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Abstract—In this paper we develop a dynamic continuous
solution to the clustering problem of data characterized by a
mixture of K distributions, where K is given a priori. The
proposed solution resorts to game theory tools, in particular mean
field games and can be interpreted as the continuous version of
a generalized Expectation-Maximization (GEM) algorithm. The
main contributions of this paper are twofold: first, we prove that
the proposed solution is a GEM algorithm; second, we derive
closed-form solution for a Gaussian mixture model and show
that the proposed algorithm converges exponentially fast to a
maximum of the log-likelihood function, improving significantly
over the state of the art. We conclude the paper by presenting
simulation results for the Gaussian case that indicate better
performance of the proposed algorithm in term of speed of
convergence and with respect to the overlap problem.

I. INTRODUCTION

Finite mixtures are a flexible and powerful probabilistic
modeling tool for univariate and multivariate data. Statisti-
cal modeling of data, such as pattern recognition, computer
vision, signal and image analysis, machine learning, system
identification and estimation, constitutes a large of class of
applications. Finite mixtures describe data generated by a
convex combination of probability density functions (pdf). In
statistical pattern recognition, finite mixtures allow a formal
probabilistic model-based approach to unsupervised learning,
i.e, clustering [2]. Finite mixtures naturally model observations
which are assumed to have been produced by one (randomly
selected and unknown) of a set of alternative random sources.
Inferring (the parameters of) these sources and identifying
which source produced each observation leads to a clustering
problem. The usefulness of mixture models is not limited to
unsupervised learning applications. Mixture models are also
able to represent arbitrarily complex pdf. This makes them
an excellent choice for representing complex class-conditional

pdfs (i.e, likelihood functions) in Bayesian supervised learning
scenarios or priors for Bayesian parameter estimation [2].

A. Standard method

Expectation-maximization (EM) is a standard algorithm [1]
and one of the fundamental tools in unsupervised learning.
Briefly, EM is a technique that allows to incrementally increase
the maximum likelihood (ML) and converges to a maximum
likelihood estimate of the mixture model’s parameters. Let
the probability be represented by p(x|Θ), assumed to be
fully characterized by a set of parameters Θ. Let X ={
x(1), ..., x(N)

}
be a known data set of size N , drawn from

this distribution, also referred as incomplete data. Consider
that a complete data set exists Z = (X ,Y), where Y is the
missing information, random and presumably governed by an
underlying distribution. The complete data is specified by the
following joint density function

p(z|Θ) = p(x, y|Θ) = p(y|x,Θ)p(x|Θ),

called the complete-data likelihood. This function is random,
due to Y . The EM method is composed of two steps: Expec-
tation (E-Step) and Maximization (M-Step). First, we find the
expected value of the complete-data likelihood log p(X ,Y|Θ)
with respect to the unknown data Y given the observed data X
and the current estimate Θ(i−1) (E-Step). Next the following
functional

Q(Θ,Θ(i−1)) = E
[
log p(X ,Y|Θ)|X ,Θ(i−1)

]
, (1)

is maximized with respect to Θ. This maximization represents
the M-Step, and defines the new estimate of parameters as
follows

Θ(i) = arg max
Θ

Q(Θ,Θ(i−1)). (2)



These two steps are repeated as necessary and each iter-
ation is guaranteed to increase the log-likelihood until the
algorithm converges to a local maximum of the likelihood
function. Instead of maximizing Q(Θ,Θ(i−1)) one may be
interested into modifying the M-Step to find Θ(i) such that
Q(Θ(i),Θ(i−1)) > Q(Θ(i−1),Θ(i−1)). This class of algo-
rithms is known as generalized EM (GEM), and shares the
same properties as EM and can be used an alternative to it.
Despite being a powerful tool, EM has several drawbacks [3],
[4]. The degeneracy problem and the selection of number of
components are properly dealt with Bayesian inference and
variational methods [2], [5]. The convergence rate can be
sped up using Gauss-Newton methods [4], with some extra
computation cost. In addition EM does not apply to non-
parametric distributions. Finally, the interdependency between
the two steps leads to discontinuities in the optimization and
a low convergence rate.

B. Problem statement

In this paper we take a dynamic system point of view to
perform maximum likelihood clustering adopting tools from
game and control theory. We are concerned with unsupervised
learning of a mixture of distributions. The main assumption
is that the data set X =

{
x(1), ..., x(N)

}
is generated by a

mixture model where number of mixtures K ∈ N is known a
priori, that is

p(x) =

K∑
k=1

αkpk(x),

K∑
k=1

αk = 1 (3)

where αk > 0 is the mixture coefficient or weight relative
to the distribution pk(x). This distribution is assumed to
be greater than zero almost everywhere, but not necessarily
characterized by a finite number of parameters. The goal is to
maximize the log-likelihood of the probability of the mixture
p(x) given the data X :

L(αξ1(t), ..., αξK(t), pξ1(t, ξ), ..., pξK(t, ξ)) =
K∑
k=1

N∑
i=1

log
(
αξk(t)pξk(t, x(i))

)
pxk(t, x(i)).

(4)
This is closely related to (1) in the case where pξk(t, ξ) is
parameterized and L does not depend upon time. In this case
we obtain the same expression as in [eq. 5,19]. In (4), αξk
are the mixing coefficients of the solution that maximizes (4),
pξk(t, ξ) is a distribution driven by the dynamics of a system
to be introduced in the next section and finally pxk(t, ξ) is the
estimated distribution of the data at time k.

C. Proposed solution

In order to cope with the interdependency mentioned above,
we use mean field games (MFG), introduced and developed
by Lions and Lasry in two seminal papers [6], [7] and
independently by P. Caines ( [20] and references therein), to
understand the economical/social behavior of a large number
of players. In our case the MFG framework is especially
suitable to model populations of agents that are characterized

by a probability distribution pξk(t, ξ) that evolves in time
according to the following dynamics of ξk(t) ∈ R:

dξk = ukdt+ εdwt
ξk(0) = ξ0

k.
(5)

In (5), ξk represents the state of each agent ξk(t) in the
population k ∈ {1, ...,K}. The initial condition is a random
variable with distribution given by pξk(0, .), wt is a Wiener
process with volatility ε > 0 that codifies possible errors of
the evolution and error sparseness and uk : [0 : ∞) → Rn
can be viewed as a decision of each player (terminology from
game theory) [18] or a control (terminology in control theory)
[13] to be designed.

The main idea to solve the finite mixture model problem
stated in Section I-B is to use (5), where uk is chosen as the
solution to the following finite-time optimal control problem

Jk (t, ξ) = min
uk:[t,T ]

E

 T∫
t

‖uk (τ, ξ)‖2 + log

(
pξk (τ, ξ)

pxk (τ, ξ)

)
dτ

 ,
(6)

where 0 ≤ t ≤ T and T ∈ (0,∞]. In (6) the expectation
is taken with respect to ξk. The running cost is composed of
two terms: the first one penalizes the energy of the control
of each agent in the population while the second is related
to the Kullback-Leibler divergence between the underlying
distribution that represents each population pξk(t, ξ) and the
estimated distribution pxk(t, ξ) to be computed using the data
set X . For example, for a distribution characterized by a finite
set of parameters, pxk can be computed by maximizing the
likelihood of the data with respect to pξk, as shown by the
simulation results. The rationale for the selection of this cost
(6) is that it forces the system (5) and its underlying distribu-
tion pξ to approach px. This is enforced by the minimization
of the Kullback-Leiber divergence DKL(p||q) = E

[
log
(
p
q

)]
where the expectation is taken with respect to p.

The cost (6) and px depend on the evolution of pξ, which
in turn depends on the cost due to the control in (5). This
coupling is analogous to the interdependency between the E
and the M steps.

At this point, we introduce the behavior/dynamics of each
ξk for all the k = 1, ...,K populations, and consequently the
behavior of pξk. These populations are weakly coupled through
the mixing coefficients αk(t) that depend on time and can be
seen in a probabilistic sense as reputation rates given by

αk(t) =
1

N

N∑
i=1

pξk(t, x(i)),

K∑
k=1

αk(t) = 1, (7)

where x(i) ∈ X and N is the number of elements of X .
This choice of the mixing coefficients αks both resembles the
probabilistic interpretation [2] of the number of samples x(i)

that are most likely to belong to a class k and it also maximizes
the likelihood of the mixing coefficients with respect to the
data.



The characterization of the solution using the MFG ap-
proach requires the simultaneous solution of two partial differ-
ential equations: a Hamilton-Jacobi-Bellman (HJB) equation
characterizes the evolution of the control [12] (the M-Step),
and a Fokker-Planck (FP) equation drives the evolution of the
population pξk through (5) (the E-step). In this way we cope
with the interdependency, since (6) depends on the evolution
of pξk and the FP equation through the control presented in
(5) that solve the problem in (6). The coupled HBJ and FP
equations constitute the basis of the MFG framework.

The proposed approach provides a dynamical system inter-
pretation of GEM, as it can be seen as a continuous version
of GEM.

The main contributions of this paper are twofold: we first
prove that the proposed solution is a GEM algorithm; we then
derive a closed-form solution for Gaussian mixture model and
show that the proposed algorithm converges exponentially fast
to a maximum of the log-likelihood function. We conclude the
paper by validating the algorithm on artificial data and showing
some simulation results relative to the overlap problem.

The remainder of this article is organized as follows: In
Section II we present in detail the equations that describe the
MFG. In Section III we derive the dynamic expression for
the mean field game and present the proof that the proposed
solution is a GEM. In Section IV we provide closed form
solutions for the case of Gaussian Mixture Models (GMM)
and provide the proof of exponential convergence and we
enunciate some stability results. Finally in Section V we
provide simulation results on artificial data, and analyze the
worst case scenario using stationary assumptions for the GMM
case as well as some promising results concerning the overlap
problem [8].

II. MEAN FIELD GAMES

Mean field games (MFG) is a mathematical framework
developed by Larsy and Lions [6], [7], and investigated
by Caines [20], that is suitable to model and analyze the
behavior of games among N agents [21], when N → ∞.
Although It uses a Hamilton-Jacobi equation [12], MFG is
more general as it allows the cost function of each agent
to also depend on the probability density pξ of all the other
agents. Such generalization can be achieved adding a term to
the cost function as in (6), that captures the influence of the
collective, in our case the Kullback-Leiber divergence. From
(6) we obtain the following Hamilton-Jacobi equation for each
population k

Jkt (t, ξ) +
∣∣Jkξ (t, ξ)

∣∣2 +
ε2

2
∆Jk (t, ξ)− log

(
pξk (t, ξ)

pxk (t, ξ)

)
= 0

(8)
with terminal condition given by J(T, .) = 0, where Jt and Jξ
denote the partial derivative of J w.r.t. t and ξ, respectively.
The Euclidean norm is given by |.| and ∆ = ∂2

∂ξ21
+ ... +

∂2

∂ξ2n
represents the Laplacian, where ξi is the i-th entry of the

vector ξ ∈ Rn. This last equation is coupled with a Fokker-
Planck equation that drives the behavior of pξk according to

the dynamics (5). The Fokker-Planck equation is given by(
pξk

)
t
− div

(
pξkuk (t, ξ)

)
=
ε2

2
∆pξk (9)

with initial condition pξk(0, .) = pξ0k (.), where div(f) =[
∂f1
∂ξ1
· · · ∂fn

∂ξn

]
and uk = −Jkξ (t, ξ) is a function that depends

on the evolution of the cost function Jk. The system of
coupled equations given by (8)-(9) is a MFG. The main
difficulty of working with these equations arise from the fact
that they both depend on each other and (8) evolves backward
in time, whereas (9) evolves forward in time.

In the Appendix we provide more details about these
equations, giving a particular emphasis on (9) since it explains
why the controlled evolution (i.e. introducing the control uk
in (9)) drives the underlying distribution pξ toward px, and
why this increases the likelihood.

III. UNSUPERVISED LEARNING OF FINITE MIXTURE
MODELS USING MEAN FIELD GAMES

In this section we show that the MFG approach is indeed
a GEM. Consider the game where each player acts according
to (5) and (6). The expected optimal behavior can be written
as

ξ̂k(t) = arg min
z∈Rn

Jk(t, z) k = 1, · · · ,K (10)

It turns out that we can rewrite (10) as an ordinary differ-
ential equation in an explicit form by following the steps in
Krener [23] under the assumption that Jk(t, z) is a smooth
invertible solution and ξ̂k is differentiable. In this case Jk has
to satisfy the first order optimality condition

0 = Jkξ

(
t, ξ̂k (t)

)
. (11)

Since ξ̂k is assumed differentiable at t, we have

d
dtJ

k
(
t, ξ̂k (t)

)
= Jkt

(
t, ξ̂k (t)

)
+ Jkξ

(
t, ξ̂k (t)

)
˙̂
ξk (t)

= Jkt

(
t, ξ̂k (t)

)
.

Differentiating (11) with respect to t yields

Jkξξ(t, ξ̂k)
˙̂
ξk(t) + Jkξt(t, ξ̂k) = 0. (12)

Now, take the derivative of (8) w.r.t. ξ, along ξ̂k(t) and use
(11) to obtain

Jk
ξ̂t

(
t, ξ̂k

)
+

ε2
2

∆Jk
(
t, ξ̂k

)
− log

pξk
(
t, ξ̂k

)
pxk

(
t, ξ̂k

)


ξ

= 0.

(13)

Replacing (12) in (13), multiplying by
(
Jkξξ(t, ξ̂k)

)−1

, and
rearranging the terms we get

˙̂
ξk(t) =

(
Jkξξ(t, ξ̂k)

)−1

ε2
2

∆Jk
(
t, ξ̂k

)
− log

pξk
(
t, ξ̂k

)
pxk

(
t, ξ̂k

)


ξ

.

(14)



The system of equations composed by (14) and (8)-(9) pro-
vides the optimal population dynamics. In the next result we
show that the maximum likelihood (4) is increasing.

Theorem 1. Let X =
{
x(1), ..., x(N)

}
be a data set generated

by the mixture model (3). Consider a mixture

pξ(t, ξ) =

K∑
k=1

αξk(t)pξk(t, ξ) (15)

where pξk(t, ξ) is greater than zero almost everywhere for all
t and evolves accordingly to (5)-(6), and αk is given by (7).
Then pξ(t, ξ) continuously increases the likelihood (4) with
respect to the distribution of X given by

px(t, ξ) =

K∑
k=1

αxk(t)pxk(t, ξ). (16)

Proof: The proof is divided in two parts: first, we show
that the likelihood L increases as the mixture coefficients αk
evolve, and second that the optimal control in (5) increases
the likelihood (4) of each density function pξk w.r.t. pxk .

1) By realizing that (15) is a mixture with parameters
Θ = (α1, ..., αK) and performing the same steps as
in [Section 3, 19], it can be shown that the maximum
likelihood of the mixture coefficients is given by (7) at
each t.

2) Increasing the maximum likelihood of (4) implies that
pξk

prob→ pxk . Also the maximum likelihood for each pξk
with respect to pxk is not dependent on the remaining
pξj , j 6= k. The increase of the likelihood follows from
the fact that (6) has to satisfy (8), that is derived
by dynamic programming optimality principle [22]. In
matter of fact, take T > t sufficiently large and ε > 0,
then (6)

Jk (t, ξ(t))

= min
uk:[t,t+ε]

E

 t+ε∫
t

‖uk (τ, ξ)‖2 + log

(
pξk (τ, ξ)

pxk (τ, ξ)

)
dτ


︸ ︷︷ ︸

(∗)

+ min
uk:[t+ε,T ]

E

 T∫
t+ε

‖uk (τ, ξ)‖2 + log

(
pξk (τ, ξ)

pxk (τ, ξ)

)
dτ


︸ ︷︷ ︸

Jk(t+ε,ξ(t+ε))

where (∗) is greater or equal then

zero since E

[
T∫
t

‖uk(τ)‖2dτ ≥ 0

]
and

E

[
T∫
t

log
(
pξk(τ,ξ(τ))

pxk(τ,ξ(τ))

)
dτ

]
≥ 0 (Lemma 2 - proven in

Appendix). This way pξk
prob→ pxk due to the fact that

(∗) ≥ 0 or because we are imposing J(T, .) = 0 as
terminal condition.

Since the likelihood (4) is maximized with respect to the
mixing coefficients αk and to the distributions pξk, it maximizes

the likelihood of the mixture presented in (15), concluding the
proof.

Up to this point, we have shown that we have in the worst
case scenario an algorithm that has the same properties as any
GEM. In the next section we analyze the case where the data
set is generated by a Gaussian mixture model (GMM), and
show that the unsupervised learning using MFG for GMM
converges exponentially fast to a maximum of the likelihood
function.

IV. THE GAUSSIAN MIXTURE MODEL CASE

In this section we assume that the mixture model (3) is a
convex combination of Gaussians, i.e,

p(x) =

K∑
k=1

αkN (µk,Σk),

K∑
k=1

αk = 1

where N (µk,Σk) is a Gaussian distribution with mean µk ∈
Rn and covariance Σk ∈ Rn×n. The following lemmas will
be useful to characterize the proposed solution.

Lemma 1. Suppose that we have a mixture (15), where pξk is
driven by (5)-(6), such that:

i) pξk(0, ξ) ∼ N (µξk(0),Σξk(0)) with Σξk(0) > 0 for all k,
ii) pxk(t, ξ) ∼ N (µxk(t),Σxk(t)) with Σxk(t) > 0 for all k and

t ≥ 0.
Then pξk(t, ξ) ∼ N (µξk(t),Σξk(t)) with Σξk(t) > 0 for all k
and t ≥ 0. Moreover the evolution of the mean µξ(t), ∀t > 0
is given by

˙̂
ξk(t) =

(
P k
)−1

(Σxk(t))
−1
(
ξ̂k(t)− µxk(t)

)
,

ξ̂(0) = µξ(0).
(17)

where P k(t) = Jkξξ(t, ξ̂k) has to satisfy the following Riccati
equation

Ṗ k + 4(P k)TP k +
1

2

(
Σξk

)−1

− 1

2
(Σxk)

−1
= 0. (18)

�

Proof: The proof of this lemma consists in the following:
1) pξk(t, ξ) ∼ N (µξk(t),Σξk(t)) with Σξk(t) > 0 for all k and

t ≥ 0 if the initial condition pξk(0, ξ) for (9) is Gaussian
(provided by i)) and uk in (9) is a linear function.

2) uk in (9) is a linear function if Jk is quadratic, which
holds replacing ii) in the cost function Jk and imposing
that pξk is Gaussian. In other words, the solution of the
FP equation is Gaussian if and only if the solution of
the HJ equation is quadratic [24].

Replacing i)-ii) in (14) yields (17). The Riccati equation
follows from assuming Jξk = ξTPξ and replacing it in (8).

The following result adapted from [17] is needed.

Theorem 2 (Theorem 12.1 [17]). Given a system

dη = (Aη + f(η, u))dt+ εdwt, η(0) = η0 (19)



where η ∈ Rn, A ∈ Rn×Rn, f : Rn×Rn → Rn and ε, u, wt
as in (5) and an output function

ζ = Cη + h(u) (20)

where C ∈ Rn × Rn, h : Rn × Rn → Rn. If
• (19)-(20) is uniformly observable [17] for any input u
• f and h are Lipschitz and with bounded second derivative

with respect to η
• η̂ is the extended Kalman filter solution to the system

(19)-(20)
• |η(0) − η̂(0)| is sufficient small,where η(0) is the initial

condition of (19) and η̂(0) is the initial condition of the
extended Kalman filter.

Then |η(t)− η̂(t)| → 0 exponentially as t→∞. �

We can now state the main result of this paper

Theorem 3. Under the same assumptions as Theorem 1, for
a Gaussian mixture model the proposed solution composed by
the system (5)-(6) and (7) converges exponentially fast to a
maximum of the likelihood function. �

Proof: This proof has two steps: First we show that we
can rewrite (5) as (19) and that (17) is the extended Kalman
filter for (5), if the conditions of Theorem 2 hold for each k
of the mixture (15). Second, we show that αk(t) depend upon
pξk which is Lipchitz w.r.t. ξk, and so for ε > 0 we have that
|αk(t + ε) − αk(t)| → 0 as t → ∞ exponentially fast due to
the first step. Concerning the first step, we need to check all
the conditions of Theorem 2. We can rewrite (5) as

dξk = (ξk + f(ξk, uk))dt+ εdwt, (21)

and
yk = ξk (22)

where f(ξk, uk) = uk − ξk. Equation (21) is equivalent to
(19) with A = In where In ∈ Rn × Rn is the identity
matrix. Also equation (22) is equivalent to equation (20)
with C = In and h(uk) = 0. The system written in this
form is uniformly observable, proving the first condition. f
is Lipschitz, since uk(ξk) is linear in ξk and so is h as it is
constant. Let us now focus on the remaining two conditions.
Equation (17) can be interpreted as the Kalman filter for
system (21) (22) proving the third condition. Finally, ξ̂k(0)
can be made arbitrary small, we define the initial conditions
for both systems (21) and (17). From Theorem 2 we can
conclude that ξ̂k → ξk exponentially fast, and from Theorem
1 since the method is a GEM, its properties holds, in particular
it converges to a local maximum of the likelihood function. In
resume, it converges exponentially fast for a local maximum of
the likelihood. We now need to check that |α(t+ε)−α(t)| → 0
as t→∞ for ε > 0. By definition (see (7)) the coefficients αks
are linear combinations of Gaussian distributions and therefore
are Lipschitz with respect to ξ and bounded with respect to t.
As a consequence

|pξk(t+ ε, ξ(t+ ε))− pξk(t, ξ(t))| ≤ γpξk‖ξk(t+ ε)− ξk(t)‖,

where γpξk is a Lipschitz constant. From the first part of the
proof we know that the right hand side of the inequality
converges exponentially fast, thus concluding the proof.

V. SIMULATION RESULTS

In this section we illustrate the theoretical results via sim-
ulation using artificial data. Since EM is highly sensitive to
initialization [4], [8] and it suffers from the overlap problem
[8], where under certain conditions bi-modal distributions can
not be distinguished, we will compare the performance of the
MFG and standard EM in both situations.

A. Algorithm

Consider the mixture (15) driven by the system (5)-(6).
Since hereafter we are only concerned with GMM, we only
need to track the first and second order moments, where the
first moment is driven by (17) subject to the initial mean of
each of the k Gaussian. The second moment is driven by
(18). Explicitly we discretized (17) using Euler method with
discretization step of h = 0.01. The covariance matrix Σxk is
computed as

Σkx(t) =

N∑
i=1

pξk(t, x(i))(x(i) − µkx(t))(x(i) − µkx(t))T

N∑
i=1

pξk(t, x(i))

. (23)

and µxk as

µkx(t) =

N∑
i=1

x(i)p
ξ
k(t, x(i))

N∑
i=1

pξk(t, x(i))

, (24)

as they are ML parameters of the Gaussian [19]. Instead of
computing the solution of HJ equation (8) and Fokker-Planck
equation (9) as in [15], [16], we consider stationary solutions,
following the same strategy as in [9]- [10].

B. Initialization

All the experiments below are initialized in the following
way
• let (15) be restricted to the GMM case;
• the number of classes K is given a priori;
• initial coefficients αi = 1

N ;
• means are chosen randomly among the points in the data

set X ;
• all the distributions share the same variance (we use the

same criteria as in [8]), given by Σξk(0) = σ2In×n and

σ2 =
1

10n
trace

(
1

N

N∑
i=1

(
x(i) −m

) (
x(i) −m

)T)
where n is the dimension of the data, i.e x(i) ∈ Rn and
x(i) ∈ X , i = 1, ..., N . The trace of a matrix A is given

by trace(A) and m = 1
N

N∑
i=1

x(i) is the global data mean.



C. Experiments

Two main experiments are carried out. The first one con-
cerns a very simple example which shows how the MFG-
based GEM showcases better convergence properties than EM
and Variational Bayes EM (VBEM) [5] . The second one is
provided in [8] to analyze the overlap problem.

1) Experiment 1: In experiment 1 initial conditions were
picked to be the critical case, where the minimum number
of iterations required by the methods is maximized. The main
drawback of EM [3] is its rate of convergence, which becomes
more critical as data set increases. We show that if we start in
the worst initial condition, the total number of iterates of EM
and VBEM is far greater then the one achieved with MFG
scheme. The simulation is based on N = 2000 generated data
points with the following conditions:

α1 = α2 = 0.5,
µ1 = [−1 − 1]T , µ2 = [1 1]T ,
Σ1 = Σ2 = In.

We start with the initial condition as in subsection V-B, except
for the expected values

µ10
= [1 − 1]T , µ20

= [−1 1]T ,

forced to be the worst case initial conditions (see Bishop [2],
page 426).

The algorithm stops when it detects a change in the
likelihood (4) lower than 10−7. In the VBEM, we use the
program VBEMGMM (by Emtiyaz, CS, UBC) using as priors
α = 0.001, µ = [0 0], β = 1, W = 200 ∗ I and v = 20
(see [2] for details on these parameters). We generated 100
different datasets, and averaged the number of iterations.
MFG outperformed the other methods averaging 45 iterations
compared to 240 and 164 of EM and VBEM respectively.
For illustrative purposes, Figures 1 and 2 show the result of
one run for EM and MFG respectively, where green and red
show the result of the classification and the curves show the
evolution of the means

Fig. 1. Execution of EM (standart method)

Fig. 2. Execution using the MFG approach (proposed solution)

2) Experiment 2: In this last experiment we compare the
two methods when the degree of component overlap varies.
For this purpose we used a bivariate Gaussian mixture with
two equiprobable components (µ1 = [0 0]T , µ2 = [δ 0]T and
Σ1 = Σ2 = I). In 50 simulations, with data sets of size N =
800 all simulations of MFG converged to the correct values for
δ ≥ 0.8, outperforming EM and VBEM among other methods
[8]. For δ < 2 it can be shown that the mixture density is
not even bimodal [8]. This is somehow a surprising result. For
illustrative purpose, for one database X with N = 800 we can
see the final stage (after convergence) of the classification in a
green and red class where the circles with bold circunference
indicate the evolution of the mean of each class. In Figure 3
we can see one example of the final stage of convergence in
the overlap problem with δ = 0.8.

Fig. 3. Execution using the MFG approach for the overlap problem with
δ = 0.8

D. Discussion of Results

The simulation results corroborate the theoretical findings,
showing faster convergence of the MFG classifier with respect
EM and VBEM, despite using the stationary solutions of the
HJB and FK equations. In addition it is interesting to see
that MFG is capable of effectively dealing with the overlap
problem, defying the theoretical bounds provided in [8].



Another advantage of the MFG approach is the numerical
stability of the solution with respect to initial conditions. As
shown by [9], [10] a small change of the initial conditions of
(15) does not change the convergence for the same maximum
likelihood value. This implies that we can establish regions of
convergence to the same maximum likelihood point, a feature
not available to existing GEM algorithms.

VI. CONCLUSIONS

In this paper we introduced a continuous formulation of a
generalized Expectation-Maximization (GEM) algorithm for
finite mixture models using Mean Field Games. The proposed
solution was proven to share the same properties as GEMs,
i.e. convergence to a maximum of the likelihood function. In
addition we were able to show that under GMM assumptions
the convergence is exponential. Finally we compared our
proposed solution to EM and VBEM, showing a significant
improvement in the number of iterations needed for conver-
gence. In addition simulation results indicate that the proposed
method is effective in dealing with the overlap problem.

APPENDIX

A. Hamilton-Jacobi-Bellman equation

Let ξjk be an agent j that belongs to population k, i.e,
follows a dynamic (5) subject to an initial condition ξjk(0),
for j = 1, ...,M , where M is the total of players in the
game. This agent applies the control uk(t, ξ(j)) that solves
the optimization problem (6). By dynamic programming [22]
one derives that J is a viscosity solution to (8) [12] and the
optimal control is given in feedback form as

ujk = −Jkξ (t, ξjk). (25)

B. Fokker-Planck equation

Instead of considering just one agent, take in consideration
a very large number M of agents within the same population k
distributed throughout space according to a probability density
(pdf) pξk(t, ξ) such that∫

Rn

pξk(t, η)dη = 1,

for each time t.

To simplify, assume that all the agents within a population
have identical motivations (in particular, they are all trying
to minimize the same cost function (6)), which implies in
particular that all agents in a population pξk at a given point
(t, ξjk) in time-space will move in time dt to a slight different
location ξjk(t) + uk(ξjk)dt+ εdwt.

Informally, for an infinitesimal box in space [ξk, ξk + dξk],
the number of agents in that box should be approximately
Mpξk(t, ξ) |dξ|. We now suppose that the control uk is known,
as well as the initial density pξk(0, ξ) of the agents, and
ask how the density will evolve as time goes forward. Let
us take a distributional viewpoint [14] and test the density

pξk(t, ξ) against various test functions ϕ(ξ) - smooth compactly
supported functions of space. The integral∫

Rn

pξk(t, η)ϕ(η)dη,

can be viewed as the continuum limit of the sum [9], [10]

1

M

M∑
j=1

ϕ(ξjk(t)).

This leads to the heuristic equation, after using the chain
rule∫
Rn

(pξk)t(t, η)ϕ(η)dη ≈ 1

M

M∑
j=1

uk(t, ξjk(t))Tϕξ(ξ
j
k(t)). (26)

Performing a Taylor expansion the right-hand side as before,
and passing to the continuum limit, after an integration by
parts it takes the form∫

Rn

pξk(t, η)

(
ϕ(η) + uTϕξ(η) +

ε2

2
∆ϕ(η)

)
dη. (27)

When we equal (27) to the left side of (26), we get the Fokker-
Planck-Komolgorov equation

(pξk)t(t, ξ)−
ε2

2
∆pξk(t, ξ) + div

(
pξkuk

)
(t, ξ) = 0. (28)

where f is a vector field into Rn. Remark, that we assumed
that the control was known, and in the matter of fact it is and
given by (25) within the MFG framework.

VII. FACT IN THEOREM 1

In this section we prove the fact used in Theorem 1.

Lemma 2. Under the same conditions of Theorem 1 we have

E

 t+ε∫
t

log

(
pξk (τ, ξ)

pxk (τ, ξ)

)
dτ

 ≥ 0 (29)

Proof: Take the following function

ϕt (x) =

t+ε∫
t

xdτ

that is obviously convex since it is a linear operator. Then by
Jensen’s inequality [2] we have

ϕ(E[x]) ≤ E[ϕ(x)]

and it follows that
t+ε∫
t

∫
R

ωk(t)

pξk(τ,ξ)
pξk (τ, ξ) log

(
pξk(τ,ξ)

pxk(τ,ξ)

)
dξdτ

≤
∫
R
ωk (t)

t+ε∫
t

log
(
pξk(τ,ξ)

pxk(τ,ξ)

)
dτdξ = E

[
t+ε∫
t

log
(
pξk(τ,ξ)

pxk(τ,ξ)

)
dτ

]
.

Remark that

DKL(pξk (τ, ξ) ||pxk (τ, ξ)) = pξk (τ, ξ) log

(
pξk (τ, ξ)

pxk (τ, ξ)

)
≥ 0



where DKL(pξk (τ, ξ) ||pxk (τ, ξ)) is the Kullback-Leiber diver-
gence [2] and that since pξk (., ξ) is a probability density
function greater than zero almost everywhere and ωk (t) is
the probability distribution associated with the white gaussian
noise that is greater than zero almost everywhere, their ratio
is bounded and there exist γ ≥ 0 that does not depend upon
t such that

ωk (t)

pξk (τ, ξ)
≥ γ

that concludes the proof since the integrand is greater or equal
than zero.
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