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Abstract—We consider the role of Wyner-Ziv binning in
compress-forward for relay channels. In the one-way relay
channel, we analyze a compress-forward scheme without Wyner-
Ziv binning but with joint decoding of both the message and
compression index. It achieves the same rate as the original
compress-forward scheme with binning and successive decoding.
Therefore, binning helps reduce decoding complexity by allowing
successive decoding, but has no impact on achievable rate for the
one-way relay channel. On the other hand, no binning simplifies
relay operation. By extending compress-forward without binning
to the two-way relay channel, we can achieve a larger rate
region than the original compress-forward scheme when the
channel is asymmetric for the two users. Binning and successive
decoding limits the compression rate to match the weaker of
the channels from relay to two users, whereas without binning,
this restriction no longer applies. Compared with noisy network
coding, compress-forward without binning achieves the same rate
region in certain Gaussian channel configurations, and it has
much less delay. This work is a step toward understanding the
role of Wyner-Ziv binning in compress-forward relaying.

I. I NTRODUCTION

The relay channel (RC) first introduced by van der Meulen
[1] is a 3-node channel, in which a sender aims to communi-
cate with a receiver with the help of a relay. Several coding
schemes for the discrete-memoryless relay channel have been
established. Compress-forward is a scheme proposed by Cover
and El Gamal in [2], in which the relay compresses its noisy
observation of the source signal and forwards the bin index of
the compression to the receiver using Wyner-Ziv coding [3].
Successive decoding is then performed at the receiver. At the
end of each block, the receiver decodes the compression index
first, then uses that to decode the message sent in the previous
block. In [4], El Gamal, Mohseni, and Zahedi put forward an
equivalent form of the compress-forward lower bound. In [5],
Rankov and Wittneben apply the compress-forward scheme to
the two-way relay channel (TWRC) in which two users wish
to exchange messages with the help of a relay.

Recently, Lim, Kim, El Gamal and Chung put forward a
noisy network coding scheme [6] for the general multi-source
noisy network. The scheme involves lossy compression by the
nodes as in compress-forward for the relay channel. However,
unlike compress-forward in which independent messages are
sent over multiple blocks, here the same message is sent
multiple times using independent codebooks. Furthermore,the
nodes use no Wyner-Ziv binning, and perform simultaneous
decoding of the received signals from all blocks without
uniquely decoding the compression indices. Noisy network

coding simplifies to the capacity-achieving network coding
for noiseless multicast networks and achieves a larger rate
region than the original compress-forward when applied to
multisource networks such as the two-way relay channel.
However, it also brings more delay in decoding.

Motivated by the original compress-forward and the new
noisy network coding schemes, we aim to understand the
role of binning by analyzing a compress-forward scheme in
which the relay does not use Wyner-Ziv binning, and the
receiver performs joint decoding of both the message and
compression index based on signals received from both the
current and previous blocks. In the one-way relay channel,
compress-forward without binning achieves the same rate
as the original compress-forward scheme and noisy network
coding. Comparing with the original compress-forward, it
simplifies relay operation since Wyner-Ziv binning is not
needed, but increases decoding complexity since joint de-
coding instead of successive decoding is required. We then
extend compress-forward without binning to the two-way relay
channel. We show that it achieves strictly larger rate region
than the original compress-forward scheme as in [5] when the
channel is asymmetric for the two users. Although it generally
achieves smaller rate region than noisy network coding, it only
has one block decoding delay. For the Gaussian TWRC, we
also provide specific conditions for when compress-forward
without binning achieves the same rate region as noisy network
coding.

The remainder of this paper is organized as follows. We
present the channel models in Section II. The compress-
forward scheme without binning is applied to the one-way
relay channel in Section III. In Section IV, we extend it to the
two-way relay channel and present numerical results. Finally,
we conclude the paper in Section V.

II. CHANNEL MODELS

A. Discrete Memoryless RC Model

The discrete memoryless one-way relay channel (DM-RC)
is denoted by(X ×Xr, p(y, yr|x, xr),Y×Yr), as in Figure 1.
SenderX wishes to send a messageM to receiverY with the
help of the relay(Xr, Yr). We consider a full-duplex channel
in which all nodes can transmit and receive at the same time.

A (n, 2nR, Pe) code for a DM-RC consists of: a message
setM = [1 : 2nR]; an encoder that assigns a codewordxn(m)
to each messagem ∈ [1 : 2nR]; a relay encoder that assigns
at time i ∈ [1 : n] a symbolxri(y

i−1
r ) to each past received
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Fig. 1. One-way relay channel model
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Fig. 2. Two-way relay channel model

sequenceyi−1
r ∈ Yi−1

r ; a decoder that assigns a messagem̂
or an error message to each received sequenceyn ∈ Yn. The
average error probability isPe = Pr{M̂ 6= M}. The rate
R is said to be achievable for the DM-RC if there exists a
sequence of(2nR, n) codes withPe → 0. The supremum of
all achievable rates is the capacity of the DM-RC.

B. Discrete Memoryless TWRC Model

The discrete memoryless two-way relay chan-
nel (DM-TWRC) is denoted by (X1 × X2 ×
Xr, p(y1, y2, yr|x1, x2, xr),Y1 × Y2 × Yr), as in Figure
2. Herex1 and y1 are the input and output signals of user
1; x2 and y2 are the input and output signals of user 2;
xr and yr are the input and output signals of the relay. We
also consider a full-duplex channel in which all nodes can
transmit and receive at the same time.

A (n, 2nR1 , 2nR2 , Pe) code for a DM-TWRC consists of
two message setsM1 = [1 : 2nR1 ] andM2 = [1 : 2nR2 ],
three encoding functionsf1,i, f2,i, fr,i, i = 1, . . . , n and two
decoding functiong1, g2.

x1,i = f1,i(M1, Y1,1, . . . , Y1,i−1), i = 1, . . . , n

x2,i = f2,i(M2, Y2,1, . . . , Y2,i−1), i = 1, . . . , n

xr,i = fr,i(Yr,1, . . . , Yr,i−1), i = 1, . . . , n

g1 : Yn
1 ×M1 → M2

g2 : Yn
2 ×M2 → M1

The average error probability isPe = Pr{g1(M1, Y
n
1 ) 6=

M2 or g2(M2, Y
n
2 ) 6= M1}. A rate pair is said to be achievable

if there exists a(n, 2nR1 , 2nR2 , Pe) code such thatPe → 0 as
n → ∞. The closure of the set of all achievable rates(R1, R2)
is the capacity region of the two-way relay channel.

C. Gaussian TWRC Model

As in Figure 3, the Gaussian two-way relay channel can be
modeled as:

Y1 = g12X2 + g1rXr + Z1

Y2 = g21X1 + g2rXr + Z2

Yr = gr1X1 + gr2X2 + Zr (1)

1 2
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Fig. 3. Gaussian two-way relay channel model

whereZ1, Z2, Zr ∼ N (0, 1) are independent Gaussian noises
andg12, g1r, g21, g2r, gr1, gr2 are corresponding channel gains.
The average input power constraints for user 1, user 2 and the
relay are allP .

III. O NE-WAY RELAY CHANNEL

In the original compress-forward scheme [2] [4] , the relay
forwards the bin index of the description of its received
signal. The receiver uses successive decoding to decode the
bin index first and then decode the message from the sender.
Here we analyze a compress-forward scheme in which the
relay forwards the description index directly while the receiver
jointly decodes the index and the message at the same time.
We show that compress-forward without binning can achieve
the same rate as the original compress-forward scheme with
binning. Note that different from noisy network coding [6],
compress-forward without binning sends a different message
at each block without message repetition.

A. Achievable Rate for Compress-Forward without Binning

Theorem 1. Consider a compress-forward scheme in which
the relay does not use Wyner-Ziv binning but sends the
compression index directly and the receiver performs joint
decoding of both the message and compression index. The
following rate is achievable for one-way relay channel:

R ≤ min{I(X,Xr;Y )− I(Ŷr ;Yr|X,Xr, Y ),

I(X ;Y, Ŷr|Xr)} (2)

subject to

I(Xr;Y ) + I(Ŷr;X,Y |Xr) ≥ I(Ŷr;Yr|Xr) (3)

for somep(x)p(xr)p(ŷr|yr, xr)p(y, yr|x, xr).

Proof: We use a block coding scheme in which each user
sendsb− 1 messages overb blocks ofn symbols each.

1) Codebook generation:Fix p(x)p(xr)p(ŷr|yr, xr). We
randomly and independently generate a codebook for each
block j ∈ [1 : b]

• Generate2nR i.i.d. sequencesxn(mj) ∼
∏n

i=1 p(xi),
wheremj ∈ [1 : 2nR].

• Generate2nRr i.i.d. sequencesxn
r (kj−1) ∼

∏n

i=1 p(xri),
wherekj−1 ∈ [1 : 2nRr ].

• For each kj−1 ∈ [1 : 2nRr ], generate2nRr i.i.d.
sequenceŝynr (kj |kj−1) ∼

∏n
i=1 p(ŷri|xri(kj−1), where

kj ∈ [1 : 2nRr ].
2) Encoding: The sender transmitsxn(mj) in block j.

The relay, upon receivingynr (j), finds an indexkj such that
((ŷnr (kj |kj−1), y

n
r (j), x

n
r (kj−1)) ∈ An

ǫ′ . Assume that suchkj
is found, the relay sendsxn

r (kj) in block j + 1.



3) Decoding: Assume the receiver has decodedkj−1 cor-
rectly in block j. Then in blockj + 1, the receiver finds a
unique pair of(m̂j , k̂j) such that

(xn
r (k̂j), y

n(j + 1)) ∈ An
ǫ

and (xn(m̂j), x
n
r (k̂j−1), ŷ

n
r (k̂j |k̂j−1), y

n(j)) ∈ An
ǫ .

4) Error analysis: Assume without loss of generality that
mj = 1 and kj−1 = kj = 1. First define the following two
events:

E ′
1j(kj) =

{

(xn
r (kj), y

n(j + 1)) ∈ An
ǫ

}

E ′
2j(mj , kj) =

{

(xn(mj), x
n
r (1), ŷ

n
r (kj |1), y

n(j)) ∈ An
ǫ

}

.

Then the decoder makes an error only if one or more of the
following events occur:

E1j =
{

(ŷnr (kj |1), y
n
r (j), x

n
r (1)) /∈ An

ǫ′ for all kj ∈ [1 : 2nRr ]
}

E2j =
{

(xn
r (1), y

n(j + 1)) /∈ An
ǫ or (xn(1), xn

r (1), ŷ
n
r (1|1),

yn(j)) /∈ An
ǫ

}

E3j =
{

E ′
1j(kj) andE ′

2j(1, kj) for somekj 6= 1
}

E4j =
{

E ′
1j(1) andE ′

2j(mj , 1) for somemj 6= 1
}

E5j =
{

E ′
1j(kj) andE ′

2j(mj , kj) for somemj 6= 1, kj 6= 1
}

.

Thus, the probability of error is bound as

P{m̂j 6= 1, k̂j 6= 1} ≤P (E1j) + P (E2j ∩ Ec
1j) + P (E3j)

+ P (E4j) + P (E5j).

By the covering lemma [7],P (E1j) → 0 asn → ∞, if

Rr > I(Ŷr ;Yr|Xr). (4)

By the conditional typicality lemma [8],P (E2j ∩Ec
1j) → 0 as

n → ∞.
For the rest of the error events, the decoded joint distribution

for each event is as follows.

E ′
1j(kj) : p(xr)p(y)

E ′
2j(1, kj) : p(x)p(xr)p(ŷr|xr)p(y|x, xr)

E ′
2j(mj , 1) : p(x)p(xr)p(y, ŷr|xr)

E ′
2j(mj , kj) : p(x)p(xr)p(ŷr|xr)p(y|xr),

wheremj 6= 1, kj 6= 1. Using standard joint typicality analysis
with the above decoded joint distribution, we can obtain a
bound on each error event as follows.

P (E3j) ≤ 2nRr · 2−n(I(Xr;Y )−δ(ǫ)) · 2−n(I(Ŷr;X,Y |Xr)−3δ(ǫ))

P (E4j) ≤ 2nR · 2−n(I(X;Y,Ŷr|Xr)−2δ(ǫ))

P (E5j) ≤ 2nR · 2nRr · 2−n(I(Xr;Y )−δ(ǫ))

· 2−n(I(X;Y |Xr)+I(Ŷr;X,Y |Xr)−3δ(ǫ)).

All of them tend to zero asn → ∞ if

Rr ≤ I(Xr;Y ) + I(Ŷr;X,Y |Xr) (5)

R ≤ I(X ;Y, Ŷr|Xr) (6)

R+Rr ≤ I(Xr;Y ) + I(X ;Y |Xr) + I(Ŷr;X,Y |Xr)

= I(X,Xr;Y ) + I(Ŷr;X,Y |Xr). (7)

Combining the bounds (4) and (7), we have

R ≤ I(X,Xr;Y ) + I(Ŷr;X,Y |Xr)− I(Ŷr;Yr|Xr)

= I(X,Xr;Y ) + I(Ŷr;X,Y |Xr)− I(Ŷr;Yr, X, Y |Xr)

= I(X,Xr;Y )− I(Ŷr;Yr|X,Xr, Y ). (8)

Combining (4), (5) and (6), (8), we obtain the result of
Theorem 1.

B. Comparison with the Original Compress-Forward Scheme

Theorem 2. Compress-forward without binning in Theorem
1 achieves the same rate as the original compress-forward
scheme for the one-way relay channel, which is:

R ≤ min{I(X,Xr;Y )− I(Ŷr ;Yr|X,Xr, Y ),

I(X ;Y, Ŷr|Xr)} (9)

for somep(x)p(xr)p(ŷr|yr, xr)p(y, yr|x, xr).

Proof: To show that the rate region in Theorem 1 is
the same as the rate region in Theorem 2, we need to show
that the constraint (3) is redundant. Note that an equivalent
characterization of the rate region in Theorem 2 is as follows
[2] [4] [7]:

R ≤ I(X ;Y, Ŷr|Xr) (10)

subject to

I(Xr;Y ) ≥ I(Ŷr;Yr|Xr, Y ). (11)

for some p(x)p(xr)p(ŷr|yr, xr). Therefore, comparing (3)
with (11), we only need to show that

I(Ŷr;Yr|Xr, Y ) ≥ I(Ŷr ;Yr|Xr)− I(Ŷr;X,Y |Xr). (12)

This is true since

I(Ŷr;Yr|Xr, Y ) = I(Ŷr;Yr, X |Xr, Y )

= I(X ; Ŷr|Xr, Y ) + I(Yr; Ŷr|X,Xr, Y )

≥ I(Yr; Ŷr|X,Xr, Y )

= I(Ŷr;X,Y, Yr|Xr)− I(Ŷr;X,Y |Xr)

= I(Ŷr;Yr|Xr)− I(Ŷr;X,Y |Xr).

Remark1. If using successive decoding, the rate achieved by
compress-forward without binning is strictly less than that with
binning. Thus joint decoding is crucial for compress-forward
without binning.

Remark2. Joint decoding does not help improve the rate of
the original compress-forward with binning.

Remark3. The binning technique plays a role of allowing
successive decoding instead of joint decoding, thus reduces
decoding complexity. However, it has no impact on achievable
rate for the one-way relay channel. This effect on decoding
complexity is similar to that in decode-forward relaying,
in which binning allows successive decoding [2] while no
binning requires backward decoding [9].



IV. T WO-WAY RELAY CHANNEL

In this section, we extend compress-forward without Wyner-
Ziv binning but with joint decoding of both the message and
compression index to the two-way relay channel. Compared
with the original compress-forward scheme for the two-way
relay channel [5], compress-forward without binning achieves
a strictly larger rate region when the channel is asymmetricfor
two users. Compared with noisy network coding, it achieves
a similar rate region but with an extra constraint on the
compression rate. Under certain conditions, this constraint is
redundant for the Gaussian TWRC. For such cases, compress-
forward without binning achieves the same rate region as noisy
network coding but has much less decoding delay.

A. Achievable Rate Region for Compress-Forward without
Binning

Theorem 3. The following rate region is achievable for the
two-way relay channel by using compress-forward without
binning but with joint decoding:

R1 ≤ min{I(X1;Y2, Ŷr|X2, Xr), (13)

I(X1, Xr;Y2|X2)− I(Ŷr;Yr|X1, X2, Xr, Y2)}

R2 ≤ min{I(X2;Y1, Ŷr|X1, Xr),

I(X2, Xr;Y1|X1)− I(Ŷr;Yr|X1, X2, Xr, Y1)}

subject to

I(Ŷr;Yr|X1, X2, Xr, Y1) ≤ I(Xr;Y1|X1)

I(Ŷr;Yr|X1, X2, Xr, Y2) ≤ I(Xr;Y2|X2) (14)

for somep(x1)p(x2)p(xr)p(y1, y2, yr|x1, x2, xr)p(ŷr|xr, yr).

Proof: We use a block coding scheme in which each user
sendsb− 1 messages overb blocks ofn symbols each.

1) Codebook generation: Fix code distribution
p(x1)p(x2)p(xr)p(ŷr|xr, yr). We randomly and
independently generate a codebook for each blockj ∈ [1 : b]

• Generate2nR1 i.i.d. sequencesxn
1 (m1,j) ∼

∏n

i=1 p(x1i),
wherem1,j ∈ [1 : 2nR1 ].

• Generate2nR2 i.i.d. sequencesxn
2 (m2,j) ∼

∏n

i=1 p(x2i),
wherem2,j ∈ [1 : 2nR2 ].

• Generate2nRr i.i.d. sequencesxn
r (kj−1) ∼

∏n

i=1 p(xri),
wherekj−1 ∈ [1 : 2nRr ].

• For each kj−1 ∈ [1 : 2nRr ], generate2nRr i.i.d.
sequenceŝynr (kj |kj−1) ∼

∏n

i=1 p(ŷri|xri(kj−1)), where
kj ∈ [1 : 2nRr ].

2) Encoding: User 1 and user 2 transmitsxn
1 (m1,j)

and xn
2 (m2,j) in block j respectively. The relay,

upon receiving ynr (j), finds an index kj such that
((ŷnr (kj |kj−1), y

n
r (j), x

n
r (kj−1)) ∈ An

ǫ′ . Assume that
suchkj is found, the relay sendsxn

r (kj) in block j + 1.
3) Decoding: : We discuss the decoding at user 1. Assume

that user 1 has decodedkj−1 correctly in blockj. Then in
block j+1, user 1 finds a unique pair of(m̂2,j , k̂j) such that

(xn
2 (m̂2,j), x

n
r (k̂j−1), ŷ

n
r (k̂j |k̂j−1), y

n
1 (j), x

n
1 (m1,j)) ∈ An

ǫ

and (xn
r (k̂j), y

n
1 (j + 1), xn

1 (m1,j+1)) ∈ An
ǫ .

4) Error analysis: Assume without loss of generality that
m1,j = m1,j+1 = m2,j = 1 andkj−1 = kj = 1. First define
the following two events:

E ′
1j(kj) =

{

(xn
r (kj), y

n
1 (j + 1), xn

1 (1)) ∈ An
ǫ

}

E ′
2j(m2,j , kj) =

{

(xn
2 (m2,j), x

n
r (1), ŷ

n
r (kj |1),

yn1 (j), x
n
1 (1)) ∈ An

ǫ

}

.

Then the decoder makes an error only if one or more of the
following events occur:

E1j =
{

(ŷnr (kj |1), y
n
r (j), x

n
r (1)) /∈ An

ǫ′ for all kj ∈ [1 : 2nRr ]
}

E2j =
{

(xn
r (1), y

n
1 (j + 1), xn

1 (1)) /∈ An
ǫ or

(xn
2 (1), x

n
r (1), ŷ

n
r (1|1), y

n
1 (j), x

n
1 (1)) /∈ An

ǫ

}

E3j =
{

E ′
1j(kj) andE ′

2j(1, kj) for somekj 6= 1
}

E4j =
{

E ′
1j(1) andE ′

2j(m2,j , 1) for somem2,j 6= 1
}

E5j =
{

E ′
1j(kj) andE ′

2j(m2,j , kj) for somem2,j 6= 1, kj 6= 1
}

.

Thus, the probability of error is bound as

P{m̂2,j 6= 1, k̂j 6= 1} ≤P (E1j) + P (E2j ∩ Ec
1j) + P (E3j)

+ P (E4j) + P (E5j).

By the covering lemma,P (E1j) → 0 asn → ∞, if

Rr > I(Ŷr;Yr|Xr). (15)

By the conditional typicality lemma,P (E2j ∩ Ec
1j) → 0 as

n → ∞.
For the rest of the error events, the decoded joint distribution

for each event is as follows.

E ′
1j(kj) : p(x1)p(xr)p(y1|x1)

E ′
2j(1, kj) : p(x1)p(x2)p(xr)p(ŷr|xr)p(y1|x2, xr, x1)

E ′
2j(m2,j , 1) : p(x1)p(x2)p(xr)p(y1, ŷr|xr , x1)

E ′
2j(m2,j , kj) : p(x1)p(x2)p(xr)p(ŷr|xr)p(y1|xr, x1),

where m2,j 6= 1, kj 6= 1. Using standard joint typicality
analysis with the above decoded joint distribution, we can
obtain a bound on each error event as follows.

P (E3j) ≤ 2nRr · 2−n(I(Xr ;Y1|X1)−δ(ǫ))

· 2−n(I(Ŷr;X1,X2,Y1|Xr)−4δ(ǫ))

P (E4j) ≤ 2nR2 · 2−n(I(X2;Y1,Ŷr|Xr ,X1)−3δ(ǫ))

P (E5j) ≤ 2nR2 · 2nRr · 2−n(I(Xr;Y1|X1)−δ(ǫ))

· 2−n(I(X2;Y1|X1,Xr)+I(Ŷr ;X1,X2,Y1|Xr)−4δ(ǫ))

All of them tend to zero asn → ∞ if

Rr ≤ I(Xr;Y1|X1) + I(Ŷr ;X1, X2, Y1|Xr) (16)

R2 ≤ I(X2;Y1, Ŷr|Xr, X1) (17)

R2 +Rr ≤ I(Xr;Y1|X1) + I(X2;Y1|X1, Xr) (18)

+ I(Ŷr ;X1, X2, Y1|Xr)

= I(X2, Xr;Y1|X1) + I(Ŷr ;X1, X2, Y1|Xr).



Combining the bounds (15) and (18), we have

R2 ≤I(X2, Xr;Y1|X1) + I(Ŷr;X1, X2, Y1|Xr)

− I(Ŷr;Yr|Xr)

=I(X2, Xr;Y1|X1)− I(Ŷr;Yr|X1, X2, Xr, Y1). (19)

Combining the bounds (17) and (19), we obtain the rate
constraint onR2 in Theorem 3. Similar forR1. From (15)
and (16), we obtain constraint (14).

Next we show the achievable rate region for the Gaussian
two-way relay channel using compress-forward without bin-
ning. Recall the Gaussian two-way relay channel model (1)
in Section II. AssumeX1 ∼ N (0, P ), X2 ∼ N (0, P ), Xr ∼
N (0, P ), Ẑ ∼ N (0, σ2) to be independent, and̂Yr = Yr + Ẑ.
Denote

R11(σ
2) = C

(

g221P +
g2r1P

1 + σ2

)

R12(σ
2) = C(g221P + g22rP )− C(1/σ2)

R21(σ
2) = C

(

g212P +
g2r2P

1 + σ2

)

R22(σ
2) = C(g212P + g21rP )− C(1/σ2). (20)

Then we have the following rate regions for the Gaussian two-
way relay channel.

Corollary 1. The following rate region is achievable for
the Gaussian two-way relay channel using compress-forward
without binning:

R1 ≤ min{R11(σ
2), R12(σ

2)}

R2 ≤ min{R21(σ
2), R22(σ

2)} (21)

for someσ2 ≥ max{σ2
c1, σ

2
c2}, where

σ2
c1 = (1 + g221P )/(g22rP )

σ2
c2 = (1 + g212P )/(g21rP ). (22)

andR11(σ
2), R12(σ

2), R21(σ
2), R22(σ

2) are defined in (20).

B. Comparison with the Original Compress-Forward Scheme

In this section, we first present the rate region achieved by
the original compress-forward scheme for the two way relay
channel [5]. We then show that compress-forward without
Wyner-Ziv binning but with joint decoding can achieve a larger
rate region.

Theorem 4. [Rankov and Wittneben]. The following rate
region is achievable for two-way relay channel with compress-
forward scheme:

R1 ≤ I(X1;Y2, Ŷr|X2, Xr)

R2 ≤ I(X2;Y1, Ŷr|X1, Xr) (23)

subject to

max{I(Ŷr;Yr|X1, Xr, Y1), I(Ŷr;Yr|X2, Xr, Y2)}

≤ min{I(Xr;Y1|X1), I(Xr;Y2|X2)} (24)

for somep(x1)p(x2)p(xr)p(y1, y2, yr|x1, x2, xr)p(ŷr|xr, yr).

Next we present a short proof to show the difference from
compress-forward without binning. The proof follows the
same lines as in [5], but we also correct an error in the analysis
in [5] as point out in Remark 4.

Proof: We use a block coding scheme in which each user
sendsb− 1 messages overb blocks ofn symbols each.

1) Codebook generation: Fix code distribution
p(x1)p(x2)p(xr)p(ŷr|xr, yr). We randomly and
independently generate a codebook for each blockj ∈ [1 : b]

• Generate2nR1 i.i.d. sequencesxn
1 (m1,j) ∼

∏n

i=1 p(x1i),
wherem1,j ∈ [1 : 2nR1 ].

• Generate2nR2 i.i.d. sequencesxn
2 (m2,j) ∼

∏n

i=1 p(x2i),
wherem2,j ∈ [1 : 2nR2 ].

• Generate2nRr i.i.d. sequencesxn
r (qj−1) ∼

∏n
i=1 p(xri),

whereqj−1 ∈ [1 : 2nRr ].
• For eachqj−1 ∈ [1 : 2nRr ], generate2n(Rr+R′

r
) i.i.d.

sequencesŷnr (qj , rj |qj−1) ∼
∏n

i=1 p(ŷri|xri(qj−1)).
Throw them into2nRr bins, whereqj ∈ [1 : 2nRr ]
denotes the bin index andrj ∈ [1 : 2nR

′

r ] denotes the
relative index within a bin.

2) Encoding: User 1 and user 2 transmitsxn
1 (m1,j)

and xn
2 (m2,j) in block j separately. The relay, upon

receiving ynr (j), finds an index pair(qj , rj) such that
((ŷnr (qj , rj |qj−1), y

n
r (j), x

n
r (qj−1)) ∈ An

ǫ′ . Assume that such
(qj , rj) is found, the relay sendsxn

r (qj) in block j+1. By the
covering lemma, the probability that there is no such(qj , rj)
tends to 0 asn → ∞ if

Rr +R′
r > I(Ŷr;Yr|Xr). (25)

3) Decoding:Each user applies 3-step successive decoding.
At the end of blockj, user 1 determines the unique binq̂j−1

such that

(xn
r (q̂j−1), y

n
1 (j), x

n
1 (m1,j)) ∈ An

ǫ .

Similar for user 2. Both succeed with high probability if

Rr ≤ min{I(Xr;Y1|X1), I(Xr;Y2|X2)}. (26)

Then user 1 usesyn1 (j−1) to determine the uniquêrj−1 such
that

(ŷnr (q̂j−1, r̂j−1|q̂j−2), y
n
1 (j − 1), xn

r (q̂j−2), x
n
1 (m1,j−1)) ∈ An

ǫ .

Similar for user 2. Both succeed with high probability if

R′
r ≤ min{I(Ŷr;X1, Y1|Xr), I(Ŷr;X2, Y2|Xr)}. (27)

Finally, user 1 uses bothyn1 (j−1) andŷnr (j−1) to determines
the uniquem̂2,j−1 such that

(xn
2 (m̂2,j−1), ŷ

n
r (q̂j−1, r̂j−1|q̂j−2), y

n
1 (j − 1), xn

r (q̂j−2),

xn
1 (m1,j−1)) ∈ An

ǫ .

Similar for user 2. Both succeed with high probability if

R1 ≤ I(X1;Y2, Ŷr|X2, Xr)

R2 ≤ I(X2;Y1, Ŷr|X1, Xr). (28)

The constraint (24) comes from (25), (26) and (27).
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Fig. 4. Rate regions forP = 20, gr1 = g1r = 2, gr2 = g2r = 0.5, g12 =
g21 = 0.1

Remark4. We note an error in the proof of [5]. In [5], when
user 1 determines the uniquer̂j−1, it is stated that it succeeds
with high probability if

R′
r ≤ I(Ŷr;Y1|X1, Xr), (29)

which corresponds to (27) in our analysis. However, this is
incorrect since the decoded joint distribution of this error
event isp(x1)p(xr)p(ŷr|xr)p(y1|x1, xr). Therefore, the error
probability can be bounded as

P (E) =
∑

(x1,xr,ŷr,y1)∈An

ǫ

p(x1)p(xr)p(ŷr|xr)p(y1|x1, xr)

≤ 2n(H(X1,Xr,Ŷr ,Y1)−H(X1)−H(Xr)−H(Ŷr |Xr)−H(Y1|X1,Xr)−3δ(ǫ))

= 2−n(I(Ŷr;X1,Y1|Xr)−3δ(ǫ)),

which tends to zero as asn → ∞ if (27) is satisfied instead
of (29).

Corollary 2. In the two-way relay channel, the rate region
achieved by compress-forward without binning in Theorem 3 is
larger than the rate region achieved by the original compress-
forward scheme in Theorem 4 when the channel is asymmetric
for the two users. The two regions are equal if and only if the
following conditions holds:

I(Xr;Y1|X1) = I(Xr;Y2|X2)

I(Ŷr;Yr|X1, Xr, Y1) = I(Ŷr;Yr|X2, Xr, Y2). (30)

Proof: First, we show that the constraint of Theorem 3
is looser than that of Theorem 4. This is true since from (24)
we have

I(Xr;Y1|X1) ≥ I(Ŷr;Yr|X1, Xr, Y1)

= I(Ŷr;X2, Yr|X1, Xr, Y1)

≥ I(Ŷr;Yr|X1, X2, Xr, Y1) (31)

where (31) is the right hand side of the first term in (14).
Similar for the other term.
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Fig. 5. Sum rate forgr1 = g1r = 2, gr2 = g2r = 0.5, g12 = g21 = 0.1

Next we show that (23) and (24) imply (13). From (23) we
have

R2 ≤I(X2;Y1, Ŷr|X1, Xr)

=I(X2;Y1|X1, Xr) + I(Ŷr;X2|Y1, X1, Xr)

=I(X2, Xr;Y1|X1)− I(Xr;Y1|X1) + I(Ŷr;X2|Y1, X1, Xr)

(a)

≤ I(X2, Xr;Y1|X1)− I(Ŷr;Yr|X1, Xr, Y1)

+ I(Ŷr;X2|Y1, X1, Xr)

=I(X2, Xr;Y1|X1)− I(Ŷr;Yr|X1, X2, Xr, Y1)

where(a) follows from the constraint of (24) in Theorem 4.
The equality holds when

I(Xr;Y1|X1) = min{I(Xr;Y1|X1), I(Xr;Y2|X2)}

I(Ŷr;Yr|X1, Xr, Y1)

= max(I(Ŷr;Yr|X1, Xr, Y1), I(Ŷr ;Yr|X2, Xr, Y2)).

Similar for R1, the equality holds when

I(Xr;Y2|X2) = min{I(Xr;Y1|X1), I(Xr;Y2|X2)}

I(Ŷr;Yr|X2, Xr, Y2)

= max(I(Ŷr;Yr|X1, Xr, Y1), I(Ŷr ;Yr|X2, Xr, Y2)).

Therefore, if and only if condition (30) holds, the origi-
nal compress-forward scheme achieves same rate region as
compress-forward scheme without binning; otherwise, it will
be strictly smaller.

Remark5. For the two-way relay channel, compress-forward
without binning achieves larger rate region than the original
compress-forward scheme when the channel is asymmetric for
the two users. This is because, with binning and successive
decoding, the compression rate is limited by the weaker one of
the channels from the relay to two users. But without binning,
this limitation is removed.
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0.5, g12 = g21 = 0.1

C. Comparison with Noisy Network Coding

In this section, we compare the rate region achieved by
compress-forward without binning with that achieved by noisy
network coding [6] for the two way relay channel.

Theorem 5. [Lim, Kim, El Gamal, and Chung].The following
rate region is achievable for the two-way relay channel using
noisy network coding:

R1 ≤ min{I(X1;Y2, Ŷr|X2, Xr), (32)

I(X1, Xr;Y2|X2)− I(Ŷr;Yr|X1, X2, Xr, Y2)}

R2 ≤ min{I(X2;Y1, Ŷr|X1, Xr),

I(X2, Xr;Y1|X1)− I(Ŷr;Yr|X1, X2, Xr, Y1)}

for somep(x1)p(x2)p(xr)p(y1, y2, yr|x1, x2, xr)p(ŷr|xr, yr).

Comparing Theorem 3 with Theorem 5, we find that the
rate constraints forR1 andR2 in compress-forward without
binning (13) are the same as those in noisy network coding
(32). However, compress-forward without binning has an extra
constraint on the compression rate as in (14). Therefore, in
general, noisy network coding achieves a larger rate region
than compress-forward without binning. Next, we show that
for the Gaussian two-way relay channel, these two schemes
achieve same region under certain conditions.

Corollary 3. [Lim, Kim, El Gamal, and Chung].The following
rate region is achievable for the Gaussian two-way relay
channel with noisy network coding scheme:

R1 ≤ min{R11(σ
2), R12(σ

2)}

R2 ≤ min{R21(σ
2), R22(σ

2)} (33)

for someσ2 > 0, whereR11(σ
2), R12(σ

2), R21(σ
2), R22(σ

2)
are defined in (20).

Theorem 6. Compress-forward without binning achieves the
same rate region as noisy network coding for the Gaussian
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Fig. 7. Rate regions forP = 20, gr1 = g1r = gr2 = g2r = 2, g12 =
g21 = 0.1

two-way relay channel if

σ2
c1 ≤ σ2

e2

σ2
c2 ≤ σ2

e1, (34)

where

σ2
e1 = (1 + g221P + g2r1P )/(g22rP )

σ2
e2 = (1 + g212P + g2r2P )/(g21rP ),

and σ2
c1, σ

2
c2 are defined in (22). Otherwise it achieves a

smaller rate region.

Proof: Note that bothR11(σ
2), R21(σ

2) are nonincreas-
ing andR12(σ

2), R22(σ
2) are nondecreasing. Also,

R11(σ
2
e1) = R12(σ

2
e1)

R21(σ
2
e2) = R22(σ

2
e2).

Therefore, the constraint in Corollary 1 is redundant if

max{σ2
c1, σ

2
c2} ≤ min{σ2

e1, σ
2
e2}. (35)

Since σ2
c1 ≤ σ2

e1 and σ2
c2 ≤ σ2

e2 always hold, the above
condition (35) is equivalent to (34).

D. Numerical Results

We now compare numerically compress-forward without
binning with the original compress-forward scheme [5] and
noisy network coding [6]. Figure 4 shows an asymmetric
channel configuration in which compress-forward without
binning achieves a strictly larger rate region than the original
compress-forward scheme, but slightly smaller than noisy net-
work coding. Figure 5 plots the sum rates for the same channel
configurations as in Figure 4, which shows that compress-
forward without binning achieves the same sum rate as noisy
network coding despite a smaller rate region. Figure 6 shows
a case where compress-forward without binning achieves the
same rate region as noisy network coding and larger than
compress-forward with binning. Figure 7 shows a symmetric
channel configuration in which three schemes achieve the
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same rate region. Figure 8 shows the sum rate for another
configuration when the two users and the relay are on a straight
line. In this case, compress-forward without binning and noisy
network coding achieves the same sum rate, which is higher
than that of compress-forward with binning.

As shown in these figures, compress-forward without bin-
ning achieves larger rate region and sum rate than the original
compress-forward scheme in [5] when the channel is asym-
metric for the two users. Compress-forward without binning
achieves the same rate region as noisy network coding incases
when (34) is satisfied. Furthermore, it has less decoding delay
which is only 1 instead ofb blocks.

V. CONCLUSION

We have analyzed compress-forward without Wyner-Ziv
binning but with joint decoding of both the message and com-
pression index in the one-way and two-way relay channels.
In both channels, compress-forward without binning either
achieves the same rate or improves the rate region compared to
the original compress-forward with binning by not limitingthe
compression rate to the weakest link. It does however increase
decoding complexity by requiring joint decoding instead of
sequential decoding. Compress-forward without binning also
achieves the same rate regions as noisy network coding for the
Gaussian TWRC in certain cases, for which it may be more
preferable because of less decoding delay. These results help
understand the role of Wyner-Ziv binning in compress-forward
schemes.
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