature
of optimal communication in scenarios where we might
want Xn or Y n to be correlated with (or, coordinate
with) Sn or Ŝn. To that end, we investigate which em-
pirical distributions of (Sn, Xn, Y n, Ŝn) can be reliably
achieved if we design our encoder and decoder optimally.

1This work was partially supported by the National Science Foun-
dation (NSF) through the grant CCF-1116013.
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Fig. 1. Point-to-point communication. An information source Sn

is encoded for communication through a noisy channel PY |X . We
consider how the channel input and output, Xn and Y n, can be
correlated with the source and reconstruction, Sn and Ŝn.

By understanding which empirical distributions can be
achieved in the point-to-point communication problem,
including the channel inputs and outputs, we gain in-
sights that extend to network communication problems
involving multiple correlated sources. When information
sources are correlated and communication occurs over
channels with interference, it is useful to take advantage
of the correlation and use it to strategically correlate the
channel inputs to minimize the effect of the interference.
The point-to-point setting gives us a simple environment
to explore the extent with which this is possible and the
encoding and decoding techniques needed.

Despite the simplicity of the point-to-point setting, some
interesting technology applications arise. For example, a
media broadcast, such as video, which is designed to
accommodate both analog and digital receivers, fits well
into this framework. The most familiar approach in this
case is to split the communication resources (bandwidth
or power) into an analog transmission and a digital
transmission, and to take advantage of the analog signal
as side information for digital signal (as in the Wyner-Ziv
setting). However, it is not necessarily optimal to split the
communication resources. A single signal can serve both
purposes, and in the context of coordination we want
the channel output Y n and the digital reconstruction Ŝn

to each satisfy different distortion constraints. Another
interesting application is the design of “systematic”
transmissions, where an analog representation of the
source information is designed to be robust to noise. This
fits into our framework – we simply ask for coordination
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that results in the reconstruction Ŝn being equal to
the channel input Xn. Finally, digital watermarking can
also be studied in this coordination framework. In this
case, the watermarked media is the channel input, which
should obviously be highly correlated with the original
media content. Additionally, the watermark (Ŝn) should
be detectable even if the media is altered in a limited
way.

A classic result in information theory is the source-
channel separation theorem, which says that if we have
designed the optimal source codec and channel codec,
then we can minimize average distortion by concate-
nating the two operations, using “bits” as glue. For
our problem, however, separation is not good enough.
We draw on recent results on hybrid codes to strictly
improve the optimal regions. Hybrid codes combine bits,
which are digital entities, with symbol-by-symbol oper-
ations, which are analog entities. These analog/digital
combinations have been studied recently in the context
of joint source-channel coding for discrete memoryless
sources and channels and have been applied to multiuser
scenarios in [1] and [2].

Our problem is closely related to state amplification [3].
There, Sn is again given by nature, but the channel is
given by PY |XS , not PY |X . The receiver’s goal is to
reproduce the state sequence, in contrast to the Gel’fand-
Pinsker problem where the receiver wants to identify the
sender’s message. To use such a channel, Xn must be
coordinated with Sn; hence the relevance to our problem.
The relation to state amplification and the Gel’fand-
Pinsker problem prompts us to also consider the scenario
where the encoder is constrained to be causal. That
is, the input to the channel can only depend on past
source symbols, as opposed to depending on the entire
source sequence. In both this case and the strictly causal
case, we identify the coordination region, using methods
similar to those used in the analysis of causal state
amplification in [4] and [5].

SETUP

We are given an i.i.d. source parametrized by PS and
a memoryless stationary channel parametrized by PY |X .
The alphabets for source symbols, channel inputs, and
channel outputs are denoted by S, X , and Y , respec-
tively. In accordance with Figure 1, we have at our
disposal an encoder and decoder; depending on the

scenario, the encoder might be noncausal, causal, or
strictly causal. For block length n, the encoder and
decoder together constitute a code (fn, gn) where fn

and gn are sequences of functions {fi}ni=1 and {gi}ni=1:

• noncausal encoder: fi : Sn → X .
• causal encoder: fi : Si → X .
• strictly causal encoder: fi : Si−1 → X .
• decoder: gi : Yn → Ŝ.

In the three cases above, at time i the encoder produces
the channel input Xi. After n uses of the memoryless
channel, the (noncausal) decoder produces Ŝn according
to Ŝi = gi(Y

n). The actions of the encoder and decoder,
combined with the nature of the source and channel, give
us an induced distribution on (Sn, Xn, Y n, Ŝn).

Our model being defined, we can now state the condition
for achievability.

Definition 1. A distribution PSXY Ŝ is achievable if for
all ε > 0 there exists a block length n and a code
(fn, gn) such that

P
(∥∥PSnXnY nŜn − PSXY Ŝ

∥∥
TV

> ε
)
< ε,

where PSnXnY nŜn is the empirical distribution of the
tuple (Sn, Xn, Y n, Ŝn) induced by the chosen code.

It’s not too hard to see that an achievable PSXY Ŝ will
necessarily factor like PSPX|SPY |XPŜ|SXY , where PS

and PY |X are the given source and channel parameters.
This will be the case because PS and PY |X are given
by nature, and by the law of large numbers they will be
close to the empirical distributions PSn and PY n|Xn for
sufficiently large n.

We can view proximity in total variation as akin to
typicality.

Definition 2. Given a distribution PXY , the pair
(xn, yn) is in the ε-typical set Tε(X,Y ) if

‖Pxn,yn − PXY ‖TV ≤ ε

where

Pxn,yn(x, y) =
1

n

n∑
i=1

1{xi = x, yi = y}

is the empirical distribution of (xn, yn).

This is not too far from the usual definition of strong
typicality. With this definition, we see that achieving



PSXY Ŝ is nothing more than ensuring that, ∀ε > 0,
(Sn, Xn, Y n, Ŝn) ∈ Tε(SXY Ŝ) with high probability.
Next we define the coordination region, which will be
the focus of our results.

Definition 3. The coordination region C is the set of
achievable PSXY Ŝ .

It is not hard to prove that C is a closed, convex set.

RESULTS

We begin with an inner bound on the coordination region
for the case of noncausal encoder.

Theorem 1 (Noncausal encoder). Let PS and PY |X
be the given source and channel parameters. When the
encoder is allowed to be noncausal, an inner bound for
the coordination region C is given by

PSXY Ŝ :

∃U s.t.
PSXY ŜU = PSPU |SPX|USPY |XPŜ|UY ,

I(U ;S) ≤ I(U ;Y ).

 ⊂ C
Additionally, PX|SU and PŜ|UY can be restricted to func-
tions x(s, u) and ŝ(u, y) instead of general conditional
distributions.

This inner bound is a by-product of the achievability
scheme for hybrid codes (see [1],[2]). For more discus-
sion on this, see the achievability section below.

The next two theorems give a complete characterization
of the coordination region when the encoder is causal or
strictly causal.

Theorem 2 (Causal encoder). Let PS and PY |X be
the given source and channel parameters. With causal
encoder, the coordination region C is given by

C =


PSXY Ŝ :

∃U, V s.t.
PSXY ŜUV = PSPUPV |SUPX|SUPY |XPŜ|UV Y ,

I(U, V ;S) ≤ I(U, V ;Y ).


Additionally, PX|SU and PŜ|UV Y can be restricted to
functions x(s, u) and ŝ(u, v, y) instead of general con-
ditional distributions.

Theorem 3 (Strictly causal encoder). Let PS and PY |X
be the given source and channel parameters. With strictly
causal encoder, the coordination region C is given by

C =


PSXY Ŝ :

∃V s.t.
PSXY ŜV = PSPXPV |XSPY |XPŜ|V Y ,

I(X,V ;S) ≤ I(X,V ;Y ).


Additionally, PŜ|V Y can be restricted to be a function
ŝ(v, y) instead of a general conditional distribution.

EXAMPLE

Now we consider an example of what can be achieved
using hybrid codes that is not achievable using Shannon’s
separation method. When the encoder is noncausal, ap-
plying the separation method yields the following set of
achievable distributions:{

PSXY Ŝ :
PSXY Ŝ = PSPŜ|SPXPY |X

I(S; Ŝ) ≤ I(X;Y )

}
⊂ C

In particular, achievable PSXY Ŝ are required to factor as
PSŜPXY . In contrast, Theorem 1 allows for greater range
of correlation among S, X , Y , and Ŝ; the following is
an example of this.

Let PS be Bern(p) and PY |X be BSC(ε). Consider a
distribution PSXY Ŝ that is consistent with PS and PY |X ,
and also satisfies P[S 6= Ŝ] = P[S 6= X] = d. In other
words, we want our reproduction Ŝ and our channel
input X to be close to S in hamming distortion. Notice
that these conditions do not fully specify the distribution.
We will now see that if ε ≤ d ≤ p ≤ 1

2 , Theorem 1
guarantees achievability of PSXY Ŝ . We make no claims
here of necessity, just sufficiency.

To show the claim, choose X such that P[S 6= X] = d
and I(X;S) is minimized. From binary rate-distortion,
we know this means X ∼ Bern( p−d

1−2d). Choose U = X

and Ŝ(U, Y ) = X . With these choices, we see that

PSXY ŜU = PSPU |SPX|USPY |XPŜ|UY

because P[S 6= Ŝ] = P[S 6= X] = d. Now we just
need to check that I(U ;S) ≤ I(U ;Y ). We can view
our situation as S = X ⊕ Z1 and Y = X ⊕ Z2, where



Z1 ∼ Bern(d) and Z2 ∼ Bern(ε) are independent of X .
Then we have

I(U ;S) = I(X;S)

= H(S)−H(Z1)

≤ H(Y )−H(Z2)

= I(X;Y )

= I(U ;Y ).

where H(Z2) ≤ H(Z1) is due to ε ≤ d and H(S) ≤
H(Y ) is due to the fact that the entropy of a random
variable increases when passed through a binary sym-
metric channel, in this case BSC(d ? ε).

ACHIEVABILITY

The proof of achievability for the case of noncausal
encoder, obtained by using hybrid codes, comes directly
from [1], so we will omit it. However, an illustration of
hybrid codes is depicted in Figure 2. The main idea is
to find an auxiliary Un sequence that is jointly typical
with the source Sn and is part of a sparse codebook that
covers Sn. Then the channel input is constructed symbol-
by-symbol as a function of S and U . This symbol-
by-symbol function (the analog part) allows for Xn to
be correlated with Sn, while the construction of the
auxiliary sequence (the digital part) takes advantage of
compressing the entire source sequence. The decoder
obtains Un after observing Y n due to the sparsity of
the codebook and then constructs Ŝn symbol-by-symbol
from both Y and U .

The achievability schemes for Theorems 2 and 3 are very
similar to [4] and [5], and we will now provide a sketch
of the proof when the encoder is strictly causal (Theorem
3).

Fix PX , PV |XS and ŝ(v, y) consistent with an interior
point of C. We will use block-Markov-like encoding,
viewing the source as sequence of blocks:

. . . , Sn(i− 1), Sn(i), Sn(i+ 1), . . .

The idea is to compress Sn(i − 1) in the ith block,
using Xn(i − 1) and Y n(i − 1) as side information.
We first cover the source by using at least 2nI(S;V |X)

V n codewords and assign them randomly to greater than
2nI(S;V |X,Y ) bins (to first order in the exponent). During
the ith block we identify an index `i such that V n(`i)
is jointly typical with Sn(i − 1) and Xn(i − 1) and

Fig. 2. Hybrid code encoder. The encoder for a hybrid code has two
steps in producing channel inputs form a source sequence Sn. First,
the source sequence is compressed using lossy compression and an
auxiliary sequence Un. Then, the channel inputs Xn are constructed
symbol-by-symbol from Sn and Un. If properly designed, the
decoder is then able to decode Un from Y n and use both sequences
to form the reconstruction Ŝn.

then transmit Xn(mi), where mi is the bin index of
V n(`i). If the number of bins does not exceed 2nI(X;Y )

and the size of each bin does not exceed 2nI(V ;Y |X),
then the decoder will be able to recover `i by using
Xn(i − 1) and Y n(i − 1) as side information. Finally,
the decoder produces Ŝn(i−1) symbol-by-symbol using
ŝ(v, y). Under the standard random coding analysis, this
scheme ensures joint typicality with high probability as
long as I(X,V ;S) < I(X,V ;Y ).

When the encoder is causal (but not strictly causal), the
proof is similar, except now we introduce an additional
auxiliary random variable U that plays the role of X
in the strictly causal case. The channel input Xn is
produced symbol-by-symbol with a function x(u, s).

CONVERSE

The converses for Theorems 2 and 3 are similar; we
show the latter here. To prove the converse for Theorem
3, it is enough to show that for all ε > 0, there exists a
distribution

PSXY ŜV = PSPXP V |XSPY |XP Ŝ|V Y

such that

• I(X,V ;S) ≤ I(X,V ;Y )
• ‖PSXY Ŝ − PSXY Ŝ‖TV < ε

Then by the closedness of C we will be done. The key to
the proof is in the identification of the auxiliary random



variables. We first introduce Q ⊥ (Sn, Xn, Y n, Ŝn)
uniformly distributed on the set {1, ..., n}, and define
VQ = (SQ−1, Y n

Q+1). Then we define P by setting
(S,X, Y, Ŝ) = (SQ, XQ, YQ, ŜQ) and V = (VQ, Q).
With these choices, we can verify that S ⊥ X , SV −
X − Y , and SX − Y V − Ŝ all hold. Finally, we have

I(X,V ;S) = I(XQ, VQ, Q;SQ)

= I(XQ, VQ;SQ|Q)

=
1

n

n∑
i=1

I(Xi, Vi;Si)

=
1

n

n∑
i=1

I(Xi, S
i−1, Y n

i+1;Si)

=
1

n

n∑
i=1

I(Si−1, Y n
i+1;Si)

=
1

n

n∑
i=1

I(Y n
i+1;Si|Si−1)

=
1

n

n∑
i=1

I(Si−1;Yi|Y n
i+1)

≤ 1

n

n∑
i=1

I(Si−1, Y n
i+1;Yi)

≤ 1

n

n∑
i=1

I(Xi, Vi;Yi)

= I(XQ, VQ;YQ|Q)

≤ I(XQ, VQ, Q;YQ)

= I(X,V ;Y )

To finish the proof, we can use our hypothesis that
PSXY Ŝ is achievable to show that∥∥PSXY Ŝ − PSXY Ŝ

∥∥
TV

< ε.

The details of such a claim can be found in [6], but the
key is that

E[PSn,Xn,Y n,Ŝn ] = PSQ,XQ,YQ,ŜQ
.

SUMMARY

Joint source-channel coding can be crucial, even in a
point-to-point memoryless communication setting, when
the right questions are asked. The question we investigate
is how strongly the channel input and output can be
correlated with the information source during a commu-
nication transmission. Our work makes use of the hybrid
codes studied in [1] and [2] and finds that variations of

hybrid analog-digital codes are optimal when the encoder
is causal or strictly causal.

We find it interesting that we need not look further than
the point-to-point memoryless communication setting
to find use for unconventional and somewhat complex
coding schemes such as hybrid codes.
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