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Directed Information and Pearl’s Causal Calculus

Maxim Raginsky

Abstract— Probabilistic graphical models are a fundamental
tool in statistics, machine learning, signal processing, and
control. When such a model is defined on a directed acyclic
graph (DAG), one can assign a partial ordering to the events
occurring in the corresponding stochastic system. Based on
the work of Judea Pearl and others, these DAG-based ‘“‘causal
factorizations” of joint probability measures have been used
for characterization and inference of functional dependencies
(causal links). This mostly expository paper focuses on several
connections between Pearl’s formalism (and in particular his
notion of “intervention”) and information-theoretic notions of
causality and feedback (such as causal conditioning, directed
stochastic kernels, and directed information). As an application,
we show how conditional directed information can be used
to develop an information-theoretic version of Pearl’s ‘“back-
door” criterion for identifiability of causal effects from passive
observations. This suggests that the back-door criterion can be
thought of as a causal analog of statistical sufficiency.

I. INTRODUCTION

The problems of causality in engineered and natural
systems have recently attracted the attention of information
theorists and signal processing researchers [1]-[6]. The well-
worn but nonetheless true maxim stating that “correlation
does not imply causation” means that causal relationships
cannot be captured by standard information-theoretic quan-
tities like mutual information, conditional entropy, or di-
vergence, because all of these are measures of statistical
dependence (i.e., correlation). The first information-theoretic
studies of causality were concerned with feedback commu-
nication systems and led to the development of the notion
of directed information by Massey [7], with subsequent
extensions and generalizations by Kramer, Tatikonda, and
Mitter [8]-[10]. Connections between directed information
and sequential prediction, source coding, and hypothesis
testing have also been extensively investigated [11]-[14].

However, causality has also been the subject of vigorous
study in the statistics, artificial intelligence, and machine
learning communities [15]-[18]. The key idea advanced in
these works, particularly by Pearl, is that causality is syn-
onymous with functional (rather than statistical) dependence.
In other words, causal relationships correspond to stable
deterministic mechanisms, by which one set of variables
(the causes), together with some possibly unobserved ex-
ogenous disturbances, may affect another set of variables
(the effects). Thus, inferring causal relationships requires
active experimentation that intervenes into some of these
mechanisms. In very schematic terms (this discussion will be
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made precise in the sequel), an ideal setting for identifying
or estimating the “causal effect” of one observable (say,
X) on another (say, Y) would permit the experimenter to
disconnect X from all mechanisms that influence it, force X
to take on some value(s) of interest, and then to estimate the
probability distribution of Y as a result of this intervention,
while controlling for all possible spurious influences and
factors. This is quite different from estimating the statistical
effect of X on Y, i.e., the conditional distribution Py‘ x, by
means of passive observations, e.g., from a large number of
independent samples from the joint distribution of X, Y.

The purpose of this mostly expository paper is to intro-
duce the information theory, control, and signal processing
communities to several key concepts of the probabilistic
theory of causality and, along the way, to elucidate several
connections between Pearl’s treatment of interventions on
the one hand, and information-theoretic concepts pertaining
to causality (such as directed information [7], causal condi-
tioning [8], or directed stochastic kernels [9], [10]) on the
other. In particular, the representation of causal relationships
by Markov factorizations of joint probability distributions
w.r.t. directed acyclic graphs (DAGs) [15]-[18], such that
the natural partial ordering of the vertices of the DAG
corresponds to causal ordering of the events in the system
under consideration, should be very congenial to systems
theorists, who naturally think in terms of block diagrams,
interconnections, and sequential recursive models.

Let us give a brief overview of the remainder of the
paper. We first motivate the functional view of causality
in Section |lI] by means of a simple example of a point-
to-point communication system. Next, in Section we
develop the general framework for studying causality in
Markovian dynamical systems. In particular, we motivate
Pearl’s definition of intervention as “surgery” on a sequential
recursive representation of such a system, whereby the
relations defining the intervened-upon variables are deleted,
and all instances of these variables in the remaining relations
are assigned to some fixed value. This operation has a
natural diagrammatic representation on the DAG inducing
the Markov factorization of the joint probability distribution
of the system observables according to the sequential model.
We also show that the probability distributions induced by
this operation (i.e., what Pearl calls the causal effects) are in
one-to-one correspondence with the directed stochastic ker-
nels of Tatikonda and Mitter [9], [10]. This correspondence
is then used in Section [[V] to show how directed information
(and certain generalizations, such as conditional directed
information) can be used to quantify the strength of causal
effects by comparing them with ordinary (observational)
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Fig. 1. A generic communication system without feedback.

conditional distributions. Section [V]develops an information-
theoretic interpretation of Pearl’s “back-door” criterion [18,
Sec. 3.3.1] (a sufficient condition for identifiability of causal
effects from observational data) in terms of conditional
directed information, showing in effect that the back-door
criterion can be viewed as a natural causal analog of statis-
tical sufficiency.

II. REVEALING CAUSALITY THROUGH FUNCTIONAL
DEPENDENCE

To illustrate the difference between statistical dependence
and causal dependence, consider the standard diagram of a
point-to-point communication system without feedback, as
shown in Figure [l A message W is mapped into a channel
input symbol X = e(W), X is transmitted over a channel
with transition kernel Py-|x, and the resulting channel output
symbol Y is processed at the receiver into a decoded message
W =d(Y), where e and d are some deterministic encoding
and decoding functions.

It is intuitively clear that the message W “causes” the
decoded message W and not the other way around, but we
cannot tell this from the joint distribution of W, X, Y, and
w. Indeed, we have

PWwa(w,x,y,ﬁ))

= Py (w)1{e(w)=2} Py ix (%) 1ay)=a1

so that the joint distribution of W and W, given by

Z Lie(w)=2} Py x (Y|2) 1 {d(y)=a}

ZPY\X yle(w))1{ay)=w}

Py (w,w) =

can also be factored as Py (w, ) = Py, (@) Py i (w|0),
which merely shows that W and W are statistically depen-
dent on one another. Indeed, to quote Massey [7], “statistical
dependence, unlike causality, has no inherent directivity.” If
the encoder, the channel, and the decoder are nondegenerate,
so that I(W;W) > 0, then the dependence between the
message W and the decoded message W is completely
symmetric: W depends on W, and W depends on W.

In order to elicit the causal influence of the transmitted
message on the decoded message, as well as the lack of
causal influence in the opposite direction, we need to break
this symmetry. To that end, let us represent the stochastic
transformation X — Y effected by the channel Py‘ x as a
deterministic mapping Y = f(X,U), where U is random
channel noise, assumed to be independent of W and X.
(Indeed, any stochastic kernel Py |x can be represented

U

)
W—»{ (W) }—X>‘ f(X,U)}—Y>‘ d(Y) }—»W

encoder channel decoder

Fig. 2. An equivalent diagram of the system in Figure

in this form for a suitable choice of f and Ppy.) This
representation is shown in Figure
Now we can represent our communication system in the
following sequential form:
W ~ Py
U~ Py
X =e(W) )]
Y =f(X,U)
W =d(Y)
What happens if we make a hard assignment W <« w of a
specific value w to the transmitted message? Looking at the

sequential model in , we see that thi~s action will influence
the “downstream” variables U, X, Y, W as follows:

U~ Py
X =e(w)
Y = fle(w),U)

W =d(f(e(w), U)).

The corresponding joint distribution of U, X, Y and W
resulting from the action W < w, which we will denote
by Py xyvir|w - has the form

PUXYVV\Wew(u’ T,y, W)
= Pu(u)1{e(w)=o} 1{f(e(w),u) =y} L{d(f (e(w),u)=a}

Marginalizing out the channel noise U, the channel input X,
and the channel output Y, we get

-

This distribution is, in fact, equal to the ordinary conditional

distribution PW‘W w» given by

ZPY|X yle(w
_ZPU

Again, assuming that the mappings e, f, d are nondegenerate,
there exist at least two values w, w’ for the transmitted mes-
sage, for which P, WW —w # P W W = and, consequently,
Py wew # Piyweo - In other words, the downstream
effect of the hard assignment W <— w is different from that
of W« w'.

Now let us consider what happens if we make a hard
assignment W <  of the decoded message. One way to do
this would be to replace the original decoding map d with

P

W e (0 W)L fe(w),u)=y} L{d(f(e(w),u)) =i}

Py w))1{a(y)=a}

W)L f(e(w),u) =y} L{d(f (e(w),u)=a}
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Fig. 3. A generic stochastic dynamical system with multiple feedback
loops and exogenous disturbances.

the constant map dg(y) = @ for all y. The effect of this hard
assignment on the remaining variables can be represented as

W ~ Py

U~ Py

X =e(W)

Y = f(e(W),U)

This clearly shows that the joint distribution of the “up-
stream” random variables W, U, XY is unaffected by the
action W « w; in fact, exactly the same conclusion would
hold if we replaced the original decoding map d with any
other decoding map d’. In other words,

PWUXY|W<—w = Pwuxy, PWMA—@ = Pw,

which shows the absence of causal influence of W on W.

III. CAUSALITY IN SEQUENTIAL DYNAMICAL SYSTEMS

The simple example of the preceding section illustrates
the general treatment of causality advocated by Pearl. To
motivate it, let us consider a stochastic dynamical system
with multiple feedback loops and exogenous influences (or
disturbances) shown in Figure[3] The exogenous disturbances
are modeled by n random variables Uy, ..., U, with a fixed
joint distribution Py» = Py, . .y, , while the system observ-
ables are represented by n variables X1, ..., X, related to
U™ and to one another by n coupled equations

Xi = fz(Xnv Un)a i € [TL} (2)

We assume that the system specification is sound in the sense
that the equations have a unique solution X" = z™ for
any realization U™ = ™ of the exogenous variables. This
representation of stochastic dynamical systems as multiple
feedback loops was used by Witsenhausen [19]-[21] in his
seminal work on distributed control systems.

This description allows for arbitrary dependencies between
the observables Xi,...,X,,, including cycles of the form
Xj = [i(Xi,Uj), X = fi(X;,Ux), Xi = fi( Xk, Us). In
order to study causality, we will limit ourselves to sequential
dynamical systems, in which the observables X1, ..., X, are
ordered in such a way that, for each i € [n], there exists a
set IT; C [¢—1], such that the function f; depends essentially
only on X £ (X, : j € II;) and on Uj;:

Xi = fz(Xnia UZ)7 (RS [n] (3)

Moreover, if for each ¢ the exogenous variable U; is indepen-
dent of (X1 U*~1), then the sequential model (3) specifies
the joint distribution Px~ via the Markov factorization

Pxn(2") = HPXj\XHz‘ (zi|2™), 4
i=1

where, for each i € [n],
Py, xm (i) = Py, (fi(2™,U) =2;), (5

and XU\ x5 X, is a Markov chain. We will
refer to any stochastic dynamical system specified by (3]
with independent disturbances Uq,...,U, as a Markovian
dynamical system. Apparently, one of the earliest attempts
to study causality by means of simple Markovian models of
this sort was made in the 1920’s by the geneticist Sewall
Wright [22].

The Markov factorization (@) can also be represented in
graphical form by means of a directed graph with n vertices,
where vertex ¢ is associated with X;, and there is a directed
edge from vertex j to vertex ¢ if and only if 5 € II;. Because
IT; C [i — 1], we end up with a DAG. Since we will use this
graphical representation rather heavily in the sequel, let us
pause to define some concepts associated with DAGs. Given
i € [n], we let A; C [n] denote the set of all descendants of
i, i.e., the set of all j € [n]\{i}, such that there is a directed
path from i to j. Similarly, we let A; denote the set of all
ancestors of i, i.e., all j € [n]\{i} connected to ¢ by directed
paths. We also let A £ A; U {i}, so that N; = [n]\A] is
the set of all nondescendants of i. Note that

U 4, c i (6)

JEN;

Indeed, if for some j € N; there exists some k € A; N A;"
then there is a directed path from ¢ to j going through k,
which is impossible by the definition of N;.

A. Interventions in Markovian dynamical systems

Consider a Markovian dynamical system specified accord-
ing to (3). Just as we did in the simple example of Section I}
we can study the causal effect of one set of variables X =N
S C [n], on another set X” with SNT = & by examining the
impact of hard assignments of the form X « 2% on X7,
The main idea is to start with the recursive representation
(@), delete all equations defining the variables X;,i € S,
and replace all other instances of these variables with the
assigned values. For example, the effect of what Pearl calls
an atomic intervention X; <— x; can be represented as the
following modification of (3):

X, = fj(XHj’Uj)‘Xi:a:i’
AUy,

Hres g
if ] € Nz

Now, for any set 7" C [n]\{i}, let Pxr|x,.,, denote
the probability distribution of X7 induced by the modi-
fied model (7). Other notation used by Pearl and coau-
thors includes PXT| =i, (where hats are added to the
intervened-upon variables and the values assigned to them)



and Px7|go(x,=z,)s We Will use some of these interchange-
ably. The main claim is that these interventional distributions
describe the causal effect of X; upon X 7. Let us see some
illustrations in support of this claim.

First of all, we would intuitively expect that the interven-
tion X; < x; would only affect the descendants of i. This
is indeed true:

Lemma 1. For any T C N, and any intervention X; < x;,

PXTlXi(—Ii = PXT?

where the distribution Pxr on the right-hand side is induced
by the original model (3).

Proof. Because of (6), no Xj with k € A:r appears in
any of the equations defining XV in (7). Hence, the joint
distribution of X*¢ in the modified model is the same
as in the original model (3). O

Since II; C N;, we have

Corollary 1. For any i € [n] and any intervention X; < x;,
PXni I)(1<—II = PXHi .

The extension to multiple interventions of the form X° «
x% is immediate: defining the sets

As2 A, Af2AsUS. Ns2[n\Af
i€s
we can represent the effect of the intervention X < 2% on
X5 =(X;:j¢5)by
m, 77, .
Xj: fj(XH.aUJ)|XS:ISa lfJGAS (8)
£ (XY, U05), if j € Ng

and, for any 7' C [n]\S, the interventional distribution
Pxr|xs s is given by the joint distribution of X 7" induced
by (8). Going through the same reasoning as before, we
obtain the following generalization of Lemma

Lemma 2. For any S C [n], any T C Ng, and any
intervention X° — x°,

Plexsezs - PxT.

On the other hand, let us pick some ¢ € [n] and consider the
causal effect of the intervention X «— z™ upon X;:

Lemma 3. For any S C [n] and any intervention Xs «
7S, we have

PXleHSez“S = PXS\XHS:;EHS~

Moreover, for any T C (S U1Ilg)® and any intervention
XT « 2T we have

PXS|XHS<—xHS,XT(—:ET - PXS‘XHS(—:EHS == PXS|XHS:mHS'

Proof. Observe that, as a result of the intervention X s
21 we have

Xj:fj(.f(?nj,Uj), VJES

which means that, for any 2 and any additional intervention
XT « 2T, where T is disjoint form S UIlg, we have

PXS\XHsesz,XTHrT (IS)
= Pys (f;(2"9,U;) = z;,Vj € S)
= PXS|XHS —zls (xS)
= PXS|XHS:9:HS (xS)

In other words, the joint distribution of X induced by
is unaffected by X7 « 27. O

In terms of the Markov factorization (@), we can express
the interventional distributions Pxr|xs. s for any pair of
disjoint sets S, T C [n] as follows. First, we write down the
“global” interventional distribution of X 5° given the action
X5 25,

PXSC‘XSHIS(‘ISC) = H Py, xmi (z;]z"), 9
ic€Se

and then marginalize out all variables outside of 7"

Pyrixscgs(ah) = Z Pyse|xseqs (@)

pSenTe

(10)

Note that, in general, this is different from the ordinary
conditional distribution Pxr|xs_,s, which has the following
standard interpretation in Bayesian terms: Suppose we can
only observe X°, but not X5, If we let system evolve
freely according to (3) and then observe that X° = z7,
then Pxr|xs_,s represents our posterior beliefs about X T

based on the observed evidence X° = x°.

B. Interventions in graphical models

Graphical model representations of Markovian dynami-
cal systems offer a convenient visual way of computing
interventional distributions. Essentially, if we wish to write
down the interventional distribution Pxse|ys, s, we draw
the corresponding DAG, remove all edges incident upon
the vertices in S, and write down the joint distribution of
X5 induced by the resulting DAG, while setting X to the
assigned values .

Let us see this on a couple of examples. Consider the
following graphical model:

X ———mmmmX,

NN

X3— > X
X X5

It specifies the joint distribution of X6 = (X7,...

Pxs (xﬁ) = Px, (xl)sz (xQ)
X PXg\X2($3"I2)PX4|X1 (134‘.%1)

X Px, x5 (T5]23) Py xs (wo|23).

,Xe,) via



The effect of the intervention X5 <— x3 can be represented
graphically as follows:

X ——Xy

.

—x

e

In other words, the intervened-upon variable X3, which is
enclosed in a box, is disconnected from its direct causes in
IT; = {1,2}, and an additional arrow is added to indicate
the hard assignment X3 <— 3. The resulting interventional
distribution Py, x6|x,¢ 5, can be read off directly from the
diagram:

X2 T3 X5

PXl ($1)PX2($2)
X Px,x, (v4|z1) Pxy) x, (25]73)

X Pxgx3 (6|a3)-

P)(l,)(6\xd<—q~d (xl,xQ)

As another example, consider the following diagram, which
depicts communication over a discrete memoryless channel
Py |x using a sequence of possibly randomized feedback

encoders Px,|x, v, ,,i € [n]:
Xl X2 / Xn
Y1 Y, Y,
The effect of the intervention Y7 + y1,...,Y, < w, is

represented graphically as

X, X, X3

n Y2 Y3

and the corresponding interventional distribution is

n

) =11 Pxixecsvios (ilaioa,yia)-

i=1

PX" [V —yn (l‘

C. Interventional distributions as directed stochastic kernels

As it turns out, Pearl’s construction of interventional distri-
butions has been developed independently by Tatikonda and
Mitter [9], [10] under the name of directed stochastic kernels
in their work on the capacity of channels with feedback.

Tatikonda and Mitter consider an n-tuple of causally
ordered random variables X1, ..., X,, with joint distribution

PX" HPX |Xi— 1(.131‘.%1 1)

=1

(of course, we are free to factor Pxn along any other
ordering of the variables, but the subsequent definitions
depend on a fixed ordering). Then for any S C [n] they
define the directed stochastic kernel ﬁXsc‘Xs:zs by

) £ H PXi‘Xi—l(fEiL’L'i_l).
eS¢

(an

- ge
PXsC ‘stws (a?

It is easy to see that this definition is equivalent to Pearl’s
Indeed, if we consider the DAG with n vertices that has
II; = [¢ — 1] for each i € [n], then ﬁXsC‘Xs:zs defined
in (TI) is equal to Pyse|xs, ,s defined in (). Conversely,
if the variables X, ..., X,, are ordered in such a way that
for each i € [n] there exists some II; C [i — 1] such that
X1\ X1y X, is a Markov chain, then

PXSC|XS<—mS(33SC) = H Py, xm (wq]a')
i€Se
= H PX1|X1—1($¢‘$Ci_1)
i€Se
c

:PXSC|XS<—mS(x )7

where the first step uses (9), and the second uses (II)) and
the above Markov chain condition.

D. Interventions as channels

The interventional distribution Py x: §<_xs can be viewed
as a mapping from the set of all tuples z° = (z; : i € S)
into the set of all probability distributions for X7. Any
such mapping defines a channel [23] with input variable
X5 and output variable XT. If S = Iy, then Lemma
shows that this channel coincides with the specification
of the conditional distribution of X7 given X7 in the
intervention-free system. This equality of the originally pre-
scribed stochastic kernels and the directed stochastic kernels
holds whenever X (resp., XT) is the complete input (resp.,
output) variable of an encoder, decoder, or controller. By
contrast, whenever Pxr|xs. s # Pxr|xs_,s for some
2%, we can conclude that there are some additional causal
or statistical relationships between X and X7

IV. DIRECTED INFORMATION AS A MEASURE OF
CAUSALITY

Now that we have motivated the notion of a causal
effect, we can proceed to define various information-theoretic
quantities that capture causality as opposed to dependence.
Assuming, as before, a Markovian dynamical system of
the form (3), let us consider the interventional distribu-
tion Pyr gs(|2%) for disjoint sets S, C [n]. As we
have pointed out already, this distribution is, in general,
different from the conditional distribution Pxr|xs (:|z%). In
particular, if Py, s (|#%) = Pxr(-) for any intervention
XS « 25, then the variables in S have no causal influence
on those in 7. On the opposite end of the spectrum, if
Pyr gs([2%) = Pxrixs(|z%), then the causal effect of
X7 coincides with ordinary conditioning. This observation
suggests that, for each realization z° of X°, we may



measure the average “strength” of the causal effect of the
intervention X° < 2 on X7 by the divergence

PXT|XS(XT|$S)]

D(P T S:xS”P ¢S4 ):E ==
XT|X XT|XS=45 PXT|XS(XT|mS)

log

where the expectation is w.r.t. the conditional distribution
Pxr|xs—ys. If we now average this w.r.t. the marginal
distribution of X*° induced by @I), then we obtain

log

D(PXT\XS|‘PXT|XS|PXS) = ]E

Pyr xs(XT|X5)
Pyr xs(XT|X5) ]
(12)

where D(Pg|4||Qp|a|Pa) denotes the conditional diver-
D(PX5C|XS||PXSC|XS|PXS)
Pysexs (XX

gence [24]. If T = S¢, then we have
XS°IXS XSC|XS ]

%)

( )
szwxs(XSCIXS)]
( )

Pyseixs (X5 X5

=E log

=E |log

where the second step uses the equivalence between the in-
terventional distribution Py se %5 and the directed stochastic

kernel ﬁXsc| xs. We can now recognize the last expression
as the directed information I(X%" — X9) from X°° to
X* as defined by Tatikonda and Mitter [10, p. 327]. This
definition, in turn, generalizes the one proposed by Massey
[7] in the context of communication over noisy channels
with feedback. Thus, directed information arises naturally as
an information-theoretic measure of causality: if I(X5" —
X9) is small, then the interventional distributions of X
based on X° are close to observational (i.e., conditional)
distributions of X°° given X°, which means that the causal
effects of X on X5° can be reliably identified without
the need for active experimentation. On the other hand, if
I(X5;X9) is equal to the ordinary mutual information
I(X5%; X %), then the variables in S have no causal effect on
the remaining variables in S¢, and any statistical dependence
between X° and X°° must be along the (not necessarily
directed) paths in the DAG that have some edges pointing
toward S.

The definitions of Massey and Tatikonda—Mitter apply
only to the causal effect of X on the entire complementary
set X5°. We can, however, consider an arbitrary set 7" C S°
and use (12)) as our definition of the directed information
from X7 to X*:

I(XT — X% &

D(Pyr|xs||Pyr gs|Pxs).  (13)

Note that for I(XT — X°) to be well-defined, we need
to specify an appropriate Markovian dynamical system,
where the interventional distribution PXT| s is computed
according to (I0).

An expression for the directed information (X" — X*%)
can be obtained from the underlying graphical model. Indeed,

note that we can write
Pys xse(X9,X5)
PXSCIXS(XSWXS)PXS(XS)

I(X5 = X5)=E |log

Now, the probability distribution in the numerator is equal
to Pxn» and can be assembled from the original Markov
factorization, while the one in the denominator is the product
of the interventional distribution PXSC‘ ¢s (which can be
read off from the transformed DAG obtained using the
procedure illustrated in Section |[III-B)) and the marginal
distribution Pxs according to the original model. The di-
rected edges that are common to the original DAG and the
transformed DAG correspond to the factors in the numerator
and the denominator that can be cancelled. The remaining
expression can then be represented as a sum of conditional
mutual informations by exploiting appropriate conditional
independence relations encoded in the original DAG]T]

A. Combining interventions and passive observations: con-
ditional directed information

We have already pointed out the different status of active
interventions of the form X < 2% and conditioning on
passive observations X° = 2. Many problems pertaining
to causality involve a combination of the two: given three
disjoint sets S, S’, T C [n], we may want to consider a mixed
quantity Pyr ys, s xs'—,s- In order for such an object to

be well-defined, the conditioning on X 5" must be done w.r.t.

the interventional distribution of Py s/or|ys, st

PXS’uT|XSezS($S,UT)

T\ A

PXT‘XSHQ:S,XS =z5 (‘II" ) PXS/|XS<—xS(xSI)

In fact, this is the only sensible definition, because perform-

ing the conditioning first may destroy the Markov structures

that are needed to construct the interventional distribution.
With the above definition, we may define the conditional

directed information

I(XT = x5 x%)
S D(PXTlxs7XS'||PxT‘XSVXS’|PXS7XS/) (14a)
P , XT stXS'
= E |log 2 XTX7 Sl ) (14b)

PXT\XS,XS’ (XT|XSvXSI)

B. Some properties of directed information

Let us illustrate the role of the directed information (I3)
and the conditional directed information in quantifying
the causal flow of information in Markovian dynamical
systems. We start with the following:

Lemma 4. For any S C [n] and any T C Ng,

I(XT = X% = 1(XT; X¥).

'We would like to thank Yury Polyanskiy for clarifications regarding this
procedure.



Moreover, for any T C (SUIlg)¢,
I(XS — XUV = (X5 - x's) =0,

Proof. This is just a restatement of Lemmas [2] and [3] in the
language of directed information. O

We can also show that there are two contributions to
the directed flow of information from X7 to X°: (1) the
ordinary mutual information between the variables in S and
any nondescendants of .S that happen to lie in 7', and (2) the
conditional directed information from the descendants of S
in T to S, given the nondescendants of .S in T

Proposition 1 (chain rule). For any two disjoint sets S, T C
[n], we have

I(xT - x%)
= I(XTONs; X9) 4 I(XTNs — X5|XTNs) . (15)
Proof. For brevity, let us denote 77 = T N Ng and Th =
TN Ag (which is equal to TN Ag since SNT = &). Then
Pxrixsqs (xT)
= Pxm |Xsez5(le)PXT2|Xsezs,XT1:zT1 (sz)
= Pxn (le)PXT2|X5exS,XT1:zT1 (xT2)7
where the second step uses Lemma [2] Similarly,
PXTlxs:xS (.%‘T)
= Pxm, |XS=gS (:L‘Tl )PxT2 |XS=2S, XT1=zT1 (:L‘T2>.

Therefore,

I(XT - X%)=E |log

Pxm (XTI)
Pxryxs xm (XT2| x5 XT)
PXT2|XS,XT1 (XT2|XSvXTl)‘|
=I(XT; X%) + (X2 — X5|x™),
which gives us (T3). O

Py xs (X |XS)]

+E

log

Corollary 2. For any set S C [n],
I(X% = X%) = I(XNs; Xg) + I(X2 — X5|xNs).
Proof. Immediate from the proposition with 1" = S¢. O

C. Examples: three canonical causal structures

Many fundamental questions pertaining to causality
(including the possibility of discovering causal influences
from observational data) can be reduced to the study of three
canonical causal structures involving three random variables
X,Y,Z: the chain X =Y — Z; the fork X <Y — Z;
and the collider X — Y <+ Z [16], [18]. We have the
following examples of directed information relations for
these structures:

Chain. Since X is a nondescendant of Y, we have
I(X — Y) = I(X;Y); since X is the direct cause
of Y we have I(Y — X) = 0. Similarly, we have

IY - 2)=1(Y;Z) and I(Z — Y) = 0. Moreover, since
X is a nondescendant of Z, we have I[(X — Z) = I(X; Z).
On the other hand, I(Z — X) = 0.

Fork. Y is the direct cause of X, so I(X — Y) =0, and it
is a nondescendant of X, so I(Y — X) = I(X;Y).
The same goes for YV and Z: I(Z — Y) = 0
and IY — Z) = I(Y;Z). Finally, we have
I(X - Z) = I(Z - X) = I(X;Z), since there is
no directed path from X to Z or from Z to X.

Collider. The direction of the links between X and Y and
between Z and Y is the reverse of that in the fork, so we
have (X — Y) = I(X;Y), I(Y - X) =0, [(Y —
Z)=0,and I(Z — Y) = I(Y; Z). Finally, since X is a
nondescendant of Z, we have I(X — Z) = I(X;Z) = 0;
similarly, I[(Z — X) = I(X;Z) = 0, where we have also
used the fact that X and Z are independent.

V. APPLICATION TO IDENTIFICATION OF CAUSAL
EFFECTS

One active area of interest in the studies of causality
concerns identification of causal effects based on passive
observations only. In the context of Markovian dynamical
system models, this problem arises whenever only a subset
of the variables X" is available for observation, the goal is
to determine the causal effect of one group of variables in
this subset upon another, and it is not possible or feasible to
actively intervene into the system. Then the relevant question
becomes: given a set V' C [n] that indexes the variables
available for observation, is it possible to express the causal
effect PXT| ¢s for some disjoint sets S, " C V in terms of
ordinary (noninterventional) probabilities?

More precisely, let us assume that we know the structure
of the underlying DAG (i.e., the sets II;,¢ € [n]), but not
the functions f; or the distributions Py, of the exogenous
disturbances. What other variables besides those in S and T'
do we need to observe in order to estimate the causal effect
PXT| s The idea is that the ordinary conditional probabili-
ties relating the variables in V' can be estimated from passive
observations, and so Py r|¢s can be estimated using a plug-
in rule in terms of these conditional probabilities.

One obvious answer is that it is sufficient to observe S, T,
and all direct causes of the variables in .S, i.e., those in Ilg.
To see this, let us write down the interventional distribution
Pxr|xs ;s and condition on XUs:

PXT\XSezs(xT)

= Z Pxrixs s xms—glis (xT)PXHs\X&—mS (JCHS)

zs
T 1
:ZPXT\XSexS,XHSmcHs(l‘ )Pxng (z79),
zlls
where the second step uses the fact that IIg C
Ng and Lemma [2] Now, it can be shown that
PXT|XSezs,XnS:zHS = PXT‘XSIIS,XHS:ZHS [18,



Thm. 3.2.2], which is equivalent to I(XT — X 9| X™s) =0,
This gives

PXT|XsemS(xT)
=3 Pyrixs_ps xus_yns (@7) Pxng (a119). (16)

s

Thus, if we observe the variables in T', S, and IIg, then
we can use to develop an estimate of the causal effect
PXT| % s in terms of the conditional distribution Pxr|xs xms
and the marginal distribution Pxng. Both of these quantities
can, in turn, be estimated from passive observations. The
intuitive meaning of (T6) is that we can estimate the causal
effect of X on X7 without any need for active experi-
mentation if we can control for the direct causes of X5,
i.e., XIs Whenever this is not possible, we would still
like to know what other variables it suffices to observe in
order for the causal effect P,r ¢s to be identifiable. One
sufficient condition due to Pearl, who termed it the “back-
door criterion” [18, Sec. 3.3.1], says that certain subsets of
the nondescendants of S can be used instead:

Theorem 1 (the back-door criterion: directed information
form). Let S, T C [n] be such that T is disjoint from SUIIg.
Then for any set Z C Ng the relation

Pxrixs s (»TT)
= Z PxT‘XSUZ:g;SuZ (Z‘T)PXz (sz)

xZ

holds if and only if I(XT — X5|X%) =0.

a7)

Proof. Let us condition on X?:

Pxrixs¢qs (xT)

= Z Pxr\xs 45 x2=a2 (IT)PXZ|XS<—mS(‘TZ)
xZ

= ZPXT\XSHES,XZ:mZ(»TT)PXZ(JUZ),

xZ

where the second step uses the fact that Z C Ng
and Lemma [2] The proof is finished using the fact that
PXTlXS(f:ES’XZ:xZ = PXT XSuzZ_pSuz for all :L’S,.rZ if
and only if I(XT — X9|X?%) = 0. O

The original back-door criterion [18, Section 3.3.1] is stated
in graphical terms using the notion of d-separation (a graph-
based criterion for identifying conditional independence re-
lations), so it can be checked without knowing {f;}?_, or
{Py, }1_,. Conceptually, its equivalent information-theoretic
form given by the above theorem is similar to statistical suf-
ficiency: if Z C Ng, then X% may only depend functionally
on X7 (but not on X* or on any of the descendants of X 3,
and if I(X°; XT|X?) =0, then X7 is sufficient for X* in
the ordinary Bayesian sense.

ACKNOWLEDGMENT

The author would like to thank Todd Coleman, Prakash
Ishwar, Tara Javidi, Donatello Materassi, and Yury Polyan-
skiy for stimulating discussions.

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]
[16]
(17]
[18]
[19]
[20]
[21]
[22]

(23]

[24]

REFERENCES

A. Rao, A. O. Hero 111, D. J. States, and J. D. Engel, “Motif discovery
in tissue-specific regulatory sequences using directed information,”
EURASIP J. Bioinf. Sys. Biol., 2007, art. no. 13853.

P. Mathai, N. C. Martins, and B. Shapiro, “On the detection of gene
network interconnections using directed mutual information,” in Proc.
Inform Th. Appl. Workshop, La Jolla, CA, January/February 2007, pp.
274-283.

A. Rao, A. O. Hero III, D. J. States, and J. D. Engel, “Using
directed information to build biologically relevant influence networks,”
J. Bioinf. Comput. Biol., vol. 6, no. 3, pp. 493-519, 2008.

P.-O. Amblard and O. J. J. Michel, “On directed information and
Granger causality graphs,” J. Comput. Neurosci., vol. 30, no. 1, pp.
7-16, 2011.

C. J. Quinn, T. P. Coleman, N. Kiyavash, and N. G. Hatsopoulos,
“Estimating the directed information to infer causal relationships in
ensemble neural spike train recordings,” J. Comput. Neurosci., vol. 30,
no. 1, pp. 1744, 2011.

C. J. Quinn, T. P. Coleman, and N. Kiyavash, “Causal dependence tree
approximations of joint distributions for multiple random processes,”
IEEE Trans. Inform. Theory, 2011, submitted. [Online]. Available:
http://arxiv.org/abs/1101.5108

J. Massey, “Causality, feedback, and directed information,” in Proc.
Int. Symp. Inf. Theory Appl., 1990, pp. 303-305.

G. Kramer, “Directed information for channels with feedback,” Ph.D.
dissertation, Swiss Federal Institute of Technology, Zurich, Switzer-
land, 1998.

S. Tatikonda, “Control under communication constraints,” Ph.D. dis-
sertation, MIT, Cambridge, MA, August 2000.

S. Tatikonda and S.Mitter, “The capacity of channels with feedback,”
IEEE Trans. Inform. Theory, vol. 53, no. 1, pp. 323-349, 2009.

R. Venkataramanan and S. S. Pradhan, “Source coding with feed-
forward: rate-distortion theorems and error exponents for a general
source,” IEEE Trans. Inform. Theory, vol. 53, no. 6, pp. 2154-2179,
June 2007.

H. Permuter, P. Cuff, B. Van Roy, and T. Weissman, “Capacity of the
trapdoor channel with feedback,” IEEE Trans. Inform. Theory, vol. 54,
no. 7, pp. 3150-3165, July 2008.

S. Gorantla and T. Coleman, “Information-theoretic viewpoints on
optimal causal coding-decoding problems,” IEEE Trans. Inform.
Theory, 2011, submitted. [Online]. Available: http:/arxiv.org/abs/
1102.0250

H. H. Permuter, Y.-H. Kim, and T. Weissman, “Interpretations of
directed information in portfolio theory, data compression, and hy-
pothesis testing,” IEEE Trans. Inform. Theory, vol. 57, no. 6, pp.
3248-3259, June 2011.

J. Pearl, Probabilistic Reasoning in Intelligent Systems.
cisco, CA: Morgan Kaufmann, 1988.

P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and
Search, 2nd ed. MIT Press, 2000.

J. Pearl, “Causal inference in statistics: an overview,” Sratist. Surv.,
vol. 3, pp. 96-146, 20009.

——, Causality: Models, Reasoning, and Inference, 2nd ed.
bridge Univ. Press, 2009.

H. S. Witsenhausen, “On information structures, feedback and causal-
ity,” SIAM J. Control, vol. 9, no. 2, pp. 149-160, 1971.

——, “Separation of estimation and control for discrete time systems,”
Proc. IEEE, vol. 59, no. 11, pp. 1557-1566, November 1971.

——, “A standard form for sequential stochastic control,” Math. Sys.
Theory, vol. 7, no. 1, pp. 5-11, 1973.

S. Wright, “Correlation and causation,” J. Agricultural Res., vol. 20,
pp. 557-585, 1921.

R. L. Dobrushin, “A general formulation of the basic Shannon theorem
in information theory,” Uspekhi Math. Nauk, vol. 14, no. 6, pp. 3—-103,
1959.

1. Csiszar and J. Korner, Information Theory: Coding Theorems for
Discrete Memoryless Sources. Budapest: Akadémiai Kiad6, 1981.

San Fran-

Cam-


http://arxiv.org/abs/1101.5108
http://arxiv.org/abs/1102.0250
http://arxiv.org/abs/1102.0250

	I Introduction
	II Revealing causality through functional dependence
	III Causality in sequential dynamical systems
	III-A Interventions in Markovian dynamical systems
	III-B Interventions in graphical models
	III-C Interventional distributions as directed stochastic kernels
	III-D Interventions as channels

	IV Directed information as a measure of causality
	IV-A Combining interventions and passive observations: conditional directed information
	IV-B Some properties of directed information
	IV-C Examples: three canonical causal structures

	V Application to identification of causal effects
	References

