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Abstract—The discrete memoryless interference channel is
modelled as a conditional probability distribution with two
outputs depending on two inputs and has widespread appli-
cations in practical communication scenarios. In this paper,
we introduce and study the quantum interference channel, a
generalization of a two-input, two-output memoryless channel
to the setting of quantum Shannon theory. We discuss three
different coding strategies and obtain corresponding achievable
rate regions for quantum interference channels. We calculate
the capacity regions in the special cases of “very strong” and
“strong” interference. The achievability proof in the case of
“strong” interference exploits a novel quantum simultaneous
decoder for two-sender quantum multiple access channels. We
formulate a conjecture regarding the existence of a quantum
simultaneous decoder in the three-sender case and use it to state
the rates achievable by a quantum Han-Kobayashi strategy.

I. INTRODUCTION

Modern communication systems usually approach the
problem of inter-carrier interference by treating the interfer-
ing signals as noise. Indeed, techniques like code division
multiple access aim to make the encoded signals as similar to
background noise as possible by spreading the signal power
over large sections of the spectrum. Rather than treating the
interference as noise, a receiver could instead try to decode
the interfering signals and then “subtract” them from the
received signal in order to reduce (or even remove) the
interference. The development of these ideas into practical
codes for M -user interference channels would have profound
implications for many areas of communications engineering.

The theory of this problem has been studied for more
than 30 years, in particular for channels with two senders
and two receivers [1], [2]. The approach of completely
decoding the interfering messages applies to channels with
“very strong” interference, and it is optimal for this class of
channels [3]. For an arbitrary interference channel, it may
only be possible to partially decode the interfering signal.
Still, the receivers can achieve better communication rates
using this side information when decoding the messages
intended for them. The best achievable rate region for the
general interference channel is based on partial decoding of
the interference and is due to Han and Kobayashi [4].

In this paper, we apply and extend some insights from
classical information theory to the study of quantum inter-
ference channels (QICs). These channels can model physical
systems such as fibre-optic cables and free space opti-
cal communication channels, when operating in low-power
regimes [5]. Inspired by results like the Holevo-Schumacher-

Westmoreland theorem on the classical capacity of point-to-
point channels [6], [7], and Winter’s results on the capacity
of quantum multiple access channels [8], we propose the
study of classical communication over quantum interference
channels.

We structure this paper as follows. In Section II we review
our main results. Section III introduces notation and defines
the key concepts. In Section IV we discuss the quantum
multiple access channel, and the difference between suc-
cessive decoding, simultaneous decoding and rate-splitting
approaches to achieving the capacity. Section V presents our
results on the quantum interference channel. We conclude by
stating open problems in Section VI.

II. SUMMARY OF RESULTS

We initiate the study of quantum interference channels,
a fundamental problem of multiuser communication theory.
As first steps in this study, we prove the capacity region for
channels with “very strong” interference (Theorem 4) and
channels with “strong” interference (Theorem 6). For general
interference channels we obtain a quantum analogue of Sato’s
outer bound (Theorem 5) and an achievable rate region
inspired by the Han-Kobayashi coding strategy [4] and rate-
splitting [9]. Our work serves to highlight the importance of
quantum simultaneous decoding for the multiple access chan-
nel as a key ingredient for the construction of the interference
channel codes. Prior results on quantum multiple access
channels are based on successive decoding and time-sharing
[8], but in Theorem 2 we show that a quantum simultaneous
decoder exists for multiple access channels with two senders.
The quantum Han-Kobayashi coding strategy (Theorem 7)
requires the use of a quantum simultaneous decoder for
multiple access channels with three senders. It is not obvious
how to extend the techniques used to prove Theorem 2 to the
three-sender case. We formulate Conjecture 3 concerning the
existence of a quantum simultaneous decoder for three-sender
quantum multiple access channels. A proof of this conjecture
would have profound consequences for multiuser quantum
information theory since it would allow for many classical
information theory results based on simultaneous decoding
to be adapted to the quantum setting.

III. PRELIMINARIES

In this section, we define the quantum interference channel
and the communication task that we are trying to achieve.
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1) Notation: We denote quantum systems as A, B, and C
and their corresponding Hilbert spaces as HA, HB , and HC .
We represent quantum states of the system A as a density
operator ρA, which is a positive semi-definite operator with
unit trace. We model our lack of access to a quantum
system with the partial trace operation. Given a state ρAB

shared between Alice and Bob, we can describe Alice’s state
with the reduced density operator ρA = TrB

{
ρAB

}
, where

TrB denotes a partial trace over Bob’s degrees of freedom.
Let H(A)ρ ≡ −Tr

{
ρA log ρA

}
denote the von Neumann

entropy of the state ρA. A noiseless quantum operation is
represented by a unitary operator U which acts on a state ρ by
conjugation UρU†, which we denote as U ·ρ ≡ UρU†. Noisy
quantum operations are represented by completely positive
trace-preserving (CPTP) maps NA′→B , which accept input
states in A′ and produce output states in B. Let conv(R)
denote the convex closure of any geometrical region R.
Throughout this paper, logarithms and exponents are taken
base two unless otherwise specified.

2) Definitions: The classical discrete memoryless in-
terference channel (IC) is described by a triple (X1 ×
X2, p(y1, y2|x1, x2),Y1×Y2), where Xi is a finite set of
possible input symbols for Sender i and Yj is the set of
possible output symbols for Receiver j.

If we extend this definition to allow both inputs and outputs
to be quantum systems we obtain the following:

Definition 1. A two party quantum interference channel is a
triple (HA′

1 ⊗HA′
2 ,NA′

1A
′
2→B1B2 ,HB1 ⊗HB2), where A′1

and A′2 are the two quantum systems that are input to the
channel by the senders, B1 and B2 are the output systems,
and NA′

1A
′
2→B1B2 is a completely positive trace-preserving

(CPTP) map.

A simpler channel is the classical-quantum (c-q) interfer-
ence channel, where only the outputs are quantum.

Definition 2. A two party cc-qq interference channel is a
triple (X1 × X2,NX1X2→B1B2(x1, x2) ≡ ρB1B2

x1,x2
,HB1 ⊗

HB2), which models a general communication network with
two classical inputs and a quantum state ρB1B2

x1,x2
as output.

In this paper, we focus our attention on the class of
classical-quantum interference channels, though generaliza-
tions of our results to channels with quantum inputs are
straightforward. We fully specify a cc-qq interference channel
by the set of output states it produces

{
ρB1B2
x1,x2

}
x1∈X1,x2∈X2

.
A classical interference channel with transition probabil-
ity p(y1, y2|x1, x2) is a special case of the cc-qq chan-
nel where the output states are of the form ρB1B2

x1,x2
=∑

y1,y2
p(y1, y2|x1, x2)|y1〉〈y1|B1 ⊗|y2〉〈y2|B2 where {|y1〉}

and {|y2〉} are orthonormal bases of HB1 and HB2 .
3) Information processing task: The task of communica-

tion over an interference channel can be described as follows.
Using n independent uses of the channel, the objective is for
Sender 1 to communicate with Receiver 1 at a rate R1 and
for Sender 2 to communicate with Receiver 2 at a rate R2.
More specifically, Sender 1 chooses a message m1 from a
message set M1 ≡ {1, 2, . . . , |M1|} where |M1| = 2nR1 ,

and Sender 2 similarly chooses a message m2 from a message
set M2 ≡ {1, 2, . . . , |M2|} where |M2| = 2nR2 . Senders 1
and 2 encode their messages as codewords xn1 (m1) ∈ Xn1
and xn2 (m2) ∈ Xn2 respectively, which are then input to the
channel. The output of the channel is an n-fold tensor product
state of the form:

N⊗n(xn1 (m1), xn2 (m2)) ≡ ρB
n
1 B

n
2

xn2 (m1),xn2 (m2) ∈ H
Bn1 B

n
2 . (1)

To decode the message m1 intended for him, Receiver 1
performs a positive operator-valued measure (POVM)
{Λm1

}m1∈{1,...,|M1|} on the system Bn1 , the output of which
we denote M ′1. For all m1, Λm1

is a positive operator and∑
m1

Λm1
= I . Receiver 2 similarly performs a POVM

{Γm2
}m2∈{1,...,|M2|} on the system Bn2 , and the random

variable associated with this outcome is denoted M ′2.
An error event occurs whenever Receiver 1’s measurement

outcome is different from the message sent by Sender 1
(M ′1 6= m1) or Receiver 2’s measurement outcome is dif-
ferent from the message sent by Sender 2 (M ′2 6= m2). The
overall probability of error for message pair (m1,m2) is

pe(m1,m2) ≡ Pr {(M ′1,M ′2) 6= (m1,m2)}

= Tr
{

(I − Λm1
⊗ Γm2

) ρ
Bn1 B

n
2

xn2 (m1)xn2 (m2)

}
,

where the measurement operator (I − Λm1
⊗ Γm2

) repre-
sents the complement of the correct decoding outcome.

Definition 3. An (n,R1, R2, ε) code for the interference
channel consists of two codebooks {xn1 (m1)}m1∈M1 and
{xn2 (m2)}m2∈M2

, and two decoding POVMs {Λm1
}m1∈M1

and {Γm2
}m2∈M2

, such that the average probability of error
pe is bounded from above by ε:

pe≡
1

|M1||M2|
∑
m1,m2

pe(m1,m2) ≤ ε. (2)

A rate pair (R1, R2) is achievable if there exists an
(n,R1 − δ,R2 − δ, ε) quantum interference channel code for
all ε, δ > 0 and sufficiently large n. The channel’s capacity
region is the closure of the set of all achievable rates.

IV. DECODING STRATEGIES FOR QUANTUM
MULTIPLE ACCESS CHANNELS

The quantum interference channel described by (X1 ×
X2, ρ

B1B2
x1,x2

,HB1⊗HB2) induces two multiple access (MAC)
sub-channels. More specifically MAC1 is the channel to
Receiver 1 given by (X1×X2, ρ

B1
x1,x2

= TrB2

{
ρB1B2
x1,x2

}
,HB1),

and MAC2 is the channel to Receiver 2 defined by (X1 ×
X2, ρ

B2
x1,x2

,HB2). In order to better understand the interfer-
ence channel problem we first consider the different decoding
strategies for the individual receivers. In this section we ana-
lyze three types of decoding strategies for quantum multiple
access channels, and then in Section V we use each of these
to build a corresponding interference channel code.

Winter found a single-letter formula for the capacity of the
classical-quantum multiple access channel [8].



Theorem 1 (Theorem 10 in [8]). The capacity region
for the classical-quantum multiple access channel (X1 ×
X2, ρ

B
x1,x2

,HB) is given by

CMAC ≡ conv
⋃

pX1
,pX2

{(R1, R2) ∈ R2| Eqns. (3)-(5) }

R1 ≤ I(X1;B|X2)θ, (3)
R2 ≤ I(X2;B|X1)θ, (4)

R1 +R2 ≤ I(X1X2;B)θ, (5)

where the information quantities are taken with respect to
the classical-quantum state θX1X2B given by∑
x1,x2

pX1(x1) pX2(x2) |x1〉〈x1|X1⊗|x2〉〈x2|X2⊗ρBx1x2
. (6)

A. Successive decoding

The technique used by Winter to prove the achievability
of the rates in Theorem 1 is called successive decoding. For
a given pair of probability distributions p ≡ pX1 , pX2 , the
achievable rate region has the form of a pentagon bounded
by the three inequalities in equations (3)-(5) and two rate
positivity conditions. The two dominant vertices of this rate
region have coordinates αp ≡ (I(X1;B)θ, I(X2;B|X1)θ)
and βp ≡ (I(X1;B|X2)θ, I(X2;B)θ) and correspond to two
alternate successive decoding strategies.

To achieve the rates of αp, the receiver first performs
a measurement

{
Λαm1

}
to decode the message m1, and

then performs a second measurement to recover the message
m2. The second measurement is

{
Λαm2|m1

}
, where we have

indicated that the second measurement is conditional on
m1. By using these POVMs, Winter shows that if the rates
(R1, R2) satisfy

R1 ≤ I (X1;B)θ , (7)
R2 ≤ I (X2;B|X1)θ , (8)

then the expected success probability asymptotically ap-
proaches one:

E
Xn1 ,X

n
2

{
1

|M1||M2|
∑
m1,m2

Tr
{

Λwm1,m2
ρXn1 (m1),Xn2 (m2)

}}
≥ 1− ε, (9)

where we have informally denoted by Λwm1,m2
the successive

measurements of Λαm1
followed by Λαm2|m1

.
The rate point βp corresponds to the alternate decode

ordering where the receiver decodes the message m2 first
and m1 second. The corner points αp and βp are important
because given codes that achieve them, we can use time-
sharing and resource wasting to obtain all other rate pairs in
the region. The M -sender MAC has M ! such corner points,
one for each permutation of the decode ordering.

B. Quantum simultaneous decoding

Another approach for achieving the capacity of the mul-
tiple access channel, which does not use time-sharing, is
simultaneous decoding. The analysis of the classical simul-
taneous decoder is a straightforward application of the joint

typicality lemma to bound the probability of the different
decoding error events that may occur [10]. In the quantum
case, we can similarly identify four different error events, but
the construction of a measurement operator based on typical
subspace projectors is more difficult to analyse because the
different typical projectors may not commute in general.

In this section we prove that a quantum simultaneous
decoder exists for multiple access channels with two senders
and formulate Conjecture 3 regarding the existence of a
simultaneous decoder for three-sender multiple access chan-
nels.

Theorem 2 (Two-sender simultaneous decoding). Consider
the cc-q multiple access channel with two senders and a
single receiver (X1×X2, ρ

B
x1,x2

,HB). Let pXi be a distribu-
tion on Xi and Mi ≡ {1, . . . , 2n(Ri−δ)} for i ∈ {1, 2} and
δ > 0. Define the random codebooks {Xn

1 (m1)}m1∈M1
and

{Xn
2 (m2)}m2∈M2 generated from the product distributions

pXn1 and pXn2 respectively. There exists a simultaneous
decoding POVM {Λm1,m2

}m1∈M1,m2∈M2
, with expected

average probability of error bounded from above by ε for all
ε, δ > 0 and sufficiently large n provided the rates R1, R2

satisfy inequalities (3)-(5).

The proof proceeds by random coding arguments using
the properties of projectors onto the typical subspaces of the
output states [11] and the square-root measurement. Note
that Sen proved the same result using different techniques
in [12]. See Appendix A for a review of the properties of
typical subspaces.

Proof: Let state ρm1,m2
≡ ρxn1 (m1),xn2 (m2) denote the

output of the n uses of the channel when codewords xn1 (m1)
and xn2 (m2) are input. Let Πn

m1,m2
≡ Πn

ρxn1 (m1),xn2 (m2),δ
be

the conditionally typical projector for that state. Consider the
following code-averaged output states:

ρ̄x1 ≡
∑
x2

pX2(x2) ρx1,x2 , (10)

ρ̄x2
≡
∑
x1

pX1
(x1) ρx1,x2

, (11)

ρ̄ ≡
∑
x1,x2

pX1
(x1) pX2

(x2) ρx1,x2
. (12)

Let Πn
m1
≡ Πn

ρ̄xn1 (m1),δ
be the conditionally typical projector

for the tensor product state ρ̄m1
≡ ρ̄xn1 (m1) defined by (10)

for n uses of the channel. Let Πn
m2
≡ Πn

ρ̄xn2 (m2),δ
be the

conditionally typical projector for the tensor product state
ρ̄m2 ≡ ρ̄xn2 (m2) defined by (11) and finally let Πn

ρ̄,δ be the
typical projector for the state ρ̄⊗n defined by (12).

The detection POVM {Λm1,m2
} has the following form:

Λm1,m2≡

 ∑
m′

1,m
′
2

Π′m′
1,m

′
2

− 1
2

Π′m1,m2

 ∑
m′

1,m
′
2

Π′m′
1,m

′
2

− 1
2

,

where

Π′m1,m2
≡ Πn

ρ̄,δ ·Πn
m1
·Πn

m1,m2
, (13)

is a positive operator which consists of three typical projec-
tors “sandwiched” together.



The average error probability of the code is given by:

pe ≡
1

|M1||M2|
∑
m1,m2

Tr {(I − Λm1,m2
) ρm1,m2

} . (14)

One key insight for the proof is the substitution of the
output state ρm1,m2

with a smoothed version:

ρ̃m1,m2
≡ Πn

m2
ρm1,m2

Πn
m2
, (15)

and bounding (14) from above as follows:

pe ≤
1

|M1||M2|
∑
m1,m2

[
Tr {(I − Λm1,m2) ρ̃m1,m2}

+ ‖ρ̃m1,m2
− ρm1,m2

‖1

]
. (16)

To obtain (16), we used the inequality

Tr {Λρ} ≤ Tr {Λσ}+ ‖ρ− σ‖1 , (17)

which holds for all operators such that 0 ≤ ρ, σ,Λ ≤ I .
The Hayashi-Nagaoka operator inequality applies to all

positive operators T and S where 0 ≤ S ≤ I [13]:

I − (S + T )
− 1

2 S (S + T )
− 1

2 ≤ 2 (I − S) + 4T.

Choosing S = Π′m1,m2
, T =

∑
(m′

1,m
′
2) 6=(m1,m2) Π′m′

1,m
′
2
,

we apply the above operator inequality to bound the average
error probability of the first term in (16) as:

pe ≤
1

|M1||M2|
∑
m1,m2

[
2Tr
{(
I −Π′m1,m2

)
ρ̃m1,m2

}
(18)

+ 4
∑

(m′
1,m

′
2) 6=(m1,m2)

Tr
{

Π′m′
1,m

′
2
ρ̃m1,m2

}
+ ‖ρ̃m1,m2

−ρm1,m2
‖1

]
.

We apply a random coding argument to bound the expec-
tation of the average error probability in (18). A bound on
the first term follows from the following argument:

E
Xn1 ,X

n
2

Tr
{

Π′m1,m2
ρ̃m1,m2

}
= E
Xn1 ,X

n
2

Tr
{

Πn
ρ̄,δ ·Πn

m1
·Πn

m1,m2
Πn
m2
ρm1,m2

Πn
m2

}
≥ E
Xn1 ,X

n
2

Tr
{

Πn
m1,m2

ρm1,m2

}
− E
Xn1 ,X

n
2

∥∥Πn
m2
ρm1,m2

Πn
m2
− ρm1,m2

∥∥
1

− E
Xn1 ,X

n
2

∥∥Πn
ρ̄,δρm1,m2

Πn
ρ̄,δ − ρm1,m2

∥∥
1

− E
Xn1 ,X

n
2

∥∥Πn
m1
ρm1,m2

Πn
m1
− ρm1,m2

∥∥
1

≥ 1− ε− 6
√
ε. (19)

The first inequality follows from (17) applied three times.
The second inequality follows from the Gentle Measurement
Lemma for ensembles [11, Lemma 9.4.3] and the properties
of entropy-typical projectors [11, Section 14.2.2]. The same
reasoning is used to obtain a bound the expectation of the
smoothing-penalty term in equation (18): EXn1 ,Xn2 ‖ρ̃m1,m2

−
ρm1,m2

‖1 ≤ 2
√
ε.

We decompose the second term in (18) into three error
events, each representing a different type of decoding error:

∑
(m′

1,m
′
2)6=(m1,m2)

Tr
{

Π′m′
1,m

′
2
ρ̃m1,m2

}
=

=
∑

m′
1 6=m1

Tr
{

Π′m′
1,m2

ρ̃m1,m2

}
(E1)

+
∑

m′
2 6=m2

Tr
{

Π′m1,m′
2
ρ̃m1,m2

}
(E2)

+
∑

m′
1 6=m1,m′

2 6=m2

Tr
{

Π′m′
1,m

′
2
ρ̃m1,m2

}
. (E12)

The expectation the over random choice of codebook for
event (E1), the event that m1 is decoded incorrectly, is as
follows:

E
Xn1 ,X

n
2

{ ∑
m′

1 6=m1

Tr
[
Π′m′

1,m2
ρ̃m1,m2

] }
=
∑

m′
1 6=m1

E
Xn2

{
Tr
[
E
Xn1

{
Π′m′

1,m2

}
E
Xn1

{ρ̃m1,m2
}
]}

=
∑

m′
1 6=m1

E
Xn1 X

n
2

{
Tr
[
Π′m′

1,m2
Πn
m2
ρ̄m2

Πn
m2

]}
≤ 2−n[H(B|X2)−δ]

∑
m′

1 6=m1

E
Xn1 X

n
2

{
Tr
[
Π′m′

1,m2
Πn
m2

]}
The first equality follows because the codewords labeled by
m′1 and m1 are independent. The second equality comes from
the definition of the averaged code state ρ̄m2 ≡ ρ̄xn2 (m2). The
last inequality follows from:

Πn
m2
ρ̄m2Πn

m2
≤ 2−n[H(B|X2)−δ]Πn

m2
.

We focus our attention on the expression inside the trace:

Tr
[
Π′m′

1,m2
Πn
m2

]
= Tr

[
Πn
ρ̄,δ ·Πn

m′
1
·Πn

m′
1,m2

Πn
m2

]
= Tr

[
Πn
ρ̄,δ Πn

m′
1

Πn
m′

1,m2
Πn
m′

1
Πn
ρ̄,δ Πn

m2

]
= Tr

[
Πn
m′

1
Πn
ρ̄,δ Πn

m2
Πn
ρ̄,δ Πn

m′
1

Πn
m′

1,m2

]
≤ Tr

[
Πn
m′

1,m2

]
.

In the first step we substituted the definition of Π′m1,m2
from

equation (13). The rest of the equalities follow from the
cyclicity of trace. The inequality follows from

Πn
m′

1
Πn
ρ̄,δΠ

n
m2

Πn
ρ̄,δΠ

n
m′

1
≤ Πn

m′
1
Πn
ρ̄,δΠ

n
m′

1
≤ Πn

m′
1
≤ I. (20)

Continuing, we obtain the following bound on the expected
probability of error event (E1):

E
Xn1 ,X

n
2

{(E1)} ≤ 2−n[H(B|X2)−δ]
∑

m′
1 6=m1

E
Xn1 ,X

n
2

{
Tr
{

Πn
m′

1,m2

}}
≤ 2−n[H(B|X2)−δ]

∑
m′

1 6=m1

2n[H(B|X1X2)+δ]

≤ |M1| 2−n[I(X1;B|X2)−2δ]. (21)

The second inequality in (21) follows from the bound

Tr{Πn
m1,m2

} ≤ 2n[H(B|X1X2)+δ]

on the rank of a conditionally typical projector.



We employ a different argument to bound the probability
of the second error event (E2) based on the following fact

Πn
m1,m2

≤ 2n[H(B|X1X2)+δ]Πn
m1,m2

ρBm1,m2
Πn
m1,m2

= 2n[H(B|X1X2)+δ]
√
ρBm1,m2

Πn
m1,m2

√
ρBm1,m2

≤ 2n[H(B|X1X2)+δ]ρBm1,m2
, (22)

which we refer to as the projector trick [14]. The first
inequality is the standard lower bound on the eigenvalues
of ρBm1,m2

expressed as an operator upper bound on the
projector Πn

m1,m2
. The equality follows because the state

and its typical projector commute. The last inequality follows
from 0 ≤ Πn

m1,m2
≤ I .

Continuing,

E
Xn1 ,X

n
2

{
(E2)

}
= E
Xn1 ,X

n
2

 ∑
m′

2 6=m2

Tr
[
Π′m1,m′

2
ρ̃m1,m2

]
=
∑

m′
2 6=m2

E
Xn1

{
Tr
[
E
Xn2

{
Π′m1,m′

2

}
E
Xn2

{ρ̃m1,m2
}
]}

=
∑

m′
2 6=m2

E
Xn1

{
Tr
[
E
Xn2

{
Πn
ρ̄,δ ·Πn

m1
·Πn

m1,m′
2

}
E
Xn2

{ρ̃m1,m2}
]}

=
∑

m′
2 6=m2

E
Xn1

{
Tr
[
Πn
ρ̄,δ E

Xn2

{
Πn
m1

Πn
m1,m′

2
Πn
m1

}
Πn
ρ̄,δE
Xn2

{ρ̃m1,m2
}
]}

We focus our attention on the first expectation term:

E
Xn2

{
Πn
m1

Πn
m1,m′

2
Πn
m1

}
≤ 2n[H(B|X1X2)+δ] E

Xn2

{
Πn
m1
ρBm1,m′

2
Πn
m1

}
= 2n[H(B|X1X2)+δ]Πn

m1
E
Xn2

{
ρBm1,m′

2

}
Πn
m1

= 2n[H(B|X1X2)+δ]Πn
m1
ρ̄m1Πn

m1

≤ 2n[H(B|X1X2)+δ]2−n[H(B|X1)−δ]Πn
m1

= 2−n[I(X2;B|X1)−2δ]Πn
m1

Substituting back into the expression for the error bound,
we obtain:

E
Xn1 ,X

n
2

{(E2)} ≤ 2−n[I(X2;B|X1)−2δ]
∑

m′
2 6=m2

Tr
[
Πn
ρ̄,δΠ

n
m1

Πn
ρ̄,δρ̃m1,m2

]
= 2−n[I(X2;B|X1)−2δ]

∑
m′

2 6=m2

Tr
[
Πn
ρ̄,δΠ

n
m1

Πn
ρ̄,δΠ

n
m2
ρm1,m2

Πn
m2

]
= 2−n[I(X2;B|X1)−2δ]

∑
m′

2 6=m2

Tr
[
Πn
m2

Πn
ρ̄,δΠ

n
m1

Πn
ρ̄,δΠ

n
m2
ρm1,m2

]
≤ 2−n[I(X2;B|X1)−2δ]

∑
m′

2 6=m2

Tr[ρm1,m2
]

≤ 2−n[I(X2;B|X1)−2δ]|M2|, (23)

The second inequality follows from an argument analogous
to (20).

By a different argument involving averaged states, we
bound the probability of the third error event as:

E
Xn1 ,X

n
2

{
(E12)

}
≤ |M1||M2| 2−n[I(X1X2;B)−2δ]. (24)

Combining the bounds from equations (19), (21), (23), (24)
and the smoothing penalty, we get the following bound on
the expectation of the average error probability:

E
X′n

1 ,X′n
2

{
pe

}
≤ 2

(
ε+ 6

√
ε
)

+ 2
√
ε

+ 4

[
|M1| 2−n[I(X1;B|X2)−2δ] + |M2| 2−n[I(X2;B|X1)−2δ]

+ |M1||M2| 2−n[I(X1X2;B)−2δ]

]
.

Thus, if we choose the message sets sizes to be |M1| =
2n[R1−3δ], and |M2| = 2n[R2−3δ], the expectation of the
average error probability vanishes whenever the rates R1 and
R2 obey the inequalities:

R1 − δ < I (X1;B|X2) , R2 − δ < I (X2;B|X1) ,

R1 +R2 − 4δ < I (X1X2;B) .

Given that δ > 0 is an arbitrarily small number the bounds
in the statement of the theorem follow.

We now state our conjecture regarding the existence of a
quantum simultaneous decoder for the three-sender case.

Conjecture 3 (Three-sender QMAC simultaneous decoding).
Let C3MAC denote the capacity region of a ccc-q multiple
access channel with three senders: x1, x2, x3 → ρBx1,x2,x3

.
Let {Xn

i (mi)}mi∈Mi
, for i ∈ {1, 2, 3} be random codebooks

generated according to the product distributions pnXni with
messages sets Mi ≡ {1, . . . , 2n(Ri−δ)} with δ > 0. There
exists a simultaneous decoding POVM {Λm1,m2,m3}, with
expected average probability of error bounded from above
by ε for all ε, δ > 0 and sufficiently large n for any rate
triple (R1, R2, R3) ∈ C3MAC.

Were this conjecture true, it would form a fundamental
building block for multiuser information theory. Obtaining a
proof might allow us to directly adapt many of the known
classical techniques of classical multiuser information theory
to the quantum setting. Indeed, many coding theorems in
classical network information theory exploit a simultaneous
decoding approach (jointly typical decoding) [10].

We can prove that simultaneous decoding works for a
special class of three-sender MACs for which the averaged
output states (defined analogously to (10) and (11)) satisfy
the following commutation relations: [ρ̄x1,x2

, ρ̄x2,x3
] = 0,

[ρ̄x1,x3 , ρ̄x1,x2 ] = 0, [ρ̄x1,x3 , ρ̄x2,x3 ] = 0, ∀x1, x2, x3. These
commutation relations imply that the corresponding typical
projectors commute and thus give a simpler construction of
the measurement operator.

Furthermore, we can prove that a quantum simultaneous
decoder exists for a random code provided that the rates R1,
R2 and R3 satisfy a set of stronger constraints involving min-
entropies. We invite the reader to consult [15] for further
details about these special cases.

C. Rate-splitting

Rate-splitting is another approach for achieving the classi-
cal multiple access channel rate region [9], which generalizes



readily to the quantum case using the successive decoding
approach in [8].

Lemma 1. For a given p = pX1 , pX2 , any rate pair (R1, R2)
that lies in between the two corner points of the MAC rate
region αp and βp can be achieved if Sender 2 splits her
message m2 into two parts m2u and m2v and encodes them
with a split codebook ({un(m2u)}m2u

, {vn(m2v)}m2v
, f).

The receiver decodes the messages in the order m2u →
m1 → m2v using successive decoding.

The rate-split codebook consists of two random codebooks
generated from pU and pV and a mixing function such
that f(U, V ) = X2. For a fixed rate pair (R1, R2), the
construction of a split codebook achieving this rate pair
depends on the properties of the channel for which we are
coding.

V. QUANTUM INTERFERENCE CHANNELS

In this section we calculate achievable rate regions for
the quantum interference channel based on three decoding
strategies: successive decoding, simultaneous decoding and
rate-splitting. We also show the quantum Han-Kobayashi
inner bound, which relies on Conjecture 3 for its proof.

A. Rates achievable by successive decoding

In this section, we require the receivers to decode the
messages of both senders. Let the decoding ordering of
Receiver 1 be represented by a permutation π1: π1 = (1, 2)
when decoding in the order m1 → m2, and π1 = (2, 1) for
the alternate decoding order. We similarly let π2 = (1, 2) and
π2 = (2, 1) denote the two decode orderings for Receiver 2.
If we use a successive decoding strategy at both receivers,
and calculate the best possible rates that are compatible with
both receivers’ ability to decode, we obtain an achievable
rate region. Consider, for example, the decoding strategy
π1 = (2, 1), π2 = (2, 1), which corresponds to both re-
ceivers decoding in the order m2 → m1. In this case, we
know that the code is decodable for Receiver 1 provided
R1 < I(X1;B1|X2) and R2 < I(X2;B1). Receiver 2 will
be able to decode provided R2 < I(X2;B2) (we do not
require Receiver 2 to decode m1 after he has decoded m2).

Thus, the rate pair R1 < I(X1;B1|X2), R2 <
min{I(X2;B1), I(X2;B2)} is achievable for the interfer-
ence channel. Similarly, for all possible pairs of permutations
π1, π2, we obtain an achievable rate pair for the interference
channel.

For interference channels with “very strong” interference
[3], such that for all input distributions pX1 and pX2 ,

I (X1;B1|X2) ≤ I (X1;B2) , (25)
I (X2;B2|X1) ≤ I (X2;B1) , (26)

the rates achieved by the successive decoding strategy π1 =
(2, 1), π2 = (1, 2) are optimal.

Theorem 4 (Channels with very strong interference). The
channel’s capacity region is the union of all rates R1 and

R2 satisfying the inequalities:

R1 ≤ I (X1;B1|X2Q)θ ,

R2 ≤ I (X2;B2|X1Q)θ ,

with union taken over input distributions pQ, pX1|Q and
pX2|Q.

The matching outer bound follows from the converse part
of Theorem 1, since the individual rates are optimal in
the two MAC sub-channels [3]. Indeed, we can pursue the
connection between the IC and the MAC sub-channels further
to obtain a simple outer bound for the capacity of general
quantum interference channels analogous to the classical
result by Sato [1].

Theorem 5. Consider the Sato region defined as follows:

RSato(N ) ,
⋃

p∈PSato

{(R1, R2)}, (27)

where R1 and R2 are rates satisfying the inequalities:

R1 ≤ I(X1;B1|X2Q)θ, (28)
R2 ≤ I(X2;B2|X1Q)θ, (29)

R1 +R2 ≤ I(X1X2;B1B2|Q)θ, (30)

where the union is taken over over all input distributions of
the form pQ(q) pX1|Q(x1|q) pX2|Q(x2|q) and the resulting
average input-output state θ. Then the region RSato is an
outer bound on the capacity region of the general quantum
interference channel.

This proof follows from the observation that any code
for the quantum interference channel also gives codes for
three quantum multiple access channel subproblems: one for
Receiver 1, another for Receiver 2, and a third for the two
receivers considered together. Thus, using the outer bound on
the quantum multiple access channel rates from Theorem 1
we obtain the outer bound in Theorem 5.

B. Rates achievable by two-sender simultaneous decoding
The simultaneous decoder from Theorem 2 allows us

to calculate the capacity region for quantum interference
channels with “strong” interference [16], [17], for which the
following condition holds:

I (X1;B1|X2) ≤ I (X1;B2|X2) , (31)
I (X2;B2|X1) ≤ I (X2;B1|X1) , (32)

for all input distributions pX1 and pX2 .

Theorem 6 (Channels with strong interference). The chan-
nel’s capacity region is the union of all rates R1 and R2

satisfying the inequalities:

R1 ≤ I (X1;B1|X2Q)θ ,

R2 ≤ I (X2;B2|X1Q)θ ,

R1 +R2 ≤ min{I (X1X2;B1|Q) , I (X1X2;B2|Q)θ},
where the union is over input distributions pX1|Q pX2|Q pQ.

This rate region describes the intersection of the MAC rate
regions for the two receivers and corresponds to the condition
that we require each receiver to decode both m1 and m2.



C. The quantum Han-Kobayashi rate region

For general interference channels the Han-Kobayashi
coding strategy gives the best known achievable rate region
[4] and involves partial decoding of the interfering signal.
Instead of using a standard codebook {xn1 (m1)}m1∈M1

at a rate R1 ≡ 1
n log |M1| to encode her message

m1, Sender 1 splits her message into two parts: a
personal message m1p encoded using a random codebook
{un1 (m1p)}m1p∈M1p

and a common message m1c encoded
into {wn1 (m1c)}m1c∈M1c . In terms of rates, this means that
the sum rate R1p + R1c should be equal to the original
rate R1. So long as Receiver 1 can decode both parts
m1p and m1c, he can reconstruct the original message m1.
Receiver 2 can decode Sender 1’s common message m1c

and improve his communication rate to R2 = I(X2;B2|W1)
by using this side information. To return the favor,
Sender 2 also splits her message into m2p and m2c.
The overall codebook is generated from the class of Han-
Kobayashi probability distributions, PHK , which factorize as
p(q)p(u1|q)p(w1|q)p(x1|u1, w1)p(u2|q)p(w2|q)p(x2|u2, w2),
where p(x1|u1, w1) and p(x2|u2, w2) are degenerate
probability distributions that correspond to deterministic
functions f1 and f2, fi : Ui × Wi → Xi, which are used
to combine symbols of U and W to produce a symbol X
suitable as input to the channel.

Theorem 7. The quantum Han-Kobayashi rate region:

RHK ≡
⋃

p∈PHK

{(R1, R2) ∈ R2| Eqns. (HK1) - (HK9) }

R1 ≤ I(U1W1;B1|W2Q) (HK1)
R1 ≤ I(U1;B1|W1W2Q) + I(W1;B2|U2W2Q) (HK2)
R2 ≤ I(U2W2;B2|W1Q) (HK3)
R2 ≤ I(W2;B1|U1W1Q) + I(U2;B2|W1W2Q) (HK4)

R1 +R2 ≤ I(U1W1W2;B1|Q) + I(U2;B2|W1W2Q) (HK5)
R1 +R2 ≤ I(U1;B1|W2W1Q) + I(U2W2W1;B2|Q) (HK6)
R1 +R2 ≤ I(U1W2;B1|W1Q) + I(U2W1;B2|W2Q) (HK7)

2R1 +R2 ≤ I(U1;B1|W1W2Q) + I(U2W1;B2|W2Q)

+I(U1W1W2;B1|Q) (HK8)
R1 + 2R2 ≤ I(U1W2;B1|W1Q) + I(U2;B2|W2W1Q)

+ I(U2W2W1;B2|Q) (HK9)

where the information theoretic quantities are taken with
respect to a state of the form:∑
q,u1,u2,w1,w2

pQ(q) pU1
(u1|q) pU2

(u2|q) pW1
(w1|q) pW2

(w2|q)

|q〉〈q|Q ⊗ |u1〉〈u1|U1 ⊗ |u2〉〈u2|U2 ⊗ (33)

|w1〉〈w1|W1 ⊗ |w2〉〈w2|W2 ⊗ ρB1B2

f1(u1,w1),f2(u2,w2),

is an achievable rate region provided Conjecture 3 holds.

The proof is in the same spirit as the original result
of Han and Kobayashi [4]. Our result is conditional on
Conjecture 3 for the construction of the decoding POVMs:{

Λm1p,m1c,m2c

}
for Receiver 1, and

{
Γm1c,m2c,m2p

}
for

Receiver 2. Refer to [15] for the proof.
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Fig. 1. The Han-Kobayashi coding strategy. Sender 1 selects codewords
according to a “personal” random variable U1 and a “common” random
variable W1. She then acts on U1 and W1 with some deterministic function
f1 that outputs a variable X1 which serves as a classical input to the
interference channel. Sender 2 uses a similar encoding. Receiver 1 performs
a measurement to decode both variables of Sender 1 and the common random
variable W2 of Sender 2. Receiver 2 acts similarly.

D. Using rate-splitting for the IC

We can use rate-splitting to improve the successive decod-
ing region described in Section V-A. Inspired by the Han-
Kobayashi strategy we make the senders split their messages
into two parts: m1 → m1p,m1c and m2 → m2p,m2c.
Such a split induces two three-user multiple access chan-
nels. Receiver 1 decodes the messages m1p,m1c and m2c

using successive decoding, and there are six different decode
orderings he can use. We can naturally use all 6× 6 pairs of
decoding orders to obtain a set of achievable rate pairs.

Proposition 8. Consider the rate point P associated with the
decode ordering π1 for Receiver 1 and π2 for Receiver 2:

P =
(
R

(1)
1p + min{R(1)

1c , R
(2)
1c }, min{R(1)

2c , R
(2)
2c }+R

(2)
2p

)
,

where the rates constraints for Receiver j satisfy

R
(j)
πj(1) ≤ I(Xπj(1);Bj), (34)

R
(j)
πj(2) ≤ I(Xπj(2);Bj |Xπj(1)), (35)

R
(j)
πj(3) ≤ I(Xπj(3);Bj |Xπj(1)Xπj(2)). (36)

The rate pair P is achievable for the quantum interfer-
ence channel, for all permutations π1 of the set of indices
(1p, 1c, 2c) and for all permutations π2 of the set (2p, 2c, 1c).

The rate region described by the convex hull of the points
P is generally smaller than the Han-Kobayashi region as il-
lustrated in Figure 2. An interesting open problem is whether
we can achieve all rates of the Han-Kobayashi region by
splitting each sender’s message into more than two parts and
using only rate-splitting [9] and successive decoding. There
exists an attempt to answer this question for the classical
interference channel [18]. The argument in that paper is
based on a careful analysis of the geometrical structure of the
Chong-Motani-Garg region, which is known to be equivalent
to the Han-Kobayashi region when considering all possible
input distributions [19]. An implicit assumption is made that
the change of the code distribution dictated by applying the
rate-splitting technique at the convenience of one receiver
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Fig. 2. These two figures plot rate pairs that are achievable with
successive decoding and rate-splitting (SD+RS). The figures compare these
rates with those achievable by the Han-Kobayashi (HK) coding strategy,
while also plotting the regions corresponding to the two induced multiple
access channels to each receiver (MAC1 and MAC2). The LHS figure
demonstrates that SD+RS does not in general achieve the full capacity
region for channels with strong interference. For this case we can use
the two-sender simultaneous decoder from Theorem 2. The RHS figure
demonstrates that, for some channels with weak interference, SD+RS is
virtually indistinguishable from HK.

does not affect the other receiver’s decoding ability. Unfor-
tunately, this assumption does not hold in general, which can
be seen from the following argument.

Consider a code for an interference channel where the
message m1 ∈ {1, . . . , 2nR} is to be decoded by both re-
ceivers. Suppose we have R = I(X1;Y2) and R ≤ I(X1;Y1)
for some input distribution pX1 . If we generate a standard
random codebook of size 2nR, then both receivers will be
able to decode the message encoded in X1. However, we
might want to use a split codebook generated according to
distributions pU and pV , and the mixing function f(U, V ) =
X1. If we generate the split codebook for Receiver 2 then
we should pick the rate RU = I(U ;Y2) so that Receiver 2
will be able to decode U with small error probability. We
should however keep in mind that we are coding for an
interference channel and we also want Receiver 1 to decode
X1. The problem is that it is possible that RU > I(U ;Y1),
in which case Receiver 1 cannot decode U and thus cannot
decode the message by successive decoding. In this case, the
code obtained by splitting according to the second receiver’s
prescription is not a good code for the interference channel.

VI. DISCUSSION

There are several open questions regarding this work.
First, we would of course like to prove Conjecture 3 holds
because it would be a powerful building block for multi-
user quantum Shannon theory. Also, we would like to study
the channel’s quantum, entanglement-assisted, and hybrid
classical-quantum capacities. Finally, it could be that three-
sender quantum simultaneous decoding is not necessary for
achieving the Han-Kobayashi region. If the classical Han-
Kobayashi rate region for the discrete memoryless inter-
ference channel can be achieved using rate-splitting and
successive decoding, then this would be another way to prove
Theorem 7 without appealing to Conjecture 3.
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APPENDIX

A. Typical Sequences and Typical Subspaces

We present here a number of properties of typical se-
quences and their quantum analogue: typical subspaces.

Classical typicality Denote by xn a sequence x1x2 . . . xn,
where each xi, i ∈ [n] belongs to the finite alphabet X .
Denote by |X | the cardinality of X . To avoid confusion, we
use i ∈ [n] to denote the index of a symbol x in the sequence
xn and a ∈ [1, 2, . . . , |X |] to denote the different symbols in
the alphabet X .

Consider the random variable X with probability dis-
tribution pX(x) defined on a finite set X . Let H(X) ≡
H(pX) ≡ −

∑
x pX(x) log pX(x) be the Shannon entropy

of pX . Define the probability distribution pXn(xn) on Xn
to be the n-fold product of pX . The sequence xn is drawn
from pXn if and only if each letter xi is drawn independently
from pX . For any δ > 0, define the set of entropy δ-typical
sequences of length n as:

AnpX ,δ≡
{
xn ∈ Xn :

∣∣∣∣− log pXn(xn)

n
−H(X)

∣∣∣∣≤ δ} .
(37)

Typical sequences enjoy many useful properties [20]. For
any ε, δ > 0, and sufficiently large n, we have∑

xn∈AnpX,δ

pXn(x
n) ≥ 1− ε, (38)

2−n[H(X)+δ] ≤ pXn(xn) ≤ 2−n[H(X)−δ]

∀xn ∈ AnpX ,δ, (39)

[1− ε]2n[H(X)−δ] ≤ |AnpX ,δ| ≤ 2n[H(X)+δ]. (40)

Quantum typicality The above concepts generalize to the
quantum setting by virtue of the spectral theorem. Let HB
be a dB dimensional Hilbert space and let ρB ∈ D(HB)
be the density matrix associated with a quantum state. The
spectral decomposition of ρB is denoted ρB = UΛU† where
Λ is a diagonal matrix of positive real eigenvalues that
sum to one. We identify the eigenvalues of ρB with the
probability distribution pY (y) = Λyy and write the spectral
decomposition as:

ρB =

dB∑
y=1

pY (y)|eρ;y〉〈eρ;y|B (41)

where |eρ;y〉 is the eigenvector of ρB corresponding to
eigenvalue pY (y). The von Neumann entropy of the density
matrix ρB is

H(B)ρ = −Tr {ρB log ρB} = H(pY ). (42)



Define the set of δ-typical eigenvalues according to the
eigenvalue distribution pY

AnpY ,δ≡
{
yn ∈ Yn :

∣∣∣∣− log pY n(yn)

n
−H(Y )

∣∣∣∣≤ δ} . (43)

For a given string yn = y1y2 . . . yi . . . yn we define the
corresponding eigenvector as

|eρ;yn〉 = |eρ;y1〉 ⊗ |eρ;y2〉 ⊗ · · · ⊗ |eρ;yn〉, (44)

where for each symbol where yi = b ∈ {1, 2, . . . , dB} we
select the bth eigenvector |eρ;b〉.

The typical subspace associated with the density matrix
ρB is defined as

Anρ,δ = span{|eρ;yn〉 : yn ∈ AnpY ,δ}. (45)

The typical projector is defined as

Πn
ρB ,δ =

∑
yn∈Anp,δ

|eρ;yn〉〈eρ;yn |. (46)

Note that the typical projector is linked twofold to the
spectral decomposition of (41): the sequences yn are selected
according to pY and the set of typical vectors are build from
tensor products of orthogonal eigenvectors |eρ;y〉.

Properties analogous to (38) – (40) hold. For any ε, δ > 0,
and all sufficiently large n we have

Tr {ρ⊗nΠnρ,δ} ≥ 1− ε (47)

2−n[H(B)ρ+δ]Πnρ,δ ≤ Πnρ,δρ
⊗nΠnρ,δ ≤ 2−n[H(B)ρ−δ]Πnρ,δ, (48)

[1− ε]2n[H(B)ρ−δ] ≤ Tr {Πnρ,δ} ≤ 2n[H(B)ρ+δ]. (49)

The interpretation of (48) is that the eigenvalues of the state
ρ⊗n are bounded between 2−n[H(B)ρ−δ] and 2−n[H(B)ρ+δ]

on the typical subspace Anρ,δ .

Signal states Consider now a set of quantum states {ρxa},
xa ∈ X . We perform the spectral decomposition of each ρxa
to obtain

ρBxa =

dB∑
y=1

pY |X(y|xa)|eρxa ;y〉〈eρxa ;y|B , (50)

where pY |X(y|xa) is the yth eigenvalue of ρBxa and |eρxa ;y〉
is the the corresponding eigenvector.

We can think of {ρxa} as a classical-quantum (c-q) channel
where the input is some xa ∈ X and the output is the corre-
sponding quantum state ρxa . If the channel is memoryless,
then for each input sequence xn = x1x2 · · ·xn we have the
corresponding tensor product output state:

ρxn = ρx1
⊗ ρx2

⊗ · · · ⊗ ρxn . (51)

Conditionally typical projector Consider the ensemble
{pX(xa) , ρxa}. The choice of distributions induces the fol-
lowing classical-quantum state:

ρXB =
∑
xa

pX(xa) |xa〉〈xa|X⊗ρBxa . (52)

We can now define the conditional entropy of this state as

H(B|X)ρ ≡
∑
xa∈X

pX(xa)H(ρxa), (53)

or equivalently, expressed in terms of the eigenvalues of the
signal states, the conditional entropy becomes

H(B|X)ρ ≡ H(Y |X) ≡
∑
xa

pX(xa)H(Y |xa), (54)

where H(Y |xa) = −
∑
y pY |X(y|xa) log pY |X(y|xa) is the

entropy of the eigenvalue distribution shown in (50).
We define the xn-conditionally typical projector as fol-

lows:
Πn
ρB
xn
,δ =

∑
yn∈An

ρB
n

xn
,δ

|eρxn ;yn〉〈eρxn ;yn |, (55)

where the set of conditionally typical eigenvalues An
ρB

n

xn
,δ

consists of all sequences yn which satisfy:

An
ρB

n

xn
,δ
≡
{
yn :

∣∣∣∣− log pY n|Xn(yn|xn)

n
−H(Y |X)

∣∣∣∣≤ δ} ,
(56)

with pY n|Xn(yn|xn) =
∏n
i=1 pY |X(yi|xi).

The states |eρxn ;yn〉 are built from tensor products of
eigenvectors for the individual signal states:

|eρxn ;yn〉 = |eρx1 ;y1〉 ⊗ |eρx2 ;y2〉 ⊗ · · · ⊗ |eρxn ;yn〉, (57)

where the string yn = y1y2 . . . yi . . . yn varies over different
choices of bases for HB . For each symbol yi = b ∈
{1, 2, . . . , dB} we select |eρxa ;b〉: the bth eigenvector from the
eigenbasis of ρxa corresponding to the letter xi = xa ∈ X .

The following bound on the size of the conditionally
typical projector applies:

Tr {Πn
ρB
xn
,δ} ≤ 2n[H(B|X)ρ+δ]. (58)

MAC code Consider now a quantum multiple access chan-
nel (X1 × X2, ρ

B
x1,x2

,HB) and two input distributions pX1

and pX2
. Define the random codebooks {Xn

1 (m1)}m1∈M1

and {Xn
2 (m2)}m2∈M2

generated from the product distribu-
tions pXn1 and pXn2 respectively. The choice of distributions
induces the following classical-quantum state ρX1X2B∑
xa,xb

pX1
(xa) pX2

(xb) |xa〉〈xa|X1⊗|xb〉〈xb|X2⊗ρBxaxb . (59)

and the averaged output states:

ρ̄xa ≡
∑
xb

pX2(xb) ρxa,xb , (60)

ρ̄xb ≡
∑
xa

pX1(xa) ρxa,xb , (61)

ρ̄ ≡
∑
xa,xb

pX1
(xa) pX2

(xb) ρxa,xb . (62)

The conditional quantum entropy H(B|X1X2)ρ is:

H(B|X1X2)ρ =
∑

xa∈X1,xb∈X2

pX1(xa)pX2(xb)H(ρxa,xb), (63)



and using the average states we define:

H(B|X1)ρ =
∑
xa∈X1

pX1
(xa)H(ρ̄xa), (64)

H(B|X2)ρ =
∑
xb∈X2

pX2
(xb)H(ρ̄xb), (65)

H(B)ρ = H(ρ̄). (66)

Similarly to equation (55) and for each message pair
(m1,m2) we define the conditionally typical projector for the
encoded state ρBxn1 (m1)xn2 (m2) to be Πn

ρB
xn1 (m1)xn2 (m2)

,δ
. From

this point on, we will not indicate the messages m1, m2

explicitly, because the codewords are constructed identically
for each message.

Analogous to (58), the following upper bound applies:

Tr {Πn
ρB
xn1 x

n
2
,δ} ≤ 2n[H(B|X1X2)ρ+δ], (67)

and we can also bound from below the eigenvalues of the
state ρBxn1 xn2 as follows:

2−n[H(B|X1X2)ρ+δ]Πn
ρB
xn1 x

n
2
,δ ≤ Πn

ρB
xn1 x

n
2
,δρ

B
xn1 x

n
2
Πn
ρB
xn1 x

n
2
,δ.

(68)
We define conditionally typical projectors for each of the

averaged states:

ρ̄x1
→ Πn

ρ̄B
xn1
,δ, (69)

ρ̄x2 → Πn
ρ̄B
xn2
,δ, (70)

ρ̄→ Πn
ρ̄B ,δ. (71)

These projectors obey the standard eigenvalue upper bounds
when acting on the states with respect to which they are
defined:

Πn
ρ̄B
xn1
,δρ̄xn1 Πn

ρ̄B
xn1
,δ ≤ 2−n[H(B|X1)ρ−δ]Πn

ρ̄B
xn1
,δ, (72)

Πn
ρ̄B
xn2
,δρ̄xn2 Πn

ρ̄B
xn2
,δ ≤ 2−n[H(B|X2)ρ−δ]Πn

ρ̄B
xn2
,δ, (73)

Πn
ρ̄B ,δ ρ̄

B Πn
ρ̄B ,δ ≤ 2−n[H(B)ρ−δ]Πn

ρ̄B ,δ. (74)

The encoded state ρBXn1 Xn2 is well supported by all the
typical projectors on average:

EXn1 Xn2

[
Tr {Πn

ρB
Xn1 X

n
2
,δ ρ

B
Xn1 X

n
2
}
]
≥ 1− ε, (75)

EXn1 Xn2

[
Tr {Πn

ρ̄B
Xn1

,δ ρ
B
Xn1 X

n
2
}
]
≥ 1− ε, (76)

EXn1 Xn2

[
Tr {Πn

ρ̄B
Xn2

,δ ρ
B
Xn1 X

n
2
}
]
≥ 1− ε, (77)

EXn1 Xn2
[
Tr {Πn

ρ̄B ,δ ρ
B
Xn1 X

n
2
}
]
≥ 1− ε. (78)

Finally, we state this useful lemma:

Lemma 2 (Gentle Operator Lemma for Ensembles [21],
[22]). Given an ensemble {pX (x) , ρx} with expected density
operator ρ ≡

∑
x pX (x) ρx, suppose that the operator Λ

such that 0 ≤ Λ ≤ I succeeds with high probability on the
state ρ:

Tr {Λρ} ≥ 1− ε.

Then the subnormalized state
√

Λρx
√

Λ is close in expected
trace distance to the original state ρx:

EX
{∥∥∥√ΛρX

√
Λ− ρX

∥∥∥
1

}
≤ 2
√
ε.
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