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Abstract—The belief propagation (BP) or sum-product algo-
rithm is a widely-used message-passing method for computing
marginal distributions in graphical models. At the core of
the BP message updates, when applied to a graphical model
involving discrete variables with pairwise interactions, lies a
matrix-vector product with complexity that is quadratic in the
state dimension d, and requires transmission of a (d − 1)-
dimensional vector of real numbers (messages) to its neighbors.
Since various applications involve very large state dimensions,
such computation and communication complexities can be pro-
hibitively complex. In this paper, we propose a low-complexity
variant of BP, referred to as stochastic belief propagation (SBP).
As suggested by the name, it is an adaptively randomized
version of the BP message updates in which each node passes
randomly chosen information to each of its neighbors. The
SBP message updates reduce the computational complexity
(per iteration) from quadratic to linear in d, without assuming
any particular structure of the potentials, and also reduce the
communication complexity significantly, requiring only log2 d
bits transmission per edge. Moreover, we establish a number of
theoretical guarantees for the performance of SBP, showing that
it converges almost surely to the BP fixed point for any tree-
structured graph, and for any graph with cycles satisfying a
contractivity condition. In addition, for these graphical models,
we provide non-asymptotic upper bounds on the convergence
rate, showing that the ℓ∞ norm of the error vector decays no
slower than O

(

1/
√
t
)

with the number of iterations t on trees

and the normalized mean-squared error decays as O
(

1/t
)

for
general graphs. This analysis, also supported by experimental
results, shows that SBP can provably yield reductions in
computational and communication complexities for various
classes of graphical models.1

Keywords: Graphical models; sum-product algorithm; low-

complexity belief propagation; randomized algorithms;

stochastic approximation.

I. INTRODUCTION

Graphical models provide a general framework for de-

scribing statistical interactions among large collections of

random variables. A broad range of fields—among them

error-control coding, communication theory, statistical signal

processing, computer vision, and bioinformatics—involve
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problems that can be fruitfully tackled using the formalism

of graphical models. A computational problem central to

such applications is that of marginalization, meaning the

problem of computing marginal distributions over a subset

of random variables. Naively approached, these marginaliza-

tion problems have exponential complexity, and hence are

computationally intractable. Therefore, graphical models are

only useful when combined with efficient algorithms. For

graphs without cycles, the marginalization problem can be

solved exactly and efficiently via an algorithm known as the

belief propagation (BP) algorithm or sum-product algorithm.

It is a distributed algorithm, in which each node performs

a set of local computations, and then relays the results to

its graph neighbors in the form of so-called messages. For

graphs with cycles, the BP algorithm is no longer an exact

method, but nonetheless is widely used and known to be

extremely effective in many settings. For a more detailed

discussion of the role of the marginalization problem and

the use of the BP algorithm, we refer the reader to various

overview papers (e.g., [17], [18], [32], [2]).

In many applications of BP, the messages themselves are

high-dimensional in nature, either due to discrete random

variables with a very large number of possible realizations

d (which will be referred to as the number of states), due to

factor nodes with high degree, or due to continuous random

variables that are discretized. Examples of such problems

include disparity estimation in computer vision, tracking

problems in sensor networks, and error-control decoding. For

such problems, it may be expensive to compute and/or store

the messages, and as a consequence, BP may run slowly,

and be limited to small-scale instances. Motivated by this

challenge, researchers have studied a variety of techniques

to reduce the complexity of BP in different applications

(e.g., see the papers [9], [27], [19], [14], [15], [6], [26] and

references therein). At the core of the BP message-passing

is a matrix-vector multiplication, with complexity scaling

quadratically in the number of states d. Certain graphical

models have special structures that can be exploited so as

to reduce this complexity. For instance, in when applied to

decode low-density parity-check codes for channel coding

(e.g., [10], [17]), the complexity of message-passing, if

performed naively, would scale exponentially in the factor

degrees. However, a clever use of the fast Fourier transform



over GF(2r) reduces this complexity to linear in the factor

degrees (e.g., see the paper [25] for details). Other problems

arising in computer vision involve pairwise factors with

a circulant structure for which the fast Fourier transform

can also reduce complexity [9]. Similarly, computation can

be accelerated by exploiting symmetry in factors [15], or

additional factorization properties of the distribution [19].

In the absence of structure to exploit, other researchers

have proposed different types of quantization strategies

for BP message updates [6], [14], as well as stochastic

methods based on particle filtering or non-parametric belief

propagation (e.g., [3], [27], [7]) that approximate continuous

messages by finite numbers of particles. For certain classes

of these methods, it is possible to establish consistency as the

number of particles tends to infinity [7], or to establish non-

asymptotic results inversely proportional to the square root

of the number of particles [13]. As the number of particles

diverges, the approximation error becomes negligible, a

property that underlies such consistency proofs. Researchers

have also proposed stochastic techniques to improve the

decoding efficiency of binary error-correcting codes [30],

[21]. These techniques, which are based on encoding mes-

sages with sequences of Bernoulli random variables, lead to

efficient decoding hardware architectures.

In this paper, we focus on the problem of implementing

BP in high-dimensional discrete spaces, and propose a novel

low-complexity algorithm, which we refer to as stochastic

belief propagation (SBP). As suggested by its name, it is an

adaptively randomized version of the BP algorithm, where

each node only passes randomly selected partial information

to its neighbors at each round. The SBP algorithm has two

features that make it practically appealing. First, it reduces

the computational cost of BP by an order of magnitude;

in concrete terms, for arbitrary pairwise potentials over d
states, it reduces the per iteration computational complexity

from quadratic to linear—that is, from Θ
(
d2
)

to Θ
(
d
)
.

Second, it significantly reduces the message/communication

complexity, requiring transmission of only log2 d bits per

edge as opposed to (d− 1) real numbers in the case of BP.

Even though SBP is based on low-complexity updates, we

are able to establish conditions under which it converges (in

a stochastic sense) to the exact BP fixed point, and moreover,

to establish quantitative bounds on this rate of convergence.

These bounds show that SBP can yield provable reductions

in the complexity of computing a BP fixed point to a toler-

ance δ > 0. In more precise terms, we first show that SBP

is strongly consistent on any tree-structured graph, meaning

that it converges almost surely to the unique BP fixed point;

in addition, we provide non-asymptotic upper bounds on the

ℓ∞ norm (maximum value) of the error vector as a function

of iteration number (Theorem 1). For general graphs with

cycles, we show that when the ordinary BP message updates

satisfy a type of contraction condition, then the SBP message

updates are strongly consistent, and converge in normalized

mean-squared error at the rate O(1/t) to the unique BP

fixed point, where t is the number of iterations. We also

show that the typical performance is sharply concentrated

around its mean (Theorem 2). These theoretical results are

supported by simulation studies, showing the convergence of

the algorithm on various graphs, and the associated reduction

in computational complexity that is possible.

The remainder of the paper is organized as follows. We

begin in Section II with background on graphical models as

well as the BP algorithm. In Section III, we provide a precise

description of the SBP, before turning in Section III-B to

statements of our main theoretical results, as well as discus-

sion of some of their consequences. Section IV is devoted

to the proofs of our results, with more technical aspects

of the proofs deferred to the Appendices. In Section V,

we demonstrate the correspondence between our theoretical

predictions and the algorithm’s practical behavior.

II. BACKGROUND

In this section, we provide some background on graphical

models as well as the belief propagation algorithm.

A. Graphical Models

Consider a random vector X := {X1, X2, . . . , Xn},
where for each v = 1, 2, . . . , n, the variable Xv takes values

in some discrete space X := {1, 2, . . . , d} with cardinality

d. An undirected graphical model, also known as a Markov

random field, defines a family of joint probability distribu-

tions over this random vector by associating the index set

{1, 2, . . . , n} with the vertex set V of an undirected graph

G = (V, E). In addition to the vertex set, the graph consists

of a collection of edges E ⊂ V ×V , where a pair (v, u) ∈ E
if and only if nodes u and v are connected by an edge.2 The

structure of the graph describes the statistical dependencies

among the different random variables—in particular, via

the cliques3 of the graph. For each clique I of the graph,

let ψI : X |I| → (0,∞) be a function of the sub-vector

XI := {Xv, v ∈ I} of the random variables indexed by the

clique, and then consider the set of all distributions over X
that factorize as

P(x1, . . . , xn) ∝
∏

I∈C

ψI(xI), (1)

where C is the set of all cliques in the graph.

As a concrete example, consider the two-dimensional grid

shown in Figure 1(a). Since its cliques consist of the set of

all vertices V together with the set of all edges E , the general

factorization (1) takes the special form

P(x1, . . . , xn) ∝
∏

v∈V

ψv(xv)
∏

(v,u)∈E

ψvu(xv, xu), (2)

2It should be noted that by (v, u) we mean an unordered tuple of vertices.
3A clique I of a graph is a subset of vertices that are all joined by edges,

and so form a fully connected subgraph.
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where ψv : X → (0,∞) is the node potential function for

node v, and ψvu : X × X → (0,∞) is the edge potential

function for the edge (v, u). A factorization of this form (2)

is known as a pairwise Markov random field. It is important

to note that there is no loss of generality in assuming a

pairwise factorization of this form; indeed, any graphical

model with discrete random variables can be converted into

a pairwise form by suitably augmenting the state space

(e.g., see Yedidia et al. [33] or Wainwright and Jordan [32],

Appendix E.3). Moreover, the BP message updates can be

easily translated from the original graph to the pairwise

graph, and vice versa. Accordingly, for the remainder of this

paper, we focus on the case of a pairwise MRF.

ψvu

ψu
ψv

(a)

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

(b)

Fig. 1. Examples of pairwise Markov random fields. (a) A
two-dimensional grid: the potential functions ψu and ψv

are associated with nodes u and v, respectively, whereas
the potential function ψvu is associated with edge (v, u).
(b) Hidden Markov model including both hidden variables
(x1, . . . , x5), represented as white nodes, and observed
variables (y1, . . . , y5), represented as shaded nodes.

In various application contexts, the random vector

(X1, . . . , Xn) is an unobserved or “hidden” quantity, and

the goal is to draw inferences on the basis of a collection

of observations (Y1, . . . , Yn). The link between the observed

and hidden variables is specified in terms of a conditional

probability distribution, which in many cases can be written

in the product form P(y | x) =
∏n
v=1 P(yv | xv).

For instance, in error-control coding using a low-density

parity check code, the vector X takes values in a linear

subspace of GF (2)n, corresponding to valid codewords, and

the observation vector Y is obtained from some form of

memoryless channel (e.g., binary symmetric, additive white

Gaussian noise, etc.). In image denoising applications, the

vector X represents a rasterized form of the image, and the

observation Y corresponds to a corrupted form of the image.

In terms of drawing conclusions about the hidden vari-

ables based on the observations, the central object is the

posterior distribution P(x | y). From the definition of

the conditional probability and the form of the prior and

likelihoods, this posterior can also be factorized in pairwise

form

P(x | y) ∝ P(x1, . . . , xn)

n∏

v=1

P(yv | xv)

=
∏

v∈V

ψ̃v(xv)
∏

(v,u)∈E

ψvu(xv, xu),

where ψ̃v(xv) := ψv(xv)P(yv | xv) is the new node

compatibility function. (Since the observation yv is fixed,

there is no need to track its functional dependence.) Thus, the

problem of computing marginals for a posterior distribution

can be cast4 as an instance of computing marginals for a

pairwise Markov random field (2).

Our focus in this paper is on the marginalization prob-

lem, meaning the computation of the single-node marginal

distributions

P(xv) :=
∑

{x′ | x′

v
=xv}

P (x′1, . . . , x
′
n) for each v ∈ V ,

(3)

and more generally, higher-order marginal distributions on

edges and cliques. Note that to calculate this summation,

brute force is not tractable and requires ndn−1 computa-

tions. For any graph without cycles—known as a tree—

this computation can be carried far more efficiently in only

O(nd2) operations using an algorithm known as the belief

propagation, to which we now turn.

B. Belief Propagation Algorithm

Belief propagation, is an iterative algorithm consisting

of a set of local message-passing rounds, for computing

either exact or approximate marginal distributions. For tree-

structured (cycle-free) graphs, it is known that BP message-

based marginals converge to the exact marginals in a finite

number of iterations. However, the same message-passing

updates can also be applied to more general graphs, and are

known to be effective for computing approximate marginals

in numerous applications. Here we provide a very brief treat-

ment, referring the reader to various standard sources [17],

[2], [33], [32] for further background.

4For illustrative purposes, we have assumed here that the distribution
P(y | x) has a product form, but a somewhat more involved reduction also
applies to a general observation model.
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In order to define the message-passing updates, we re-

quire some further notation. For each node u ∈ V , let

N (u) := {v | (v, u) ∈ E} denote its set of neighbors,

and let ~E(u) := {(v ← u) | v ∈ N (u)} denote the set of

all directed edges emanating from u. Finally, we define
~E := ∪u∈V ~E(u), the set of all directed edges in the graph;

note that ~E has cardinality 2|E|. In the BP algorithm, one

message mvu ∈ R
d is assigned to every directed edge

(v ← u) ∈ ~E . By concatenating all of these d-dimensional

vectors, one for each of the 2|E| members of ~E , we obtain

a D-dimensional vector of messages m = {mvu}(v←u)∈~E ,

where D := 2|E|d.

At each round t = 0, 1, 2, . . ., every node u ∈ V calculates

a message mt+1
vu ∈ R

d to be sent to its neighbor v ∈ N (u).
In mathematical terms, this operation can be represented as

an update of the form mt+1
vu = Fvu(m

t) where Fvu : RD →
R
d is the local update function of the directed edge (v ← u).

In more detail, for each xv ∈ X , we have5

mt+1
vu (xv) = [Fvu(m

t)](xv)

= κ
∑

xu∈X

(
ψvu(xv, xu)ψu(xu)

∏

w∈N (u)\{v}

mt
uw(xu)

)
,

(4)

where κ is a normalization constant chosen to ensure that∑
xv

mt+1
vu (xv) = 1. Figure 2(a) provides a graphical repre-

sentation of the flow of information in this local update.

By concatenating the local updates (4), we obtain a global

update function F : RD → R
D of the form

F (m) = {Fvu(m)}(v←u)∈~E . (5)

Typically, the goal of message-passing is to obtain a fixed

point, meaning a vector m∗ ∈ R
D such that F (m∗) = m∗

and (4) can be seen as an iterative way of solving this fixed-

point equation. For any tree-structured graph, it is known that

the update (5) has a unique fixed point. For a general graph

(with some mild conditions on the potentials; see Yedidia et

al. [33] for details), it is known that the global update (5) has

at least one fixed point, but it is no longer unique in general.

However, there are various types of contraction conditions

that can be used to guarantee uniqueness on a general graph

(e.g., [29], [12], [20], [23]).

Given a fixed point m∗, node v computes its marginal

(approximation) τ∗v by combining the local potential function

ψv with a product of all incoming messages as

τ∗v (xv) = κ ψv(xv)
∏

u∈N (v)

m∗vu(xv), (6)

where κ is a normalization constant chosen so that∑
xv∈X

τ∗v (xv) = 1. See Figure 2(b) for an illustration of

5It is worth mentioning that mt+1
vu is only a function of the messages

mt
uw for w ∈ N (u)\{v}. Therefore, we have Fvu : R(ρu−1)d → R

d,
where ρu is the degree of the node u. Since it is clear from the context

and for the purpose of reducing the notation overhead, we say mt+1
vu =

Fvu(mt) instead of mt+1
vu = Fvu({mt

uw}w∈N (u)\{v}).

v u

w2

w1

muw2

muw1

mvu

(a)

v u

w2

w1

muw2

muw1

muv

(b)

Fig. 2. Graphical representation of message-passing algo-
rithms. (a) Node u transmits the message mvu = Fvu(m),
derived from (4), to its neighbor v. (b) Upon receiving all
the messages, node u updates its marginal estimate.

this computation. For any tree-structured graph, the quantity

τ∗v (xv) is equal to the single-node marginal P(xv), as

previously defined (3). For a graph with cycles, the vector

τ∗v represents an approximation to the single-node marginal,

and is known to be a useful approximation for many classes

of graphical models.

III. ALGORITHM AND MAIN RESULTS

We now turn to a description of the SBP algorithm (Sec-

tion III-A), as well as the statement of our main theoretical

guarantees on its behavior (Section III-B).

A. Stochastic Belief Propagation

When applied to a pairwise graphical model with random

variables taking d states, the number of summations and

multiplications required by the original BP algorithm

is Θ
(
d2
)

per iteration and per edge as can be seen

by inspection of the message update equation (4). This

quadratic complexity—which is incurred on a per iteration,

per edge basis—is prohibitive in many applications, where

the state dimension may be on the order of thousands. As

discussed earlier in Section I, although certain graphical
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models have particular structures that can be exploited to

reduce the complexity of the updates, not all problems

have such special structures, so that a general-purpose

approach is of interest. In addition to computational cost,

a standard BP message update can also be expensive in

terms of communication cost, since each update requires

transmitting (d − 1) real numbers along each edge. For

applications that involve power limitations, such as sensor

networks, reducing this communication cost is also of

interest.

Stochastic belief propagation is an adaptively randomized

form of the usual BP message updates that yields savings in

both computational and communication cost. It is motivated

by a simple observation—namely, that the message-passing

update along the directed edge (v ← u) can be formulated

as an expectation over suitably normalized columns of

a compatibility matrix (see (7)). Here the probability

distribution in question depends on the incoming messages,

and changes from iteration to iteration. This perspective

leads naturally to an adaptively randomized variant of BP:

instead of computing and transmitting the full expectation

at each round—which incurs Θ(d2) computational cost

and requires sending Θ(d) real numbers—the SBP

algorithm simply picks a single normalized column with the

appropriate (message-dependent) probability, and performs

a randomized update. As we show, each such operation can

be performed in Θ(d) time and requires transmitting only

log2 d bits, so that the SBP message updates are less costly

by an order of magnitude.

With this intuition in hand, we are now ready for a precise

description of the SBP algorithm. Let us view the edge

potential function ψvu as a matrix of numbers ψvu(i, j),
for i, j = 1, . . . , d. For the directed edge (v ← u), define

the collection of column vectors6

Γvu(:, j) :=
ψvu(:, j)∑d
i=1 ψvu(i, j)

, (7)

and marginal weights βvu(j) :=
(∑d

i=1 ψvu(i, j)
)
ψu(j),

for j = 1, 2, . . . , d. We assume that the column vectors

Γvu(:, j) and normalization constants βvu(j) have been

pre-computed and stored, which can be done in an off-line

manner and requires Θ(d2) operations. In addition, the

algorithm makes use of a positive sequence of step sizes

{λt}∞t=0. In terms of these quantities, the SBP algorithm

consists of the steps shown in Figure 3.

The per iteration per edge computational complexity of

the SBP algorithm lies in calculating the probability mass

function pvu, defined in (9); generating a random index

Jvu according to the mass function (9), and performing

6The columns of the compatibility matrix Γvu are normalized to sum to

one: i.e.,
∑d

i=1 Γvu(i, j) = 1 for all j = 1, 2, . . . , d.

the weighted update (10). Denoting the maximum degree

of the graph by ρmax, we require at most (ρmax − 1)d
multiplications to compute Mvu. Moreover, an additional

2d operations are needed to compute the probability mass

function pvu. On the other hand, generating a random

index Jvu, can be done with less than d operations by

picking a number U uniformly at random from [0, 1] and

setting7 Jvu := inf
{
j :

∑j
ℓ=1 pvu(ℓ) > U

}
. Finally

the update (10) needs 3d + 3 operations. Adding up these

contributions, we find that the SBP algorithm requires at

most (ρmax +5)d+3 multiplications and/or summations per

iteration per edge to update the messages. As can be seen

from (4), the regular BP complexity is Θ
(
d2
)
. Therefore, for

graphs with bounded degree (of most interest in practical

applications), the SBP message updates have reduced the

per iteration computational complexity by a factor of d. In

addition to computational efficiency, SBP provides us with a

significant gain in message/communication complexity over

BP. This can be observed from the fact that the normalized

compatibility matrix Γvu is only a function of edge potentials

ψvu, hence known to the node v. Therefore, node u has to

transmit only the random column index Jvu to node v, which

can be done with log2 d bits. Thus, we obtain a significant

reduction in communication complexity relative to standard

BP, which requires transmitting a (d−1)-dimensional vector

of real numbers per edge at every round. Here we summarize

the features of our algorithm that make it appealing for

practical purposes.

• Computational complexity: SBP reduces the per itera-

tion complexity by an order of magnitude from Θ(d2)
to Θ(d).

• Communication complexity: SBP requires transmitting

only log2 d bits per edge in contrast to transmitting a

(d− 1)-dimensional vector of real numbers in the case

of BP.

The remainder of the paper is devoted to understanding

when, and if so, how quickly the SBP message updates

converge to a BP fixed point. Let us provide some intuition

as to why such a behavior might be expected. Recall that

the update (10) is random, depending on the choice of index

J chosen in step II(b). Suppose that we take expectations of

the update (10) only over the distribution (9), in effect con-

ditioning on all past randomness in the algorithm. (We make

this idea precise via the notion of σ-fields in our analysis.)

Doing so yields that the expectation of the update (10) is

given by

E
[
mt+1
vu | mt

vu

]
= (1− λt)mt

vu + λt
d∑

j=1

Γvu(:, j) p
t
vu(j).

Recalling the definitions (7) and (9) of the matrix Γvu
and mass function pvu, respectively, and performing some

7It is known that for any distribution function G(·), the random variable
G−1(U) has the distribution G(·).
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Stochastic Belief Propagation Algorithm:

(I) Initialize the message vector m0 ∈ R
D
+ .

(II) For iterations t = 0, 1, 2, 3, . . ., and for each directed edge (v ← u) ∈ ~E :

(a) Compute the product of incoming messages:

M t
vu(j) =

∏

w∈N (u)\{v}

mt
uw(j) for j ∈ {1, . . . , d}. (8)

(b) Pick a random index J t+1
vu ∈ {1, 2, . . . , d} according to the probability distribution

ptvu(j) ∝ M t
vu(j) βvu(j) for j ∈ {1, . . . , d}. (9)

(c) For a given step size λt ∈ (0, 1), update the message mt+1
vu ∈ R

d
+ via

mt+1
vu = (1− λt)mt

vu + λt Γvu(:, J
t+1
vu ). (10)

Fig. 3: Specification of stochastic belief propagation.

algebra, we see that, in an average sense, the SBP message

update is equivalent to (a damped version of the) usual BP

message update. The technical difficulties lie in showing

that despite the fluctuations around this average behavior,

the SBP updates still converge to the BP fixed point when

the stepsize or damping parameter λt is suitably chosen. We

now turn to precisely this task.

B. Main Theoretical Results

Thus far, we have proposed a stochastic variant of the

usual belief propagation (BP) algorithm. In contrast to

the usual deterministic updates, this algorithm generates a

random sequence {mt}∞t=0 of message vectors. This ran-

domness raises two natural questions:

• Is the SBP algorithm strongly consistent? More pre-

cisely, assuming that the ordinary BP algorithm has a

unique fixed point m∗, under what conditions do we

have mt → m∗ almost surely as t→∞?

• When convergence occurs, how fast does it take place?

The computational complexity per iteration is signifi-

cantly reduced, but what are the trade-offs incurred by

the number of iterations required?

The goal of this section is to provide some precise answers

to these questions, ones which show that under certain

conditions, there are provable gains to be achieved by the

SBP algorithm. We begin with the case of trees, for which

the ordinary BP message updates are known to have a unique

fixed point for any choice of potential functions. For any

tree-structured problem, the upcoming Theorem 1 guarantees

that the SBP message updates are strongly consistent, and

moreover that in terms of the elementwise ℓ∞ norm they

converge in expectation at least as quickly as O(1/
√
t),

where t is the number of iterations. We then turn to the case

of general graphs. Although the BP fixed point need not be

unique in general, a number of contractivity conditions that

guarantee uniqueness and convergence of ordinary BP have

been developed (e.g., [29], [12], [20], [23]). Working under

such conditions, we show in Theorem 2 that the SBP algo-

rithm is strongly consistent, and we show that the normalized

mean-squared error decays at least as quickly as O(1/t). In

addition, we provide high probability bounds on the error at

each iteration, showing that the typical performance is highly

concentrated around its average. Finally, in Section III-B3,

we provide a new set of sufficient conditions for contractivity

in terms of node/edge potentials and the graph structure.

As we discuss, our theoretical analysis shows not only that

SBP is provably correct, but also that in various regimes,

substantial gains in overall computational complexity can

be obtained relative to the ordinary BP.

1) Guarantees for Tree-Structured Graphs: We begin

with the case of a tree-structured graph, meaning a graph

G that contains no cycles. As a special case, the hidden

Markov chain shown in Figure 1(b) is an instance of such a

tree-structured graph. Recall that for some integer r ≥ 1, a

square matrix A is said to be nilpotent of degree r if Ar = 0.

(We refer the reader to Horn and Johnson [11] for further

background on nilpotent matrices and their properties.) Also

recall the definition of the diameter of a graph G, denoted

by diam(G), as the length (number of edges) of the longest

path between any pair of nodes in the graph. For a tree, this

diameter can be at most n−1, a bound achieved by the chain

graph. In stating Theorem 1, we make use of the following

definition: for vectors x, y ∈ R
D, we write x � y if and

only if x(i) ≤ y(i) for all i = 1, 2, . . . , D. Moreover, for an

arbitrary x ∈ R
D, let |x| denote the vector obtained from

taking the absolute value of its elements. With this notation

in hand, we are now ready to state our first result.

Theorem 1 (Tree-structured graphs). For any tree-structured

Markov random field, the sequence of messages {mt}∞t=0

generated by the SBP algorithm with step size λt = 1/(t+1),
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has the following properties:

(a) The message sequence {mt}∞t=0 converges almost surely

to the unique BP fixed point m∗ as t→∞.

(b) There exist a nilpotent matrix A ∈ R
D×D of degree at

most r = diam(G) such that the D-dimensional error

vector mt −m∗ satisfies the elementwise inequality

E
[
|mt −m∗|

]
� 4 (I − 2A)−1

~1√
t
, (11)

for all iterations t = 1, 2, . . ..

Remarks: The proof of this result is given in Section IV-A.

Part (a) shows that the SBP algorithm is guaranteed to con-

verge almost surely to the unique BP fixed point, regardless

of the choice of node/edge potentials and the initial message

vector. Part (b) refines this claim by providing a quantitative

upper bound on the rate of convergence: in expectation, the

ℓ∞ norm of the error vector is guaranteed to decay at the

rate O(1/
√
t). As noted by a helpful reviewer, the upper

bound in part (b) is likely to be conservative at times, since

the inverse matrix (I−2A)−1 may have elements that grow

exponentially in the graph diameter r. As shown by our

experimental results, the theory is overly conservative in this

way, as SBP still behaves well on trees with large diameters

(such as chains). Indeed, in the following section, we provide

less conservative results for general graphs under a certain

contractivity condition.

2) Guarantees for General Graphs: Our next theorem

addresses the case of general graphs. In contrast to the

case of tree-structured graphs, depending on the choice

of potential functions, the BP message updates may have

multiple fixed points, and need not converge in general. A

sufficient condition for both uniqueness and convergence of

the ordinary BP message updates, which we assume in our

analysis of SBP, is that the update function F , defined in (5),

is contractive, meaning that there exists some 0 < µ < 2
such that

‖F (m)− F (m′)‖2 ≤
(
1− µ

2

)
‖m−m′‖2. (12)

Past work has established contractivity conditions of this

form when the BP updates are formulated in terms of

log messages [29], [12], [20], [23]. In Section III-B3, we

use related techniques to establish sufficient conditions for

contractivity for the BP message update F that involves the

messages (as opposed to log messages).

Recalling the normalized compatibility matrix with

columns Γvu(:, j) := ψvu(:, j)ψu(j)/βvu(j), we define its

minimum and maximum values per row as follows:8

B0
vu(i) := min

j∈X
Γvu(i, j) > 0, and

B
0

vu(i) := max
j∈X

Γvu(i, j) < 1. (13)

8As will be discussed later, we can obtain a sequence of more refined

(tighter) lower {Bℓ
vu(i)}∞ℓ=0 and upper {Bℓ

vu(i)}∞ℓ=0 bounds by confining
the space of feasible messages.

The pre-factor in our bounds involves the constant

K(ψ) := 4

∑
(v←u)∈~E

(
maxi∈X B

0

vu(i)
)

∑
(v←u)∈~E

(
mini∈X B

0
vu(i)

) . (14)

With this notation, we have the following result:

Theorem 2 (General graphs). Suppose that the BP update

function F : R
D → R

D satisfies the contraction condi-

tion (12).

(a) Then BP has a unique fixed point m∗, and the SBP

message sequence {mt}∞t=0, generated with the step size

λt = O(1/t), converges almost surely to m∗ as t→∞.

(b) With the step size λt = α/(µ · (t + 2)) for some fixed

1 < α < 2, we have

E
[
‖mt −m∗‖22

]

‖m∗‖22
≤ 3α K(ψ) α2

2α µ2(α− 1)

(
1

t

)

+
‖m0 −m∗‖22
‖m∗‖22

(
2

t

)α
(15)

for all iterations t = 1, 2, . . . .
(c) With the step size λt = 1/(µ · (t+ 1)), we have

E
[
‖mt −m∗‖22

]

‖m∗‖22
≤ K(ψ)

µ2

(
1 + log t

t

)
; (16)

also for every 0 < ǫ < 1 and t ≥ 2, we have

‖mt −m∗‖22
‖m∗‖22

≤ K(ψ)

µ2

(
1 +

8√
ǫ

)(
1 + log t

t

)

(17)

with probability at least 1− ǫ.
Remarks: The proof of Theorem 2 is given in Section IV-B.

Here we discuss some of the various guarantees that it

provides. First, part (a) of the theorem shows that the SBP

algorithm is strongly consistent, in that it converges almost

surely to the unique BP fixed point. This claim is analogous

to the almost sure convergence established in Theorem 1(a)

for trees. Second, the bound (15) in Theorem 2(b) provides

a non-asymptotic bound on the normalized mean-squared

error E[‖mt − m∗‖22]/‖m∗‖22. For the specified choice of

step-size (1 < α < 2), the first component of the bound (15)

is dominant, hence the expected error (in squared ℓ2-norm)

is of the order9 1/t. Therefore, after t = Θ(1/δ) iterations,

the SBP algorithm returns a solution with MSE at most

O(δ). Finally, part (c) provides bounds, both in expectation

and with high probability, for a slightly different step size

choice. On one hand, the bound in expectation (16) is

of the order O((log t)/t), and so includes an additional

logarithmic factor not present in the bounds from part (b).

However, as shown in the high probability bound (17), the

9At least superficially, this rate might appear faster than the 1/
√
t rate

established for trees in Theorem 1(b); however, the reader should be careful
to note that Theorem 1 involves the elementwise ℓ∞-norm, which is not
squared, as opposed to the squared ℓ2-norm studied in Theorem 2.
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squared error is also guaranteed to satisfy a sample-wise

version of the same bound with high probability. This

theoretical claim is consistent with our later experimental

results, showing that the error exhibits tight concentration

around its expected behavior.

Let us now compare the guarantees of SBP to those

of BP. Under the contraction condition of Theorem 2, the

ordinary BP message updates are guaranteed to converge

geometrically quickly, meaning that Θ(log(1/δ)) iterations

are sufficient to obtain δ-accurate solution. In contrast, under

the same conditions, the SBP algorithm requires Θ(1/δ)
iterations to return a solution with MSE at most δ, so that its

iteration complexity is larger. However, as noted earlier, the

BP message updates require Θ(d2) operations for each edge

and iteration, whereas the SBP message updates require only

Θ(d) operations. Putting the pieces together, we conclude

that:

• on one hand, ordinary BP requires Θ
(
|E| d2 log(1/δ)

)

operations to compute the fixed point to accuracy δ;

• in comparison, SBP requires Θ
(
|E| d (1/δ)

)
operations

to compute the fixed point to expected accuracy δ.

Consequently, we see that as long the desired tolerance is

not too small—in particular, if δ ≥ 1/d—then SBP leads

to computational savings. In many practical applications,

the state dimension is on the order of 103 to 105, so that

the precision δ can be of the order 10−3 to 10−5 before

the complexity of SBP becomes of comparable order to

that of BP. Given that most graphical models represent

approximations to reality, it is likely that larger tolerances δ
are often of interest.

3) Sufficient Conditions for Contractivity: Theorem 2 is

based on the assumption that the update function is contrac-

tive, meaning that its Lipschitz constant L is less than one.

In past work, various authors have developed contractivity

conditions, based on analyzing the log messages, that guar-

antee uniqueness and convergence of ordinary BP (e.g., [29],

[12], [20], [23]). Our theorem requires contractivity on the

messages (as opposed to log messages), which requires

a related but slightly different argument. In this section,

we show how to control L and thereby provide sufficient

conditions for Theorem 2 to be applicable.

Our contractivity result applies when the messages under

consideration belong to a set of the form

S :=
{
m ∈ R

D
∣∣∣
∑

i∈X

mvu(i) = 1, Bvu(i) ≤ mvu(i) ≤ Bvu(i)

∀(v ← u) ∈ ~E , ∀i ∈ X
}
,

(18)

for some choice of the upper and lower bounds—namely,

Bvu(i) and Bvu(i) respectively. For instance, for all itera-

tions t = 0, 1, . . ., the messages always belong to a set of

this form10 with Bvu(i) = B0
vu(i) and Bvu(i) = B

0

vu(i), as

previously defined (13). Since the bounds (B0
vu(i), B

0

vu(i))
do not involve the node potentials, one suspects that they

might be tightened at subsequent iterations, and indeed, there

is a progressive refinement of upper and lower bounds of this

form. Assuming that the messages belong to a set S at an

initial iteration, then for any subsequent iterations, we are

guaranteed the inclusion

m ∈ F (S) :=
{
F (m′) ∈ R

D | m′ ∈ S
}
, (19)

which then leads to the refined upper and lower bounds

B1
vu(i) := inf

m∈S

{ d∑

j=1

Γvu(i, j)
βvu(j)Mvu(j)∑d
ℓ=1 βvu(ℓ)Mvu(ℓ)

}
,

and

B
1

vu(i) := sup
m∈S

{ d∑

j=1

Γvu(i, j)
βvu(j)Mvu(j)∑d
ℓ=1 βvu(ℓ)Mvu(ℓ)

}
,

where we recall the quantity

Mvu(j) =
∏
w∈N (u)\{v}muw(j) previously defined (8).

While such refinements are possible, in order to streamline

our presentation, we focus primarily on the zero’th order

bounds Bvu(i) = B0
vu(i) and Bvu(i) = B

0

vu(i).
Given a set S of the form (18), we associate with the di-

rected edges (v ← u) and (u← w) (where w ∈ N (u)\{v})
the non-negative numbers

Φ1(v, u) :=
∑

w∈N (u)\{v}

(
φvu,uw (φvu,uw + χvu,uw)

) 1
2 ,

(20)

and

Φ2(u,w) :=
∑

v∈N (u)\{w}

(
φvu,uw (φvu,uw + χvu,uw)

) 1
2 ,

(21)

where

φvu,uw := max
j∈X

sup
m∈S

{
βvu(j)Mvu(j)∑d
k=1 βvu(k)Mvu(k)

1

muw(j)

}
,

(22)

and

χvu,uw := max
j∈X

sup
m∈S

{
βvu(i)Mvu(i)(∑d

k=1 βvu(k)Mvu(k)
)2

d∑

j=1

βvu(j)Mvu(j)

muw(j)

}
. (23)

Recall the normalized compatibility matrix Γvu ∈ R
d×d

on the directed edge (v ← u), as previously defined

10It turns out that the BP update function on the directed edge (v ←
u) is a convex combination of the normalized columns Γvu(:, j) for

j = 1, . . . , d. Therefore, we have B0
vu(i) ≤ mvu(i) ≤ B

0
vu(i), for all

i = 1, . . . , d.
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in (7). Since Γvu has positive entries, the Perron-Frobenius

theorem [11] guarantees that the maximal eigenvalue is

equal to one, and is associated with a pair of left and right

eigenvectors (unique up to scaling) with positive entries.

Since Γvu is column-stochastic, any multiple of the all-

one vector ~1 can be chosen as the left eigenvector. Letting

zvu ∈ R
d denote the right eigenvector with positive entries,

we are guaranteed that ~1T zvu > 0, and hence we may

define the matrix Γvu − zvu~1
T /(~1T zvu). By construction,

this matrix has all of its eigenvalues strictly less than 1 in

absolute value (Lemma 8.2.7, [11]).

Proposition 1. The global update function F : RD → R
D

defined in (5) is Lipschitz with constant at most

L := 2 max
(v←u)∈~E

|||Γvu −
zvu~1

T

~1T zvu
|||2 max

(v←u)∈~E
Φ1(v, u)

max
(u←w)∈~E

Φ2(u,w),

(24)

where |||·|||2 denotes the maximum singular value of a matrix.

In order to provide some intuition for Proposition 1, let us

consider a simple but illuminating example.

Example 1 (Potts model). The Potts model [9], [28], [16] is

often used for denoising, segmentation, and stereo computa-

tion in image processing and computer vision. It is a pairwise

Markov random field that is based on edge potentials of the

form

ψvu(i, j) =

{
1 if i = j, and

γ if i 6= j,

for all edges (v, u) ∈ E and i, j ∈ {1, 2, . . . , d}. The

parameter γ ∈ (0, 1] can be tuned to enforce different

degrees of smoothness: at one extreme, setting γ = 1
enforces no smoothness, whereas a choice close to zero

enforces a very strong type of smoothness. (To be clear,

the special structure of the Potts model can be exploited to

compute the BP message updates quickly; our motivation in

considering it here is only to provide a simple illustration of

our contractivity condition.)

For the Potts model, we have

βvu(j) = ψu(j) (1 + (d− 1)γ), and hence Γvu is a

symmetric matrix with

Γvu(i, j) =

{
1

1+(d−1)γ if i = j
γ

1+(d−1)γ if i 6= j.

Some straightforward algebra shows that the second largest

singular value of Γvu is given by (1 − γ)/(1 + (d − 1)γ),
whence

max
(v←u)∈~E

|||Γvu −
zvu~1

T

~1T zvu
|||2 =

1− γ
1 + (d− 1)γ

.

The next step is to find upper bounds on the terms

Φ1(v, u) and Φ2(u,w), in particular by upper bounding the

quantities φvu,uw and χvu,uw, as defined in equations (22)

and (23) respectively. In Appendix A, we show that the

Lipschitz constant of Fvu is upper bounded as

L ≤ 4 (1− γ)(1 + (d− 1)γ)

max
u∈V

{
(ρu − 1)2

γ2ρu
max
j∈X

{
ψu(j)∑d
ℓ=1 ψu(ℓ)

}2}
,

where ρu is the degree of node u. Therefore, a sufficient

condition for contractivity in the case of the Potts model is

max
u∈V

{
(ρu − 1)

γρu
max
j∈X

{
ψu(j)∑d
ℓ=1 ψu(ℓ)

}}
<

(
1

4 (1− γ) (1 + (d− 1)γ)

) 1
2

. (25)

To gain intuition, consider the special case in which the node

potentials are uniform, so that ψu(j)/(
∑d
ℓ=1 ψu(ℓ)) = 1/d

for j = 1, 2, . . . , d. In this case, for any graph with bounded

node degrees, the bound (25) guarantees contraction for all

γ in an interval [ǫ, 1]. For non-uniform node potentials, the

inequality (25) is weaker, but it can be improved via the

refined sets (19) discussed previously.

IV. PROOFS

We now turn to the proofs of our two main results,

namely Theorems 1 and 2, as well as the auxiliary result,

Proposition 1, on contractivity of the BP message updates.

For our purposes, it is convenient to note that the ordinary

BP update can be written as an expectation of the form

Fvu(m
t) = EJt+1

vu ∼ptvu

[
Γvu(:, J

t+1
vu )

]
, (26)

for all t = 0, 1, . . .. Here the index J t+1
vu is chosen randomly

according to the probability mass function (9).

A. Proof of Theorem 1

We begin by stating a lemma that plays a central role in

the proof of Theorem 1.

Lemma 1. For any tree-structured Markov random field,

there exists a nilpotent matrix A ∈ R
D×D of degree at most

r = diam(G) such that

|F (m)− F (m′)| � A |m−m′|, (27)

for all m,m′ ∈ S .

The proof of this lemma is somewhat technical, so that

we defer it to Appendix B. In interpreting this result, the

reader should recall that for vectors x, y ∈ R
D, the notation

x � y denotes inequality in an elementwise sense—i.e.,

x(i) ≤ y(i) for i = 1, . . . , D.
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An immediate corollary of this lemma is the existence

and uniqueness of the BP fixed point. Since we may iterate

inequality (27), we find that

|F (ℓ)(m)− F (ℓ)(m′)| � Aℓ |m−m′|,

for all iterations ℓ = 1, 2, . . ., and arbitrary messages m,

m′, where F (ℓ) denotes the composition of F with itself

ℓ times. The nilpotence of A ensures that Ar = 0, and

hence F (r)(m) = F (r)(m′) for all messages m, and m′.
Let m∗ = F (r)(m) denote the common value. The claim is

that m∗ is the unique fixed point of the BP update function

F . This can be shown as follows: from Lemma 1 we have

|F (m∗) − m∗| = |F (r+1)(m) − F (r)(m)|
� A |F (r)(m) − F (r−1)(m)|.

Iterating the last inequality for the total of r times, we obtain

|F (m∗) − m∗| � Ar |F (m) − m| = 0,

and hence F (m∗) = m∗. On the other hand, the uniqueness

of the BP fixed point is a direct consequence of the facts that

for any fixed point m∗ we have F (r)(m∗) = m∗, and for all

arbitrary messages m, m′ we have F (r)(m) = F (r)(m′).
Accordingly, we see that Lemma 1 provides an alternative

proof of the well-known fact that BP converges to a unique

fixed point on trees after at most r = diam(G) iterations.

We now show how Lemma 1 can be used to establish the

two claims of Theorem 1.

1) Part (a): Almost Sure Consistency: We begin with the

almost sure consistency claim of part (a). By combining all

the local updates, we form the global update rule

mt+1 = (1− λt)mt + λt νt+1 (28)

for iterations t = 0, 1, 2, . . ., where

νt+1 := {Γvu(:, J t+1
vu )}(v←u)∈~E

is the D-dimensional vector obtained from stacking up all

the normalized columns Γvu(:, J
t+1
vu ). Defining the vector

Y t+1 := νt+1 − F (mt) ∈ R
D, we can rewrite the update

equation (28) as

mt+1 = (1− λt)mt + λt F (mt) + λt Y t+1 (29)

for t = 0, 1, 2, . . .. With our step size choice λt = 1/(t+1),
unwrapping the recursion (29) yields the representation

mt =
1

t

t−1∑

ℓ=0

F (mℓ) +
1

t

t∑

ℓ=1

Y ℓ.

Subtracting the unique fixed point m∗ from both sides then

leads to

mt −m∗ =
1

t

t−1∑

ℓ=1

(F (mℓ)− F (m∗))

+
1

t

t∑

ℓ=1

Y ℓ +
1

t
(F (m0)− F (m∗))

︸ ︷︷ ︸
Zt

, (30)

where we have introduced the convenient shorthand Zt. We

may apply the triangle inequality to each element of this

vector equation; doing so and using Lemma 1 to upper bound

the terms |F (mℓ) − F (m∗)|, we obtain the element-wise

inequality

|mt −m∗| � 1

t

t−1∑

ℓ=1

A |mℓ −m∗| + |Zt| for t = 1, 2, . . ..

Since Ar is the all-zero matrix, unwrapping the last inequal-

ity r = diam(G) times yields the element-wise upper bound

|mt −m∗| � Gt0 + AGt1 +A2Gt2 + · · ·+Ar−1Gtr−1,
(31)

where the terms Gtℓ are defined via the recursion

Gtℓ := 1
t

∑t−1
j=1G

j
ℓ−1 for ℓ = 1, . . . , r − 1, with initial

conditions Gt0 := |Zt|.

It remains to control the sequences {Gtℓ}∞t=1 for

ℓ = 0, 1, . . . , r − 1. In order to do so, we first establish

a martingale difference property for the variables Y t

defined prior to (29). For each t = 0, 1, 2, . . ., define the

σ-field F t := σ(m0,m1, . . . ,mt), as generated by the

randomness in the messages up to time t. Based on the

representation (26), we see that E
[
Y t+1|F t

]
= ~0, showing

that {Y t+1}∞t=0 forms martingale difference sequence with

respect to the filtration {F t}∞t=0. From the definition,

it can be seen that the entries of Y t+1 are bounded;

more precisely, we have |Y t+1(i)| ≤ 1 for all iterations

t = 0, 1, 2, . . ., and all states i = 1, 2, . . . D. Consequently,

the sequence {Y ℓ}∞ℓ=1 is a bounded martingale difference

sequence.

We begin with the term Gt0. Since Y ℓ is a bounded

martingale difference, standard convergence results [8]

guarantee that |∑t
ℓ=1 Y

ℓ|/t → ~0 almost surely. Moreover,

we have the bound |F (m0) − F (m∗)|/t � ~1/t. Recalling

the definition of Zt from (30), we conclude that Gt0 = |Zt|
converges to the all-zero vector almost surely as t → ∞.

In order to extend our argument to the terms Gtℓ for

ℓ = 1, . . . , r − 1, we make use of the following fact:

for any sequence of real numbers {xt}∞t=0 such that

xt → 0, we also have (
∑t−1
ℓ=0 x

ℓ)/t → 0 (e.g., see

Royden [24]). Consequently, for any realization ω such that

the deterministic sequence {Gt0(ω)}∞t=0 converges to zero,
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we are also guaranteed that the sequence {Gt1(ω)}∞t=0, with

elements Gt1(ω) = (
∑t−1
j=1G

j
0(ω))/t, converges to zero.

Since we have shown that Gt0
a.s.→ 0, we conclude that

Gt1
a.s.→ 0 as well. This argument can be iterated, thereby

establishing almost sure convergence for all of the terms

Gtℓ. Putting the pieces together, we conclude that the vector

|mt −m∗| converges almost surely to the all-zero vector as

t→∞, thereby completing the proof of part (a).

2) Part (b): Bounds on Expected Absolute Error: We now

turn to part (b) of Theorem 1, which provides upper bounds

on the expected absolute error. We establish this claim by

exploiting some martingale concentration inequalities [5].

From part (a), we know that {Y t}∞t=1 is a bounded mar-

tingale difference sequence, in particular with |Y t(i)| ≤ 1.

Applying the Azuma-Hoeffding inequality [5] yields the tail

bound

P

(
1

t
|

t∑

ℓ=1

Y ℓ(i)| > γ

)
≤ 2 exp

(
− t γ2

2

)
,

for all γ > 0, and i = 1, 2, . . . , D. By integrating this tail

bound, we can upper bound the mean: in particular, we have

E

[
1

t
|
t∑

ℓ=1

Y ℓ(i)|
]

=

∫ ∞

0

P

(
1

t
|
t∑

ℓ=1

Y ℓ(i)| > γ

)
dγ

≤
√

2π

t
,

and hence

E
[
Gt0

]
= E

[
|Zt|

]
�

√
2π

t
~1 +

~1

t
� 4√

t
~1. (32)

Turning to the term Gt1, we have

E[Gt1] =
1

t

t−1∑

ℓ=1

E[Gℓ0]
(i)

� 1

t

t−1∑

ℓ=1

4√
ℓ
~1

(ii)

� 2 · 4√
t
~1,

where step (i) uses the inequality (32), and step

(ii) is based on the elementary upper bound∑t−1
ℓ=1 1/

√
ℓ ≤ 1 +

∫ t−1
1

1/
√
x dx < 2

√
t. By repeating

this same argument in a recursive manner, we conclude

that E
[
Gtℓ

]
� (2ℓ · 4/

√
t)~1 for ℓ = 2, 3, . . . , r − 1. Taking

the expectation on both sides of the the inequality (31) and

substituting these upper bounds, we obtain

E
[
|mt −m∗|

]
� 4

( r−1∑

ℓ=0

2ℓAℓ
)

~1√
t

= 4 (I − 2A)−1
~1√
t
,

where we have used the fact that Ar = 0.

B. Proof of Theorem 2

We now turn to the proof of Theorem 2. Note that since

the update function is contractive, the existence and unique-

ness of the BP fixed point is an immediate consequence of

the Banach fixed-point theorem [1].

1) Part (a): Almost Sure Consistency: We establish part

(a) by applying the Robbins-Monro theorem, a classical

result from stochastic approximation theory (e.g., [22], [4]).

In order to do so, we begin by writing the update (10) in

the form

mt+1
vu = mt

vu − λt
{
mt
vu − Γvu(:, J

t+1
vu )

}
︸ ︷︷ ︸

Hvu(mt

vu
,Jt+1

vu )

,

where for any realization J̄vu ∈ {1, 2, . . . , d}, the mapping

mvu 7→ Hvu(mvu, J̄vu) should be understood as a function

from R
d to R

d. By concatenating together all of these

mappings, one for each directed edge (v ← u), we obtain a

family of mappings H(·, J̄) from R
D to R

D, one for each

realization J̄ ∈ {1, 2, . . . , d}2|~E| of column indices.

With this notation, we can write the message update of

the SBP algorithm in the compact form

mt+1 = mt − λt H(mt, J t+1), (33)

valid for for t = 1, 2, . . ., and suitable for application of

the Robbins-Monro theorem. (See Appendix C for further

details.)

In order to apply this result, we need to verify its hy-

potheses. First of all, it is easy to see that we have a bound

of the form

E
[
‖H(m,J)‖22

]
≤ c(1 + ‖m‖22),

for some constant c. Moreover, the conditional distribution

of the vector J t+1, given the past, depends only on mt; more

precisely we have

P
(
J t+1|J t, J t−1, . . . ,mt,mt−1, . . .

)
= P

(
J t+1|mt

)
.

Lastly, defining the averaged function

h(m) := E
[
H(m,J)|m

]
= m− F (m), the final

requirement is to verify that the fixed point m∗ satisfies the

stability condition

inf
m∈S\{m∗}

〈m−m∗, h(m)〉 > 0, (34)

where 〈·, ·〉 denotes the Euclidean inner product, and S
denotes the compact set in which the messages lie. Using the

Cauchy-Schwartz inequality and the fact that F is Lipschitz

with constant L = 1− µ/2, we obtain

〈m−m∗, h(m)− h(m∗)〉
= ‖m−m∗‖22 − 〈m−m∗, F (m)− F (m∗)〉
≥ µ

2
‖m−m∗‖22 > 0, (35)

where the strict inequality holds for all m 6= m∗. Since m∗

is a fixed point, we must have h(m∗) = m∗ − F (m∗) = 0,

which concludes the proof.
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2) Part (b): Non-Asymptotic Bounds on Normalized

Mean-Squared Error: Let et := (mt −m∗)/‖m∗‖2 denote

the re-normalized error vector. In order to upper bound

E
[
‖et‖22

]
for all t = 1, 2, . . ., we first control the quantity

‖et+1‖22 − ‖et‖22, corresponding to the increment in the

squared error. Doing some simple algebra yields

‖et+1‖22−‖et‖22
=

1

‖m∗‖22
(
‖mt+1 −m∗‖22 − ‖mt −m∗‖22

)

=
1

‖m∗‖22
〈mt+1 −mt, mt+1 +mt − 2m∗〉.

Recalling the update equation (33), we obtain

‖et+1‖22 − ‖et‖22 =
1

‖m∗‖22
〈−λtH(mt, J t+1),

− λtH(mt, J t+1) + 2(mt −m∗)〉

=
(λt)2

‖m∗‖22
‖H(mt, J t+1)‖22

− 2λt

‖m∗‖22
〈H(mt, J t+1), mt −m∗〉.

(36)

Now taking the expectation on both sides of (36) yields

E[‖et+1‖22]− E[‖et‖22] =
(λt)2

‖m∗‖22
E
[
‖H(mt, J t+1)‖22

]

− 2λt

‖m∗‖22
E
[
E
[
〈H(mt, J t+1), mt −m∗〉|F t

]]

=
(λt)2

‖m∗‖22
E
[
‖H(mt, J t+1)‖22

]

− 2λt

‖m∗‖22
E
[
〈h(mt)− h(m∗), mt −m∗〉

]
,

(37)

where we used the facts that E[H(mt, J t+1)|F t] = h(mt)
and h(m∗) = 0. We continue by upper bounding the term

G1 = ‖H(mt, J t+1)‖22/‖m∗‖22 and lower bounding the

term G2 = 〈h(mt)− h(m∗), mt −m∗〉/‖m∗‖22.

Lower bound on G2: Recalling (35) from our proof of part

(a), we see that

G2 ≥
µ

2
‖et‖22. (38)

Upper bound on G1: From the definition of the update

function, we have

‖H(mt, J t+1)‖22 =
∑

(v←u)∈~E

‖mt
vu − Γvu(:, J

t
vu)‖22

≤ 2
∑

(v←u)∈~E

(
‖mt

vu‖22 + ‖Γvu(:, J tvu)‖22
)
.

Recalling the bounds (13) and using the fact that vectors

mt
vu and Γvu(:, J

t
vu) sum to one, we obtain

‖H(mt, J t+1)‖22
≤ 2

∑

(v←u)∈~E

(
max
i∈X

B
0

vu(i)
)(
‖mt

vu‖1 + ‖Γvu(:, J tvu)‖1
)

= 4
∑

(v←u)∈~E

(
max
i∈X

B
0

vu(i)
)
.

On the other hand, we also have

‖m∗‖22 ≥
∑

(v←u)∈~E

(
min
i∈X

B0
vu(i)

)
‖m∗vu‖1

=
∑

(v←u)∈~E

(
min
i∈X

B0
vu(i)

)
.

Combining the pieces, we conclude that the term G1 is upper

bounded as

G1 ≤ K(ψ) := 4

∑
(v←u)∈~E

(
maxi∈X B

0

vu(i)
)

∑
(v←u)∈~E

(
mini∈X B

0
vu(i)

) . (39)

Since both G1 and G2 are non-negative, the bounds (39)

and (38) also hold in expectation. Combining these bounds

with the representation (37), we obtain the upper bound

E[‖et+1‖22]− E[‖et‖22] ≤ K(ψ) (λt)2 − λtµ E[‖et‖22], or

equivalently

E[‖et+1‖22] ≤ K(ψ) (λt)2 + (1− λtµ) E[‖et‖22].
Setting λt = α/(µ(t + 2)) and unwrapping this recursion

yields

E[‖et+1‖22] ≤
K(ψ) α2

µ2

t+2∑

i=2

(
1

i2

t+2∏

ℓ=i+1

(
1− α

ℓ

))

+

t+2∏

ℓ=2

(
1− α

ℓ

)
E[‖e0‖22], (40)

where we have adopted the convention that the inside

product is equal to one for i = t+2. The following lemma,

proved in Appendix D, provides a useful upper bound on

the products arising in this expression:

Lemma 2. For all i ∈ {1, 2, . . . , t+ 1}, we have

t+2∏

ℓ=i+1

(
1− α

ℓ

)
≤

(
i+ 1

t+ 3

)α
.

Substituting this upper bound into the inequality (40) yields

E[‖et+1‖22]

≤ K(ψ) α2

µ2(t+ 3)α

t+2∑

i=2

(i+ 1)α

i2
+

(
2

t+ 3

)α
E[‖e0‖22]

≤ K(ψ) α2

µ2(t+ 3)α
(3
2

)α t+2∑

i=2

1

i2−α
+

(
2

t+ 3

)α
E[‖e0‖22].
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It remains to upper bound the term
∑t+2
i=2 1/i

2−α. Since the

function 1/x2−α is decreasing in x for α < 2, we have the

integral upper bound
∑t+2
i=2 1/i2−α ≤

∫ t+2

1
1/x2−α dx,

which yields

E[‖et+1‖22]

≤





(
3
2

)α K(ψ)α2

µ2(1−α)
1

(t+3)α +
(

2
t+3

)α
E[‖e0‖22] 0 < α < 1,

3
2
K(ψ)
µ2

log(t+2)
t+3 + 2

t+3E[‖e0‖22] α = 1,
(
3
2

)α K(ψ)α2

µ2(α−1)
(t+2)α−1

(t+3)α +
(

2
t+3

)α
E[‖e0‖22] 1 < α < 2.

If we now focus on the range of α ∈ (1, 2), which yields

the fastest convergence rate, some simple algebra yields the

form of the claim given in the theorem statement.

3) High Probability Bounds: Recall the algebra at the

beginning of Section IV-B2. Adding and subtracting the

conditional mean of the second term of (36) yields

‖et+1‖22−‖et‖22 =
(λt)2

‖m∗‖22
‖H(mt, J t+1)‖22

− 2λt

‖m∗‖22
〈h(mt), mt −m∗〉+ 2λt 〈Y t+1, et〉,

where we have denoted the term

Y t+1 :=
h(mt)−H(mt, J t+1)

‖m∗‖2
.

Recalling the bounds on G1 = ‖H(mt, J t+1)‖22 / ‖m∗‖22
and G2 = 〈h(mt), mt − m∗〉 / ‖m∗‖22 from part (b), we

have

‖et+1‖22 − ‖et‖22 ≤ K(ψ)(λt)2 − µλt‖et‖22 + 2λt〈Y t+1, et〉,

or equivalently

‖et+1‖22 ≤ K(ψ)(λt)2 + (1− µλt)‖et‖22 + 2λt〈Y t+1, et〉.

Substituting the step size choice λt = 1/(µ(t+1)) and then

unwrapping this recursion yields

‖et+1‖22

≤ K(ψ)

µ2(t+ 1)

t+1∑

τ=1

1

τ
+

2

µ (t+ 1)

t∑

τ=0

〈Y τ+1, eτ 〉

≤ K(ψ)

µ2

1 + log(t+ 1)

t+ 1
+

2

µ (t+ 1)

t∑

τ=0

〈Y τ+1, eτ 〉.

(41)

Note that by construction, the sequence {Y τ}∞τ=1 is a

martingale difference sequence with respect to the filtration

Fτ = σ(m0,m1, . . . ,mτ ) that is E
[
Y τ+1 | Fτ

]
= ~0 and

accordingly E
[
〈Y τ+1, eτ 〉

]
= 0 for τ = 0, 1, 2, . . ..

We continue by controlling the stochastic term

(
∑t
τ=0〈Y τ+1, eτ 〉)/(t+ 1)—namely its variance,

var

(
1

t+ 1

t∑

τ=0

〈Y τ+1, eτ 〉
)

=
1

(t+ 1)2
E

[( t∑

τ=0

〈Y τ+1, eτ 〉
)2
]

=
1

(t+ 1)2

t∑

τ=0

E
[
〈Y τ+1, eτ 〉2

]

︸ ︷︷ ︸
T1

+
2

(t+ 1)2

∑

0≤τ2<τ1≤t

E
[
〈Y τ1+1, eτ1〉〈Y τ2+1, eτ2〉

]

︸ ︷︷ ︸
T2

.

Since we have

E
[
〈Y τ1+1, eτ1〉〈Y τ2+1, eτ2〉

]

= E
[
E
[
〈Y τ1+1, eτ1〉〈Y τ2+1, eτ2〉 | Fτ1

]]

= E
[
〈Y τ2+1, eτ2〉 E

[
〈Y τ1+1, eτ1〉 | Fτ1

]]
= 0,

for all τ1 > τ2, the cross product term T2 vanishes.

On the other hand, the martingale difference sequence is

bounded. This can be shown as follows: from part (b)

we know ‖H(mτ , Jτ+1)‖2/‖m∗‖2 ≤
√
K(ψ); also using

the fact that ‖ · ‖2 is convex, Jensen’s inequality yields

‖h(mτ )‖2/‖m∗‖2 ≤
√
K(ψ); therefore, we have

‖Y τ+1‖2 ≤
‖H(mτ , Jτ+1)‖2

‖m∗‖2
+
‖h(mτ )‖2
‖m∗‖2

≤ 2
√
K(ψ).

Moving on to the first term T1, we exploit the Cauchy

Schwartz inequality in conjunction with the fact that the

martingale difference sequence is bounded to obtain

E
[
〈Y τ+1, eτ 〉2

]
≤ E

[
‖Y τ+1‖22 ‖eτ‖22

]

≤ 4K(ψ) E
[
‖eτ‖22

]
.

Taking the expectation on both sides of the inequality (41)

yields E
[
‖eτ‖22

]
≤ (K(ψ)/µ2) (1 + log τ)/τ ; and hence we

have

E
[
〈Y τ+1, eτ 〉2

]
≤ 4K(ψ)2

µ2

1 + log τ

τ
,

for all τ ≥ 1. Moreover, since

‖m0‖2
‖m∗‖2

≤



∑

(v←u)∈~E

(
maxi∈X B

0

vu(i)
)

∑
(v←u)∈~E

(
mini∈X B

0
vu(i)

)




1
2

=

√
K(ψ)

4
,

the initial term E
[
〈Y 1, e0〉2

]
≤ 4K(ψ) E

[
‖e0‖22

]
is upper

bounded by 4K(ψ)2. Finally, putting all the pieces together,
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we obtain

var

(
1

t+ 1

t∑

τ=0

〈Y τ+1, eτ 〉
)

≤ 4K(ψ)2

µ2 (t+ 1)2

t∑

τ=1

1 + log τ

τ
+

4K(ψ)2

(t+ 1)2

(i)

≤ 4K(ψ)2

µ2

(1 + log(t+ 1))2 + 4

(t+ 1)2
,

where inequality (i) follows from elementary inequality

t∑

τ=1

(1 + log τ)/τ ≤ (1 + log t)2,

and the fact that µ < 2. Consequently, we may apply

Chebyshev’s inequality to control the stochastic deviation∑t+1
τ=1 〈Y τ+1, eτ 〉/(t+ 1). More specifically, for any γ > 0,

a quantity to be specified shortly, we have

P

(∣∣ 2

µ (t+ 1)

t∑

τ=0

〈Y τ+1, eτ 〉
∣∣ > γ

)

≤ 16K(ψ)2

µ4 γ2
(1 + log(t+ 1))2 + 4

(t+ 1)2
. (42)

We now combine our earlier bound (41) with the tail

bound (42), making the specific choice

γ =
4K(ψ)

µ2
√
ǫ

√
(1 + log(t+ 1))2 + 4

t+ 1
,

for a fixed 0 < ǫ < 1, thereby concluding that

‖et+1‖22 ≤
K(ψ)

µ2

1 + log(t+ 1)

t+ 1

+
4K(ψ)

µ2
√
ǫ

√
(1 + log(t+ 1))2 + 4

t+ 1
,

with probability at least 1 − ǫ. Simplifying the last bound,

we obtain

‖et+1‖22 ≤
K(ψ)

µ2

(
1 +

8√
ǫ

)
1 + log(t+ 1)

t+ 1
,

for all t ≥ 1, with probability at least 1− ǫ.

C. Proof of Proposition 1

Recall the definition (9) of the probability mass func-

tion {pvu(j)}j∈X used in the update of directed edge

(v ← u). This probability depends on the current value

of the message, so we can view it as being generated

by a function qvu : RD → R
d that performs the mapping

m 7→ {pvu(j)}j∈X . In terms of this function, we can

rewrite the BP message update equation (4) on the di-

rected edge (v ← u) as Fvu(m) = Γvu qvu(m), where

the renormalized compatibility matrix Γvu was defined pre-

viously (7). We now define the D × D block diagonal

matrix Γ := blkdiag{Γvu}(v←u)∈~E , as well as the function

q : RD → R
D obtained by concatenating all of the functions

qvu, one for each directed edge. In terms of these quantities,

we rewrite the global BP message update in the compact

form F (m) = Γ q(m).
With these preliminaries in place, we now bound the

Lipschitz constant of the mapping F : RD → R
D. Given an

arbitrary pair of messages m,m′ ∈ S , we have

‖F (m)− F (m′)‖22 = ‖Γ
(
q(m)− q(m′)

)
‖22

=
∑

(v←u)∈~E

‖Γvu
(
qvu(m)− qvu(m′)

)
‖22.

(43)

By the Perron-Frobenius theorem [11], we know that

Γvu has a unique maximal eigenvalue of 1, achieved for

the left eigenvector ~1 ∈ R
d, where ~1 denotes the vec-

tor of all ones. Since the d-dimensional vectors qvu(m)
and qvu(m

′) are both probability distributions, we have

〈~1, qvu(m)− qvu(m′)〉 = 0. Therefore, we conclude that

Γvu
(
qvu(m)− qvu(m′)

)

=
(
Γvu −

zvu~1
T

~1T zvu

)(
qvu(m)− qvu(m′)

)
,

where zvu denotes the right eigenvector of Γvu correspond-

ing to the eigenvalue one. Combining this equality with the

representation (43), we find that

‖F (m)− F (m′)‖22

=
∑

(v←u)∈~E

‖
(
Γvu −

zvu~1
T

~1T zvu

)(
qvu(m)− qvu(m′)

)
‖22

≤ max
(v←u)∈~E

|||Γvu −
zvu~1

T

~1T zvu
|||22 ‖q(m)− q(m′)‖22. (44)

It remains to upper bound the Lipschitz constant of the

mapping q : RD → R
D previously defined.

Lemma 3. For all m 6= m′, we have

‖q(m)− q(m′)‖2
‖m−m′‖2

≤ 2 max
(v←u)∈~E

Φ1(v, u) max
(u←w)∈~E

Φ2(u,w),

(45)

where the quantities Φ1(v, u), and Φ2(u,w) were previously

defined in (20) and (21) .

As the proof of Lemma 3 is somewhat technical, we defer

it to Appendix E. Combining the upper bound (45) with the

earlier bound (44) completes the proof of the proposition.

V. EXPERIMENTAL RESULTS

In this section, we present a variety of experimental

results that confirm the theoretical predictions, and show

that SBP is a practical algorithm. We provide results both

for simulated graphical models, and real-world applications

to image denoising and disparity computation.
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A. Simulations on Synthetic Problems

We start by performing some simulations for the Potts

model, in which the edge potentials are specified by a

parameter γ ∈ (0, 1], as discussed in Example 1. The node

potentials are generated randomly, on the basis of fixed

parameters µ ≥ σ > 0 satisfying µ + σ < 1, as follows:

for each v ∈ V and label i 6= 1, we generate an independent

random variable Zv;i uniformly distributed on the interval

(−1,+1), and then set

ψv(i) =

{
1 i = 1,

µ+ σZv;i i ≥ 2.

For a fixed graph topology and collection of node/edge

potentials, we first run BP to compute the fixed point m∗.11

We then run the SBP algorithm to find the sequence of

messages {mt}∞t=0 and compute the normalized squared

error ‖mt − m∗‖22/‖m∗‖22. In cases where the normalized

mean-squared error is reported, we computed it by averaging

over 20 different runs of the algorithm. (Note that the runs

are different, since the SBP algorithm is randomized.)

In our first set of experiments, we examine the consis-

tency of the SBP on a chain-structured graph, as illus-

trated in Figure 1(b), representing a particular instance of

a tree. We implemented the SBP algorithm with step size

λt = 2/(t+ 1), and performed simulations for a chain with

n = 100 nodes, state dimension d = 64, node potential

parameters (µ, σ) = (0.1, 0.1), and for two different choices

of edge potential γ ∈ {0.02, 0.05}. The resulting traces

of the normalized squared error versus iteration number

are plotted in Figure 4; each panel contains 10 different

sample paths. These plots confirm the prediction of strong

consistency given in Theorem 1(a)—in particular, the error

in each sample path converges to zero. We also observe

that the typical performance is highly concentrated around

its average, as can be observed from the small amount of

variance in the sample paths.

Our next set of simulations are designed to study the

effect of increasing of the state dimension d on convergence

rates. We performed simulations both for the chain with

n = 100 nodes, as well as a two-dimensional square grid

with n = 100 nodes. In all cases, we implemented the SBP

algorithm with step sizes λt = 2/(t+1), and generated the

node/edge potentials with parameters (µ, σ) = (0.1, 0.1) and

γ = 0.1 respectively. In Figure 5, we plot the normalized

mean-squared error (estimated by averaging over 20 trials)

versus the number of iterations for the chain in panel

(a), and the grid in panel (b). Each panel contains four

different curves, each corresponding to a choice of state

dimension d ∈ {128, 256, 512, 1024}. For the given step

size, Theorem 2 guarantees that the convergence rate should

be upper bounded by 1/tα (α ≤ 1) with the number of

11We stop the BP iterations when ‖mt+1 − mt‖2 becomes less than
10−4.

iterations t. In the log-log domain plot, this convergence

rate manifests itself as a straight line with slope −α. For

the chain simulations shown in panel (a), all four curves

exhibit exactly this behavior, with the only difference with

increasing dimension being a vertical shift (no change in

slope). For the grid simulations in panel (b), problems with

smaller state dimension exhibit somewhat faster convergence

rate than predicted by theory, whereas the larger problems

(d ∈ {512, 1024}) exhibit linear convergence on the log-log

scale.

As discussed previously, the SBP message updates are less

expensive by a factor of d. The top two rows of Table V-A

show the per iteration running time of both BP and SBP

algorithms, for different state dimensions as indicated. As

predicted by theory, the SBP running time per iteration is

significantly lower than BP, scaling linearly in d in contrast

to the quadratic scaling of BP. To be fair in our comparison,

we also measured the total computation time required for

either BP or SBP to converge to the fixed point up to a

δ-tolerance, with δ = 0.01. This comparison allows for

the fact that BP may take many fewer iterations than SBP

to converge to an approximate fixed point. Nonetheless,

as shown in the bottom two rows of Table V-A, in all

cases except one (chain graph with dimension d = 128),

we still see significant speed-ups from SBP in this overall

running time. This gain becomes especially pronounced for

larger dimensions, where these types of savings are more

important.

B. Applications in Image Processing and Computer Vision

In our next set of experiments, we study the SBP on some

larger scale graphs and more challenging problem instances,

with applications to image processing and computer vision.

Message-passing algorithms can be used for image denois-

ing, in particular, on a two dimensional square grid where

every node corresponds to a pixel. Running the BP algorithm

on the graph, one can obtain (approximations to) the most

likely value of every pixel based on the noisy observations.

In this experiment, we consider a 200 × 200 image with

d = 256 gray-scale levels, as showin in Figure 6(a). We

then contaminate every pixel with an independent Gaussian

random variable with standard deviation σ = 0.1, as shown

in Figure 6(b). Enforcing the Potts model with smoothness

parameter γ = 0.05 as the edge potential, we run BP

and SBP for the total of t = 5 and t = 100 iterations,

respectively, to obtain the refined images (see panels (c)

and (d), respectively, in Figure 6). Figure 7 illustrates the

mean-squared error versus the running time for both BP

and SBP denoising. As one can observe, despite smaller

jumps in the error reduction, the per-iteration running time

of SBP is substantially lower than BP. Overall, SBP has done

a marginally better job than BP in a substantially shorter
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Fig. 4. The panels illustrate the normalized squared error ‖mt −m∗‖22/‖m∗‖22 versus the number of iterations t for a chain of
size n = 100 and state dimension d = 64. Each plot contains 10 different sample paths. Panel (a) corresponds to the coupling
parameter γ = 0.02 whereas panel (b) corresponds to γ = 0.05. In all cases, the SBP algorithm was implemented with step
size λt = 2/(t+ 1), and the node potentials were generated with parameters (µ, σ) = (0.1, 0.1).
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Fig. 5. Effect of increasing state dimension on convergence rates. Plots of the normalized mean-squared error
E
[

‖mt −m∗‖22
]

/‖m∗‖22 versus the number of iterations for two different graphs: (a) chain with n = 100 nodes, and
(b) two-dimensional square grid with n = 100 nodes. In both panels, each curve corresponds different state dimension
d ∈ {128, 256, 512, 1024}. All simulations were performed with step sizes λt = 2/(t + 1), and the node/edge parameters
were generated with parameters (µ, σ) = (0.1, 0.1) and γ = 0.1 respectively.

amount of time in this instance.12

Finally, in our last experiment, we apply SBP to a

computer vision problem. Graphical models and message-

passing algorithms are popular in application to the stereo

vision problem [28], [16], in which the goal is to estimate

objects depth based on the pixel dissimilarities in two (left

and right view) images. Adopting the original model in

Sun et al. [28], we again use a form of the Potts model

in order to enforce a smoothness prior, and also use the

12Note that the purpose of this experiment is not to analyze the potential
of SBP (or for that matter BP) in image denoising, but to rather observe
their relative performances and computational complexities.

form of the observation potentials given in the Sun et al.

paper. We then run BP and SBP (with step size 3/(t + 2))
for a total of t = 10 and t = 50 iterations respectively

in order to estimate the pixel dissimilarities. The results

for the test image “map” are presented in Figure 8. Here,

the maximum pixel dissimilarity is d = 32, which makes

stereo vision a relatively low-dimensional problem. In this

particular application, the SBP is faster by about a factor

of 3− 4 times per iteration; however, the need to run more

iterations makes it comparable to BP. This is to be expected

since the state dimension d = 32 is relatively small, and

the relative advantage of SBP becomes more significant for
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d = 128 d = 256 d = 512 d = 1024

Chain

BP (per iteration) 0.0700 0.2844 2.83 18.0774

SBP (per iteration) 0.0036 0.0068 0.0145 0.0280

BP (total) 0.14 0.57 5.66 36.15

SBP (total) 0.26 0.27 0.29 0.28

Grid

BP (per iteration) 0.1300 0.5231 5.3125 32.5050

SBP (per iteration) 0.0095 0.0172 0.0325 0.0620

BP (total) 0.65 3.66 10.63 65.01

SBP (total) 0.21 1.31 0.65 0.62

TABLE I. Comparison of BP and SBP computational cost for two different graphs each with n = 100 nodes. For each graph
type, the top two rows show per iteration running time (in seconds) of the BP and SBP algorithms for different state dimensions.
The bottom two rows show total running time (in seconds) to compute the message fixed point to δ = 0.01 accuracy.

(a) (b)

(c) (d)

Fig. 6. Image denoising application, (a) original image, (b) noisy image, (c) refined image obtained from BP after t = 5
iterations, and (d) refined image obtained from SBP after t = 100 iterations. The image is 200× 200 with d = 256 gray-scale
levels. The SBP step size, the Potts model parameter, and noise standard deviation are set to λt = 1/(t + 1), γ = 0.05, and
σ = 0.1, respectively.
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(a) (b)

(c) (d)

Fig. 8. Stereo vision, depth recognition, application, (a) reference image, (b) ground truth, (c) BP estimate after t = 10 iterations,
and (d) SBP estimate after t = 50 iterations. The algorithms are applied to the standard “map” image with maximum pixel
dissimilarity d = 32. The SBP step size is set to λt = 3/(t+ 2).

larger state dimensions d.

VI. DISCUSSION

In this paper, we have developed and analyzed a new

and low-complexity alternative to BP message-passing. The

SBP algorithm has per iteration computational complexity

that scales linearly in the state dimension d, as opposed to

the quadratic dependence of BP, and a communication cost

of log2 d bits per edge and iteration, as opposed to d − 1
real numbers for standard BP message updates. Stochastic

belief propagation is also easy to implement, requiring only

random number generation and the usual distributed updates

of a message-passing algorithm. Our main contribution was

to prove a number of theoretical guarantees for the SBP mes-

sage updates, including convergence for any tree-structured

problem, as well as for general graphs for which the ordinary

BP message update satisfies a suitable contraction condition.

In addition, we provided non-asymptotic upper bounds on

the SBP error, both in expectation and in high probability.

The results described here suggest a number of directions

for future research. First, the ideas exploited here have

natural generalizations to problems involving continuous

random variables and also other algorithms that operate

over the sum-product semi-ring, including the generalized

belief propagation algorithm [33] as well as reweighted sum-

product algorithms [31]. More generally, the BP algorithm

can be seen as optimizing the dual of the Bethe free energy

function [33], and it would be interesting to see if SBP

can be interpreted as a stochastic version of this Bethe

free energy minimization. It is also natural to consider

whether similar ideas can be applied to analyze stochastic

forms of message-passing over other semi-rings, such as

the max-product algebra that underlies the computation of

maximum a posteriori (MAP) configurations in graphical

models. In this paper, we have developed SBP for appli-

cations to Markov random fields with pairwise interactions.

In principle, any undirected graphical model with discrete

variables can be reduced to this form [33], [32]; however,

in certain applications, such as decoding of LDPC codes

over non-binary state spaces, this could be cumbersome.

For such cases, it would be useful to derive a variant of

SBP that applies directly to factor graphs with higher-order

interactions. Moreover, the results derived in this paper

are based on the assumption that the co-domain of the

potential functions do not include zero. We suspect that

these condition might be relaxed, and similar results could

be obtained. Finally, our analysis for general graphs has been

done under a contractivity condition, but it is likely that this

requirement could be loosened. Indeed, the SBP algorithm
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Fig. 7. Mean-squared error versus the running time (in
seconds) for both BP and SBP image denoising. The simu-
lations are performed with the step size λt = 1/(t+1), and
the Potts model parameter γ = 0.05 on a 200×200 image
with d = 256 gray-scale levels. The noise is assumed to
be additive, independent Gaussian random variables with
standard deviation σ = 0.1.

works well for many problems where this condition need

not be satisfied.
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APPENDIX

A. Details of Example 1

In this appendix, we verify the sufficient condition for

contractivity (25). Recall the definition (13) of the zero’th

order bounds. By construction, we have the relations

Bvu(i) = B0
vu(i) =

γ

1 + (d− 1)γ
, and

Bvu(i) = B
0

vu(i) =
1

1 + (d− 1)γ

for all i ∈ X and (v ← u) ∈ ~E . Substituting these bounds

into the definitions (22) and (23) and doing some simple

algebra yields the upper bounds

φvu,uw ≤ max
j∈X

{
βvu(j)

∏
s∈N (u)\{v,w}Bsu(j)∑d

ℓ=1 βvu(ℓ)
∏
s∈N (u)\v Bsu(ℓ)

}

=
1 + (d− 1)γ

γρu−1
max
j∈X

{
ψu(j)∑d
ℓ=1 ψu(ℓ)

}
,

and

χvu,uw

≤ max
j∈X

{
βvu(j)

∏
s∈N (u)\v Bsu(j)∑d

ℓ=1 βvu(ℓ)
∏
s∈N (u)\v Bsu(ℓ)

}
max
j∈X

{
1

Buw(j)

}

=
1 + (d− 1)γ

γρu
max
j∈X

{
ψu(j)∑d
ℓ=1 ψu(ℓ)

}
,

where we have denoted the degree of the node u by

ρu. Substituting these inequalities into expression (24) and

noting that γ ≤ 1, we find that the global update function

has Lipschitz constant at most

L ≤ 4 (1− γ)(1 + (d− 1)γ)

max
u∈V

{
(ρu − 1)2

γ2ρu
max
j∈X

{
ψu(j)∑
ℓ ψu(ℓ)

}2}
,

as claimed.

B. Proof of Lemma 1

By construction, for each directed edge (v ← u), the mes-

sage vector mvu belongs to the probability simplex—that is,∑
i∈X mvu(i) = 1, and mvu � ~0. From equation (26), the

vector mvu is a convex combination of the columns of the

matrix Γvu. Recalling bounds (13), we conclude that the

message vector must belong to the set S , as defined in (18),

in particular with Bvu(i) = B0
vu(i) and Bvu(i) = B

0

vu(i).
Note that the set S is compact, and any member of it has

strictly positive elements under our assumptions.

For directed edges (v ← u) and (s ← w), let
∂Fvu

∂msw

∈ R
d×d denote the Jacobian matrix obtained from

taking the partial derivative of the update function Fvu
with respect to the message vector msw. By inspection, the

function Fvu is continuously differentiable; consequently,

the function
∂Fvu(i;m)
∂msw(j) is continuous, and hence must achieve

its supremum over the compact set S . We may use these

Jacobian matrices to define a matrix Avu,sw ∈ R
d×d with

entries

Avu,sw(i, j) := max
m∈S

∣∣∣∣
∂Fvu(i;m)

∂msw(j)

∣∣∣∣, for i, j = 1, . . . , d.

We then use these matrices to define a larger matrix

A ∈ R
D×D, consisting of 2|E| × 2|E| sub-blocks each

of size d × d, with the sub-blocks indexed by pairs of

directed edges (v ← u) ∈ ~E . In particular, the matrix

Avu,sw occupies the sub-block indexed by the edge pair

(v ← u) and (s ← w). Note that by the structure of the
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update function F , the matrix Avu,sw can be non-zero only

if s = u and w ∈ N (u)\{v}.

Now let ∇F ∈ R
D×D denote the Jacobian matrix of the

update function F . By the integral form of the mean value
theorem, we have the representation

F (m)− F (m′) =

[
∫ 1

0

∇F (m′ + τ(m−m′)) dτ

]

(m−m′).

Applying triangle inequality separately to each component

of this D-dimensional vector and then using the definition

of A, we obtain the elementwise upper bound

|F (m)− F (m′)| � A |m−m′|.
It remains to show that A is nilpotent: more precisely, we

show that Ar is the all-zero matrix, where r = diam(G)
denotes the diameter of the graph G. In order to do so, we

first let B ∈ R
2|E|×2|E| be the “block indicator” matrix—that

is, its entries are given by

B(v ← u, s← w) =

{
1 if Avu,sw 6= 0

0 otherwise.

Based on this definition, it is straightforward to verify that

if Br = 0 for some positive integer r, then we also have

Ar = 0. Consequently, it suffices to show that Br = 0 for

r = diam(G).

Fix a pair of directed edges (v ← u) and (s ← w),
and some integer ℓ ≥ 1. We first claim that the matrix

entry Bℓ(v ← u, s ← w) is non-zero only if there exists

a backtrackless directed path of length ℓ + 1 from w to v
that includes both s and u, meaning that there exist nodes

s1, s2, . . . , sℓ−2 such that

w ∈ N (s)\s1, s1 ∈ N (s2)\s3, . . . , and sℓ−2 ∈ N (u)\v.
We prove this claim via induction. The base case ℓ = 1 is

true by construction. Now supposing that the claim holds

at order ℓ, we show that it must hold at order ℓ + 1. By

definition of matrix multiplication, we have

Bℓ+1(v ← u, s← w)

=
∑

(x←y)∈~E

Bℓ(v ← u, x← y)B(x← y, s← w).

In order for this entry to be non-zero, there must exist a

directed edge (x ← y) that forms a (ℓ + 1)-directed path

to (v ← u), and moreover, we must have s = y, and

w ∈ N (x) \ y. These conditions are equivalent of having

a backtrackless directed path of length ℓ + 2 from w to v,

with s and u as intermediate nodes, thereby completing the

proof of our intermediate claim.

Finally, we observe that in a tree-structured graph, there

can be no directed path of length greater than r = diam(G).
Consequently, our intermediate claim implies that Br = 0
for any tree-structured graph, which completes the proof.

C. A version of Robbins-Monro theorem

Here we state a version of the Robbins-Monro theorem

suitable for our proof of Theorem 2. Denoting the expected

vector field function by h(m) := E
[
H(m,J)|m

]
, suppose

there exists a vector m∗ such that

inf
m∈S\{m∗}

〈m−m∗, h(m)〉 > 0.

Now suppose that

• the vector field function H(m, ·) has a bounded second

moment—that is E
[
‖H(m,J)‖22

]
≤ c(1 + ‖m‖22) for

some constant c,
• the conditional distribution of the random vector

J t+1 knowing the past depends only on mt—that is

P
(
J t+1|J t, J t−1, · · · ,mt,mt−1, · · ·

)
= P

(
J t+1|mt

)
,

and finally,

• the step size sequence {λt}∞t=0 satisfies the conditions∑∞
t=0 λ

t =∞, and
∑∞
t=0(λ

t)2 <∞.

Then the sequence {mt}∞t=0, generated by (33), is guaran-

teed to converge to m∗

D. Proof of Lemma 2

Noting that it is equivalent to bound the logarithm, we

have

log

t+2∏

ℓ=i+1

(
1− α

ℓ

)
=

t+2∑

ℓ=i+1

log

(
1− α

ℓ

)
≤ −α

t+2∑

ℓ=i+1

1

ℓ
,

(46)

where we used the fact that log(1−x) ≤ −x for x ∈ (0, 1).
Since the function 1/x is decreasing, we have

t+2∑

ℓ=i+1

1

ℓ
≥

∫ t+3

i+1

1

x
dx = log(t+ 3) − log(i+ 1). (47)

Substituting inequality (47) into (46) yields

log
∏t+2
ℓ=i+1

(
1− α

ℓ

)
≤ α

(
log(i+ 1) − log(t+ 3)

)
,

from which the claim stated in the lemma follows.

E. Proof of Lemma 3

Let ∇q(m) ∈ R
D×D denote the Jacobian matrix of

the function q : R
D → R

D evaluated at m. Since q is

differentiable, we can apply the integral form of the mean

value theorem to write

q(m)− q(m′) =
[ ∫ 1

0

∇q(m′ + τ(m−m′)) dτ
]
(m−m′).

From this representation, we obtain the upper bound

‖q(m)− q(m′)‖2

≤
[ ∫ 1

0

|||∇q(m′ + λ(m−m′))|||2 dλ
]
‖(m−m′)‖2

≤ sup
m∈S
|||∇q(m)|||2 ‖m−m′‖2,
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showing that it suffices to control the quantity

supm∈S |||∇q(m)|||2.

Let
∂qvu(m)
∂msw

be the d× d matrix of partial derivatives of

the function qvu : RD → R
d obtained from taking the partial

derivatives with respect to the message vector msw ∈ R
d.

We then define a 2|E|× 2|E|-dimensional matrix A with the

entries

A(v ← u, s← w)

:=

{
supm∈S |||∂qvu(m)

∂msw

|||2 if s = u, and w ∈ N (u)\{v}
0 otherwise.

(48)

Our next step is to show that supm∈S |||∇q(m)|||2 ≤ |||A|||2.

Let y = {yvu}(v←u)∈~E be an arbitrary D-dimensional

vector, where each sub-vector yvu is an element of R
d. By

exploiting the structure of ∇q(m) and y, we have

‖∇q(m) y‖22
=

∑

(v←u)∈~E

‖
∑

w∈N (u)\{v}

∂qvu(m)

∂muw

yuw‖22

(i)

≤
∑

(v←u)∈~E

( ∑

w∈N (u)\{v}

‖∂qvu(m)

∂muw

yuw‖2
)2

(ii)

≤
∑

(v←u)∈~E

( ∑

w∈N (u)\{v}

|||∂qvu(m)

∂muw

|||2‖yuw‖2
)2

(iii)

≤
∑

(v←u)∈~E

( ∑

w∈N (u)\{v}

A(v ← u, u← w)‖yuw‖2
)2

,

where the bound (i) follows by triangle inequality; the bound

(ii) follows from definition of the operator norm; and the

final inequality (iii) follows by definition of A.

Defining the vector z ∈ R
2|E| with the entries

zuw = ‖yuw‖2, we have established the upper bound

‖∇q(m) y‖22 ≤ ‖Az‖22, and hence that

‖∇q(m) y‖22 ≤ |||A|||22 ‖z‖22 = |||A|||22 ‖y‖22,

where the final equality uses the fact that ‖y‖22 = ‖z‖22 by

construction. Since both the message m and vector y were

arbitrary, we have shown that supm∈S |||∇q(m)|||2 ≤ |||A|||2,

as claimed.

Our final step is to control the quantities

supm∈S |||∂qvu(m)
∂msw

|||2 that define the entries of A. In

this argument, we make repeated use of the elementary

matrix inequality [11]

|||B|||22 ≤
(

max
i=1,...,n

n∑

j=1

|Bij |
)

︸ ︷︷ ︸
|||B|||∞

(
max

j=1,...,n

n∑

i=1

|Bij |
)

︸ ︷︷ ︸
|||B|||1

, (49)

valid for any n× n matrix.

Recall the definition of the probability distribution (9) that

defines the function qvu : RD → R
d, as well as our short-

hand notation Mvu(k) =
∏
w∈N (u)\{v}muw(k). Taking the

derivatives and performing some algebra yields

∂qvu(i ; m)

∂muw(j)
=

d∑

k=1

∂qvu(i ; m)

∂Mvu(k)

∂Mvu(k)

∂muw(j)

=
∂qvu(i ; m)

∂Mvu(j)

Mvu(j)

muw(j)

=
−βvu(i)Mvu(i) βvu(j)(∑d

k=1 βvu(k)Mvu(k)
)2

Mvu(j)

muw(j)
,

for i 6= j, and w ∈ N (u)\{v}. For i = j, we have

∂qvu(i ; m)

∂muw(i)
=

∂qvu(i ; m)

∂Mvu(i)

Mvu(i)

muw(i)

=

[
βvu(i)∑d

k=1 βvu(k)Mvu(k)
− βvu(i)

2Mvu(i)(∑d
k=1 βvu(k)Mvu(k)

)2
]
Mvu(i)

muw(i)
.

Putting together the pieces leads to the upper bounds

|||∂qvu(m)

∂muw

|||1 ≤ 2 max
j∈X

{
βvu(j)Mvu(j)∑d
k=1 βvu(k)Mvu(k)

1

muw(j)

}
,

and

|||∂qvu(m)

∂muw

|||∞

≤ max
i∈X

{
βvu(i)Mvu(i)∑d
k=1 βvu(k)Mvu(k)

1

muw(i)

+
βvu(i)Mvu(i)(∑d

k=1 βvu(k)Mvu(k)
)2

d∑

j=1

βvu(j)Mvu(j)

muw(j)

}
.

Recalling the definitions (22) and (23) of φvu,uw and χvu,uw
respectively, we find that

|||∂qvu(m)

∂muw

|||1 ≤ 2 φvu,uw,

and

|||∂qvu(m)

∂muw

|||∞ ≤ φvu,uw + χvu,uw.

Thus, by applying inequality (49) with B = ∂qvu(m)
∂muw

, we

conclude that

|||∂qvu(m)

∂muw

|||22 ≤ 2 φvu,uw (φvu,uw + χvu,uw).

Since this bound holds for any message m ∈ S , we

conclude that each of the matrix entries A(v ← u, u← w)
satisfies the same inequality. Again applying the basic matrix
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inequality (49), this time with B = A, we conclude that

|||A|||2 is upper bounded by

2 max
(v←u)∈~E

∑

w∈N (u)\{v}

(
φvu,uw (φvu,uw + χvu,uw)

) 1
2

max
(u←w)∈~E

∑

v∈N (u)\w

(
φvu,uw (φvu,uw + χvu,uw)

) 1
2 ,

which concludes the proof.
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