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Abstract

We conduct an asymptotic risk analysis of the nonlocal means image denois-
ing algorithm for the Horizon class of images that are piecewise constant with
a sharp edge discontinuity. We prove that the mean square risk of an opti-
mally tuned nonlocal means algorithm decays according to n−1 log1/2+ε n, for
an n-pixel image with ε > 0. This decay rate is an improvement over some
of the predecessors of this algorithm, including the linear convolution filter,
median filter, and the SUSAN filter, each of which provides a rate of only
n−2/3. It is also within a logarithmic factor from optimally tuned wavelet
thresholding. However, it is still substantially lower than the the optimal
minimax rate of n−4/3.
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1. Introduction

1.1. Image denoising

The long history of image denoising is testimony to its central impor-
tance in image processing. A wide range of algorithms have been developed,
ranging from simple linear convolution and median filtering to total variation
denoising [1] and sparsity exploiting algorithms such as wavelet shrinkage [2].
Due to the sensitivity of human visual system to edges, the ability to preserve
sharp edges is an important criterion for noise removal algorithms. Therefore
Korostelev and Tsybakov proposed a framework to characterize the perfor-
mance of image denoisers on edges [3]. Based on this framework, we aim to
characterize the performance of several denoising algorithms that represent
the current state of the art image enhancement techniques. In particular, we
will focus on the popular and powerful nonlocal means (NLM) algorithm.

1.2. The minimax framework

In this paper, we are interested in estimating a function f : [0, 1]2 → R

from noisy pixel level observations. Define Pixel(i, j) = [ i
n
, i+1
n

) × [ j
n
, j+1

n
),

and let xi,j = Ave(f | Pixel(i, j)) be the pixel level averages of f . We observe
the samples

yi,j = xi,j + zi,j,

where, zi,j is iid N(0, σ2). The goal is to recover the original pixel values xi,j
from the observations yi,j, based on some information about the function f .

For a given function f and an estimator f̂ we define the risk function as

Rn(f, f̂) = E

(
1

n2

∑
i

∑
j

(xi,j − f̂i,j)2

)
. (1)

The risk can also be written as

Rn(f, f̂) =

(
1

n2

∑
i

∑
j

(xi,j − Ef̂i,j)2

)
+ E

(
1

n2

∑
i

∑
j

(f̂i,j − Ef̂i,j)2

)
,

(2)
where the first and second terms correspond to the bias and variance of the
estimator f̂ , respectively.

Let f belong to a class of functions F , e.g., a class of edge-like images
that represent edges with different shapes and orientations. The risk defined
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in (1) depends on the specific choice of f . We define the risk of an estimator
f̂ on the class F as the risk of the worst-case signal, i.e.,

Rn(F , f̂) = sup
f∈F

Rn(f, f̂).

The minimax risk over functions in F is then defined as the risk of the best
possible estimator, i.e.,

R∗n(F ) = inf
f̂

sup
f∈F

Rn(f, f̂).

The minimax risk is a lower bound for the performance of all measurable
estimators for signals in F .

In this paper we are interested in the asymptotic setting where the number
of pixels n → ∞. For all of the estimators we consider, Rn(F , f̂) → 0 as
n→∞. Therefore, we consider the decay rate of the risk as the performance
measure. We will derive the minimax risk for several popular image denoising
techniques below.

We will use the following asymptotic notation in this paper.

Definition 1. f(n) = O(g(n)) as n → ∞, if and only if there exist n0 and
c such that for any n > n0, |f(n)| ≤ c|g(n)|. Likewise, f(n) = Ω(g(n)) as
n→∞, if and only if there exist n0 and c such that for any n > n0, |f(n)| ≥
c|g(n)|. Finally, f(n) = Θ(g(n)), if f(n) = O(g(n)) and f(n) = Ω(g(n)).
We may interchangeably use f(n) � g(n) for f(n) = Θ(g(n)).

Definition 2. f(n) = o(g(n)) if and only if limn→∞
f(n)
g(n)

= 0.

1.3. Horizon edge model

Several different image edge models have been developed in the image
processing and denoising literature. Here we will use the Horizon model
that contains piecewise constant images with edges that are smooth in the
direction of the edge contour but discontinuous in the direction orthogonal
to the edge contour [3, 4]. Specifically, let Hölderα(C) be the class of Hölder
smooth functions on R, defined as follows: h ∈ Hölderα(C) if and only if

|h(k)(t1)− h(k)(t′1)| ≤ C|t1 − t′1|α−k,

where k = bαc. Given a one-dimensional smooth edge contour function h,
we define the image fh : [0, 1]2 → R as fh(t1, t2) = 1{t2<h(t1)}, where 1{·} is
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t1

t2

h(t1)

Figure 1: An example of a Horizon function, a piecewise constant image containing an
edge that is Hölderα smooth in the direction of the edge contour but discontinuous in the
direction orthogonal to the edge contour.

the indicator function. Based on this construction, we define the Horizon
class of functions as

Hα(C) = {fh(t1, t2) : h ∈ Hölderα(C) ∩Hölder1(1)}, (3)

where α is the smoothness of the edge contour. Figure 1 plots a representative
function from this class.

The following theorem, proved in [3], specifies the minimax risk of the
class of all measurable estimators on Hα(C).

Theorem 1. [3] For α ≥ 1, the minimax risk of the class Hα(C) is

R∗n(Hα(C)) � n
−2α
α+1 . (4)

We are particularly interested in the case α = 2 edges, for which the
optimal rate is n−4/3. The rate provided in the above theorem is the Holy
Grail of image denoising algorithms.

1.4. A menagerie of denoising algorithms

We will perform a minimax risk analysis of not just nonlocal means but
a number of other popular image denoising algorithms.
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1.4.1. Linear filtering

The classical denoising method is the linear convolution filter, which es-
timates the image via

f̂LFg (i, j) =
∑
m

∑
`

gm,`yi−m,j−`, (5)

where g is a two dimensional filter impulse response that satisfies
∑

i

∑
j gi,j =

1.4 When all the weights gij are equal, the algorithm is called the running
average or the box filter. Most of the linear filters used in practice are sym-
metrical and approximately isotropic.

Definition 3. Let g be a real and symmetric filter response, i.e., gi,j = g−i,j =

gi,−j, and let Ĝ(ω1, ω2) represent its two-dimensional Fourier transform. The
filter is isotropic if and only if there exists a function F : R→ C, such that

Ĝ(ω1, ω2) = F

(√
ω2

1 + ω2
2

)
∀ − π < ω1, ω2 ≤ π.

Isotropic filters are popular, because they treat image features similarly
regardless of their directions. Let grad(·) be the gradient operator. The
following theorem, proved in Section 4.1, provides the decay rate of the risk
of linear convolution.

Theorem 2. Consider the linear convolution filter (5) and suppose
that g is real, symmetric, and isotropic. Furthermore, assume that
‖grad(Ĝ(w1, w2))‖2 ≤ C for a fixed constant C. Then,

inf
g

sup
f∈Hα(C)

Rn(f, f̂LFg ) � n−
2
3 .

Castro and Donoho [5] have proved a similar result for the special case of
the box filter. While the Horizon model used in [5] is slightly different from
our model, their proof works in our setting as well.

1.4.2. Yaroslavsky / SUSAN filter

While linear filters are popular in image processing due to their simplicity,
they unfortunately blur images with sharp edges. One popular alternative is

4For simplicity of analysis, we use a periodic extension of y at the image boundaries.
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to adapt the weight of each pixel in the average (5) according to the distance
between its noisy value and the value of the pixel we aim to estimate. Let
C∆n
i,j , {(m, `) | i − ∆n ≤ m ≤ i + ∆n, j − ∆n ≤ ` ≤ j + ∆n} denote the

∆n-neighborhood of the pixel (i, j). One popular approach for setting the
weights is

wYi,j(m, `) = e−
(ym,`−yi,j)2

2τ2 ,

from which we calculate the estimate

f̂Y∆n,τ (i, j) =

∑i+∆n

m=i−∆n

∑j+∆n

`=j−∆n
wYi,j(m, `) ym,`∑i+∆n

m=i−∆n

∑j+∆n

`=j−∆n
wYi,j(m, `)

. (6)

Only the pixels in the ∆n-neighborhood of (i, j) contribute to the estimate
of that pixel. This algorithm is called the Yaroslavsky Filter (YF) or SUSAN
filter [6, 7]; slight modifications are known as the bilateral filter [8] and σ-filter
[9].

To calculate the risk of the YF, we consider a slightly different, oracle-
based algorithm. Suppose that in setting the weights wYi,j(m, `) of the YF we
have access to the actual (and not the noisy) value of the pixel (i, j). Using
this oracle information we can set the weights according to

wSYi,j (m, `) = e−
(ym,`−xi,j)2

2τ2 .

Intuitively, the oracle weights are “less noisy” than the actual filter weights.
Plugging these weights into (6) we obtain what we call the semi-oracle
Yaroslavsky filter (SYF). The following theorem, proved in Section 4.2, shows
that, as far as the decay rate is concerned, the SYF’s performance is the same
as the linear filter and box filter.

Theorem 3. The risk of SYF algorithm satisfies

inf
τ,∆n

sup
f∈Hα(C)

Rn(f, f̂SY ) = Ω(n−2/3).

1.4.3. Sparsity based denoising

Another popular class of image denoising methods exploit sparsity in
some transform domain via thresholding. Wavelets are often used as the
sparsity domain for natural images. Let W(y) represent the separable two-
dimensional wavelet transform of the image, let IW represent the inverse
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wavelet transform, and let T be the hard thresholding function, i.e., Tθ(x) =
x1{|x|>θ}. Then wavelet thresholding denoising corresponds to

f̂Wθ = IW(Tθ(W(y))).

Donoho and Johnstone have proven that supf∈Hα(C) Rn(f, f̂W ) = Ω(n−1) [4],
[10]. Even though this rate is an improvement over the above algorithms, is

still far from the optimal achievable rate of n−
4
3 for α = 2.

This suboptimality spurred the development of other sparsity-inducing
transformations, including curvelets [11], wedgelets [4], shearlets [12], and
contourlets [13]. Among these transforms, wedgelet denoising provably achieves

the optimal rate of n−
4
3 for α = 2 [4]. However, wedgelet denoising performs

poorly on textures, which has limited its application in practice to date.

2. Nonlocal means denoising

The YF estimator sets its weights according the noisy pixel values and
their spatial vicinity; however neither of these two features are reliable for
noisy, edgy images. In contrast, the nonlocal means (NLM) algorithm sets
its weights according to the proximity of the image patch surrounding each
noisy pixel with other patches in the image [14]. Define the δn-neighborhood
distance dδn(yi,j, ym,`) between two observations as

d2
δn(yi,j, yn,p) =

1

ρ2
n

δn∑
m=−δn

δn∑
`=−δn

|yi+`,j+m − yn+`,p+m|2 − |yi,j − yn,p|2,

where ρ2
n = (2δn + 1)2− 1. Note that, in contrast to the definition in [14], we

have removed the center element |yi,j − yn,p|2 from the summation. Since we
assume that δn → ∞ as n → ∞, the effect is negligible on the asymptotic
performance. But, as we will see in Section 4, removing the center element
simplifies the calculations considerably. NLM uses the neighborhood dis-
tances to estimate

f̂Ni,j =

∑
(m,`)∈S w

N
i,j(m, `)ym,`∑

(m,`)∈S w
N
i,j(m, `)

, (7)

where S = {1, 2, . . . , n} × {1, 2, . . . , n} and wi,j(m, `) is set according to
the δn-neighborhood distance between yi,j and ym,`. For the simplicity of
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notation, in cases where both the reference pixel (i, j) and the algorithm
are obvious from the context, we will omit the superscript and subscript of
the weight and use the simplified notation wm,` instead of wNi,j(m, `). It is
straightforward to verify that E(d2

δn
(yi,j, ym,`)) = d2

δn
(xi,j, xm,`) + 2σ2, which

suggests the following strategy for setting the weights:

wNi,j(m, `) =

{
1 if d2

δn
(yi,j, ym,`) ≤ 2σ2 + tn,

0 otherwise,
(8)

where tn is the threshold parameter. Soft/tapered versions of setting the
weights have been explored and are often used in practice [14]. However,
the above untapered weights capture the essesnse of the algorithm while
simplifying the analysis. We postpone the discussion of tapered weights
until Section 5.

There are two main differences between the NLM and YF algorithms.
First, the pixels that contribute in the NLM averaging are not necessarily in
the local neighborhood of the reference pixel (hence the monicker “nonlocal”).
Second, the NLM weights depend not on the difference between the pixel
values but on distance between the pixel neighborhoods. In other words the
pixel neighborhood is even more important than the pixel value.

To derive a lower bound for the risk of NLM, we will analyze two algo-
rithms that set the weights using some degree of oracle information regard-
ing the true value of the signal. The full oracle NLM (FNLM) has access to
E(d2

δn
(yi,j, ym,`)) in setting the weights wm,l in (7) and thus sets them using

the noise-free values of the pixels

wFi,j(m, `) =

{
1 if d2

δn
(xi,j, xm,`) ≤ tn,,

0 otherwise.
(9)

The semi-oracle NLM (SNLM) differs only slightly from the standard NLM
in that it uses the semi-oracle neighborhood distance

d̄2
δn(yi,j, yn,p) ,

1

ρ2
n

(
δn∑

m=−δn

δn∑
`=−δn

|xi+`,j+m − yn+`,p+m|2 − (xi,j − yn,p)2

)
,

(10)

and then sets the weights in (7) according to

wSi,j(m, `) =

{
1 if d̄2

δn
(yi,j, ym,`) ≤ σ2 + tn,,

0 otherwise.
(11)
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Unlike FNLM, SNLM assumes that just one-half of the noise is removed from
the distance estimates. Therefore, the distances calculated in the SNLM are
more accurate than the standard NLM but less accurate than in the FNLM.
In the rest of the paper, we will use f̂N , f̂S, and f̂F to denote the NLM,
SNLM, and FNLM estimators, respectively.

3. Main Results

Our first result, proved in Section 4.3, establishes an upper bound on the
risk of NLM.

Theorem 4. Fix ε > 0 and consider NLM denoising with δn = 2 log
1
2

+ε n
and tn = 2σ2

log
ε
2 n

. The risk of this algorithm over the class Hα(C) is

sup
f∈Hα(C)

R(f, f̂N) = O

(
log

1
2

+ε n

n

)
. (12)

Before we discuss the implications of this theorem, it is important to
note that, while we can improve the decay rate as close as we desire to

O(n−1log
1
2 n), the constants that are involved in the big-O notation grow as

ε decreases. Therefore, in practice very small values of ε are not desirable.
Comparing the upper bound (12) with the optimal minimax risk (4) in-

dicates that NLM is suboptimal for α > 1. In other words, NLM cannnot
exploit the smoothness of edge contours in images.

The bound in Theorem 4 is for a specific choice of parameters, and it is
natural to ask whether NLM can achieve the optimal rate with some other
choice of parameters. To answer this question, we consider SNLM, which
outperforms standard NLM in general. We make the following mild assump-
tions:

A1: The window size δn → ∞ as n → ∞. This assumption is critical to
ensuring good performance of any NLM estimator.

A2: The threshold is set to σ2 + tn as explained in (11) with tn > 0. This
ensures that if the neighborhood of pixel (m, `) is exactly the same as
the neighborhood of pixel (i, j), then wm,` = 1 with high probability.

A3: The threshold tn is set such that, if the noise-free neighborhoods are
different in more than half of their pixels, i.e., if d2(xi,j, xm,`) ≥ 1

2
, then

P(wFi,j(m, `) = 1) = o (n−1).

9



A4: δn = O(nβ), for some β ≤ 0.3.

The following theorem provides a lower bound on the performance of
SNLM.

Theorem 5. Suppose that δn and tn satisfy A1–A4. The risk of the SNLM
over the class Hα(C) is

inf
δn,tn

sup
f∈Hα(C)

R(f, f̂S) = Ω(n−1).

This bound is still suboptimal compared to the n−4/3 minimax rate for
α = 2. In the words of John Cornyn III, the junior United States Senator
for Texas, “The problem with a mini-deal is we have a maxi-problem” [15].

Remarkably, this lower bound is achieved on a very simple image on
which NLM would be assumed to work very well: 1{t2<0.5} (see Figure 2).
Here is what goes wrong. Consider the estimation of an “edge” pixel (i, j)
that satisfies j = dnh( i

n
)e. Define the set J = {(m, `) | ` = bnh(m

n
)c} as

the set of pixels just below the edge. We will prove the probability that a
pixel in J contributes to the NLM estimate (wi,j(m, `) = 1) is larger than
p0, where p0 does not depend on n. This happens due to the low “signal to
noise ratio” in the distance estimates. Hence Θ(n) pixels of J will contribute
to the NLM estimate. Since these pixels have xm,` = 1, they introduce a
large bias in the estimate. In fact, we show below that the bias, as defined in
(2), will be larger than np0

n+np0+np0
. Here np0 corresponds to the pixels below

the edge that pass the threshold. This shows that the bias is clearly Θ(1).
Since there are n edge pixels, the risk of the estimator over the entire image
is Ω(n−1).

4. Proofs of the Main Theorems

4.1. Proof of Theorem 2

The proof has two main steps. The first step is to prove that there exists
a linear filter for which the supremum risk is upper bounded by O(n−2/3).
For this step we use Theorem 3.1 and 3.2 from [5], which establish the same
upper bound for the box filter. The second and more challenging step is to
prove that no other linear filter can improve on this decay rate. The rest of
this section is dedicated to the proof of this fact.

10



xi, j

t1

t2

Figure 2: The simple image Horizon 1{t2<0.5} used for proving the various lower bounds.

Consider the function fh(t1, t2) for h(t) = 1
2

and suppose that n is even.
This function is displayed in Figure 2. Let

X(k1, k2) =
1

n

∑
`1

∑
`2

x`1,`2e−j
2πk1`1
n e−j

2πk2`2
n

represent the Discrete Fourier Transform (DFT) of a discrete two-dimensional
discrete signal x. Since y = x+ z, the DFT of f̂LFg equals

F̂LF
g (k1, k2) = Y (k1, k2) ·G(k1, k2) = X(k1, k2)G(k1, k2) + Z(k1, k2)G(k1, k2),

where Z is again iid N(0, σ2). For fh(t1, t2) with h(t1) = 1
2
, X(k1, k2) satisfies

X(k1, k2) =

{
0 if k1 6= 0,
1−e−jπk2

1−e−j
2πk2
n

if k1 = 0. (13)

It is easy to see that Rn(f, f̂LFg ) = 1
n2E(‖X − F̂LF

g ‖2
F ), where ‖Y ‖2

F ,∑
k1,k2
|Y (k1, k2)|2. If we define B(f̂) as the bias of the estimator f̂ , then

we have

B2(f̂LFg ) =
1

n2

∑
1≤k2≤n, odd

|1−G(0, k2)|2 1

sin2 πk2

n

≥ 1

n2

∑
1≤k2≤n2/3, odd

|1−G(0, k2)|2 1

sin2 πk2

n

.
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The variance of the estimator is

Var(f̂LFg ) =
1

n2

∑
k1,k2

|G(k1, k2)|2σ2.

We know that

1

n2

∑
k1,k2

|G(k1, k2)|2 =

∫ ∫
|Ĝ(ω1, ω2)|2 +O(n−1), (14)

where Ĝ is the continuous Fourier transform of g and satisfies ‖grad(Ĝ)‖2 ≤
C. Since g is isotropic, there exists F : R → C such that

Ĝ(ω1, ω2) = F

(√
ω2

1 + ω2
2

)
.

Changing the variables of integration in (14) to polar coordinate radius ωr =√
ω2

1 + ω2
2 angle θ, we have∫ ∫
|Ĝ(ω1, ω2)|2 ≥ 2π

∫ 2π

r=0

r|F (r)|2dr = 2π

∫ 2π

ω2=0

ω2|Ĝ(0, ω2)|2dω2. (15)

Combining (14) and (15) we have

Var(f̂LFh ) =
1

n2

∑
k1,k2

|G(k1, k2)|2σ2 =
4π2

n2

∑
k2

k2|G(0, k2)|2σ2 −O(n−1).

Summing the lower bounds for the bias and variance of this estimator,
we obtain the following lower bound for the risk of linear filtering:

Rn(f, f̂LF ) = B2(f̂LFg ) + Var(f̂LFg )

≥ 1

n2

∑
1≤k2≤n2/3, odd

|1−G(0, k2)|2 1

sin2 πk2

n

+
4π2

n2

∑
k2

k2|G(0, k2)|2σ2 −O(n−1)

=
1

n2

∑
1≤k2≤n2/3, odd

|1−G(0, k2)|2 n2

π2k2
2

+
4π2

n2

∑
k2

k2|G(0, k2)|2σ2 −O(n−1).

Minimizing the dominant term of the lower bound over the filter weights
provides G∗(0, k2) = 1

1+
4π4σ2k3

2
n2

for odd values of k2 and zero for even values
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of k2. To find a lower bound we calculate the bias term with these optimal
weights:

B2(f̂LFg∗ ) =
1

n2

∑
1≤k2≤n2/3, odd

|1−G(0, k2)|2 n2

π2k2
2

=
1

n2

∑
1≤k2≤n2/3, odd

(
4π4σ2k3

2/n
2

1 + 4π4σ2k3
2/n

2

)2
n2

π2k2
2

≥ 1

n2

∑
1≤k2≤n2/3, odd

(
4π4σ2k3

2/n
2

1 + 4π4σ2

)2
n2

π2k2
2

=
1

n4

(
4π4σ2

1 + 4π4σ2

)2 ∑
1≤k2≤n2/3, odd

k4
2

=

(
4π4σ2

1 + 4π4σ2

)2(
n−2/3

40
+ o(n−2/3)

)
.

This completes the proof.

4.2. Proof of Theorem 3

In this section, denote the pixel to be estimated as xi,j. For clarity we
use the notation wm,` instead of wSYi,j (m, `). We first characterize some of the
properties of the SYF weights.

Lemma 1. Suppose that xi,j = 0. If xm,` = xi,j, then E(wm,`ym,`) = 0.

Furthermore, if |xi,j − xm,`| = 1, then E(wm,`ym,`) >
τ√

σ2+τ2 e
−1

2(σ2+τ2) .

Proof. The first claim is clear from symmetry. To prove the second claim,
we observe that E(wm,`ym,`) = E(wm,`xm,`) + E(wm,`zm,`). Since xm,` =
1, we calculate E(wm,`) and E(wm,`zm,`). It is clear that E(wm,`zm,`) =

1
σ
√

2π

∫∞
−∞ zm,`e

−
(zm,`−1)2

2τ2 −
z2m,`

2σ2 ≥ 0. Therefore we calculate

E(wm,`) =
1

σ
√

2π

∫ ∞
−∞

e−
(zm,`−1)2

2τ2 −
z2m,`

2σ2

=
e
− 1

2τ2 + σ2

2(σ2+τ2)τ2

σ2π

∫ ∞
−∞

e
−σ2+τ2

2σ2τ2 (z2
m,`−

2σ2

σ2+τ2 zm,`+
σ4

(σ2+τ2)2
)

=
e
− 1

2(σ2+τ2)

σ

√
σ2τ 2

σ2 + τ 2
=
τe
− 1

2(σ2+τ2)

√
σ2 + τ 2

.

13



This completes the proof.

Define the ∆-neighborhood of a pixel (m, `) as C∆
m,` = {(i, j) : |i −m| ≤

∆, |j − `| ≤ ∆} ∩ S.

Lemma 2. Let Ωn = (2∆n + 1)2. We then have

P

 1

Ωn

 ∑
(m,`)∈C∆n

i,j

wSYm,` −
∑

(m,`)∈C∆n
i,j

EwSYm,`

 ≥ t

 ≤ 2e−2Ωnt2 .

The proof is a simple application of the Hoeffding inequality.

Proof of Theorem 3. The first claim is that the optimal neighborhood size
satisfies ∆n = Ω(log n). We prove this by contradiction. Suppose that ∆n =
O(log(n)) and consider the performance of the SYF on the image xi,j = 0
for every (i, j). It is clear that the bias is zero. However, the variance is

lower bounded by Ω
(

1
log2 n

)
. This is far from the optimal performance of the

linear filters analyzed in Theorem 2. Therefore ∆n = Ω(log(n)).
Now consider the example image shown in Figure 2 with fh(t1, t2) =

1{t2<0.5}. For notational simplicity we assume n is even so that the value of
each pixel is either 0 or 1. Define the two regions P1 = {(i, j) : n

2
≤ j ≤

n
2

+ ∆n

2
} and P2 = {(i, j) : j > n

2
+ ∆n}. At least 1/4 of the pixels in the

neighborhood of the pixels in P1 have the noise-free value of 1. All pixels in
the neighborhood of the pixels in P2 have the noise-free pixel values equal to
1. Over each region we will find a lower bound for the risk of SYF and then
sum them to obtain a lower bound for the risk over the entire image.

Case I – (i, j) ∈ P1: From the Jensen inequality we have

E

(
xi,j −

∑
(m,`)∈C∆n

i,j
wm,`ym,`∑

(m,`)∈C∆n
i,j
wi,j

)2

≥

(
E

∑
(m,`)∈C∆n

i,j
wm,`ym,`∑

(m,`)∈C∆n
i,j
wm,`

)2

.

Define the following two constants:

m0 = E(wSYi,j (m, `) | xi,j = 0, xm,` = 0),

m1 = E(wSYi,j (m, `) | xi,j = 0, xm,` = 1).

14



It is clear that m0 > m1. Let the event A be

A =


∑

(m,`)∈C∆n
i,j

wm,` −
∑

(m,`)∈C∆n
i,j

Ewm,` ≤ ∆2−ε
n

 (16)

for some ε > 0. We have

E

(∑
(m,`)∈C∆n

i,j
wm,`ym,`∑

(m,`)∈C∆n
i,j
wm,`

)
≥ E

(∑
(m,`)∈C∆n

i,j
wm,`ym,`∑

(m,`)∈C∆n
i,j
wm,`

∣∣∣∣∣ A
)
P(A)

(a)

≥ E

(∑
(m,`)∈C∆n

i,j
wm,`ym,`

4∆2
nm0 + ∆2−ε

n

∣∣∣∣∣ A
)
P(A)

≥ E

(∑
(m,`)∈C∆n

i,j
wm,`ym,`

4∆2
nm0 + ∆2−ε

n

)
− P(Ac)

(b)

≥
(

∆2
nc0

4∆2
nm0 + ∆2−ε

n

)
− P (Ac).

Inequality (a) uses Lemma 2 and the fact that m0 ≥ m1. Inequality (b) uses
Lemma 1, and therefore c0 = τ

√
σ2+τ2e

− −1
2(σ2+τ2)

. Since C∆n
i,j has (2∆n + 1)2

pixels, at least ∆2
n of them have the noise-free pixel value 1.

Since ∆n = Ω(log n), Lemma 2 proves that P (Ac) = o(1) and, therefore, the
bias is lower bounded by Θ(1) for all of the pixels in P1.

Case II – (i, j) ∈ P2: As mentioned before, all pixels in the neighborhood
of the pixels in P2 have the noise-free pixel values equal to 1. Hence, we have

E

(∑
(m,`)∈C∆n

i,j
wm,`yi,j∑

(m,`)∈C∆n
i,j
wm,`

)2

= E

(∑
(m,`)∈C∆n

i,j
wm,`zm,`∑

(m,`)∈C∆n
i,j
wm,`

)2

.

15



Defining the event A as in (16), we have

E

(∑(m,`)∈C∆n
i,j
wm,`zm,`∑

(m,`)∈C∆n
i,j
wm,`

)2
∣∣∣∣∣∣ A
P(A)

≥ E

(∑(m,`)∈C∆n
i,j
wm,`zm,`

4∆2
nm0 + ∆2−ε

n

)2
∣∣∣∣∣∣ A

P(A)

≥ E

(∑
(m,`)∈C∆n

i,j
wm,`zm,`

4∆2
nm0 + ∆2−ε

n

)2

− P(Ac) =
4∆2

nE(wm,`zm,`)
2

(4m0∆2
n + ∆2−ε

n )2
− P(Ac).

If the neighborhood size is larger than c log(n) for some constant c, then
Lemma 2 will imply that P(Ac) < o

(
1
n2

)
. Therefore, the dominant term in

the above expression of the form of γ
∆2
n
. Combining the lower bounds for P1

and P2, we obtain a lower bound of the form of β∆n

n
+ γ

∆2
n
. Optimizing over

∆n proves that
inf

∆n,τ
Rn(f, f̂SY ) > Ω(n−2/3).

This completes the proof.

It is clear from the proof above that the neighborhood size is the main
parameter that controls the decay rate of the risk of the YF. The Gaussian
term in the YF weights enables an improvement in the constants but does
not play any role in the decay rate. In the extreme case of ∆n = n, when all
of the image pixels can potentially contribute to the estimation of a pixel,
the decay rate of YF degrades to Θ(1). This algorithm is called the range
filter, and [8] observed in practice that it performs much worse than even
linear filters, as the above analysis confirms. Interestingly, NLM addresses
this issue and therefore its search space could be the entire image. This is
the main reason for its improved performance.

The lower bound proved in Theorem 3 is the same as the upper bound
we derived for the performance of linear filtering. Therefore, we have the
following theorem.

Theorem 6. The risk of the SYF satisfies

inf
∆n,τ

sup
f∈Hα(C)

Rn(f, f̂SY ) � n−2/3.
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4.3. Proof of Theorem 4

The proof has two main steps. First, we show that the risk of the pixels
far from the edge is O(log1+2ε(n)/n2). Second, we show that the risk of the
pixels whose δn neighborhood senses the edge is constant; however there are
at most O(nδn) of these pixels. The following two lemmas will play key roles
in our analysis.

Lemma 3. Let Z ∼ N(0, σ2). For λ < 1
2σ2 , we have

E(eλZ
2

) =
1√

1− 2λσ2
.

Proof. The proof is a simple integral calculation:

E(eλZ
2

) =
1

σ
√

2π

∫ ∞
−∞

e(λ− 1
2σ2 )Z2

dZ =
1

σ
√

1
σ2 − 2λ

.

Lemma 4. Let Z1, Z2, . . . , Zn be iid N(0, 1) random variables. The χ2
n ran-

dom variable defined as
∑n

i=1 Z
2
i concentrates around its mean with high prob-

ability, i.e.,

P

(
1

n

∑
i

Z2
i − 1 > t

)
≤ e−

n
2

(t−ln(1+t)),

P

(
1

n

∑
i

Z2
i − 1 < −t

)
≤ e−

n
2

(t+ln(1−t)).

Proof. Here we prove just the first claim; the proof of the second claim follows
along very similar lines. From Markov’s Inequality, we have

P

((
1

n

n∑
i=1

Z2
i

)
− 1 > t

)
≤ e−λt−λE

(
e
λ
n

∑n
i=1 Z

2
i

)
= e−λt−λ

(
E

(
e
λZ2

1
n

))n
=

e−λt−λ(
1− 2λ

n

)n
2

. (17)
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S1

S2
S3

S4

2!n
2!n

t1

t2

(ia, ja )

(ib, jb )

Figure 3: An example of a Horizon image. The δn-neighborhood of pixel (ia, ja) ∈ S4 does
not intersect the edge contour, while the δn-neighborhood of pixel (ib, jb) ∈ S3 intersects
with the edge contour.

The last inequality follows from Lemma 3. The upper bound proved above
holds for any λ < n

2
. To obtain the lowest upper bound we minimize e−λt−λ

(1− 2λ
n )

n
2

over λ. The optimal value of λ is λ? = arg minλ
e−λt−λ

(1− 2λ
n )

n
2

= nt
2(t+1)

. Plugging

λ∗ into (17) proves the result.

Proof of Theorem 4. We will consider the following partition of the image
pixels. Let S = {1, 2, . . . , n} × {1, 2, . . . , n}. For a given Horizon function
fh(t1, t2), define S1 = {(i, j) | j

n
> h( i

n
) + 2δn

n
}, S2 = {(i, j) | h( i

n
) < j

n
≤

h( i
n
) + 2δn

n
}, S3 = {(i, j) | h( i

n
) − 2δn

n
≤ j

n
≤ h( i

n
)}, and S4 = {(i, j) | j

n
<

h( i
n
)− 2δn

n
}. These regions are displayed in Figure 3.The δn-neighborhood of

the pixels in S1 and S4 do not intersect the edge, while the δn-neighborhood
of the other pixels may have pixels from both sides of the edge. See Figure
3. For the notational simplicity we write

∑
(i,j)∈S` for the double summation

over i, j where j satisfies the constraints specified for S`.
Consider a pixel (i, j) ∈ S1. The risk of NLM at this pixel is

E

(
xi,j −

∑
wm,`ym,`∑
wm,`

)2

,

18



where xi,j = 0, since (i, j) ∈ S1. Define the set of oracle weights

w?m,` =

{
1 if `

n
> h(m

n
),

0 otherwise.
(18)

Define U ,
(∑

wm,`ym,`∑
wm,`

)2

, and let the event A = {wm,` = w?m,`, ∀(m, `) ∈
S1 ∪ S4}. We then have

E(U) = E(U | A)P(A) + E(U | Ac)P(Ac) ≤ E(U | A)P(A) + P(Ac), (19)

where the last inequality is due to the fact that the risk of the estimator is
bounded by 1. We now calculate each term of (19) separately.

Define S14 = S1 ∪ S4 and S23 = S2 ∪ S3. Then we have

E(U | A)P(A)

= E

(∑(m,`)∈S14
w?m,`ym,` +

∑
(m,`)∈S23

wm,`ym,`∑
(m,`)∈S14

w?m,` +
∑

(m,`)∈S23
wm,`

)2
∣∣∣∣∣∣ A
P(A)

≤ E

(∑
(m,`)∈S14

w?m,`ym,` +
∑

(m,`)∈S23
wm,`ym,`∑

(m,`)∈S14
w?m,` +

∑
(m,`)∈S23

wm,`

)2

≤ E

(∑
(m,`)∈S14

w?m,`xm,` +
∑

(m,`)∈S23
wm,`xm,`∑

(m,`)∈S14
w?m,` +

∑
(m,`)∈S23

wm,`

)2

+ E

(∑
(m,`)∈S14

w?m,`zm,` +
∑

(m,`)∈S23
wm,`zm,`∑

(m,`)∈S14
w?m,` +

∑
(m,`)∈S23

wm,`

)2

+ 2

√√√√E(∑(m,`)∈S14
w?m,`xm,` +

∑
(m,`)∈S23

wm,`xm,`∑
(m,`)∈S14

w?m,` +
∑

(m,`)∈S23
wm,`

)2

×

√√√√E(∑(m,`)∈S1∪S4
w?m,`zm,` +

∑
(m,`)∈S23

wm,`zm,`∑
(m,`)∈S14

w?m,` +
∑

(m,`)∈S23
wm,`

)2

. (20)

The last inequality is due to Cauchy-Schwartz. In the next two lemmas we
bound the last three terms of (20).
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Lemma 5. Let wm,` be the weights of NLM with δn = log
1
2

+ε n and tn =
2√

log
ε
2 n

for ε > 0. Also, let w?m,` be the oracle weights introduced in (18).

Then

E

(∑
(m,`)∈S14

w?m,`xm,` +
∑

(m,`)∈S23
wm,`xm,`∑

(m,`)∈S14
w?m,` +

∑
(m,`)∈S23

wm,`

)2

= O

(
δ2
n

n2

)
.

Proof. Define Sf as the set of indices of the pixels whose noise-free value is
neither zero nor one. Since the images are chosen from the Horizon class, the
cardinality of this set is at most 2n. Plugging in the values of xm,`, we have

E

(∑
(m,`)∈S14

w?m,`xm,` +
∑

(m,`)∈S23
wm`xm,`∑

(m,`)∈S14
w?m,` +

∑
(m,`)∈S23

wm,`

)2

(a)
= E

( ∑
(m,`)∈S14

w?m,`xm,` +
∑

(m,`)∈S3\Sf wm,` +
∑

(m,`)∈Sf wm,`xm,`∑
(m,`)∈S14

w?m,` +
∑

(m,`)∈S3\Sfwm,` +
∑

(m,`)∈S2\Sfwm,` +
∑

(m,`)∈Sf wm`

)2

(b)

≤ E

(∑
(m,`)∈S14

w?m,`xm,` +
∑

(m,`)∈S3
1 +

∑
(m,`)∈Sf wm`xm,`∑

(m,`)∈S14
w?m,` +

∑
(m,`)∈S3

1 +
∑

(m,`)∈Sf wm,`

)2

≤ E

(∑
(m,`)∈S14

w?m,`xm,` +
∑

(m,`)∈S3
1 + 2n∑

(m,`)∈S14
w?m,` +

∑
(m,`)∈S3

1

)2

= O

(
δ2
n

n2

)
,

where Inequality (b) is due to the fact that the expression after Equality
(a) is an increasing function of

∑
(m,`)∈S3\Sf wm` and a decreasing function of∑

(m,`)∈S2\Sf wm`. Therefore, we set wm,` = 1 for (m, `) ∈ S3 and wm,` = 0

for (m, `) ∈ S2.

Lemma 6. Let wm,` be the weights of NLM with δn = log
1
2

+ε n and tn =
2√

log
ε
2 n

for ε > 0. Also, let w?m,` be the oracle weights introduced in (18).

Then we have

E

(∑
(m,`)∈S14

w?m,`zm,` +
∑

(m,`)∈S23
wm,`zm,`∑

(m,`)∈S14
w?m,` +

∑
(m,`)∈S23

wm,`

)2

= O

(
1

n2

)
.

Proof. Since
∑

(m,`)∈S23
wm,` ≥ 0 and we are interested in the upper bound
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of the risk, we can remove it from the denominator to obtain

E

(∑(m,`)∈S14
w?m,`zm,` +

∑
(m,`)∈S23

wm,`zm,`∑
(m,`)∈S14

w?m,` +
∑

(m,`)∈S23
wm,`

)2


≤ E

(∑(m,`)∈S14
w?m,`zm,` +

∑
(m,`)∈S23

wm,`zm,`∑
(m,`)∈S14

w?m,`

)2


= E

(∑(m,`)∈S14
w?m,`zm,`∑

(m,`)∈S14
w?m,`

)2
+ E

(∑(m,`)∈S23
wm,`zm,`∑

(m,`)∈S14
w?m,`

)2


+ 2E

((∑
(m,`)∈S14

w?m,`zm,`∑
(m,`)∈S14

w?m,`

)(∑
(m,`)∈S23

wm,`zm,`∑
(m,`)∈S14

w?m,`

))
. (21)

Since
∑

(m,`)∈S14
w?m,`zm,`∑

(m,`)∈S14
w?m,`

is the average of iid random variables, it is not hard to

prove that E
(∑

(m,`)∈S14
w?m,`zm,`∑

(m,`)∈S14
w?m,`

)2

= O(σ
2

n2 ). To bound the other two terms in

(21) we use the notation defined in the last section: C∆
m,` = {(i, j) : |i−m| <

∆, |j− `| < ∆}∩S. We also define E(· | C∆
m,`) as the conditional expectation

given the variables in C∆
m,`. We then have

E

(∑(m,`)∈S23
wm,`zm,`∑

(m,`)∈S14
w?m,`

)2


= E

E
(∑(m,`)∈S23

wm,`zm,`∑
(m,`)∈S14

w?m,`

)2
∣∣∣∣∣∣ Cδni,j


= E

(
E(
∑

(m′,`′)∈S23

∑
(m,`)∈S23

wm,`zm,`wm′,`′zm′,`′ | Cδni,j )
(
∑

(m,`)∈S14
w?m,`)

2

)

= E

E(
∑

(m′,`′)∈C2δn
m,`

∑
(m,`)∈S23

wm,`zm,`wm′,`′zm′,`′ | Cδni,j )

(
∑

(m,`)∈S14
w?m,`)

2


=

(∑
(m′,`′)∈C2δn

m,`

∑
(m,`)∈S23

E(wm,`zm,`wm′,`′zm′,`′)

(
∑

(m,`)∈S14
w?m,`)

2

)
≤ O

(
δ3
n

n3

)
.

For the last inequality we have used the Cauchy-Schwartz Inequality to prove
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that E(wm,`zm,`wm′,`′zm′,`′) ≤ 3σ2. Although we could derive a loose bound

for E

((∑
(m,`)∈S23

wm,`zm,`∑
(m,`)∈S14

w?m,`

)2
)

and still draw the same conclusion, we used the

above technique since we have to use it in the proof of Theorem 7. The last
term we have to bound in (21) is

E

((∑
(m,`)∈S14

w?m,`zm,`∑
(m,`)∈S14

w?m,`

)(∑
(m,`)∈S23

wm,`zm,`∑
(m,`)∈S14

w?m,`

))

≤

√√√√E(∑(m,`)∈S14
w?m,`zm,`∑

(m,`)∈S14
w?m,`

)2
√√√√E(∑(m,`)∈S23

wm,`zm,`∑
(m,`)∈S14

w?m,`

)2

≤ O

(
1

n2

)
.

This proves the lemma.

Using Lemma 5 and Lemma 6 in (20) proves that

E(U |A)P(A) = O

(
δ2
n

n2

)
. (22)

Finally, using Lemma 4 and the union bound it is easy to show that

P(Ac) = O

(
1

n2

)
. (23)

It is important to note that the constants of this probability are hidden in
the O notation. These constants depend on ε and increase as ε decreases.
Therefore, we cannot set ε = 0.

Plugging in (23) and (22) in (19) results in

E

(
xi,j −

∑
wm,`ym,`∑
wm,`

)2

= O

(
log1+2ε(n)

n2

)
∀(i, j) ∈ S1.

Now consider (i, j) ∈ S2 ∪ S3. In this region we can bound the error by the
worst possible risk, which is 1. We will discuss the sharpness of this bound
in the next section where we develop a lower bound for the risk.

Using the bounds provided above for the risks of the pixels in S1, S2, S3

and S4, we can now calculate the final upper bound for the risk of the NLM
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as

sup
f∈Hα(C)

R(f, f̂NL) =
1

n2

∑
i

∑
j

E(xi,j − f̂Ni,j)2

≤ log1+2ε(n)(|S1|+ |S4|)
n2

+
|S2|+ |S3|

n2

≤ O

(
log

1
2

+ε(n)

n

)
.

In order to derive the last inequality we noted that since h(t1) ∈ Hölder1(1)
the cardinality of S2 and S3 are O(n log(n)). This completes the proof of
Theorem 4.

4.4. Proof of Theorem 5

Suppose that the parameters of SNLM satisfy assumptions A1–A4. To
derive a lower bound we consider the performance of the SNLM algorithm
on the simple image in Figure 2. For notational simplicity we assume that n
is even, and hence all of the pixel values are either 0 or 1. The proof follows
four main steps:

1. We consider the pixels that are just above the edge, i.e., (i, dn
2
e), and

prove that the risk of the NLM on these pixels is lower bounded by a
constant that does not depend on n.

2. Using asymptotic arguments we prove that the probability a pixel just
below the edge passes the threshold tn > 0 is larger than p0, where
p0 is a non-zero probability independent of n. Based on this, we use
a concentration argument to prove that Θ(n) of the pixels just below
the edge will pass the threshold with high probability. See the formal
statement in Theorem 1.

3. Using symmetry arguments we prove that the probability a pixel that
is ` < δn/2 rows5 above the edge or below the edge passes the threshold
is equal. This is formally stated in Lemma 8.

4. Combining the outcomes of Steps 2 and 3 we show that the risk is
minimized if all the pixels just above the edge pass the threshold and
the probability that the other pixels pass the threshold is as low as

5The `th row of an image is the set of all pixels of the form (i, `).
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possible. If more zero pixels above the edge pass the threshold, then
more pixels with noise-free value 1 will also pass the threshold, and this
makes the bias large. Therefore we assume that pn,`, the probability
that a pixel at distance ` of the edge passes the threshold, is equal to
zero for ` > 1. However, we have already proven that for ` = 1 the
probability is larger than p0. Theorem 5 uses this fact to show that the
risk of this estimator is larger than a constant independent of n.

Proposition 1. Let j∗ = dn
2
e. For any pixel with coordinates of the form

(i∗, j∗), there exists a non-zero constant probability p0 such that for any δn
and tn

P

(∑
m

wm,j∗−1 − np0 < −t

)
≤ 4δne−

t2

4nδn .

Proof. For notational simplicity we use i = i∗ and j = j∗ in the proof. We
have

P(d̄2
δn(yi,j, ym,j−1) ≤ σ2 + tn)

=P

(
1

ρ2
n

(
∑
`,p

|xi+p,j+` − ym+p,j−1+`|2 − (xi,j − yp,j−1)2) ≤ σ2 + tn

)

=P

(
1

ρ2
n

∑
`,p

(s2
`,p − σ2)− 2

ρ2
n

∑
`

s`,0 ≤ −
1

ρn
+ tn

)

≥P

(
1

ρ2
n

∑
`,p

(s2
`,p − σ2)− 2

ρ2
n

∑
`

s`,0 ≤ −
1

ρn

)
,

where s`,m = zm+`,j−1+p. According to the Berry-Esseen Central Limit The-
orem for independent non-identically distributed random variables [16], we
know that

P

(
1

ρ2
n

∑
`

∑
p

(s2
`,p − σ2)− 2

ρ2
n

∑
`

s`,0 ≤ −
1

ρn

)
≥ P(G ≤ −1)− C

ρn
,

whereG is a Gaussian random variable with mean zero and bounded standard
deviation. In fact, it is not difficult to confirm that

E(G2) = 2σ4 +
8σ2δn − 2σ4

(2δn + 1)2
.
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Since P(G ≤ −1) ≥ 2p0 (2p0 is P (G′ ≤ −1) where G′ ∼ N(0, 2σ4)) is
non-zero, for large values of n we can ensure that C/n < p0 and therefore
that P(d̄2

δn
(yi,j, ym,j−1) ≤ σ2 + tn) > p0. We now prove that even though

the weights are correlated, Θ(n) of the weights will be equal to 1 with very
high probability. Define ui as wi,j−1 and define the process U = (u1, . . . , un).
Break this sequence into 2δn subsequences Ui = (ui, ui+2δn , ui+4δn , . . . , un−2δn+i).
Each Ui has independent and identically distributed elements. Therefore, ac-
cording to the Hoeffding Inequality, we have P(|

∑
uj∈Ui uj−

n
2δn
E(ui)| > t) ≤

2e
−t2δn
n . On the other hand we know that E(ui) > p0. Therefore,

P

∑
uj∈Ui

uj <
n

2δn
p0 − t

 ≤ 2e
−t2δn
n .

Finally we use the union bound to obtain

P
(∑

ui − np0 ≤ −t
)
≤ P

∑
i

∑
uj∈U1

uj −
n

2δn
p0 ≤ −t


≤ P

∪i{ω :
∑
uj∈Ui

uj −
n

2δn
p0 ≤ −

t

2δn
}

 ≤ 4δne−
t2

4nδn .

Define the set J = {(i, j) | j = bjh( i
n
)c}. It is clear that |J | = n. The

following Corrollary to Proposition 1 shows that NLM sets the weights of
most of the pixels in J to 1.

Corollary 1. Consider the image displayed in Figure 2, and let δn = O(nα)
for α < 1. For any δn and tn > 0, Θ(n) of the pixels in J will pass the
threshold tn with very high probability.

Proof. Set t = n
3+α

4 in Proposition 1.

Remarkably the above corollary holds in a very general setting even if the
assumptions A1–A4 do not hold. In other words, NLM in its most general
form is not able to distinguish between the pixels right above the edge from
the pixels right below the edge. This is due to the fact that the “signal to
noise ratio” in the δn-neighborhood distance estimates is too low at the edge
pixels. This is the result of the isotropic neighborhoods used to form the
weight estimates.
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Lemma 7. If |m− i∗| > δn/2 and |m′ − i∗| > δn/2, then

P(d̄2
δn(yi∗,j∗ , ym,j∗−`) ≤ σ2 + tn) = P(d̄2

δn(yi∗,j∗ , ym′,j∗−`) ≤ σ2 + tn)

for any `,m,m′.

The proof of this lemma is obvious and is skipped here.

Lemma 8. For ` < δn/2,

P(d̄2
δn(yi∗,j∗ , ym,j∗−`) ≤ σ2 + tn) = P(d̄2

δn(yi∗,j∗ , ym,j∗+`) ≤ σ2 + tn).

The proof of this lemma is also obvious from symmetry and is skipped
here. We can now prove Theorem 5, which provides a lower bound for the
risk of SNLM.

Proof of Theorem 5. We derive a lower bound for the risk of SNLM on the
image displayed in Figure 2. To do so, we consider the pixels just above the
edge and prove that the SNLM algorithm has risk Θ(1) at these pixels. Since
there are Θ(n) of these pixels, the risk over the entire image is larger than
Θ(n−1).

Consider a pixel (i∗, j∗) with j∗ = dn
2
e. The risk of the SNLM is

E

(
fi∗,j∗ −

∑∑
wm,`ym,`∑∑
wm,l

)2

≥
(
E

(∑∑
wm,`ym,`∑∑
wm,l

))2

. (24)

Note that wm,` is independent of the ym,` according to the construction of the
SNLM weights in (10). Let pn,` be the probability P(w`,i = 1) for ` ∈ {j∗ −
δn, j

∗− δn + 1, . . . , j∗+ δn}. We can partition the row {(i, `) | 1 ≤ i ≤ n} into
2δn + 1 subsequences and apply Hoeffding inequality on each subsequence.
We combine the results of different subsequences with the union bound to
prove that

P

(
|
∑
m

wm,` − npn,`| > t

)
≤ 4δne

−t2
4nδn . (25)

Define the event A as

A =

{
|
∑
m

wm,` − npn,`| < n0.66 ∀`, |`− j∗| ≤ δn

}
.
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Using the union bound and (25) we have

P (Ac) ≤ 8δ2
ne
−n1.32

4nδn .

Any lower bound on the bias of the estimator leads to a lower bound on its
risk. Therefore, we find a lower bound for the bias as follows:

E

(∑∑
wm,`ym,`∑∑
wm,`

)
≥ E

(∑∑
wm,`ym,`∑∑
wm,`

∣∣∣∣ A)P(A)

≥ E

( ∑∑
wm,`ym,`∑

npn,` + n.66δn

∣∣∣∣ A)P(A) ≥ E
( ∑∑

wm,`ym,`∑
npn,` + n.66δn

)
− P (Ac),

where for the last inequality we have used the fact that the risk of SNLM
is bounded by 1. Since from the construction of SNLM in (10), wm,` is
independent of zm,`, we have

E

( ∑∑
wm,`ym,`∑

npn,` + n0.66δn

)
− P (Ac) = E

( ∑∑
wm,`xm,`∑

npn,` + n0.66δn

)
− P (Ac)

=

∑
`<j∗ npn,`∑

npn,` + n0.66δn
− P (Ac) ≥

∑
`<j∗ npn,`

n+ 2
∑

`<j∗ npn,` + n0.66δn
− P (Ac).

Proposition 1 proves that both the numerator
∑

`<j∗ npn,` and the denome-

nator
∑
npn,` + n0.66δn are Ω(n). Therefore, according to A3, we can ignore

the summations
∑

`<j∗− δn
2
npn,` and

∑
`>j∗+ δn

2
npn,`. By combining this fact

with Lemma 8, we obtain∑
`<j∗ npn,`∑

npn,` + n0.66δn
− P (Ac) ≥

∑
`<j∗ npn,`

npn,j∗ + 2
∑

`<j∗ npn,` + n0.66δn
− P (Ac)

≥
∑

`<j∗ npn,`

n+ 2
∑

`<j∗ npn,` + n0.66δn
− P (Ac).

In the last inequality we assumed that pn,j∗ = 1. To find a lower bound

for
∑
`<j∗ npn,`

n+2
∑
`<j∗ npn,`+n

0.66δn
it is enough to note that

∑
`<j∗ npn,`

n+2
∑
`<j∗ npn,`+n

0.66δn
is an

increasing function of
∑

`<j∗ npn,` and therefore is minimized if and only if∑
`<j∗ npn,` takes its minimum value. However, according to Proposition 1

the minimum value of this term is Θ(n). Therefore, we have∑
`<j∗ npn,`

n+ 2
∑

`<j∗ npn,` + n.66δn
− P (Ac)

≥ np0

np0 + n+ n.66δn
− p(Ac) =

p0

p0 + 1
(1 + o(1)).
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This completes the proof.

5. Tapered NLM Weights

In this section we show that the upper bound we provided for the NLM
in Theorem 4 holds in the more general setting of tapered weights. We
now allow the weights to be a smooth function of the δn-neighborhood. We
assume that the weight assignment policy satisfies the following properties:

B1: The neighborhood size δn = 2 log(n).

B2: The weights are non-negative and bounded, i.e., 0 ≤ wm,` ≤ α.

B3: If d2(xi,j, xm,`) = 0, then the assigned weight satisfies E(wi,j(m, `)) > c,
for some constant c independent of n.

B4: If d2(xi,j, xm,`) = 1, then E(wi,j(m, `)) = O
(

1√
n

)
. It shall be empha-

sized that slower decay rate in this expectation, results in slower decay
in the rate of the NLM algorithm.

Theorem 7. If the weight assignment policy in NLM satisfies properties
B1–B4, then

sup
f∈Hα(C)

R(f, f̂N) = O

(
log n

n

)
.

Proof. Consider the four partitions S1–S4 defined in the proof of Theorem
4. Our goal is to obtain an upper bound for the risk of the pixels in each
region. The risk of the pixels in S2 and S3 will be bounded by the strategy
we employed in Theorem 4. Here, we just explain how we bound the risk of
the pixels in S1 and S4. Since the proof for S4 is the same as the proof for
S1, we consider just S1. Let (i, j) ∈ S1. Therefore xi,j = 0 and

E(xi,j − f̂Ni,j)2 = E

(∑
wm,`ym,`∑
wm,`

)2

= E

(∑
wm,`xm,`∑
wm,`

)2

+ E

(∑
wm,`zm,`∑
wm,`

)2

+ E

((∑
wm,`xm,`∑
wm,`

)(∑
wm,`zm,`∑
wm,`

))
. (26)

To obtain an upper bound for the risk, we will find upper bounds for the last
three terms in (26). Lemmas 9 and 10 below summarize the upper bounds.
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Lemma 9. Let wm,` be the weights of NLM satisfying B1–B4. Then

E

(∑
wm,`xm,`∑
wm,`

)2

= O

(
1

n

)
.

Proof. Define Sf as the set of the indices of the pixels whose noise-free value
is neither 0 nor 1, and plug in the actual values of xm,` to obtain

E

(∑
(m,`)∈S1∪S4

wm,`xm,` +
∑

(m,`)∈S2∪S3\Sf wm,`xm,` +
∑

(m,`)∈Sf wm,`xm,`∑
(m,`)∈S1∪S4

wm,` +
∑

(m,`)∈S2∪S3\Sf wm,` +
∑

(m,`)∈Sf wm,`

)2

≤ E

(∑
(m,`)∈S4

wm,` +
∑

(m,`)∈S3\Sf wm,` +
∑

(m,`)∈Sf wm,`xm,`∑
(m,`)∈S1∪S4

wm,` +
∑

(m,`)∈S2∪S3
wm,` +

∑
(m,`)∈Sf wm,`

)2

≤ E

(∑
(m,`)∈S4

wm,` +
∑

(m,`)∈S3
α + 2nα∑

(m,`)∈S1∪S4
wm,` +

∑
(m,`)∈S3

α

)2

. (27)

To derive the last inequality we use the following facts, which are easy to
check:

1.

(∑
(m,`)∈S4

wm,`+
∑

(m,`)∈S3\Sf
wm,`+

∑
(m,`)∈Sf

wm,`xm,`∑
(m,`)∈S1∪S4

wm,`+
∑

(m,`)∈S2∪S3
wm,`+

∑
(m,`)∈Sf

wm,`

)2

is an increasing func-

tion of
∑

(m,`)∈S3\Sf wm,`.

2.

(∑
(m,`)∈S4

wm,`+
∑

(m,`)∈S3\Sf
wm,`+

∑
(m,`)∈Sf

wm,`xm,`∑
(m,`)∈S1∪S4

wm,`+
∑

(m,`)∈S2∪S3
wm,`+

∑
(m,`)∈Sf

wm,`

)2

is a decreasing func-

tion of
∑

(m,`)∈S2\Sf wm,`.

3. |Sf | ≤ 2n, i.e., Sf contains at most 2n pixels.

Our next claim is that
∑

(m,`)∈S4
wm,` and

∑
(m,`)∈S1

wm,` concentrate
around their means. We establish this in a manner very similar to the proof
of Theorem 5. We first break the

∑
(m,`)∈S4

wm,` into (4δn+ 2)2 subsequences
such that each subsequece contains only independent random variables. In
other words if xm,` is in one summation, then no other element of C4δn+2

i,j

will be in the summation. Therefore, for each summation we can apply the
Hoeffding inequality. Finally, we use the union bound as explained in the
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proof of Theorem 5 to show that

P

∣∣∣∣∣∣
∑

(m,`)∈S1

wm,` −
∑

(m,`)∈S1

E(wm,`)

∣∣∣∣∣∣ > t

 ≤ 2(4δn + 2)2e
−2t2

(4δn+2)4(
∑

(m,`)∈S1
α2) ,

P

∣∣∣∣∣∣
∑

(m,`)∈S4

wm,` −
∑

(m,`)∈S1

E(wm,`)

∣∣∣∣∣∣ > t

 ≤ 2(4δn + 2)2e
−2t2

(4δn+2)4(
∑

(m,`)∈S1
α2) .

It is straightforward to prove that by setting t to 32αn log2.5(n), we have

P

∣∣∣∣∣∣
∑

(m,`)∈S1

wm,` −
∑

(m,`)∈S1

E(wm,`)

∣∣∣∣∣∣ > 32αn log2.5(n)

 ≤ O

(
δ2
n

n8

)

P

∣∣∣∣∣∣
∑

(m,`)∈S4

wm,` −
∑

(m,`)∈S1

E(wm,`)

∣∣∣∣∣∣ > 32αn log2.5(n)

 ≤ O

(
δ2
n

n8

)
. (28)

Define the event F as
{∣∣∣∑(m,`)∈S1

wm,` −
∑

(m,`)∈S1
E(wm,`)

∣∣∣ < 32αn log2.5 n
}

∩
{
|
∑

(m,`)∈S4
wm,` −

∑
(m,`)∈S1

E(wm,`)| < 32αn log2.5 n
}

. It is clear from

(28) that

P(F c) = O

(
δ2
n

n8

)
. (29)

Using (27), (28), and (29) we have

E

(∑
(m,`)∈S4

wm,` +
∑

(m,`)∈S3\Sf α + 2nα∑
(m,`)∈S1∪S4

wm,` +
∑

(m,`)∈S3\Sf α

)2

≤ E

(∑(m,`)∈S4
wm,` +

∑
(m,`)∈S3\Sf α + 2nα∑

(m,`)∈S1∪S4
wm,` +

∑
(m,`)∈S3\Sf α

)2
∣∣∣∣∣∣F
P(F ) + P(F c)

≤ O

(
1

n

)
.

The last inequality is due to Assumptions B3 and B4. This completes the
proof of the lemma.
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Lemma 10. Let wm,` be the weights of NLM with δn = log(n). Also assume
that the weights are set according to B1--B4. We then have

E

(∑
wm,`zm,`∑
wm,`

)2

= O

(
log2(n)

n2

)
.

Proof. We first condition on the event F introduced in the proof of Lemma
9.

E

((∑
wm,`zm,`∑
wm,`

)2
)

≤ E

((∑
wm,`zm,`∑
wm,`

)2
∣∣∣∣∣ F

)
P(F ) + P(F c)

≤ E

(( ∑
wm,`zm,`∑

E(wm,`)− 32αn log2.5(n)

)2
∣∣∣∣∣ F

)
P(F ) + P(F c)

≤ E

(( ∑
wm,`zm,`∑

E(wm,`)− 32αn log2.5(n)

)2
)

+ P(F c)

≤ O

(
log2(n)

n2

)
.

The last inequality is due to the fact that

E

 ∑
(m,`)∈S14

wm,`zm,`

∣∣∣∣∣∣ Cδni,j
2

= E

 ∑
(m,`)∈S14

∑
(m′,`′)∈S14

wm,`zm,`wm′,`′zm′,`′

∣∣∣∣∣∣ Cδni,j


=
∑

(m,`)∈S14

∑
(m′,`′)∈C2δn

m,`

E(wm,`zm,`wm′,`′zm′,`′ | Cδni,j ) = O(n2δ2
n).

Therefore,

E

(∑(m,`)∈S23
wm,`zm,`∑

(m,`)∈S14
wm,`

)2
 ≤ O

(
δ2
n

n2

)
. (30)
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Using the bounds derived in Lemmas 9 and 10, we can complete the proof
of the main theorem:

sup
f∈Hα(C)

R(f, f̂NL) =
1

n2

∑
i

∑
j

E(xi,j − f̂Ni,j)2

≤ log2(n)(|S1|+ |S4|)
n4

+
|S2|+ |S3|

n2
≤ O

(
log(n)

n

)
.

6. Discussion

We have provided the first asymptotic result on the risk analysis of the
nonlocal means (NLM) algorithm on smooth images with sharp edges. In
contrast to most other filtering approaches, NLM does not consider the spa-
tial vicinity of the pixels as a feature for setting the weights. Instead, it
exploits more global features, which leads to improved performance.

In spite of this success, we have shown that the performance of NLM is
within a logarithmic factor of the performance of the wavelet thresholding
and still significantly below the optimal achievable rate. This is due to the
fact that the isotropic nature of the NLM neighborhoods does not allow the
algorithm to discriminate the pixels that are close to but below the edge from
the pixels that are close to but above the edge. This leads to a blurring effect
that results in high bias along the edge. Exploring the performance of NLM
with anisotropic neighborhoods may address this issue and is left for future
research.
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