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Abstract—We consider the role of Wyner-Ziv binning in coding simplifies to the capacity-achieving network coding
compress-forward for relay channels. In the one-way relay for noiseless multicast networks and achieves a larger rate
channel, we analyze a compress-forward scheme without Wyne region than the original compress-forward when applied to

Ziv binning but with joint decoding of both the message and i twork h the t | h |
compression index. It achieves the same rate as the original multisource networks such as the two-way relay channel.

compress-forward scheme with binning and successive dedag. HOwever, it also brings more delay in decoding.

Therefore, binning helps reduce decoding complexity by atiwing Motivated by the original compress-forward and the new
successive decoding, but has no impact on achievable rate the  noisy network coding schemes, we aim to understand the
one-way relay channel. On the other hand, no binning simpli#s 56 "of binning by analyzing a compress-forward scheme in
relay operation. By extending compress-forward without bnning which the relav does not use ner-Ziv binni d th
to the two-way relay channel, we can achieve a larger rate ) Yy = u - Wy Iv_binning, an e
region than the original compress-forward scheme when the receiver performs joint decoding of both the message and
channel is asymmetric for the two users. Binning and succelse compression index based on signals received from both the
decoding limits the compression rate to match the weaker of current and previous blocks. In the one-way relay channel,
the channels from relay to two users, whereas without binnig, compress-forward without binning achieves the same rate

this restriction no longer applies. Compared with noisy netvork th iginal f d sch d noi work
coding, compress-forward without binning achieves the samrate 25 (N€ original compress-torward sctheme and noisy networ

region in certain Gaussian channel configurations, and it ha coding. Comparing with the original compress-forward, it
much less delay. This work is a step toward understanding the simplifies relay operation since Wyner-Ziv binning is not

role of Wyner-Ziv binning in compress-forward relaying. needed, but increases decoding complexity since joint de-
coding instead of successive decoding is required. We then
extend compress-forward without binning to the two-wagyel
The relay channel (RC) first introduced by van der Meulechannel. We show that it achieves strictly larger rate negio
[1] is a 3-node channel, in which a sender aims to communitan the original compress-forward scheme aslin [5] when the
cate with a receiver with the help of a relay. Several codinghannel is asymmetric for the two users. Although it gemeral
schemes for the discrete-memoryless relay channel have baehieves smaller rate region than noisy network coding)lit o
established. Compress-forward is a scheme proposed by Cdwes one block decoding delay. For the Gaussian TWRC, we
and ElI Gamal in[[2], in which the relay compresses its noislso provide specific conditions for when compress-forward
observation of the source signal and forwards the bin indexwithout binning achieves the same rate region as noisy rm&two
the compression to the receiver using Wyner-Ziv coding [3¢oding.
Successive decoding is then performed at the receiver.éAt th The remainder of this paper is organized as follows. We
end of each block, the receiver decodes the compressior ingeesent the channel models in Sectioh Il. The compress-
first, then uses that to decode the message sent in the psevioaward scheme without binning is applied to the one-way
block. In [4], EI Gamal, Mohseni, and Zahedi put forward arelay channel in Sectidn]Il. In SectignllV, we extend it t@ th
equivalent form of the compress-forward lower bound.In [5two-way relay channel and present numerical results. Kinal
Rankov and Wittneben apply the compress-forward schemewe conclude the paper in Sectibn V.
the two-way relay channel (TWRC) in which two users wish
to exchange messages with the help of a relay. _
Recently, Lim, Kim, EI Gamal and Chung put forward & Discrete Memoryless RC Model
noisy network coding schemiel! [6] for the general multi-seurc The discrete memoryless one-way relay channel (DM-RC)
noisy network. The scheme involves lossy compression by tisedenoted by(X x X, p(y, y- |z, ), Y x V»), as in Figurél.
nodes as in compress-forward for the relay channel. HowevBenderX wishes to send a messagé to receiverY” with the
unlike compress-forward in which independent messages aedp of the relay X, Y;.). We consider a full-duplex channel
sent over multiple blocks, here the same message is sentvhich all nodes can transmit and receive at the same time.
multiple times using independent codebooks. Furtherntbee, A (n,2"% P.) code for a DM-RC consists of: a message
nodes use no Wyner-Ziv binning, and perform simultaneosstM = [1 : 2"]; an encoder that assigns a codewotdm )
decoding of the received signals from all blocks withoub each message € [1 : 2"F]; a relay encoder that assigns
uniquely decoding the compression indices. Noisy netwosk timei € [1 : n] a symbolz,.;(y:~!) to each past received

I. INTRODUCTION
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Fig. 3. Gaussian two-way relay channel model
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Fig. 2. Two-way relay channel model I11. ONE-WAY RELAY CHANNEL

In the original compress-forward scheme [2] [4] , the relay
forwards the bin index of the description of its received
signal. The receiver uses successive decoding to decode the
e A - The  hin index first and then decode the message from the sender.
average error probability iS°. = PH{M # M}. The rate ere we analyze a compress-forward scheme in which the
R is said to b% achievable for the DM-RC if there exists g5y forwards the description index directly while thegiver
sequence of2"", n) codes withP’, — 0. The supremum of j5iniy decodes the index and the message at the same time.
all achievable rates is the capacity of the DM-RC. We show that compress-forward without binning can achieve
B. Discrete Memoryless TWRC Model th_e same rate as th_e original compr_ess-forward sch_eme with

binning. Note that different from noisy network codirg [6],

The discrete memoryless two-way relay chancompress-forward without binning sends a different messag
g(el ((DM'TW|RC) iS) ;enotg}d b))’} gXl x XFQ' X at each block without message repetition.

ry P\Y1, Y2, Yr|T1, T2, T ), V1 X 2 X r), as In ijgure i i L
2. Herez;, andy, are the input and output signals of usef- Achievable Rate for Compress-Forward without Binning
1; o and y, are the input and output signals of user 2Theorem 1. Consider a compress-forward scheme in which
x, andy, are the input and output signals of the relay. Wihe relay does not use Wyner-Ziv binning but sends the
also consider a full-duplex channel in which all nodes catompression index directly and the receiver performs joint
transmit and receive at the same time. decoding of both the message and compression index. The

A (n,2nf 2nR2 Py code for a DM-TWRC consists of following rate is achievable for one-way relay channel:

two message setédy = [1 : 27%] and M, = [1.: 2] R < minfI(X, X3 V) = (VY |X, X,,Y)

sequence/i~! € Yi~!; a decoder that assigns a messége
or an error message to each received sequghice )"

three encoding functiong, ;, f2.i, fri, ¢ = 1,...,n and two .

decoding functiony,, go. I(X;Y, Y[ X))} (2)
1= fri(M1,Yi,...,Y1,-1), i=1,...,n subject to
w2 = fai(Ma,Y21,...,Y2-1), i=1,...,n (X Y)+ 1Y X, Y[X) > 1Y Y | X) 3
Lri = fr,i(}/r,la---,}/r,ifl), i = 1,...,71 for Somep(x)p(xr)p(yrkgraIr)p(yvyr|xv'rr)'

g1 Vi X My — Mo Proof: We use a block coding scheme in which each user
g2 1 Vg X Ma — My sendsh — 1 messages over blocks ofn symbols each.
1) Codebook generationFix p(z)p(z,)p(§r|yr, ). We

The average error probability i®¥, = Pr{g1(M;,Y]") # doml d ind dentl t debook h
M or go(Ms, Y3Y) # M, }. Arate pair is said to be achievableﬁgclfgng[fr_]b] independently generate a codebook Tof eac

if there exists gn, 2" 2"R2 P.) code such thaP. — 0 as
n — oo. The closure of the set of all achievable rat&s, R»)
is the capacity region of the two-way relay channel.

« Generate2"? ii.d. sequences™(m;) ~ [[i_, p(z:),
wherem; € [1 : 2"%].

« Generat@" ii.d. sequences” (k;_1) ~ [/, p(zrs),

C. Gaussian TWRC Model wherek;_y € [1:2""].

As in Figure 3. the G —— T : be* For eachk;_; € [l : 2"fr], generate2"? ii.d.
s in Figure[3, the Gaussian two-way relay channel can be  eqenceg™ (k;k;_1) ~ 1", p(iri|zri(k, 1), Where

modeled as: kj € [1:2nE],

Y1 = g1oXo 4+ 910 X0 + Z4 2) Encoding: The sender transmits™(m;) in block j.

o The relay, upon receiving?(j), finds an indext; such that
Y2 = gn i+ gor Xr 4 22 (97 (kjlkj—1), ™ (§), 2 (k;—1)) € A%. Assume that such,
Ve =gnXi+gr2Xa+ 2, (1) is found, the relay sends®(k;) in block j + 1.



3) Decoding: Assume the receiver has decoded; cor- Combining the bound${4) andl (7), we have
rectly in block j. Then in blockj + 1, the receiver finds a

unique pair of(ri;, k;) such that R<I(X, X;;Y)+ I(ifr;XaY|Xr) - 1(1?5K|Xr)
n(i. n( . n :IXaX’I‘7Y +IYI‘7X1YXT‘ _IYr‘yyr‘aXaYX’r‘
(2 (k) 5" (G + 1)) € A ( )+ X, YIX) = I( 1)
:I(XaXT;Y)_I(}/T;}/rlXaXraY)' (8)

and (" (i), @ (kj—1), 7 (ks k1), 4" () € AL

4) Error analysis: Assume without loss of generality thaLI_
m; =1 andk;_; = k; = 1. First define the following two

Combining [(4), [b) and[{6),[18), we obtain the result of
heorent1L. [ |

events: B. Comparison with the Original Compress-Forward Scheme
5{,7'(7%‘) = {(:v’;(kj),y"(j +1)) € A?} Theorem 2. Compress-forward without binning in Theorem
Eéj(mj,kj) = {(I"(mj) (1), 97 (k5 |1), ¥ (4)) € A"}. [ achieves the same rate as the original compress-forward

scheme for the one-way relay channel, which is:
Then the decoder makes an error only if one or more of the

following events occur: R <min{I(X,X,;Y) - I(Y;;Y,|X, X,,Y),
Ery ={ @Mk |1), y (5), x (1)) & AT for all k; € [1: 277} I(X;Y,Y,]X,)} €)
Eaj ={(x7(1),y"(j + 1)) ¢ AL or (" (1), x7(1), 4 (1]1), for somep(x)p(z, ) p(Gr|yr, ) p(y, yr |z, 21).
")) & Ac } , Proof: To show that the rate region in Theordh 1 is
{517(/*?7 and &;(1, k;) for somek; # 1} the same as the rate region in Theofdm 2, we need to show
54J {517(1 andé‘é](mj, 1) for somem; # 1} that the constraint{3) is redundant. Note that an equitalen
/ characterization of the rate region in Theorlgm 2 is as fallow
={&1,(k;) and&;;(m;, k;) for somem; # 1,k; # 1}. 2 [ [7):
Thus, the probability of error is bound as .
. R<I(X;Y Y, |X5) (10)
P{m; # 1,k; # 1} <P(E1j) + P(E25 N EF;) + P(Es5) .
subject to
+P(54j)+P(55j). A
I(X,3Y) > I(Y: Y |X,,Y). (11)

By the covering lemma_[7]P(&1;) — 0 asn — oo, if

R, > I(V,; V)| X,). (4) for some p(z)p(x,)p(§r|yr, ). Therefore, comparing]3)
with (I7), we only need to show that
By the conditional typicality lemma [8]P°(E2; NET;) — 0 as R . R
n — oo. 1Y Y| X Y) 2 1Y Yo | X) = 1Y XL Y |XG). (12)
For the rest of the error events, the decoded joint distidbut
for each event is as follows.

&1 (k;) = p(ar)p(y) (Y Y, X, Y) =1

This is true since

Y, Y, X|X,,Y)
X; Yol X, Y) + 1(Y3 Vo | X, X, Y)

(
£3,(1, k) « p(@)p(e)p(Gr |20 )p(yle, ) =X Y,
E35(my, 1) p(a)p(ar)p(y, Grlzr) z 1Y Y| X, X, Y)
E35(my, k;) = p(@)p(r)p(r |27 (Y] 2r), = 1(Yr X, Y, Y| Xy) — I(Y,; X,Y|X,)
wherem; # 1, k; # 1. Using standard joint typicality analysis = I1(Y;; Y, | X,) = I(Yy; X, Y [X,.).

with the above decoded joint distribution, we can obtain a
bound on each error event as follows.

P(53j) < 2nR,~ . 27n(I(XT;Y)75(e)) . 27n(l(}7T;X,Y\XT)736(5))

Remarkl. If using successive decoding, the rate achieved by
compress-forward without binning is strictly less thart théh
(€4) < onR  9—n(I(X;Y,Y;|X:)=25(c)) bi_nning. '!'hu_s joint decoding is crucial for compress-forgva

' without binning.

Remark2. Joint decoding does not help improve the rate of
the original compress-forward with binning.

P(S‘E)j) < 2nR . 2nR,‘ . 2—n(I(X,\;Y)—6(e))
27n(I(X;Y\XT)+I(YT;X,Y\XT)735(5)).

All of them tend to zero as — oo if Remark3. The binning technique plays a role of allowing
. successive decoding instead of joint decoding, thus reduce
R, <I(X;;Y)+ I(Y,; X, Y|X,) (5)  decoding complexity. However, it has no impact on achievabl

R<I(X;Y,Y,|X,) (6) rate for the one-way relay channel. This effect on decoding
) 5 complexity is similar to that in decode-forward relaying,
Rt By < I(X; )+I(X’}A/|XT)+I(Y’”’X’Y|X’”) in which binning allows successive decodirig [2] while no
=1(X, X Y)+ I(Y; X, Y[X,). (7)  binning requires backward decodirig [9].



IV. Two-wAY RELAY CHANNEL 4) Error analysis: Assume without loss of generality that

In this section, we extend compress-forward without Wynef?1.j = M1,j+1 = m2,; = 1 andk;_ = k; = 1. First define

Ziv binning but with joint decoding of both the message antii€ following two events:

compression index to the two-way relay channel. Compared L 1 An
with the original compress-forward scheme for the two-way 519( 3) = {(I (ky), 97 + 1), 21 (1)) € 6}
relay channel[5], compress-forward without binning achi Eyj(ma g, k) = {(@5 (mayy), 27 (1), 5y (k; 1),

a strictly larger rate region when the channel is asymmédric yr (), 2t (1)) € AL}

two users. Compared with noisy network coding, it achieves _

a similar rate region but with an extra constraint on th&hen the decoder makes an error only if one or more of the
compression rate. Under certain conditions, this contiai following events occur:

redundant for the Gaussian TWRC. For such cases, compress- . n onR,
forward without binning achieves the same rate region atsynoﬁslj ={ (@ (ks[1), 97 (5), 27 (1)) ¢ AL for all & e [1:2™]}
network coding but has much less decoding delay. Eoj ={(a(1), Y1 (j +1),27(1)) ¢ AL or
5 (1), 27 (1), 97 (1[1), 97 (), 27 (1)) ¢ AL}
i)

A. Achievable Rate Region for Compress-Forward W|thout (@
or somek; # 1}

Binning ={&},(k;) and &;;(1, k;

f
Theorem 3. The following rate region is achievable for the54a ={&1,;(1) and&y;(mo 5, 1) for somems ; # 1}
i(

two-way relay channel by using compress-forward without; {5 k;) andgéj(me j) for somems ; # 1,k; # 1}
binning but with joint decoding:
Thus, the probability of error is bound as

Ry < min{I(X1; Y2, Vo[ X2, X,), (13) .
(X1, X, Ya| Xa) — I(Y, Y, | X1, Xo, X, Ya)) P{ra,; # 1, k; # 1} <P(&;) + P(&; N EY)) + P(Es5)
Ry < min{I(Xa; Y1, V,| X1, X,), + P(E4j) + P(Es).
I(Xo, X,; Y1|X1) — I(Y,: Y| X1, Xo, X, Y1)} By the covering lemmaP(&;;) — 0 asn — oo, if

subject to R, > I(Y,; Y| X,.). (15)
I(Y,; Y, | X1, X2, X, Y1)

(X Y1|X0) By the conditional typicality lemmapP(&;; N &f;) — 0 as
IV Y| X1, X2, X, Vo)

I
I(X,; Y3| X2) (14) n — oo

. For the rest of the error events, the decoded joint disiidbut
for somep(z1)p(z2)p(x:)p(Y1: Y2, yrlz1, 22, 20 )P(Jr|2r, Yr)- for each event is as follows.

Proof: We use a block coding scheme in which each user

<
<

sendsbh — 1 messages ovér blocks ofn symbols each. /519( i)+ p(@n)p(@)p(ylen)

1) Codebook generation: Fix code distribution E; (1 kj)  p(z1)p(z2)p(2r)p(Gr |20 )P(Y1 |22, s 1)
p(x1)p(z2)p(zr)p(grlzr,yr).  We  randomly —and  &£(ma;,1) : p(1)p(e2)p(ee)p(yr, Grlor, 21)
independently gen_e_rate a codebook for each bT%oek[l ) Eéj(mz k) 1 p()p(2)p (2 )p (|20 )p (1 |20 1),

« Generate" ii.d. sequences? (m1 ;) ~ [I, p(z1;),

wherem; ; € [1 : 2", where my ; # 1,k; # 1. Using standard joint typicality

« Generate"f ii.d. sequencesy(ms ;) ~ [[1_, p(x2;), analysis with the above decoded joint distribution, we can

wherems ; € [1 : 2"F2], obtain a bound on each error event as follows.

« Generat@" ii.d. sequences” (k;_1) ~ [/, p(zrs),

nR, —n(I(X,;Y1|X1)—6(e
WherEkj_l c [1 . 2nRT]_ P((c;g]) < 2 -2 (I( 1 X1)—6(¢))

« For eachk;—y € [1 : 2"F], generate2"fr i.id. 9= n(I(Yri X1, X2,Y1|X,)—46(e))
Zeluﬁncgﬁfg(]kj'kj_l) ~ Hi:l p(gri"TTi(kj—l))’ where P((€47) < 271R2 . 2_n(I(X2;Y17?7‘|XT7X1)_35(€))
j : T . o —_—
2) Encoding: User 1 and user 2 transmits} (m, ;) P(&s;) < 27 gnfr g7l =0(9)
and z5(mg2,) in block j respectively. The relay, 9 n(I(X2; Y1 X1, X )+ (Ve X1, X2, Y1 | X)) —46(e))

upon receiving y”(j), finds an index k; such that

(g2 (k; |kj 1),y (j), x(kj—1)) € An. Assume that All of them tend to zero as — oo if
suchk; is found, the relay sends (k;) in block j + 1.

3) Decodmg We discuss the decodlng at user 1. Assume R, < I(X,;Y1|X1) + I(Yy; X1, X, V1| X,)  (16)
that user 1 has decodéd_; correctly in block;j. Then in Ry < [(XQ;yhff”Xth) (17)
block j +1, user 1 finds a unique pair ¢fn. ;, k;) such that Ro+ Ry < I(X,:Yi|X1) + I(Xo; Y| X1, X,.) (18)

kilkj—1),y7 (), 27 (ma;)) € AT + I(Yy; X1, Xo, V1| X,

(25 (2,5), a7 (kj—1), 57 (
(ki) YT (G + 1), 2T (maj41)) € AR = I(Xs, X, V1| X1) + (Y, X1, Xo, V1| X,).

and (z



Combining the bound$ (15) and {18), we have Next we present a short proof to show the difference from
compress-forward without binning. The proof follows the

R SI(XQ’AXT? Yi|Xy) +1(Yr; Xy, Xo, V11X) same lines as if.[5], but we also correct an error in the arglys
—I(Y; Y | X, in [5] as point out in Remarkl4.
—1(Xo, X,: Yi|X1) — I(V; Yy | X1, X, X, Y1), (19) Proof: We use a block coding scheme in which each user

sendsb — 1 messages ovér blocks ofn symbols each.
Combining the boundd (17) and{19), we obtain the ratel) Codebook generation: Fix code distribution
constraint onR, in Theorem[B. Similar forR;. From [I%) p(z1)p(x2)p(x,)p(Gr|Tr, yr). We randomly and
and [I6), we obtain constraifi(14). m independently generate a codebook for each bjoek(1 : b
Next we show the achievable rate region for the Gaussian, Generate™®: i.i.d. sequences? (m; ;) ~ [1_, p(1:)
two-way relay channel using compress-forward without bin- wherem, j € [1: 27F1],
ning. Recall the Gaussian two-way relay channel model (1). Generate”?2 i.j.d. sequences} (ms ;) ~ [T/, p(xai),

in Section[ll. AssumeX; ~ N(0, P), Xa ~ N(0, P), X, ~ wherems ; € [1: 27%].
N(0,P),Z ~ N(0,0?) to be independent, and. = Y, + Z. « Generate"- i.i.d. sequences? (g;j_1) ~ [1/—; p(zrs),
Denote whereg;_; € [1: 2",

G2, P « For eachg; ; € [1 : 2"Fr], generate2”("r 1) jid.

1+02) sequencesy;' (¢, 7jlgj-1)  ~ Ty p(drilzri(gi-1)).
Throw them into2"f bins, whereq; € [1 : 2"Fr]

denotes the bin index and € [1 : 2"%] denotes the

Rot(02) = C (gsz+ 932P2) relative index within a bin. -
1 2) Encoding: User 1 and user 2 transmits?(mq ;)
Roa(0?) = C(g?,P + g3, P) — C(1/5?). (20) and z%(msg;) in block j separately. The relay, upon

h h he follow ions for the G , receiving y;(j), finds an index pair(g;,r;) such that
Then we have the following rate regions for the Gaussian t‘”@@?(qj,rjlqul),y?(j),a:?(qul)) € A”. Assume that such

way relay channel. (g;,7;) is found, the relay sends(¢;) in block j +1. By the
Corollary 1. The following rate region is achievable forcovering lemma, the probability that there is no suigh r;)
the Gaussian two-way relay channel using compress-forwd@nds to 0 as — oo if

without binning: R.+R. > I(YT;YT|XT). (25)

: 2 2
Ry < mfn{R”(UQ)’ R12(02)} 3) Decoding:Each user applies 3-step successive decoding.
Ry <min{Rs:1(07), Ro2(07)} (21) At the end of blockj, user 1 determines the unique hin

such that
for somes? > max{o?, 02}, where

niG. , n( , n . c A?
ot = (14 65,P)/ (65, P) (@) i) 7))
o2, = (14 g3,P)/(gi,.P). (22) Similar for user 2. Both succeed with high probability if

and Ry (02), R12(02), Ra1(02), Raa(0?) are defined in[{20). R, <min{I(X,;Y1]X1), [(X;; Ya2|X2)}. (26)

B. Comparison with the Original Compress-Forward Schemihen user 1 usegf'(j — 1) to determine the uniqug_, such

In this section, we first present the rate region achieved H}at
the original compress-forward scheme for the two way relayr (4,1, #;-1|d;—2), y{'(j — 1), 2] (4;—2), 27 (m1 ;1)) € AL,
channel [[5]. We then show that compress-forward without S o
Wyner-Ziv binning but with joint decoding can achieve a arg Similar for user 2. Both succeed with high probability if

rate region. R, < min{I(Vy; X1, Vi|X,), [(Vy; Xo, Ya| X))}, (27)
Theorem 4. [Rankov and Wittneben]. The following rate

region is achievable for two-way relay channel with compres
forward scheme:

Finally, user 1 uses boti'(j—1) andg”(j—1) to determines
the uniquern, ;1 such that
Ry < I(Xl;l/'g7§>T|X2,XT) (@3 (h2,-1), 9, (41, j-1105-2), 1 (7 — 1), 271(gj-2),

Ry < I(Xo; Y1, Yy | X1, X, (23) i (maj-1)) € AL

subject to Similar for user 2. Both succeed with high probability if

Ry < I(X1;Ya, Y, | X5, X,)
(24) Ry < I(X2: Y1, Y| X1, X,). (28)

The constraint{{24) comes from (25), [26) ahd](27). =

max{I(V,; Y| X1, X, Y1), [(Vy; Vi X2, X, Y2)}
S min{I(XT; Y—1|)(1)7 I(XT; Y2|X2)}

for somep(x1)p(z2)p(zr)p(y1, y2, yr|1, 22, T )p(Gr |20, Yr)-
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Next we show that(23) and(24) imply(13). Froml(23) we

Remark4. We note an error in the proof ofl[5]. In][5], Whenhave

user 1 determines the uniquage_;, it is stated that it succeeds
with high probability if Ry SI(XQ;SG,YT|X1,XT)
R, < 1(Yi V1| X1, Xo), (29)  =I(Xy:Vi|X1, X)) + IV Xo| V1, X1, X,)

(
which corresponds td_(27) in our analysis. However, this is =I(Xs, X,; V1| X1) — I(X,; Y1|X1) + (Y, Xo| Y1, X1, X,)
incorrect since the decoded joint distribution of this erro (4 .

event isp(z1)p(x,)p(4r |z, )p(y1|z1, z,). Therefore, the error < 1(X2, X V1| X1) — I(Y;; Y| X1, X, Y1)

probability can be bounded as + 1(Yy; Xo|V1, X1, X))

P(&) = Z p(x1)p(zr)p(Gr |20 )P (Y1 |21, 27) =I(X2, X3 Y1|X1) = I(Y; Yo | X1, X2, X, V1)
(z1,%r,9r,y1) EAD . .
< gn(H (X1 X, V7, Yi) — H(X0)~ H(X, )~ H(V, | X,)~ H(Y1 | X1,X, )~ 35(c) here (a) follows from the constraint of(24) in Theorem 4.
= X he equality holds when
— 27n(I(YT;X1.,Y1|X,~)735(e))

. o e I( X, V1] Xy) = min{I(X,; Y1|X1), [(X;; V2| X2)}

which tends to zero as as — oo if (B7) is satisfied instead .

I(Y:; Y| X, X, Y1)
of (29). A R

. = max(I(Y,; Y, |X1, X;, Y1), [(Yy; Y| X2, X, Y2)).

Corollary 2. In the two-way relay channel, the rate region
achieved by compress-forward without binning in Thedres 3gimjlar for R, the equality holds when
larger than the rate region achieved by the original compres
forward scheme in Theorelmh 4 when the channel is asymmetric I(X,: Y| Xo) = min{I(X,; Y1|X1), [(X,; Ya| X2)}
for the two users. The two regions are equal if and only if the .

I(Y;; Y| X2, X, Ya)

following conditions holds: 3 R
= I(Yy; Y0 | X0, X, Y1), I(Y; Ve[ X2, X, Y2)).
I(X,: Y1 X0) = I(X,: Ya| X) max(I(¥rs 71X D), 1(¥; Y[ X 2))
I(Y, Yo | Xy, X, Y1) = I(Y, Yy | Xo, X, Ya). (30) Therefore, if and only if condition[{30) holds, the origi-
al compress-forward scheme achieves same rate region as

Proof: First, we show that the constraint of TheorEim g ; L . ;
. ’ e . ompress-forward scheme without binning; otherwise, It wi
is looser than that of Theorelm 4. This is true since from (24), b g

strictly smaller. ]
we have
) Remark5. For the two-way relay channel, compress-forward
I( X Y1 Xq) > 1(Y,; Y| X, X, Y1) without binning achieves larger rate region than the odbin
= I(V; X0, V3| X1, X, V1) compress-forward scheme when the channel is asymmetric for

. the two users. This is because, with binning and successive
> I(Yr; Yr | X0, X2, X, Y1) (31) decoding, the compression rate is limited by the weaker éne o
where [31) is the right hand side of the first term [m](14jhe channels from the relay to two users. But without binning



3.5 T T T T T T 3.5
I ) I N
1 1
—_— . 1 Y 1
25} ] Lo 25} | o
““““ CF with binning i ! | !
| | = CF without binning i : ] | H : |
N 2 Noisy network coding i 1 o 2 1 1
o - = = Cutset bound | 1 @ i !
15} | L 15} | o
““““““““ ; 1 rion CF with binning : 1
1r i Lo 1F | == CF without binning | : 1
| : Noisy network coding i .
05} i ' o5F L==- Cutset bound | 1 |
. | ! . : !
- | : i :
P N e ‘ ‘ b ; ;
0 02 04 06 08 1 12 14 0 0.5 1 15 2 25 3 35
R R
1 1
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C. Comparison with Noisy Network Coding two-way relay channel if
In this section, we compare the rate region achieved by o2 < ol
compress-forward without binning with that achieved bysyoi 02, < o2, (34)
network coding([6] for the two way relay channel. H
where
Theorem 5. [Lim, Kim, El Gamal, and Chung]The following ) ) ) )
rate region is achievable for the two-way relay channel gsin oor = (L4921 P +g:1P)/ (92, P)
; ina 2 2 2 2
noisy network coding: 0% = (1+ g%, P + g5 P)/(g3.P),
Ry < min{I(X;;Ys,Y,| X0, X,), (32) and 02,02, are defined in[(22). Otherwise it achieves a

N Il t ion.
[(X1, X1 Yol Xo) — I(V Yy X1, Xo, X, Yo) ) Scier rate region

(

( 5 Proof: Note that bothR;;(0?), R21(0?) are nonincreas-
R2 S min{I(XQ;YlaleXlaX’r)a : 11 ) 1121

(

)

ing and Ry2(0?), Re2(0?) are nondecreasing. Also,
Ri1(02)) = Riz(02))
for somep(z1)p(x2)p(xr)p(Y1, Y2, YrlT1, T2, o) p(Fr] 20, Y2 ). R21(02,) = Ras(02,).

Comparing Theorerh]3 with Theorel 5, we find that theherefore, the constraint in Corollafy 1 is redundant if
rate constraints fol?; and R, in compress-forward without

(X2, X3 V1| X1) — (Y Yo | X0, X2, X0, Y1)}

binning [I3) are the same as those in noisy network coding max{o?, 0%} < min{o?;, 0%} (35)
(32). However, compress-forward without binning has amaext ince 02, < o2, and 02, < o2, always hold, the above
constraint on the compression rate as[in] (14). Therefore, ig i 35) o equivalce2nt_td:(36@24) ’ =

general, noisy network coding achieves a larger rate region
than compress-forward without binning. Next, we show th&. Numerical Results
for the Gaussian two-way relay channel, these two schemesye now compare numerically compress-forward without
achieve same region under certain conditions. binning with the original compress-forward scherhé [5] and
noisy network coding[[6]. Figur€l4 shows an asymmetric
aghannel configuration in which compress-forward without
inning achieves a strictly larger rate region than theinab
compress-forward scheme, but slightly smaller than no&ty n
Ry < min{R11(0?), R12(c?)} Work_ codir_lg. FigurEB p_lots the sum rates for the same channel
Ry < min{Ro1(02), Ras(0)} (33) conﬂgurat_lons as in Flgu@ 4, which shows that compress-
2= \E )22 forward without binning achieves the same sum rate as noisy
for someo? > 0, where R11(02), Rua(02), Ro1(02), Raa(02) network coding despite a smaller rate regipn..Fi@re _6 shows
are defined in[[20). a case where gompress—forward without k_)lnnlng achieves the
same rate region as noisy network coding and larger than
Theorem 6. Compress-forward without binning achieves theompress-forward with binning. Figuié 7 shows a symmetric
same rate region as noisy network coding for the Gaussighannel configuration in which three schemes achieve the

Corollary 3. [Lim, Kim, El Gamal, and Chung]The following
rate region is achievable for the Gaussian two-way rel
channel with noisy network coding scheme:
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same rate region. Figufd 8 shows the sum rate for another
configuration when the two users and the relay are on a straigh
line. In this case, compress-forward without binning anyo
network coding achieves the same sum rate, which is higher
than that of compress-forward with binning.

As shown in these figures, compress-forward without bin-
ning achieves larger rate region and sum rate than the afigin
compress-forward scheme inl [5] when the channel is asym-
metric for the two users. Compress-forward without binning
achieves the same rate region as noisy network coding iscase
when [34) is satisfied. Furthermore, it has less decodinaydel
which is only 1 instead ob blocks.

V. CONCLUSION

We have analyzed compress-forward without Wyner-Ziv
binning but with joint decoding of both the message and com-
pression index in the one-way and two-way relay channels.
In both channels, compress-forward without binning either
achieves the same rate or improves the rate region compared t
the original compress-forward with binning by not limititige
compression rate to the weakest link. It does however iserea
decoding complexity by requiring joint decoding instead of
sequential decoding. Compress-forward without binnirgp al
achieves the same rate regions as noisy network codingdor th
Gaussian TWRC in certain cases, for which it may be more
preferable because of less decoding delay. These resljits he
understand the role of Wyner-Ziv binning in compress-faava
schemes.
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