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Abstract—We consider a multicell MIMO uplink channel
where each base station (BS) is equipped with a large number
of antennas N . The BSs are assumed to estimate their channels
based on pilot sequences sent by the user terminals (UTs). Recent
work has shown that, as N → ∞, (i) the simplest form of
user detection, i.e., the matched filter (MF), becomes optimal,
(ii) the transmit power per UT can be made arbitrarily small,
(iii) the system performance is limited by pilot contamination.
The aim of this paper is to assess to which extent the above
conclusions hold true for large, but finite N . In particular, we
derive how many antennas per UT are needed to achieve η%
of the ultimate performance. We then study how much can be
gained through more sophisticated minimum-mean-square-error
(MMSE) detection and how many more antennas are needed with
the MF to achieve the same performance. Our analysis relies on
novel results from random matrix theory which allow us to derive
tight approximations of achievable rates with a class of linear
receivers.

I. INTRODUCTION

As wireless networks are inherently limited by their own
interference, a lot of research focuses on interference reduction
techniques, such as multiuser MIMO [1], interference align-
ment [2] or multicell processing [3]. Although these techniques
can lead to considerable performance gains, it is unlikely
that they will be able to carry the exponentially growing
wireless data traffic. Due to this reason, a significant network
densification, i.e., increasing the number of antennas per unit
area, seems inevitable. One way of densifying the network
consists in cell-size shrinking, such as the deployment of
femto or small cells [4], which comes at the cost of additional
equipment and increased interference. Another, seemingly
simpler, but also less explored option is the use of very large
antennas arrays at the base stations (BSs) [5]. However, it is
well known that accurate channel state information (CSI) must
be acquired to reap the benefits of additional antennas. This
poses, in particular in fast fading channels, a challenge as the
number of antennas grows [6]. Thus, massive MIMO is only
feasible in time-division duplex (TDD) systems where channel
reciprocity can be exploited. Here, the channels are estimated
based on orthogonal pilot tones which are sent by the user
terminals (UTs). In such systems, additional antennas do not
increase the training overhead and, therefore, “always help”
[7]. Nevertheless, for a given coherence time, the number of
orthogonal pilot sequences is limited and they must be reused
in adjacent cells. This leads to channel estimation impairments
known as “pilot contamination” [8].

The use of massively many antennas was advocated for
the first time in [5] and has since then received growing
research interest [9], [10], [11]. It is particularly intriguing
that with an infinite number of antennas, the simplest forms of
user detection and precoding, i.e., matched filtering (MF) and
eigenbeamforming, become optimal, the transmit power can be
made arbitrarily small, and the performance is ultimately lim-
ited by pilot contamination. Therefore, several works address
the problem of how the negative impact of pilot contamination
can be reduced [9], [8].

But what is the difference between massive MIMO and
classical MIMO techniques whose benefits are well-known
since more than a decade [12]? This paper tries to give
an answer to this question. We first provide a definition of
massive MIMO as an operating condition of cellular systems
where multiuser interference and noise are small compared to
pilot contamination. Whether or not this condition is satisfied
depends in general on several factors: the number of BS
antennas N , the number of UTs per degree of freedom (DoF)
offered by the channel (we denote by DoF the rank of the
antenna correlation matrix which might be smaller than N ),
the signal-to-noise ratio (SNR) and the path loss. We then
study if more antennas can compensate for suboptimal user
detection, i.e., how many more antennas does the MF need
to achieve minimum-mean-square-error (MMSE) detection
performance. Interestingly, both detectors achieve the same
performance with an unlimited number of BS antennas.

The technical contributions of this work are summarized
as follows: We consider a very general channel model which
allows us to assign a different path loss and receive antenna
correlation matrix to each channel from a UT to a BS. As-
suming a large system limit where the number of BS antennas
N and the number of UTs per cell K grow infinitely large at
the same speed, we derive asymptotically tight approximations
of ergodic achievable rates with a class of linear receivers,
accounting explicitly for channel training and pilot contamina-
tion. Simulations suggest that our approximations are valid for
even small N and K. Our analysis is different from [5] which
assumes that K/N → 0. However, we obtain their results as a
special case. Although we do not fully exploit the generality
of the channel model in the current paper, it enables future
studies on massive MIMO under more realistic channel models
with the goal of analyzing the impact of antenna correlation,
spacing and aperture. Lastly, the techniques developed in this
work can be directly applied to the downlink [13].
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II. SYSTEM MODEL

Consider a multi-cellular system consisting of L > 1 cells
with one BS and K UTs in each cell. Each BSs is equipped
with N antennas, the UTs have a single antenna. The focus of
this paper is on the uplink without any form of BS cooperation.
The received baseband signal vector yj ∈ CN at BS j at a
given time reads

yj =
√
ρ

L∑
l=1

Hjlxl + nj (1)

where Hjl ∈ CN×K is the channel matrix from the UTs
in cell l to BS j, xl = [xl1 · · ·xlK ]T ∼ CN (0, IK) is the
message-bearing transmit vector from the UTs in cell l, nj ∼
CN (0, IN ) is a noise vector and ρ > 0 denotes the transmit
SNR. We model the kth column vector hjlk ∈ CN of the
matrix Hjl as

hjlk = R̃jlkwjlk (2)

where Rjlk
4
= R̃jlkR̃

H
jlk ∈ CN×N are deterministic correla-

tion matrices and wjlk ∼ CN (0, IN ) are fast fading channel
vectors. The above channel model is very versatile as it allows
us to assign a different antenna correlation (including path
loss) to each channel vector. Moreover, the matrices Rjlk

do not need to have full rank. This is especially important
for large antenna arrays with a significant amount of antenna
correlation due to either insufficient antenna spacing or a lack
of scattering.

Remark 2.1: In particular, (2) can be used to represent
a physical channel model with a fixed number of dimen-
sions or angular bins P as in [10], by letting R̃jlk =√
`jlk [A 0N×N−P ], where A ∈ CN×P and `jlk is the

inverse path loss from UT k in cell l to BS j. We will use a
particular form of this model in Section IV.

A. Channel estimation

During a dedicated training phase (whose length we ignore
in this work), the UTs in each cell transmit orthogonal pilot
sequences which allow the BSs to compute estimates Ĥjj =

[ĥjj1 · · · , ĥjjK ] ∈ CN×K of their local channels Hjj . The
same set of orthogonal pilot sequences is reused in every cell
so that the channel estimate is corrupted by pilot contamination
from adjacent cells [14], [5]. Under these assumptions, BS j
estimates the channel vector hjjk based on the observation

yτjk = hjjk +
∑
l 6=j

hjlk +
1
√
ρτ

njk (3)

where njk ∼ CN (0, IN ) and ρτ > 0 is the effective
training SNR. Assuming MMSE estimation [15], we can
decompose the channel as hjjk = ĥjjk + h̃jjk, where
ĥjjk ∼ CN (0,Φjjk) is the channel estimate, h̃jjk ∼
CN (0,Rjjk −Φjjk) is the independent estimation error and

the matrices Φjlk are defined as (1 ≤ j, l ≤ L, 1 ≤ k ≤ K):

Φjlk = RjjkQjkRjlk (4)

Qjk =

(
1

ρτ
IN +

∑
l

Rjlk

)−1

. (5)

B. Achievable rates with linear detection

We consider linear single-user detection, where the jth BS
estimates the symbols xjm, m = 1, . . . ,K, of the UTs in its
cell by calculating the inner products between the received
vector yj and the linear filters rjm ∈ CN . Two particular
detectors are of practical interest, the matched filter rMF

jm and
the MMSE detector rMMSE

jm which we define as

rMF
jm = ĥjjm (6)

rMMSE
jm =

(
ĤjjĤ

H
jj + Zj +NλIN

)−1

ĥjjm (7)

where λ > 0 is a design parameter and

Zj = E

H̃jjH̃
H
jj +

∑
l 6=j

HjlHjl


=
∑
k

(Rjjk −Φjjk) +
∑
l 6=j

∑
k

Rjlk. (8)

Remark 2.2: Note that a BS could theoretically estimate
all channel matrices Hjl from the observations (3) to further
improve the performance. Nevertheless, high path loss to
neighboring cells is likely to render these channel estimates
unreliable and the potential performance gains are expected to
be marginal. Our formulation of rMMSE

jm further allows us to
treat λ (and also Zj) as a design parameter which could be
optimized. A natural choice is λ = 1

ρN .

Using a standard bound based on worst-case uncorrelated
additive noise yields the ergodic achievable rate Rjm of UT
m in cell j [16]:

Rjm = E [log2 (1 + γjm)] (9)

where the associated “signal-to-interference-plus-noise ratio”
(SINR) γjm is given by (10) on the top of the next page.

III. ASYMPTOTIC ANALYSIS

In this section, we present our main technical results. All
proofs are provided in [13]. Under the assumption that N and
K grow infinitely large while keeping a finite ratio K/N , we
will derive deterministic approximations γ̄jm of γjm, such that

γjm − γ̄jm
a.s.−−→ 0 (11)

where ‘ a.s.−−→’ denotes almost sure convergence. We will refer
to the quantities γ̄jm as deterministic equivalents of γjm. The
large system analysis implicitly requires that the channel co-
herence times scales linearly with K (to allow for a sufficiently
large number of orthogonal pilot sequences). However, since
we will use our results as approximations for realistic system
dimensions, this assumption does not pose any problem.



γjm =

∣∣∣rHjmĥjjm

∣∣∣2
E
[
rHjm

(
1
ρIN + h̃jjmh̃H

jjm − hjjmhH
jjm +

∑
l HjlHH

jl

)
rjm |Ĥjj

] (10)

We would further like to remark that, in the asymptotic limit,
the term inside the expectation of the denominator of γjm
(10) can be arbitrarily closely approximated by a deterministic
quantity and we do not need to compute the expectation
explicitly. Moreover, since E[|γjm|] and γ̄jm are uniformly
bounded, the almost sure convergence in (11) implies by
[17][Corollary, p. 218]:

Rjm − log2 (1 + γ̄jm) −→ 0. (12)

In the sequel, we assume that the following technical
conditions hold:

A 1: lim supN‖Rjlk‖ <∞ for all j, l, k.

A 2: lim infN
1
N tr Rj,l,k > 0 for all j, l, k.

Our first result is a deterministic equivalent of the SINR at
the output of the matched filter:

Theorem 1 (Matched filter): A deterministic equivalent of
γjm for the matched filter is given as

γ̄MF
jm = (

1
N tr Φjjm

)2
1

ρN2 tr Φjjm + 1
N

∑
l,k

1
N tr RjlkΦjjm +

∑
l 6=j
∣∣ 1
N tr Φjlm

∣∣2 .
Our second result is a deterministic equivalent of the SINR

with MMSE detection:

Theorem 2 (MMSE detector): A deterministic equivalent
of γjm for the MMSE detector is given as

γ̄MMSE
jm =

δ2
jm

1
ρN2 tr ΦjjmT̄′j + 1

N

∑
l,k µjlkm +

∑
l 6=j |ϑjlm|

2

where

ϑjlk =
1

N
tr ΦjlkTj

ϑ′jlkm =
1

N
tr ΦjlkT

′
jm

µjlkm =
1

N
tr RjlkT

′
jm

−
2Re

(
ϑ∗jlkϑ

′
jlkm

)
(1 + δjk)− |ϑjlk|2 δ′jkm

(1 + δjk)
2

and where

• Tj = T(λ) and δj = [δj1 · · · δjK ]T = δ(λ) are given by
Theorem 3 for D = IN , S = Zj/N , Rk = Φjjk ∀k,

• T̄′j = T′(λ) is given by Theorem 4 for D = IN , S =
Zj/N , Θ = IN , Rk = Φjjk ∀k,

• T′jm = T′(λ), δ′jm =
[
δ′j1m · · · δ′jKm

]T
= δ′(λ) are

given by Theorem 4 for D = IN , S = Zj/N ,Θ = Φjjm,
Rk = Φjjk ∀k.

Theorems 3 and 4 can be found in the Appendix.

Remark 3.1: The theorem can be drastically simplified if
a less general channel model is considered, e.g. the same
correlation matrices Rjlk for all UTs, no correlation and only
path loss, Zj = 0. Due to space reasons, we only state the most
general form here and provide one special case (cf. Corollary
3) where γ̄MMSE

jm can be even given closed form.

Interestingly, the performances of matched filter and MMSE
detector coincide for an infinite number of antennas:

Corollary 1 (Performance with infinitely many antennas):

γ̄MF
jm, γ̄

MMSE
jm −−−−−−−−−−→

N→∞, K/N→0
γ̄∞jm

4
=

β2
jjm∑

l 6=j |βjlm|2

where βjlk = limN
1
N tr Φjlk, whenever the limit exists.

Note that γ̄∞jm corresponds also to the asymptotic signal-to-
interference ratio (SIR) derived in [5, Eq. (13)].

IV. ON THE MASSIVE MIMO EFFECT

Let us for now ignore the effects of estimation noise, i.e.,
ρτ →∞, and consider the simple channel model

Hjj =

√
N

P
AWjj , Hjl =

√
α
N

P
AWjl, l 6= j (13)

where A ∈ CN×P is composed of P ≤ N columns of
an arbitrary unitary N × N matrix, Wjl ∈ CP×K are
standard complex Gaussian matrices and α ∈ (0, 1] is an
intercell interference factor. Note that this is a special case
of (2). Under this model, the total energy of the channel
grows linearly with the number of antennas N and UTs K,
since E

[
tr HjjH

H
jj

]
= KN

P tr AAH = KN . The motivation
behind this channel model is twofold. First, we assume that
the antenna aperture increases with each additional antenna
element. Thus, the captured energy increases linearly with N .
This is in contrast to existing works which assume that more
and more antenna elements are packed into a fixed volume,
see e.g. [18], [19]. An insufficiency of this channel model is
that the captured energy grows without bounds as N → ∞.
However, we believe that linear energy gains can be achieved
up to very large numbers of antennas if the size of the antenna
array is scaled accordingly. Second, the number of DoF P
offered by the channel does not need to be equal to N [10].
One could either assume P to be large but constant or to scale
with N , e.g. P = cN , where c ∈ (0, 1]. In general, P depends
on the amount of scattering in the channel and, therefore, on



the radio environment. Under the assumptions made above,
we obtain the following corollary from Theorem 1:

Corollary 2: For the channel model in (13) and ρτ → ∞,
γ̄MF
km, for all k,m, can be given in closed form as

γ̄MF 4
=

1

L̄

ρN︸︷︷︸
noise

+
K

P
L̄2︸ ︷︷ ︸

multiuser interference

+ α(L̄− 1)︸ ︷︷ ︸
pilot contamination

(14)

where L̄ = 1 + α(L− 1).

We define the associated rate R̄MF as

R̄MF = log2

(
1 + γ̄MF) . (15)

One can make several observations from (14). Obviously,
the effective SNR ρN increases linearly with N . Thus, if the
number of antennas is doubled, the transmit power can be
reduced by a factor of two to achieve the same SNR. Less
obvious is that the multiuser interference depends mainly on
the ratio P/K (number of DoF per UT) and not directly
on the number of antennas. Moreover, noise and multiuser
interference vanish for N,P → ∞ while pilot contamination
is the only performance-limiting factor [5]:

γ̄MF −−−−−−−−−−−−→
N,P→∞, K/N→0

γ∞ =
1

α(L̄− 1)
. (16)

We denote by R∞ the ultimately achievable rate, defined as

R∞ = log2 (1 + γ∞) = log2

(
1 +

1

α(L̄− 1)

)
. (17)

It is interesting that even with more sophisticated linear
single-user detection, such as MMSE detection, the ultimate
performance limit γ∞ cannot be exceeded (see Corollary 1 and
[10]). Note that without pilot contamination, i.e., for L = 1 or
α = 0, the SINR grows without bounds as P,N → ∞. If P
is fixed but large, the SINR saturates at a smaller value than
γ∞. In this case, adding additional antennas only improves
the SNR but does not reduce the multiuser interference. Thus,
with a finite number of DoF, MMSE detection remains also
for N →∞ superior to MF.

Based on the above observations, we believe that it is
justified to speak about a massive MIMO effect whenever γjm
is close to γ∞, or in other words, whenever noise and multiuser
interference are small compared to the pilot contamination. It
becomes evident from (14) that the number of antennas needed
for massive MIMO depends strongly on the system parameters
P , K, L, α and ρ. In particular, there is no massive MIMO
effect without pilot contamination since γ∞ → ∞. Thus,
massive MIMO can be seen as a particular operating condition
in multi-cellular systems where the performance is ultimately
limited by pilot contamination and the matched filter achieves
a performance close to this ultimate limit. To make this
definition more precise, we say that we operate under massive
MIMO conditions if, for some desired η ∈ (0, 1),

R̄MF ≥ ηR∞. (18)

This condition implies that we achieve at least the fraction η
of the ultimate performance with the simplest form of single-
user detection. Replacing R̄MF in the last equation by (15) and
solving for P/K leads to

P

K
≥
(

1

L̄2 [(1 + γ∞)
η − 1]

− 1

ρNL̄
− α(L̄− 1)

L̄2

)−1

. (19)

Thus for a given set of parameters ρ, N , α and L, we can
find the fraction P/K necessary to satisfy (18). For the partic-
ular channel model considered in this section, also Theorem 2
for the MMSE detector can be significantly simplified:

Corollary 3: For the channel model in (13) and ρτ → ∞,
γ̄MMSE
km , for all k,m, can be given in closed-form as

γ̄MMSE =
1

L̄
ρNX + K

P L̄
2Y + α

(
L̄− 1

)
where L̄ = 1 + α(L− 1) and

X =
Z2

Z2 − K
P

Y = X +

[
1 + α2(L− 1)

]
(1− 2Z)

L̄2
(
Z2 − K

P

)
Z = λL̄(1 + δ) +

K

P

[
1 + (1 + δ)

(
L̄2 − 1

)]
δ =

1− λL̄− K
P L̄

2 +

√(
1 + λL̄+ K

P L̄
2
)2 − 4KP

2
[
λL̄+ K

P

(
L̄2 − 1

)] .

The last result reveals that also the SINR of the MMSE
detector depends on P,K,N and ρ only through the ratio P/K
and the effective SNR ρN . Hence, we can use Corollary 3 to
determine the ratio P/K necessary to satisfy the condition

R̄MMSE = log
(
1 + γ̄MMSE) ≥ ηR∞ (20)

which can be very efficiently solved by a simple line search,
e.g. via bisection. We assume in the sequel λ = 1/(ρN).

Before we proceed, let us verify the accuracy of the approxi-
mations R̄MF and R̄MMSE for finite (N,K). In Fig. 1, we depict
the ergodic achievable rate Rjm of an arbitrary UT with MF
and MMSE detection as a function of the number of antennas
N for K = 10 UTs, L = 4 cells, ρ = 0 dB and intercell
interference factor α = 0.1. We compare two different cases:
P = N and P = N/3. As expected, the performance in the
latter scenario is inferior due to stronger multiuser interference.
Most importantly, our closed-form approximations are almost
indistinguishable from the simulation results over the entire
range of N .

Figs. 2 and 3 show the necessary DoF per UT P/K for
a given effective SNR ρN to achieve a spectral efficiency
of ηR∞ with either the MF (solid lines) or MMSE detector
(dashed lines). We consider L = 4 cells and an intercell
interference factor α = 0.3 and α = 0.1, respectively. The
plots must be understood in the following way: Each curve
corresponds to a particular value of η. In the region above
each curve, the condition (18), respectively (20), is satisfied.
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Fig. 1. Ergodic achievable rate with MF and MMSE detection versus number
of antennas N for P = {N,N/3} for ρ = 0 dB.

Let us first focus on Fig. 2 with α = 0.3. For an effective
SNR ρN = 20 dB (e.g. ρ = 0 dB and N = 100 = 20 dB),
we need about P/K = 90 DoF per UT to achieve 90 % of
the ultimate performance R∞, i.e., 0.9 × 2.2 ≈ 2 b/s/Hz. If
P ≈ N , only a single UT could be served (Note that this
is a simplifying example. Our analysis assumes K � 1.).
However, if we had N = 1000 = 30 dB antennas, the
transmit power ρ could be decreased by 10 dB and 10 UTs
could be served with the same performance. At the same
operating point, the MMSE detector requires only ∼ 60 DoF
per UT to achieve 90 % of the ultimate performance. Thus,
MMSE detection would allow us to increase the number of
simultaneously served UTs by a factor 90

60 = 1.5. This example
also demonstrates the importance of the relation between N
and P . In particular, if P saturates for some N , adding more
antennas increases the effective SNR but does not reduce the
multiuser interference. Thus, the number of UTs which can be
simultaneously supported depends significantly on the radio
environment. We can further see that adding antennas shows
diminishing returns. This is because the distances between
the curves for different values of η grow exponentially fast.
Remember that for η = 1, a ratio of P/K = ∞ would be
needed. A last observation we can make is that the absolute
difference between MF and MMSE detection is marginal for
small values of η but gets quickly pronounced as η → 1.

Turning to Fig. 3 for α = 0.1, we can see that for the
same effective SNR ρN = 20 dB and the same number
of DoF per UT P/K = 90 as in the previous example,
only 80 % of the ultimate performance are achieved by the
MF. However, since the intercell interference is significantly
smaller compared to the previous example, this corresponds to
0.9×5.1 ≈ 4.6 b/s/Hz. Thus, although we operate further away
from the ultimate performance limit, the resulting spectral
efficiency is still higher. With MMSE detection, only 35
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Fig. 2. Degrees of freedom per UT P/K necessary to achieve ηR∞ versus
effective SNR ρN for L = 4 and α = 0.3.
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Fig. 3. Degrees of freedom per UT P/K necessary to achieve ηR∞ versus
effective SNR ρN for L = 4 and α = 0.1.

DoF per UT are necessary to achieve the same performance
and, consequently, 90/35 ≈ 2.5 times more UTs could be
simultaneously served. With decreasing intercell interference
(and hence decreasing pilot contamination) the advantages of
MMSE detection become more and more important.

V. CONCLUSIONS

We have studied the uplink of a MIMO multi-cell system
where channel estimates are prone to pilot contamination.
Under a very general channel model, allowing for an individual
correlation matrix for each UT, and the assumption that the
number of BS antennas and UTs grows large, we have derived
deterministic equivalents of achievable rates with matched



filter and MMSE detector. These results have been used to
study the performance of both detectors in the large but finite
N regime. Interestingly, their performance depends mainly on
the DoF per UT the channel offers and the effective SNR.
Moreover, we have determined (i) how many antennas are
needed to achieve η% of the ultimate performance limit and
(ii) how many more antennas are needed by the MF to achieve
MMSE performance. Our results can be also applied for the
study of the downlink [13] and could be further used to analyze
the effects of more realistic channels models, such as antenna
correlation, spacing and aperture.

APPENDIX

Theorem 3 ([20, Theorem 1]): Let D ∈ CN×N and S ∈
CN×N be Hermitian nonnegative definite matrices and let
H ∈ CN×K be a random matrix with columns hk =

1√
N

R
1
2

k uk, where uk ∈ CN are random vectors of i.i.d.
elements with zero mean, unit variance and finite 8th order
moment, and Rk ∈ CN×N are deterministic covariance
matrices. Assume that D, S and Rk, k = 1, . . . ,K, have
uniformly bounded spectral norms (with respect to N ). Let
N,K → ∞, such that 0 ≤ lim inf KN ≤ lim sup K

N < ∞.
Then, for any ρ > 0,

1

N
tr D

(
HHH + S + ρIN

)−1 − 1

N
tr DT(ρ)

a.s.−−→ 0

where T(ρ) ∈ CN×N is defined as

T(ρ) =

(
1

N

K∑
k=1

Rk

1 + δk(ρ)
+ S + ρIN

)−1

and the following set of K implicit equations

δk(ρ) =
1

N
tr RkT(ρ), k = 1, . . . ,K

has a unique solution δ(ρ) = [δ1(ρ) · · · δK(ρ)]
T ≥ 0.

Theorem 4: Let Θ ∈ CN×N be a Hermitian nonnegative
definite matrix with uniformly bounded spectral norm (with
respect to N ). Under the same conditions as in Theorem 3,

1

N
tr D

(
HHH + S + ρIN

)−1
Θ
(
HHH + S + ρIN

)−1

− 1

N
tr DT′(ρ)

a.s.−−→ 0

where T′(ρ) ∈ CN×N is defined as

T′(ρ) = T(ρ)ΘT(ρ) + T(ρ)
1

N

K∑
k=1

Rkδ
′
k(ρ)

(1 + δk(ρ))
2 T(ρ)

with T(ρ) and δk(ρ) as defined in Theorem 3 and δ′(ρ) =
[δ′1(ρ) · · · δ′K(ρ)]

T given by

δ′(ρ) = (IK − J(ρ))
−1

v(ρ)

[J(ρ)]kl =
1
N tr RkT(ρ)RlT(ρ)

N (1 + δk(ρ))
2

[v(ρ)]k =
1

N
tr RkT(ρ)ΘT(ρ)

where J(ρ) ∈ CK×K and v(ρ) ∈ CK .
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