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Abstract— A powerful recent perspective for predicting se-
quential decisions learns the parameters of decision problems
that produce observed behavior as (near) optimal solutions. Un-
der this perspective, behavior is explained in terms of utilities,
which can often be defined as functions of state and action
features to enable generalization across decision tasks. Two
approaches have been proposed from this perspective: estimate
a feature-based reward function and recursively compute values
from it, or directly estimate a feature-based value function.
In this work, we investigate the combination of these two ap-
proaches into a single learning task using directed information
theory and the principle of maximum entropy. This enables
uncovering which type of estimate is most appropriate—in
terms of predictive accuracy and/or computational benefit—for
different portions of the decision space.

I. INTRODUCTION

For many tasks, human-generated decisions are the best
examples of intelligent behavior available and are a valuable
source for training machines to behave intelligently. Early
approaches for learning to imitate intelligent behavior di-
rectly estimate observed policies as a behavior cloning task.
Perhaps the most successful example is ALVINN [20], the
autonomous vehicle trained to control the driving wheel’s
steering angle using a neural network with forward-mounted
video feeds as input. This reduces decision prediction to a
classification task. Though successful in keeping the vehicle
safely on the roadway, this model of decision making as
solely the response to immediate sensor data is limited in
its capabilities. For example, it would not be successful in
choosing a sequence of roadways leading to a particular new
destination. In other words, it is incapable of higher-level
decision making, like sequential planning.

More recent techniques for learning and predicting sequen-
tial decisions have connected the learning task to decision
theory and control theory frameworks. In these frameworks,
an instantaneous reward is received by taking a particular
action in a particular state and it is related to the expected
action value of cumulative future rewards for each state-
action combination according to the Bellman equation [3].
Inverse optimal control [13], [4], [19], [1] attempts to find
rewards and values that explain observed behavior, following
Kalman’s early question: “When is a linear control sys-
tem optimal [13]?” Unfortunately, the question is ill-posed;
many choices for the reward function will make observed
sequences of decisions optimal, including degeneracies that

make all decision sequences equally good [19], but are
uninformative. A number of techniques have been developed
that resolve the ambiguities of this original question. Most
have focused on estimating the reward function based on
features of the state and action [5], [1], [22], [2], [21],
[18], [25], [27]. However, a recent approach has employed
this same perspective to learn the value function based
on state and action features [15]. Inverse optimal control
approaches have been successfully employed for vehicle [29]
and robotic navigation applications [30], [23], as well as
cognitive science models [2].

In this paper, we investigate a new approach for combining
reward-based and value-based decision learning. We assume
that the desirability of each state’s actions motivates observed
behavior either as a value (a function of state-action or
state features that is the ultimate motivator of actions) or
as a cost (a combination of a direct function of state-action
features and the influence of future expected features in the
decision process—i.e., a future value). Portions of the state
space that are value-based effectively factorize the decision
forecasting task, since decision leading to those states do
not consider the future beyond the value-based actions of
those states. This factorization can dramatically improve the
computational efficiency of inverse optimal control while
retaining many of the advantages of non-myopic reasoning
over smaller cost-based portions of the decision space.

We formulate the combination of reward-based and value-
based inverse optimal control as a maximum causal entropy
optimization [27]. We then investigate parameter and struc-
ture learning tasks, as well as prediction tasks, under the
resulting model. We show that given the state-based factor-
ization of the decision problem, reward and value parameters
can be efficiently learned as a convex optimization. We then
pose the problem of deciding whether each state influences
decisions as a value-based or as a reward-based factor
from a Bayesian perspective. We present structure learning
algorithms for obtaining the posterior belief of value-based
versus reward-based influence for each state from demon-
strated behavior and known value and reward weights. To
accomplish this, we introduce a technique based on Markov
chain Monte Carlo simulation [8]. Combining these two
procedures, we introduce an expectation-maximization [6]
approach for learning the combined influence type of states
and the corresponding reward and value parameters.



II. BACKGROUND AND RELATED WORK

We begin by reviewing decision making frameworks,
optimal decision criteria, and inverse optimal control learning
techniques. Our combined value-based and reward-based
maximum causal entropy inverse optimal control approach
builds upon these concepts.

A. Decision Processes and Optimal Control

Markov decision processes (Definition 1) provide a flexi-

ble representation of sequential decision making.

Definition 1: A Markov decision process (MDP) is a

tuple, Mwmpp = (S, 4, P(s'|s,a), R(s,a)), of:
e A set of states (s € 5);
o A set of actions (a € A) associated with states;
o Action-dependent state transition dynamics probabil-
ity distributions (P(s’|s, a)) specifying a next state (s’);
and
o A reward function (R(s,a) — R).
At each timestep ¢, the state (S;) is generated from the
transition probability distribution (based on the previous state
Si—1 and previous action A; 7). The state is known to
the decision maker before the next action (A;) is selected.
The distribution from which decisions are drawn is the
(stochastic) policy, P(A|S) or w(A|S).

The standard problem of interest, given an MDP, is to
find the optimal policy which maximizes the cumulative
expected reward:

m(A|S) = argmaxEp 4 g)
m(A[S)

Z R(Clt, St)

The Bellman equation,

m(s) = argmax Q(a, s) (D)
Q(a,s) = R(a,s) + Ep(sr|s,a) [V(s')] )
V(s) = max Q(a, s), 3)

defines a fixed point for this optimal policy. The recurrences
of Equation 2 and Equation 3 can be iteratively applied to
compute the state-action values (also known as the reward-
to-go), Q(a, s), and the state values, V'(s), via the value
iteration algorithm [3]. These values quantify the cumulative
future expected reward received by the optimal policy from
invoking a particular action in a particular state or from a
particular state, respectively. Under this optimality criteria, a
deterministic policy can always be obtained that provides the
optimal values computed via the Bellman equation. Often,
the t reward obtained in the MDP is discounted by a factor
of v* (0 < v < 1) to ensure fast convergence when applying
the Bellman equation. However, this can be equivalently
represented by scaling all transition probabilities P(s’|a, )
by a factor of v and terminating after each action with
probability (1 — ~). Thus, we do not explicitly consider the
discounted reward setting in out formulation.

In practice, computing the Bellman equation in decision
spaces with large numbers of states and actions can be
computationally burdensome. One approach to tame this

complexity is to intelligently order the state updates of the
Bellman equation that are applied and to employ heuristics
that bound the value functions, limiting the size of the
decision space needed to be considered. This approach is
famous for its use in planning problems and is known as the
A* search algorithm [10]. The value-based inverse optimal
control portion of our approach can be viewed as providing
related computational benefits.

B. Inverse Optimal Control

Inverse optimal control (IOC) investigates the problem of
determining what reward function best explains demonstrated
behavior sequences of states s = (s1,...,87) € S and
actions a = (ai,...,ar) € A. Typically, the parameters
of linear reward functions,

Ry(a,s) =0'f,, 4

which are defined in terms of real-valued feature vectors,
fos € R, are learned. A broader view of inverse optimal
control allows any of the underlying Bellman variables of
Equations 1-3 to be estimated. This leads to three types of
estimates:
o Action value estimation, Q(a,s) = ¢gfa’5, from
which the policy can be obtained via Equation 1.
« State value estimation, V (s) = ¢{f,, from which the
policy can be obtained via Equation 1 and Equation 2.
« Reward estimation, R(a, s) = 0"f; ,, from which the
policy can be recursively obtained via Equations 1-3.

Unfortunately, the naive problem formulation—find re-
ward parameters 6 or value parameters ¢g or ¢y that
make all demonstrated behavior optimal—is ill-posed; many
choices of these parameters, including degeneracies will
achieve this objective. Consider the zero weight vector,
0 = ¢g = ¢v = 0. It makes all decision choices,
including demonstrated decision sequences, have an equal
value of zero. While this satisfies the naive formulation, it
is a completely uninformative solution.

Early approaches employed heuristics to select the more
meaningful reward function weight solutions to the inverse
optimal control problem [19]. However, the choice of heuris-
tic is not particularly well-justified and often the degenerate
solution is the only valid solution in this problem formulation
when demonstrated sequences are not perfectly predictable.
A key insight of Abbeel & Ng [1] is that to ensure that an
estimated policy matches the performance of a demonstrated
(sample from a) policy on a decision maker’s unknown
reward function, the expected features must match. Following
linearity,
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we can see that this is indeed the case.

Unfortunately, matching features in expectation does not
resolve all of the ambiguities in the inverse optimal control
problem; when demonstrated decision sequences are not
consistently explained as the optimal result of a single choice
of reward parameters, 6, then there are many stochastic
policies that match feature counts. This corresponds to the
situation in which demonstrated decision sequences are not
perfectly predictable and degenerate solutions are the only
solutions to the naive inverse optimal control formulation.
When learning from human-generate decision sequences, this
is often the case—not necessarily because people are non-
optimal, but also because a MDP and state-action features are
often a simplification of the decision task and its influences.
Abbeel & Ng [1] mix a set of deterministic policies that are
the optimal policies for a sequence of reward parameters,

{6:}:

T T
Z ]EP(S,A) lz fst,at ~ Eﬁ(S,A) [Z fst,at] .
i t=1 t=1

However, there are many other ways to find such a feature-
matching policy (mixture), and many do not provide good
predictive performance. Indeed, very simple examples have
been shown to have infinite log-loss under the Abbeel & Ng
approach [28].

Other approaches to inverse optimal control employ game-
theoretic parameter selection criteria for obtaining reward
function parameters [25], maximum margin techniques [22],
or Bayesian posterior distributions of reward parameters [5].
A Boltzmann action distribution approach [2], [21], [18] is
similar to the maximum entropy techniques we use in this
paper. It employs a distribution over actions based on the
state-action value,

T, (AlS)

P(als) x @@ (5)

where the Q(a,s) action values are computed from the
Bellman equation (Equation 1) with a linear reward function
(Equation 4). Unfortunately, the data likelihood under this
model is not convex, so optimization techniques for finding
reward weights 6 are subject to local optima. Additionally,
the policy with the largest expected reward does not neces-
sarily have the largest probability in this model [28].

C. Reward-Based Maximum Causal Entropy 10C

The principle of maximum entropy [12] prescribes prob-
ability distributions that are the most uncertain subject to
constraints matching measured properties of data. This pro-
vides robust predictive log-loss minimization guarantees [9].
It has been recently extended to settings with interaction and
feedback, making it applicable to inverse optimal control
problems [27].

Definition 2: Reward-based maximum causal entropy
inverse optimal control [27] is defined by the following

optimization:

max H(A||S) (6)

such that: Eps a) [Z fs, 0, | = ]EP(S,A) lz fst,at] ,
t t
Vs € S,ac A, P(s,a) = P(alls) P(s"||]a”!)
Vs € S,ac A, P(a|ls) >0 and
Vs€ S, ) Plalls) = 1.

where the causally conditioned entropy [14] from the Marko-
Massey theory of directed information [16], [17],

H(A|IS) = Ep(a,s)[—log P(alls)], (M

is based on the causally conditioned probability distribution,
T

P(alls) = HP(at|slzt7alzt—1), ()
t=1

and its temporal complement,

T
P(s"|la"") = HP(3t|51:t—laal:t—1)- ©)
t=1
These distributions crucially differ from the standard condi-
tional probability,

T
P(als) = Hp(at‘slvaalzt—l),

t=1

(10)

in that each action is conditioned only on previously avail-
able state information, s;.; and not future state information,
S:+1.7. This difference is reflected in Markov decision pro-
cesses where each state is only revealed to the decision
maker after previous actions are invoked and policies that
condition on future states cannot be executed. Together, the
two causally conditioned distributions form the joint distri-
bution: P(a,s) = P(a||s)P(sT||al~1), which is explicitly
enforced as a constraint in Equation 6. By maximizing this
causal entropy measure (Equation 6), this approach provides
a robust log-loss estimate for the policy P(A|S) [27].

The solution to this optimization (Definition 2) factors
into a stochastic policy with actions distributed according to
P(als) x e@5"(@9)  where Q¥ (a, s) is recursively defined
as follows:

Q" (a,s) = Ro(a, s) + Ep(srs,a) [Vi™(5)] (an
Volt(s) = softtrlnax QY (a, ),
with reward function Ry(a,s) = 0'f,, and

softmax, f(z) = log ", e/®. This recursive relationship
can be viewed as a smooth relaxation of the Bellman
equation (Equation 1). The value updates of Equation 11,
like the Bellman equation, can be iteratively applied via
dynamic programming to obtain the stochastic policy of
the model. This distribution is equivalent to maximum
likelihood estimation under a multivariate extreme-value
noise distribution for reward values in an MDP [24], but can
be applied more broadly to settings in which appropriate



noise terms are difficult to specify (e.g., continuous control
with linear dynamics and quadratic costs [27]).

The reward function parameters can be learned using stan-
dard gradient-based optimization techniques. The gradient
is simply the difference between empirical and expected
features:

Vglog L(O|P(S,A)) =

IE:15(S,A) [Z fstyat Zfst,at] :
t t

Due to the convexity of the log-likelihood function,
log L(6|P(S,A)) = PN P(A,S)log Py(Al|S), reward pa-
rameters converging to a global optima are obtained using
e.g., the gradient ascent algorithm.

- EPB (S,A)

D. Value-based maximum entropy inverse optimal control

An alternate approach learns a value function rather than
a reward function [15]. This approach can also be posed as
a maximum entropy estimation task and is closely related to
logistic regression.

Definition 3: Action value-based maximum entropy in-
verse optimal control is defined by the following optimiza-
tion:

max H(A|S)
such that: Ep(s a) [fs,a] = Ep g 4) [fs,a]
Va € A,s € S P(als) > 0 and

VseS, > Plals)=1,
acA
where the conditional entropy is: H(A|S) =

Ep[—log P(A|S)]. The conditional probability distribution
of actions is of the form: P(a|s) o e@(®%) where
Qa,s) = qbgfs,a. Note that the distribution is over a single
state and action pair.

Action distributions from state-based values are also pos-
sible as a result of a maximum entropy formulation.

Definition 4: State value-based maximum entropy in-
verse optimal control [15] is defined by the following
optimization:

(12)

max H(A|S)
such that: Ep(sr 5,4 [fs'] = Ep (g 5 4) [fs/]
Va € A,s €S P(als) > 0 and

VseS, > Plals)=1,
acA
where S’ is the next state experienced after employing action

A in state S, and is distributed according to the known
decision process dynamics P(S’|S, A). Both estimates can
similarly be obtained using standard gradient-based opti-
mization techniques that avoid local optima as a consequence
of convexity.

A key advantage of the value-based estimates is that
the policy can be directly obtained without requiring a
potentially computationally expensive dynamic programming
task (Equation 11). However, learned value functions can
typically be less generally applied to e.g., differences in the

13)

goal terminal state of the MDP, for which the reward-based
approach is more appropriate.

E. Inverse Optimal Heuristic Control

In our previous work, we combined reward-based, I0C-
style learning with instantaneous influence learning, similar
to the value-based perspective, by augmenting learned reward
functions having long-term influence with learned value
functions having only instantaneous influence. Actions under
this model are distributed according to:

P(als) x Q" (@) QI (@), (14

where the state-action values, Q"(a,s), are recursively

computed from the dynamic program of Equation 11 and
the instantaneous value is a linear function of state-action
features, Qi‘;“(a, s) = qufs’a, and is not recursively related
to the state-action values Qf(s,a) associated with the
learned reward function. Richer features can be employed
within the instantaneous value function (e.g., characteristics
of the previous state-action sequence) than can be efficiently
incorporated in the reward function.

While this approach improves upon the predictive capa-
bilities of reward-based maximum causal entropy inverse
optimal control [27], many of the niceties of the maximum
entropy formulation are lost in this formulation. First and
foremost, learning reward and value function parameters 6
and ¢ is no longer a convex optimization task. Therefore,
practical algorithms for learning model parameters are sus-
ceptible to local optima. Additionally, it does not improve
upon the computational complexity of the underlying maxi-
mum causal entropy approach it employs by combining the
long-term and instantaneous rewards in this manner.

In contrast, the approach we introduce in this paper
permits each state’s actions to influence behavior as a reward
or as a value, but not simultaneously a combination of both.
This retains the convexity properties of the maximum entropy
formulation. It also provides computational benefits, as the
Bellman-like inference procedure is effectively restricted to
smaller portions of the decision space.

IITI. A UNIFYING STATISTICAL ESTIMATION
FRAMEWORK FOR REWARD-BASED AND VALUE-BASED
INVERSE OPTIMAL CONTROL

We leverage the recently developed maximum causal en-
tropy framework [27] to pose a state-dependent combination
of reward-based and value-based inverse optimal control
under a unified estimation task. We then introduce algorithms
for inference and learning in the resulting model.

A. A Unified Estimation Formulation

We combine value-based and reward-based inverse optimal
control by partitioning the states into three subsets: one
of reward-based estimates, Sr, one of action value-based
estimates, Sg, and one of state value-based estimates, Sy .
Each state s € S has a type, denoted type(s), indicating to
which of these sets it belongs. We denote the set of types
for all states as type(S). Using these subsets of states, we



view decision sequences as shorter subsequences according
to Definition 5!.

Definition 5: A value-state-segmented behavior se-
quence is a transformation of a sequence of states and
actions into a set of smaller subsequences in which only the
final state of each sub-sequence can be a value-based state.

For example, a particular state-action sequence,
(Sas Az, Sb, Gy, Sc, Gxs Sd, Az, Sa, Ay, Sp), With action value-
based set S = {s;} and state value-based set Sy = {s4} is
segmented into sequences: (Sq,dz, b, Gy), (Sc, Gz, Sa,az),
and (sq,ay,Sp). Our view of demonstrated decision
sequences and distributions over decision sequences
considers only these segmented subsequences. We make
use of the empirical distribution of the initial sub-sequence
state, Psubseq(Sl), which, in our example, would be:
Psubseq(Sl = Sa) = % and Psubseq(Sl = Sc) = %

Definition 6: Hybrid reward and value maximum
causal entropy inverse optimal control given reward-based
states S and value-based states Sy and all state-action
sequences segmented according to Definition 5 has actions
with distributions obtained from the following optimization:

{P(A|S)} = argmax H(A||S)
{P(A[S)}

15)

T—1 T-1
such that: Ep(g a) Z fst’at] = EP(S,A) Z f‘%at]
t=1 t=1

IEP(S,A)[ISQ (ST)fsT,aT] = Eﬁ)(s’A)[ISQ (ST)fST,aT]

ISV (ST) Z P(S/|ST, CLT) fsl
s'eS

Is, (sT) Z P(s'|sr,ar) fs,]
s'ES
Vs € S,ac A, P(s,a) = P(alls) P(s"||]a” )
Vs € S,ac A P(alls) >0,
Vse S Z P(a|ls) =1 and

acA
Vs €S, P(s1) = Pubseq(51),

Eps,a)

= IE15(s,A)

with indicator function I 4(a) = 1 if a € A and 0 otherwise.

We note that the causal entropy is concave and that
the joint sequence distribution P(S,A) is a linear function
of unknown causally conditioned variables P(A||S). This
enables the optimization of Definition 6 to be expressed as
a convex program.

B. Dual Form and Inference Procedure

Though the convex program of Definition 6 can be directly
optimized, the dual program enables a better understanding
of the model and supports more compact optimization pro-
cedures.

Theorem 1: The hybrid IOC optimization of Definition
6 can be formulated as a softened version of the Bellman

!For simplicity, we assume that the final state of each original sequence is
a value state. However, this assumption can be relaxed with only additional
notational complexity.

equation [3] via convex duality:

0780+ Ep(st/ea) [Ve"j;(s’)} if s € Sp

QZTZ(%S) = (ﬁg fS,a ifse SQ
ZS’GS P(SI‘& CL) (ZS; fs’ if s € SV
(16)

hyb . hyb
Vo () = bofttrlnax Qp 4(a,s),

with softmax, f(z) = logy_, e/(®), the reward function
parameterized by reward weights 6, and the value functions
parameterized by value weights ¢ = {¢g, ¢y }.

A straight-forward procedure, Algorithm 1, follows from
these softmax Bellman-like updates. For simplicity, we as-
sume in our notation that the decision time-horizon is infi-
nite and that the corresponding policies are time-invariant.
Extensions to time-varying, fixed horizon decision settings
are straight-forward, but notationally more cumbersome.

Algorithm 1 Reward/value-based IOC inference procedure

Require: MDP My pp, reward parameters 6, action value
parameters ¢, state value parameters ¢y, action value-
based set Sg, state value-based set Sy, and reward-based
set Sg.

Ensure: State-action values (g 4(a,s) and state values
Vo, (s) according to Equation 16

1: for all s € Sg do

2. for all a € A do

3 Q97¢(a7 s) < Qsé fs.a

4 end for

5: end for

6

7

8

9

: for all s € Sy do
for all a € A do

Qo.6(a5) 67 fu

: end for
10: end for
11: while not converged do
12:  for all s € Si do
13: Vo, (s) < softmax, Q(a, s)
14:  end for
15:  for all s € Si do

16: for all a € A do
17: Qo,0(a,s) < 0T fo0 + Episis,a)[Vo,s(s)]s, al
18: end for

19:  end for
20: end while

The computational benefit of replacing some reward-based
states with value-based states can be understood from con-
sidering the longest paths of the decision space. In the worst
case, value iteration requires O(|S|?|A|) time—quadratic in
the number of states—to obtain the optimal infinite time-
horizon policy. Intuitively, this is because the best policy
could correspond to a path of length O(]S|) and propagating
values over each state of that path requires O(|S||A|) time
via value iteration. Replacing reward-based states with value-
based states so that there are no paths consisting entirely



of reward-based states of length bounded below O(|S|2)
or O(log|S|) reduces the value iteration to O(]S]2|A|) or
O(|S]|Allog |S]) time.

The inference procedure (Algorithm 1) can be generalized
to settings in which there is a belief about the value-
based state set, P(Sy ). Naively, the resulting policy can be
obtained for each belief combination for value state sets:

P(als) = Z P(Sv)Py 4(als,Sy).
SvCS

a7)

However, a more efficient algorithm is obtained when be-
liefs in individual state types, P(type(s)) are independent
between states (Theorem 2) and we assume that decisions
are made under this same uncertainty.

Theorem 2: When state type beliefs are independent,
P(type(S)) = [l,cs P(type(s)), the state-action value of
Equation 16 can be re-written as:

Qo,6(a,5) =P(s € Sg) (0" f,0 + E[V(s')]s, ),
+ P(s € 8q) ¢ofs.a

+ P(s € Sy) Z P(s'|s,a) ¢y fy
s'eS

(18)

with the interpretation that at each visit to a state, a sample
from P(type(s)) is drawn indicating whether the state is
treated as a reward-based influence, an action value-based
influence, or a state value-based influence.

C. Reward and Value Weight Learning from Known State
Sets

We now investigate the task of learning reward weights 0
and value weights ¢ = {d¢q, ¢v } given the reward state set.
Our objective is to maximize the log likelihood:

{9*7¢22a¢;ﬂ/} = argmax IOgL(9?¢Qa¢V|p(a7 S))
0, ¢q, v

= argmax P(a,s)log Py 4(als).

0, ¢, da acA, seS

The gradient of this optimization with respect to reward
parameters and value parameters is:

Vo log L(6, 6, ov |P(S,A)) = (19)
T—1 T—1
IEIE'(S,A) lz fSt,at - IE’P{-},(j;(S,A) lz fst7at‘|
t=1 t=1
Vo log L(0, pq, ¢v|P(S,A)) = (20)

EP(S,A) [ISTESQ fST,aT] - ]:EPQ‘(’)(S,A) [ISTESQ fsT,aT]
Vg log L(0, ¢, v |P(S,A)) = 2D

Epes.a) lI<9T€5V > P(s'|sr,ar) fs"|

s'eS

—Ep, ,5.4) lIsTesv Z P(s'|s,ar) fs/] .
s'eS

Standard gradient-based optimization techniques can be

employed to find parameters that converge to a global

optimum.

Algorithm 2 Reward/value-based IOC reward/value param-
eter learning procedure

Require: MDP Mypp, demonstrated sequences P(S,A),
initial reward parameters 6, initial action value parame-
ters ¢g o, initial state value parameters ¢y, state types
type(S). R

Ensure: Reward weight estimates 6 and value weight es-
timates qg that are (approximately) optimal maximum
likelihood estimates

1: 0 < 00, 0@ < 9,0, PV < dv,0

2: while 6, ¢g, and ¢y not (approximately) converged do

3: Compute Q; ;(a,s) and Vj ;(s) given type(S) via
Algorithm 1

4. Compute policy P(als) = ¢@0.6(®#)=Vo,5(s)

5. Compute gradient Vglog L(0,$|P(S,A))|,_; via
Equation 19

6:  Compute gradient Vg, log L(0, #|P(S,A))
via Equation 20

7. Compute gradient Vg, log L(6, ¢|P(S,A))
via Equation 21 R
6 6+ 1,V log L(8, 6| P(S, A))

. dq & b+ mVog log L(0, 6| P(S,A))
10: @y < ov + 0V, log L(0, 9| P(S,A))
11: end while

|¢Q:<Z’Q

|¢v:<23v

One such procedure is shown as Algorithm 2. The learning

rate parameters 7, are chosen to slowly decay to O at a rate

of e.g., © (%)

D. Inferring the Influence Types of States

Inferring which states are value-based influences of de-
cision making and which are reward-based influences is a
more difficult task. Naively, considering the powerset of
states is computationally burdensome due to the O(3!5!)
subset choices. We draw upon approaches that have been
successfully employed for Bayesian structure learning [11],
which is a similarly difficult task of determining how a joint
distribution should factor into a product of conditional prob-
abilities. Specifically, Markov chain Monte Carlo (MCMC)
simulation [8], has been employed for Bayesian network
structure learning [7] and provides a general approach for
addressing the influence type inference setting of this paper
as well.

We are interested in obtaining a posterior distribution of
state types given available evidence. Here, we represent that
evidence as 7, the demonstrated policy. Using Bayes’ rule,
the posterior distribution is:

P(type(S)|7, 0, ¢) oc P(7|type(S), 0, ¢) P(type(S)). (22)

We rely on a key property of the reward/value-based IOC
distribution (Theorem 3) relating the log likelihood to reward
and softened state values.

Theorem 3: The log probability of a policy under the
hybrid reward-based/value-based inverse optimal control ap-



proach is related to the policy’s expected rewards as follows:

log P(|type(S), 0, ¢) = (23)
T—1
hyb ~
Eps,a) Z 0 fs,a, + & Fopar — o (51); W]
t=1
where V;yb is defined according to Theorem 1.

Using standard Markov chain Monte Carlo simulation
techniques, an approximation to the posterior distribution
of reward/value state type given demonstrated policies is
obtained using Algorithm 3.

Algorithm 3 Posterior reward/value set MCMC procedure

Require: MDP My pp, reward parameters 6, action value
parameters ¢, state value parameters ¢y, demonstrated
policy 7(A|S), burn-in size N, sample size N

Ensure: P(type(S)) based on samples from Bayesian pos-

terior.
1: Vs € S, set type(s) = “Action value”
2t 1
3: while ¢t < (Nb + Ns) do
4: Sample i € {1,...,|S|} uniformly at random
5. Set type(s;) = “Reward”
6: Compute P = P(7|type(S),0,¢) P(type(S)) via
Equation 23
7. Set type(s;) = “Action value”
8: Compute Py = P(7|type(S),0,¢) P(type(S)) via

Equation 23

9:  Set type(s;) = “State value”

10: Compute Py = P(7|type(S),0,¢) P(type(S)) via
Equation 23

11:  Sample  type(s;) from  the  distribution:
. . P ] PQ P
Multinomial PR+PS+PV > Pr+Pq+Py? PR-‘rP;-‘rPV)
12:  if t > N, then R
13: Add sample type(S) to distribution P(type(S))
14:  end if

150 t<+t+1
16: end while

Algorithm 3 assumes that the reward and value weights,
0, ¢q, and ¢y are known. Often this is not the case. Instead,
we would like to estimate both those reward and value
weights as well as the type of each state.

Algorithm 4 employs an expectation-maximization ap-
proach [6] to obtain both state types and parameter weights.
It obtains the maximum likelihood weights for a particular
set of state beliefs in line 3 (the maximization step) and
calculates the expectation of state types given those weight
estimates in line 4 (the expectation step). When both the
expectation and maximization steps are exact, this procedure
is guaranteed to converge to a local optima of the likelihood
function of reward/value weights and state types. In this
setting, such a guarantee can be provided when the Markov
chain Monte Carlo procedure of Algorithm 3 mixes well
and the true distribution of state types factors independently
(as assumed in line 5 of Algorithm 4 for computational
efficiency benefits).

Algorithm 4 Reward/value set and parameter EM procedure

Require: MDP Mypp, demonstrated sequences P(S,A) /
policy 7
Ensure: State set estimate P(type(S)) and reward/value
parameter estimates 9:(;3 that are (approximately) local
optima.
1: Vs € S, let P(type(s)) be distributed uniformly at ran-
dom
2: while type(S), 6, and ¢ not converged do
3:  Obtain reward/value weights 0, ¢ given P(type(S))
and P(S,A) via Algorithm 2 using Equation 18
4: Obtain P(type(S)) given 7 and parameters 0, ¢ via
Algorithm 3
5:  Approximate P(type(S)) as an independent distribu-
tion with P(type(s;)) as the marginal distribution of

P(type(S))
6: end while

IV. DISCUSSION

In this paper, we have combined reward-based inverse
optimal control with value-based inverse optimal control as
a statistical estimation task using the principle of maximum
causal entropy. We allow each state to influence behavior
as either a reward, an action value, or a state value. This
allows computationally advantageous value-based estimates
to be employed in some portions of the decision space while
retaining the sequential reasoning of cost-based estimates in
other portions of the state space. When the type of each state
is known, learning reward/value weights is accomplished
by convex optimization. When state types are unknown,
Markov chain Monte Carlo and Expectation-Maximization
approaches can be applied with weaker guarantees.

One of the greatest benefits of inverse optimal control
is the ability to transfer learned reward/value weights to
different decision processes that are characterized by re-
ward/value features from the same feature space. This benefit
is seemingly lost by the hybrid formulation of inverse optimal
control in this paper because the belief in the type of each
state is specific to the decision process of the demonstrated
decision sequences and does not transfer. Estimating state
types based on available (and transferable) information, such
as state-action features, is an important future direction for
enabling this approach to the transfer setting.
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APPENDIX

Theorem 1: The hybrid IOC optimization of Definition
6 can be formulated as a softened version of the Bellman
equation [3] via convex duality:

0780+ Ep(s)sa) [1@*‘2}’(5’)} if s € Sg

hyb
Q5.o(1:5) = 04t if s € So
ZS/GS P(sl‘sv CL) QS; fs’ if s € SV

(24)

hyb _ hyb
Vo () = softénax Qg 4(a; ),

with softmax, f(z) = logd_, e/, the reward function
parameterized by reward weights 0, and the value functions
parameterized by value weights ¢ = {¢q, ¢v }.

Proof: After setting features over the entire sequence
as

T-1
t=1 fStyat

ISQ (ST) fsT
Is, (ST) ZS’ES P(3/|5T’ aT) £,
this is a corollary of Theorem 6.8 [26]. |
Theorem 2: When state type beliefs are independent,
P(type(S)) = [l,cs P(type(s)), the state-action value of
Equation 16 can be re-written as:

Qo.s(a,s) =P(s € Sg) (0 fs.o +E[V ()]s, a]),
+ P(s € 8q) dofs.a

+ P(s € Sy) Z P(s'|s,a) ¢y fs
s’eS

F(s,a) = S CA)

(26)

with the interpretation that at each visit to a state, a sample
from P(type(s)) is drawn indicating whether the state is
treated as a reward-based influence, an action value-based
influence, or a state value-based influence.

Proof: (sketch) The situation where state type is dis-
tributed according to an independent belief distribution can
be represented with an augmented set of dynamics over the
joint of states and state types:

Pexpana (s, type(s')[s, a) = P(s'|s, a) P(type(s')), ~ (27)

where P(s’|s,a) is the original dynamics and P(type(s’))
is the belief distribution over types. Following Theorem 1 in
this expanded state space completes the proof. [ ]

Theorem 3: The log probability of a policy under the
hybrid reward-based/value-based inverse optimal control ap-
proach is related to the policy’s expected rewards as follows:

log P(7[type(S), 0, ¢) = (28)
T-1
IEP(S,A) Z 9Tf5t7at + ¢TfST,llT - Gh,):;(sl)’ Q
t=1

where V;{; is defined according to Theorem 1.
Proof: This is a corollary of Theorem 6.10 [26] with
features defined according to Equation 25. |



