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Abstract—We propose a joint source-channel-network coding
scheme, based on compressive sensing principles, for wireless
networks with AWGN channels (that may include multiple
access and broadcast), with sources exhibiting temporal and
spatial dependencies. Our goal is to provide a reconstruction of
sources within an allowed distortion level at each receiver. We
perform joint source-channel coding at each source by randomly
projecting source values to a lower dimensional space. We
consider sources that satisfy the restricted eigenvalue (RE) con-
dition as well as more general sources for which the randomness
of the network allows a mapping to lower dimensional spaces.
Our approach relies on using analog random linear network
coding. The receiver uses compressive sensing decoders to
reconstruct sources. Our key insight is the fact that, compressive
sensing and analog network coding both preserve the source
characteristics required for compressive sensing decoding.

I. INTRODUCTION

The power budget and communication rates are two main
limitations in wireless network applications. Information the-
ory focuses much on minimizing transmission rates, but the
complexity of coding processes. For example, in point-to-
point channels, equivalence theory allows us to separate the
problem of channel coding from that of joint network/source
coding [1]. However, any approach that separates source
coding from channel coding may suffer from potential in-
efficiencies since we reduce redundancy for source coding
but later reintroduce it for channel coding. Moreover, even
if we allow separate channel coding from source/network
coding (which is necessary because of lack of separation [2]),
the known schemes have generally high complexity inherited
from the general Slepian-Wolf problem [3].

Compressive sensing ([4], [5], [6]) can be used to perform
channel coding ([7]) as well as source coding, even for dis-
tributed sources ([7]). In both of these cases, the performance
of the compressive sensing approach can be shown to be close
to that of the information theoretic optimum. The fact that,
a single approach may successfully be applied for channel
coding and source coding renders it an attractive candidate for
use in a joint problem. Moreover, the fact that, linear analog
network coding is asymptotically optimal in the high SNR
regime [8], together with the fact that, compressive sensing-
based channel and source techniques are also linear, provides
a compelling reason for considering a compressive sensing-
based joint source-channel-network coding.

This material is based upon work supported by AFOSR under award No.
016974-002.
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Fig. 1. The considered problem setup where sources have temporal and
spatial dependencies, and receivers desire to reconstruct sources within an
allowed distortion level.

Here, we propose a joint source-channel-network coding
scheme, based on compressive sensing principles, for wire-
less networks with AWGN channels (that may include mul-
tiple access and broadcast). We assume that, sources exhibit
temporal and spatial dependencies. We consider a multicast
wireless network with multiple sources and receivers (see
Figure 1). Our goal is to provide a reconstruction of all
sources within an allowed distortion level at all receivers
in a low-complexity manner. A key idea of our proposed
scheme is to reshape inherent redundancies among source
samples (temporal or spatial) in a joint source-channel-
network coding scheme. Our scheme does not rely on the
distribution knowledge of sources. Also, it provides an attrac-
tive relationship between the number of uses of the network
and the reconstruction error.

A schematic view of our proposed framework is illustrated
in Figure 2. In this framework, we perform joint source-
channel coding at each source by randomly projecting source
values to a lower dimensional space. We consider sources that
spatially satisfy the restricted eigenvalue (RE) condition and
may use sparse networks as well as more general sources,
which use the randomness of the network to allow mapping
to lower dimensional spaces. Our scheme relies on using
random linear network coding in the real field. The receiver
uses compressive sensing decoders (spatial and temporal
ones) to reconstruct source signals.

Our main insight is that, the main characteristics required
for operating compressive sensing are preserved under very
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Fig. 2. A schematic view of our proposed joint source-channel-network
coding scheme. Each source projects its high dimensional signal to a lower
dimensional space by using a random projection matrix followed by a pre-
coding on-off module. Intermediate nodes perform linear network coding.
Each receiver uses compressive sensing decoders (LASSO) to reconstruct
source signals.

general linear operations, which may themselves be arise
from cascade of linear transformations in a network. We
can therefore cascade compressive sensing techniques as well
as linear operations tied to coding in the interior of the
network. This preservation of the main characteristics of the
sources under linear transformations lies at the core of both
compressive sensing and analog network coding. This work
constitutes a step in bringing together these two techniques,
which have natural similarities.

This paper is organized as follows. In Section II, we
review some prior results in compressive sensing and random
projections. We propose our scheme in Section III and
characterize its performance. Proofs are presented in Section
IV. We conclude the paper in Section V.

II. COMPRESSIVE SENSING BACKGROUND

In this section, we review some prior results in compressive
sensing. Let Y ∈ RN be an unknown signal vector. We say
this signal is k-sparse if k of its coordinates are non-zero and
the rest are zero. Note that, the assumption of having N − k
components of Y to be exactly zero may seem unrealistic
for practical cases. This assumption is called a hard sparsity
assumption. Weakly sparse models are also considered in the
compressive sensing literature [9]. Roughly, a vector Y is
weakly sparse if it can be approximated by a sparse vector.
In this paper, we consider hard sparsity models although all
discussions can be extended to weakly sparse signals.

Let G ∈ Rm×N be a measurement matrix where m << N .
The observation vector Z is defined by the following linear
model:

Z = GY + W,

where W ∈ Rm is a noise vector. We assume wi ∼
N (0, σ2), where N (0, σ2) represents a Gaussian random
variable with mean zero and variance σ2.

By obtaining observations Z and knowing measurement

(a) (b)

Fig. 3. To control the reconstruction error, the loss function should have
high curvature around the optimal solution of LASSO (equation 1) along
the directions of C(S;α).

matrix G, the goal is to reconstruct Ỹ such that

‖Y − Ỹ‖2l2 ≤ D,

where D is a distortion allowance threshold. If the signal
Y is a sparse signal (i.e., k << N ) and the measurement
matrix satisfies the Restricted Eigenvalue (RE) Condition
[10] (which will be explained later) or more restrictively,
Restricted Isometry Property ([11]), then having m measure-
ments where m << N is sufficient to recover the original
sparse vector. In fact, Ỹ is a solution for the following convex
optimization called LASSO ([12]):

min
Y

1

2m
‖Z−GY‖2l2 + ξ‖Y‖l1 , (1)

where ‖.‖lp represents the lp norm of a vector and ξ >

0 is a regularization parameter. If Ỹ is a solution of this
optimization, then, [10] shows that,

‖Y − Ỹ‖2l2 ≤
δ

γ2
σ2 k log(N)

m
(2)

with high probability, where δ is a constant and γ is a
parameter related to the restricted eigenvalue condition of
the matrix G.

Now, we define the restricted eigenvalue condition (RE)
for the measurement matrix G ∈ Rm×N ([10]). Suppose S
is the support of a sparse vector Y (i.e., S is the set of non-
zero indices of Y where |S| = k). Sc is the complement set
of S. We define the subset

C(S;α) = {Y ∈ RN : ‖YSc‖l1 ≤ α‖YS‖l1}.

This corresponds to the cone of vectors where l1 norm
on their support dominates the l1 norm off the support. For
α = 1, this cone is the same as the one used in restricted
null-space property ([13]).

Definition 1. The matrix G satisfies the restricted eigenvalue
(RE) condition over S with parameter (γ, α) if

1
m‖GY‖2l2
‖Y‖2l2

≥ γ > 0 (3)

for all Y ∈ C(S;α)− {0}.

The proof of equation (2) can be found in reference ([10]).
By abuse of notation, we say a square matrix satisfies the



restricted eigenvalue condition with parameter (γ, α) if all
of its sub-matrices with |S| rows satisfies the RE condition
with parameter (γ, α). Also, roughly we say a matrix satisfy
the RE condition, if γ is large enough. In the following,
we develop some intuitions about the compressive sensing
decoder of equation (1) and the RE condition.

The restricted eigenvalue condition bounds away eigenval-
ues of the matrix 1

mGTG from zero in the direction of the
considered cone. Note that, to be able to control error of
LASSO in equation (1), around the optimal point, the loss
function should have high curvature to translate small l2 loss
to small error in Y (see Figure 3). For this loss function,
Hessian (curvature) can be calculated as 1

mGTG. Therefore,
we want to bound eigenvalues of 1

mGTG away from zero to
have high curvature of the loss function. However, since G is
a fat matrix (i.e., m << N ), some of its eigenvalues are zero.
That is why we require to have eigenvalues away from zero
for a subset C(S;α) of vectors. This subset is well-aligned
with the directions of the Hessian in which loss is observed
([10]).

It is shown in different references that random matrices
satisfy the RE condition. Reference [14] shows a connection
between compressive sensing, n-widths, and the Johnson-
Lindenstrauss Lemma. Through this connection, [15] pro-
poses some data-base friendly matrices (binary matrices)
satisfying the RE condition.

Our goal is in this paper is to use random projection prin-
ciples to obtain a power-rate efficient sensing-communication
scheme. New results and bounds in compressive sensing can
potentially improve results of this paper. One can find more
details on compressive sensing results in [4], [5], [6], etc.

In the next section, we present main results of this paper.

III. MAIN RESULTS

In this section, we present main results of this paper.
First, we present a Lemma demonstrating how the RE
condition changes when matrices are cascaded (multiplied
to each other). Then, after introducing the problem setup
and some notations, we present our proposed joint source-
channel-network coding scheme. Finally, we characterize the
performance of this proposed scheme. Proofs are presented
in the next section.

A. Background Results

In this section, we present a Lemma which is central
to implementing the cascading linear transformations which
form the basis of our approach.

Lemma 2 (Cascading Lemma). Suppose G ∈ Rm×N sat-
isfies the RE condition with parameter (γ, α). Say C1 ∈
Rm×m and C2 ∈ RN×N . Suppose minimum absolute eigen-
values of C1 and C2 are λ1 and λ2, respectively. Also,
say for Y ∈ C(S;α), YC2 ∈ C(S;α). Then, C1G and
GC2 satisfy the RE condition with parameters (γλ21, α) and
(γλ22, α), respectively.

The proof of this Lemma is presented in Section IV.
Intuitively, this lemma says, if G, which satisfies the RE

condition, is cascaded with other matrices whose eigenvalues
are bounded away from zero, the overall matrix would satisfy
the RE condition.

B. The problem Setup and Notations

We consider a wireless network with N sources and l
receivers. Each source has n correlated samples to transmit
to all receivers (see Figure 1). Also, we assume that, there are
temporal and spatial correlations among source samples. Vec-
tor Xi ∈ Rn represents samples of source i and X ∈ RN×n
is a matrix of all source samples. xti represents a sample of
source i at time t.

We have the following assumptions on source samples
capturing their temporal and spatial redundancies:

Assumption 3. Sources have temporal and spatial depen-
dencies:

1) Each source has temporal dependency: there exists a
matrix Φ ∈ Rn×n such that Xi = Φηi, where ηi is k1 sparse
and k1 << n.

2) Source samples have spatial dependency: suppose Y ∈
RN is a vector containing yj = AT

j Xj for some vector
Aj ∈ Rn, for 1 ≤ j ≤ N . There exists a matrix Ψ ∈ RN×N
such that, Y = Ψµ, where µ is k2 sparse, and k2 << N .

Note that, matrices Φ and Ψ are not required to be known
at sources, but at receivers only. This is an important issue
in hardware implementations of sensors ([16]). We will show
that, our proposed scheme is generic.

Each receiver desires to obtain all sources within an
allowed distortion level D. In other words, for all 1 ≤ i ≤ N
and all receivers, we should have

1

n
‖Xi − X̃i‖2l2 ≤ D, (4)

with high probability, where X̃i is the reconstructed signal
of source i.

Links of the network are AWGN channels. Nodes in the
network are allowed to perform linear network coding in
the real field (see analog network coding references [17],
[8], etc.). We assume that, the network can deliver m linear
combinations of source samples to each receiver at each
use of the network. In other words, at each use of the
network, a receiver obtains Z ∈ Rm where, Z = GY + W.
G ∈ Rm×N is the network coding matrix, Y ∈ RN is
a vector that sources transmit at that time (i.e., source i
transmits yi). W is the noise vector where we assume,
wi ∼ N(0, σ2), for all 1 ≤ i ≤ m. The quantity m
can be viewed as a real field version of the min-cut rate
of the network defined in the finite field ([18], [19]). We
assume that, the number of source samples (i.e., n × N )
is much larger than m. We define Cuse as the number of
network uses to deliver all source samples to receivers so that,
the reconstruction distortion requirement (equation 4) holds
for each receiver. We characterize Cuse for our proposed
sensing-communication framework and compare it with a
naive information theoretic approach.



C. Joint Source-Channel-Network Coding Scheme

In this section, we present our proposed joint source-
channel-network coding scheme based on compressive sens-
ing principles. We also characterize the rate-distortion per-
formance of our proposed scheme in Theorem 6.

Our proposed sensing-communication scheme can be per-
formed in the following steps, as illustrated in Figure 2. We
will explain each step in more detail.

Algorithm 4. Our proposed joint source-channel-network
coding can be performed in following steps.

• Step 1 (Temporal Pre-Coding): Each source projects
its n dimensional signal to a lower dimensional space
by using random projection matrices.

• Step 2 (Spatial Pre-Coding): Each source i transmits
with certain probability bi, at each time.

• Step 3 (Network Coding): Nodes in the network per-
form analog random linear network coding.

• Step 4 (Decoding): Each receiver uses compressive
sensing decoders (LASSO) to reconstruct source signals.

These steps are shown in a schematic way in Figure 2. In
the following, we explain each step in more details:

Step 1 (Temporal Pre-Coding): Each source i projects its
sample vector Xi to a lower dimensional space, by using a
matrix multiplication. That is, Yi = AiXi, where Xi ∈ Rn
and Ai ∈ Rm1×n. Note that, m1 << n, and m1 is chosen
according to Theorem 6 to control the reconstruction error.
Matrix Ai is a random matrix that satisfies the RE condition
with parameter (γ1, α).

Step 2 (Spatial Pre-Coding): At time t, each source
transmits yti (the t-th component of Yi) with probability bi.
In the next step, we will show how by choosing appropriate
bi, the transmission power can be decreased further.

Step 3 (Network Coding): Nodes in the network perform
random linear network coding over the real field. At each
use of the network, it can deliver m linear combinations of
transmitted samples to receivers. Therefore, m2/m network
transmissions are required to gather m2 linear combinations
of yti at each receiver, with high probability. Note that,
m2 << N is chosen according to Theorem 6 to control
the reconstruction error. By abuse of notation, we drop
superscript t. Hence, a receiver obtains:

Z = GBY + W = GBΨµ+ W, (5)

where Y ∈ RN contains yi for 1 ≤ i ≤ N , B ∈ RN×N
is a diagonal matrix whose i-th diagonal element is one
with probability bi, and zero otherwise. G ∈ Rm2×N is the
network coding matrix for that receiver. Note that, by using
Assumption 3, Y = Ψµ, where µ is k2 sparse.

To be able to use compressive sensing principles and
decoders, the matrix GBΨ should satisfy the RE condition
explained in II. We consider two cases: (1) Ψ satisfies the
RE condition, (2) Ψ does not satisfy the RE condition.

In case (1), since Ψ satisfies the RE condition, by using
Lemma 2, GBΨ would satisfy the RE condition. Since the
rank of GBΨ needs to be m2 with high probability, we
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Fig. 4. An example of a network topology where the network coding
matrix can be designed to satisfy the RE condition. Hence, the network can
transform sources with spatial dependencies which do not satisfy the RE
condition, to a proper lower dimensional space.

choose bi = 1 with probability m2/N , and bi = 0 with
probability 1 − m2/N . In other words, only a fraction of
sources are transmitting. Also, by performing random linear
network coding over the real field, rank of the matrix G
would be m2, with high probability ([20]). Hence, for a
general network structure, receivers can use compressive
sensing decoders to reconstruct source signals within an
allowed distortion level.

In case (2) where Ψ does not satisfy the RE condition, we
choose bi = 1 for all i (i.e., all sources are transmitting).
Hence, B is the identity matrix. In this case, if G satisfies
the RE condition, by using Lemma 2, GΨ would satisfy the
RE condition, and therefore, receivers can use compressive
sensing decoders to reconstruct source signals.

Intuitively, to have G satisfy the RE condition, the network
should be dense to randomly mix source samples. For net-
works that are not sufficiently dense, such as tree networks,
G never satisfies the RE condition. The following example
presents a family of networks for which G can be designed
to satisfy the RE condition.

Example 5. Consider the network topology with N sources
depicted in Figure 4. Sources are connected randomly to
m intermediate nodes. Expected in-degree of each of these
intermediate nodes is greater than or equal to N/3 (i.e., high
in-degree nodes). These intermediate nodes are connected to
another network. The transform matrix of this network (i.e.,
G ∈ Rm×N ) can be decoupled into two matrices: the one
for the first stage of the network G1 ∈ Rm×N and, the one
for the rest, G2 ∈ Rm×m. That is, G = G2G1. If sources
choose network coding coefficients uniformly from {−1, 1},
as shown in reference [15], the matrix G1 satisfies the RE
condition. By performing random linear network coding, the
rank of G2 is m with high probability. Therefore, by using
Lemma 2, G satisfies the RE condition.

Step 4 (Decoding): Each receiver first uses a compressive
sensing decoder as in equation (1) to reconstruct Yt for each
1 ≤ t ≤ m1 as follows:



min
µ

1

2m2
‖Z−GBΨµ‖2l2 + ξ‖µ‖l1 . (6)

Therefore, for each source i, Ỹi is obtained where Ỹi =
AiΦXs

i +Ui. Ui is the error occurred in the reconstruction
of Yt. Then, another compressive sensing decoder is used to
reconstruct X̃i:

min
ηi

1

2m1
‖Ỹi −AiΦηi‖2l2 + ξ‖ηi‖l1 . (7)

The number of network uses of this proposed sensing-
communication scheme is equal to Cuse = m1m2

m .
AiΦ satisfies the RE condition with parameters (γ1λ

2
1, α)

when Ai satisfies the RE condition with parameters (γ1, α)
and λ1 is the minimum absolute eigenvalue of the matrix Φ
(according to Lemma 2). The matrix GBΨ satisfies the RE
condition with parameters (γ2λ

2
2, α) (i.e., in case 1, matrix

BΨS satisfies the RE condition with parameter (γ2, α) and
λ2 is the minimum absolute eigenvalue of GS where GS

contains columns of G corresponding to active sources. In
case 2, G satisfies the RE condition with parameters (γ2, α)
and λ1 is the minimum absolute eigenvalue of the matrix
Ψ). Let λ3 and λ4 be maximum eigenvalues of matrices Ψ
and Φ, respectively. By using these parameters, define the
following constant:

c = δ
(λ3λ4)2

(γ1γ2)2(λ1λ2)4
, (8)

where δ is a constant. The following Theorem illustrates
how to choose m1 and m2 in the proposed joint source-
channel-network coding scheme to reconstruct each source
signal within an allowed distortion level:

Theorem 6. A joint source-channel-network coding scheme
of Algorithm 4 satisfies the distortion requirement of equation
(4) with high probability if

Cuse = c
k1k2 log(n) log(N)

m

σ2

D
, (9)

where k1 << n and k2 << N represent temporal and
spatial sparsity of sources, σ2 is the noise variance, D is the
allowed reconstruction distortion level, and c is a constant
defined in equation (8).

The proof of this Theorem is presented in Section IV.
This theorem provides a way of choosing parameters m1

and m2 in Algorithm 4, where each source signal can be
reconstructed within an allowed distortion level (equation
(4)).

Remarks:

• Our proposed scheme is efficient: Sources use naturally
occurring redundancies to perform joint source-channel
coding. Therefore, there is no need of performing source
coding and channel coding separately which would
cause inefficiencies. Also, in the case that Ψ satisfies
the RE condition, only a fraction of sources are required

to transmit, which provides additional power saving in
transmissions.

• Our proposed scheme is broadly structure independent:
Matrices Φ and Ψ are not required to be known at
sources, but at receivers. It is important in the hardware
implementation of sensors for different applications
where measured signals can have different correlation
structures ([16]).

• Our proposed scheme has a continuous rate-distortion
performance: as it can be seen from Theorem 6, if
the noise variance σ2 increases, by using the same
sensing-communication scheme, the reconstruction dis-
tortion would increase in a continuous manner (i.e.,
there is no performance drop off). In fact, our proposed
scheme can be viewed as a noise modulating sensing-
communication scheme.

• Our proposed scheme has low complexity decoders. Un-
like Slepian-Wolf ([3]) decoders of information theoretic
coding schemes, decoders used in our scheme are con-
vex optimizations and therefore have lower complexity.

• It is insightful to compare the rate-distortion perfor-
mance of our scheme with a naive information theo-
retic scheme ignoring source correlations. Following the
rate-distortion Theorem ([1]), to represent a Gaussian
random variable N (0, σ2) within a distortion level D,
one needs R(D) = 1

2 log(σ
2

D ) bits. Suppose sources
transmit their samples ignoring correlations. Since at
one network use, the network can deliver m linear
combinations of source samples, nN

m network uses are
required. Moreover, since the noise variance is σ2 but
the allowed distortion level is D, roughly speaking,
one needs at least R(D) extra factor of transmissions.
Overall,

nN

m
log(

σ2

D
)

network uses are required. Note that, k1 << n and
k2 << N . Comparing this with the one of our pro-
posed scheme (Theorem 6) illustrates that, although our
scheme is power efficient, it performs closely to an
optimal scheme where only an informative subspace of
source samples are transmitted.

• Note that, projection matrices Ai should be known at
receivers. Transmitting these matrices may cause a rate
overhead in a practical sensing-communication scheme.
In practical implementations, since this matrix is a ran-
dom matrix, each source can use a pseudo random ma-
trix generated (i.e., pseudo-random bit sequence (PRBS)
generators) and transmit its starting seed, instead of
transmitting the whole matrix. This would have a negli-
gible effect in the sensing-communication performance.
Analyzing our proposed scheme with pseudo random
matrices are beyond the scope of this paper.

• Note that, the result of Theorem 6 is not deterministic
and holds with high probability. There is always a small
chance that, reconstructed signals have higher distortion
than the allowed threshold.

• As the last point, our proposed framework allows to



have distributed sensing-communication. That is, sup-
pose there is one signal that receivers desire to re-
construct it. Each sensor has a low power budget to
take all measurements and perform codings by itself.
However, if several sensors (sources) are used, instead,
each can take few measurements from the signal. By
using our proposed scheme, receivers can reconstruct
the original signal by using these measurements. In fact,
our framework makes a virtual strong sensor by using
several weak sensors.

IV. PROOFS

In this section, we present proofs.

A. Proof of Lemma 2

We first show that, C1G satisfies the RE condition with
parameters (γλ21, α) where G satisfies the RE condition with
parameters (γ, α) and λ1 is the minimum absolute eigenvalue
of C1. We have,

1

m
‖C1GY‖2l2 =

1

m
YTGTCT

1 C1GY

=
1

m
(GY)T (CT

1 C1)(GY)

(1)

≥ 1

m
λ21‖GY‖2l2

(2)

≥ γλ21‖Y‖2l2
Inequality (1) comes from a linear algebra lemma and

inequality (2) comes from the definition of the RE condition
for the matrix G.

In the following, we prove the second half of this Lemma.
We assume that, for Y ∈ C(S;α), YC2 ∈ C(S;α). Also,
suppose λ2 is the minimum absolute eigenvalue of the matrix
C2. Therefore,

1

m
‖GC2Y‖2l2 =

1

m
YTCT

2 G
TGC2Y

= YT (
1

m
CT

2 G
TGC2)Y

= (C2Y)T (
1

m
GTG)(C2Y)

(3)

≥ γ‖C2Y‖2l2
(4)

≥ γλ22‖Y‖2l2
Inequality (3) comes from the definition of the RE con-

dition for the matrix G. Note that, in this part, we use
the assumption that, for Y ∈ C(S;α), YC2 ∈ C(S;α).
Inequality (4) comes from a linear algebra lemma. This
completes the proof.

B. Proof of Theorem 6

In this part, we prove Theorem 6. Suppose AiΦ satisfies
the RE condition with parameters (γ1λ

2
1, α) (i.e., Ai satisfies

the RE condition with parameters (γ1, α) and λ1 is the
minimum absolute eigenvalue of the matrix Φ. Then, use

Lemma 2). Also, say the matrix GBΨ satisfies the RE
condition with parameters (γ2λ

2
2, α) (i.e., in case 1, matrix

BΨS satisfies the RE condition with parameter (γ2, α) and
λ2 is the minimum absolute eigenvalue of GS where GS

contains columns of G, corresponding to active sources. In
case 2, G satisfies the RE condition with parameters (γ2, α)
and λ1 is the minimum absolute eigenvalue of the matrix Ψ).
Hence, by using the LASSO decoder of equation (6) and the
error bound of equation (2), we have

‖µ− µ̃‖2l2 ≤
δ1
γ22λ

4
2

k2 log(N)

m2
σ2. (10)

Hence,

‖yi − ỹi‖2l2
(1)

≤ ‖Y − Ỹ‖2l2 (11)
(2)
= ‖Ψµ−Ψµ̃‖2l2
(3)

≤ λ23‖µ− µ̃‖2l2
(4)

≤ δ1λ
2
3

γ22λ
4
2

k2 log(N)

m2
σ2.

Inequality (1) is true for all vectors. Equality (2) uses the
spatial correlation matrix property where Y = Ψµ. Inequality
(3) uses a linear algebra lemma. Inequality (4) uses equation
(10).

Say σ2
u = ‖yi− ỹi‖2l2 . For the decoder of equation (7), we

can write,

‖xti − x̃ti‖
2
l2

(5)

≤ ‖Xi − X̃i‖2l2
(6)
= ‖Φη − Φη̃‖2l2
(7)

≤ λ24‖η − η̃‖2l2
(8)

≤ δ2λ
2
4

γ21λ
4
1

k1 log(n)

m1
σ2
u

(9)

≤ c
k1k2 log(n) log(N)

m1m2
σ2

where c = δ1δ2
(λ3λ4)

2

(γ1γ2)2(λ1λ2)4
.

Inequality (5) is true for all vectors. Equality (6) uses
the temporal correlation matrix property where Xi = Φη.
Inequality (7) uses a linear algebra lemma. Inequality (8) uses
equation (2). Inequality (9) uses equation (11). Having the
distortion requirement 1

n‖Xi−X̃i‖2l2 ≤ D and Cuse = m1m2

D
completes the proof of Theorem 6.

V. CONCLUSIONS

In this paper, we proposed a joint source-channel-network
coding scheme, based on compressive sensing principles, for
wireless networks with AWGN channels (that may include
multiple access and broadcast). A key idea of our proposed
scheme is to reshape inherent redundancies among source
samples (temporal or spatial) in joint source-channel-network
coding to have a power/rate efficient sensing communication
scheme. By characterizing the performance of the proposed
scheme, we showed that, our proposed scheme



• (1) is power and rate efficient, that is, although it
performs closely to optimal rates, it provides power
efficiencies.

• (2) has low decoding complexity where decoders are
convex optimizations.

• (3) is broadly structure independent, that is, sensing,
coding and communication processes in sensors are
application independent.

• (4) and has continuous rate-distortion performance, that
is, if channel qualities change, the reconstruction quality
will change in a continuous manner.

In this framework, we perform joint source-channel coding
at each source by randomly projecting source values to a
lower dimensional space. We consider sources that spatially
satisfy the restricted eigenvalue (RE) condition and may use
sparse networks as well as more general sources which use
the randomness of the network to allow mapping to lower
dimensional spaces. The receiver uses compressive sensing
decoders to reconstruct source signals.
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