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Abstract—In this paper, we study cyclic shift symmetric wire-
tap channels in which the channels between Alice and Bob and
Alice and Eve are both cyclic shift symmetric. We characterize
the rate-equivocation region by determining the optimal selection
of rate splitting U and channel prefixing V for these channels. We
show that optimal U and V are determined via cyclic shifts of the
solution of an auxiliary optimization problem that involves only
one auxiliary random variable. We find the cardinality bound on
the necessary auxiliary variable and formulate the problem as a
constrained optimization problem. We determine the optimality
conditions for the binary-input cyclic shift symmetric wiretap
channels. We find the optimum by inspecting each point of
the I(X; Y ) − I(X; Z) function and ruling out the sub-optimal
candidates that satisfy the optimality conditions. In particular,
we address BSC-BEC and BEC-BSC wiretap channels. By using
the optimality conditions, we determine the optimal selections of
U and V for the rate-equivocation regions of these channels.

I. INTRODUCTION

We consider the discrete memoryless wiretap channel shown

in Fig. 1 where the main channel and the eavesdropper’s

channel are both cyclic shift symmetric. Cyclic shift symmetric

channels are an important class that includes binary symmetric,

binary erasure, and type-writer channels. The capacity region

of a general wiretap channel is characterized by the rate, R,

between the legitimate users Alice and Bob, and the equivo-

cation, Re, at the eavesdropper Eve. Wyner [1] characterized

the rate-equivocation region when the received signal at Eve

is a degraded version of the signal received at Bob. Csiszár

and Körner [2] characterized the rate-equivocation region for

general, not necessarily degraded, wiretap channels.

Csiszár and Körner’s characterization involves two auxiliary

random variables: U , for rate splitting, and V , for channel

prefixing. In this paper, we explore the implications of cyclic

shift symmetry on the structure of the optimal selections of U
and V in a wiretap channel. Nair [3] characterized broadcast

channel capacity region of a specific class of two-user cyclic

shift symmetric broadcast channels. We studied similar classes

in the wiretap channel context in [4] where we showed that

optimal U and V have simplified structures for specific wiretap

channels. In particular, we proved that rate splitting U and/or

channel prefixing V is not necessary (i.e., optimal selection is

U = φ and/or V = X) for particular classes of cyclic shift

symmetric wiretap channels.
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CCF 09-64645 and CCF 10-18185.
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Fig. 1. The wiretap channel.

In this paper, we characterize the rate-equivocation region

for the entire class of cyclic shift symmetric wiretap channels.

We find the optimal selection of U and V for these channels

in terms of the solution of an auxiliary optimization problem

that involves only one auxiliary random variable, which is a

significant reduction for the amount of calculations needed

for the characterization of the rate-equivocation region. We

provide a cardinality bound on the auxiliary random variable

for the calculation of the optimal value. Then, we formulate

the problem as a constrained optimization problem. Finally,

we apply our results to the binary-input cyclic shift symmetric

wiretap channels. In this case, each point on the boundary of

the rate-equivocation region is calculated by a three-variable

constrained optimization problem. We show that the problem

gains sufficient structure under the cyclic shift symmetry

assumption and the sub-optimal candidates for the optimal

solution can be ruled out by inspecting the I(X;Y )−I(X;Z)
function. We investigate two specific examples: BSC-BEC and

BEC-BSC wiretap channels. We provide full characterizations

for the rate-equivocation regions of the BSC-BEC and BEC-

BSC wiretap channels. In particular, we find that rate-splitting

is never necessary for the BSC-BEC wiretap channel.

II. MODEL AND BACKGROUND

As in Fig. 1, Alice communicates with Bob in the presence

of an eavesdropper, Eve. The input and output alphabets, X ,

Y and Z , are finite. The main channel is characterized by

p(y|x) and has capacity CB = maxPx
I(X;Y ). Similarly

the wiretapper channel is characterized by p(z|x) and has

capacity CE = maxPx
I(X;Z). Both p(y|x) and p(z|x)

are cyclic shift symmetric. A channel p(y|x) is cyclic shift

symmetric if I(X;Y ) is invariant under cyclic shifts of the

input distribution [5]. A key property of cyclic shift symmetric



channels is that the input distribution that maximizes the

mutual information is the uniform distribution [5, Theorem

2]. Hence, CB = Iu(X;Y ) and CE = Iu(X;Z) where u is

the |X | dimensional uniform distribution.

W represents the message to be sent to Bob and kept secret

from Eve with W ∈ W = {1, . . . , 2nR}. Alice uses an

encoder ϕ : W → Xn to map each message to a channel

input of length n. Bob uses a decoder ψ : Yn → W . The

probability of error is: Pe = Pr [ψ(Y n) 6= W ]. The rate R is

achievable with equivocation Re, if Pe → 0 as n→ ∞, and

Re = lim
n→∞

1

n
H(W |Zn) (1)

Perfect secrecy1 is achieved if 1
n
I(W ;Zn) → 0 and the

secrecy capacity Cs is the highest achievable perfectly secure

rate R. The maximum possible equivocation is also Cs.

Throughout the paper, fµ(.) denotes the following function

of the input distribution Px

fµ(Px) = (µ+ 1)I(X;Y ) − I(X;Z) (2)

where µ ≥ 0 is an arbitrary parameter. We denote f0(.) simply

as f(.). Note that fµ(.) is continuous and differentiable for all

µ ≥ 0.

Csiszár and Körner [2] characterized the entire rate-

equivocation region as stated in the following theorem.

Theorem 1 ([2, Corollary 2]) (R,Re) pair is in the rate-

equivocation region if and only if there exist U → V → X →
Y,Z such that I(U ;Y ) ≤ I(U ;Z), and

0 ≤ Re ≤ I(V ;Y |U) − I(V ;Z|U) (3)

Re ≤ R ≤ I(V ;Y ) (4)

Further, the secrecy capacity is

Cs = max
V →X→Y,Z

I(V ;Y ) − I(V ;Z) (5)

Finally, the cardinality bounds on the alphabets of the auxil-

iary random variables are

|U| ≤ |X | + 3 (6)

|V| ≤ |X |2 + 4|X | + 3 (7)

The rate-equivocation region of a wiretap channel is a

convex region. Therefore, the upper right boundary is traced

by solving the following optimization problem for all µ ≥ 0
as in Fig. 2:

max
U,V,X

µI(V ;Y ) + I(V ;Y |U) − I(V ;Z|U) (8)

Note that this optimization problem is computable due to the

bounds on the sizes of U and V in (6) and (7) in Theorem 1. In

the sequel, we refer to the solution of the optimization problem

in (8) as the optimal selections U∗, V ∗ and X∗. These optimal

selections depend implicitly on the value of µ. The optimal

value of the objective function in (8) at µ = 0 is the secrecy

1We use the weak secrecy notion. However, for discrete wiretap channels
weak and strong secrecy are equivalent [6], [7].
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Fig. 2. Characterization of the upper right boundary of the rate-equivocation
region.

capacity Cs. In this case, U is unnecessary, and in fact, we

get (5) [2]. Note that the bounds on the cardinalities of U and

V in (6)-(7) in Theorem 1 are valid in general. However, the

specific cardinality bound on V for the optimization problem

in (8) when µ = 0, or equivalently the problem in (5), is

|V| ≤ |X | (9)

In order to prove the cardinality bound in (9), given V →
X → Y,Z with PMFs p(v) and p(x|v), we fix the following

|X | continuous functions of p(x|v):

gj(pX|V (x|v)) =

{

pX|V (j|v), j = 1, . . . , |X | − 1
f(p(x|v)), j = |X |

(10)

From Lemma 3 in [8] and the strengthened Caretheodory

theorem of Fenchel-Eggleston in [9], we can find another

random variable V
′

with cardinality at most |X | such that

V
′

→ X → Y,Z and

I(X;Y |V ) − I(X;Z|V ) = I(X;Y |V
′

) − I(X;Z|V
′

) (11)

as well as

p(x) =

∫

pX|V (x|v)dF (v) =
∑

v
′

pX|V ′ (x|v
′

)p(v
′

) (12)

for x = 1, . . . , |X | − 1; see also Appendix C in [10]. Since

I(X;Y )−I(X;Z) remains unchanged, I(V ;Y )−I(V ;Z) =
I(V

′

;Y ) − I(V
′

;Z). Therefore, |V| ≤ |X | cardinality is

sufficient to solve (5).

III. CHARACTERIZATION OF THE RATE-EQUIVOCATION

REGION

In the following theorem, we determine the structure of

the optimal auxiliary random variables U∗ and V ∗ as well

as the channel input X∗ for cyclic shift symmetric wiretap

channels. Remarkably, the optimizing rate splitting U∗ and

channel prefixing V ∗ parameters can be determined by solving

an auxiliary optimization problem over only one auxiliary

random variable. In addition, the cardinality bounds on U∗

and V ∗ are reduced to |X | and |X |2, respectively, compared

to the general case in (6) and (7). We provide the proof of this

theorem in the Appendix.



Theorem 2 In a cyclic shift symmetric wiretap channel, the

optimal selection of the auxiliary random variables U∗ and

V ∗ in (8) have the cardinalities |U| ≤ |X | and |V| ≤ |X |2,

respectively, with the following structure:

p(U∗ = u) =
1

|X |
, u ∈ {1, . . . , |X |} (13)

p(V ∗ = (u− 1)|X | + v|U∗ = u) = p(V̂ = v),

u, v ∈ {1, . . . , |X |} (14)

p(V ∗ = v|U∗ = u) = 0,

u ∈ {1, . . . , |X |}, v /∈ {(u− 1)|X | + 1, . . . , u|X |}
(15)

p(x|V ∗ = v + (u− 1)|X |) = p(x|V̂ = v)(u− 1),

u, v, x ∈ {1, . . . , |X |} (16)

where p(X = x|V̂ = v)(u−1) denotes the u−1st cyclic shift

of the distribution p(x|V̂ = v). Moreover, the distributions

p(V̂ = v) and p(X = x|V̂ = v) with |V̂| ≤ |X | are the

optimizers of the following auxiliary problem:

max
p(V̂ ),p(X|V̂ )

(

f(Px) − EV̂

[

fµ

(

p(X|V̂ )
)]

)+

(17)

where (x)+ = max{0, x}.

We illustrate the specific structure of the optimal auxiliary

random variables and the channel input in Fig. 3. In particular,

each element of U∗ generates the optimizing PMF p(V̂ )
over |X | elements of V ∗. The first |X | elements of V ∗

generate the optimizing conditional PMF p(X|V̂ = v) over

X . The remaining elements of V ∗ generate cyclic shifts of

p(X|V̂ = v) over X . An equivalent representation for the

optimal selections can be obtained by letting V ∗ = (V ∗
1 , V

∗
2 )

with |V∗
1 | = |V∗

2 | = |X |:

p(U∗ = u) =
1

|X |
, u ∈ {1, . . . , |X |} (18)

p(V ∗ = (v1, v2)|U
∗ = u) = p(V̂ = v1)δ(v2 − u)

u, v1, v2 ∈ {1, . . . , |X |} (19)

p(x|V ∗ = (v1, v2)) = p(x|V̂ = v1)(v2 − 1)

v1, v2 ∈ {1, . . . , |X |} (20)

Note that U∗ is a deterministic function of V ∗ as stated in

[2, Theorem 1]. This is verified easily from the equivalent

representation in (18)-(20). Given V ∗ = (V ∗
1 = v1, V

∗
2 =

v2), U
∗ = v1 with probability 1. However, V ∗ is a stochastic

function of U∗. These can also be verified from Fig. 3.

The optimization problem in (17) is a constrained optimiza-

tion problem over |X |2−1 variables: |X | probability distribu-

tions on X , p(X = x|V̂ = vi). Each probability distribution

accounts for |X | − 1 variables for i = 1, . . . , |X |. In addition,

the distribution for V̂ accounts for |X | − 1 variables. Let us

define λi , p(V = vi) and
[

p
(i)
1 p

(i)
2 . . . p

(i)
|X |

]

, p(X =

x|V = vi). We have λi ≥ 0, p
(i)
j ≥ 0 and

∑

i λi = 1,
∑

j p
(i)
j = 1. The following is a restatement of the constrained

1

2

1

1

2

|X |

2|X |

|X |2

|X |
p(X

|V̂
= v)

p(V̂ )

p(V̂ )

p(V̂ )

V ∗

XU∗
v

v

v

|X |

p(X
|V̂

= v)(
1)

(|X | − 1)|X |

p(X|V̂ = v)(|X | − 1)

Fig. 3. The structure of the optimal U∗ → V ∗ → X for cyclic shift

symmetric wiretap channels. p(V̂ ) and p(X|V̂ = v), v ∈ {1, . . . , |X |} are
the solutions of the auxiliary optimization problem in (17).

optimization problem in (17):

max
{λi},{p

(i)
j

}

f

(

∑

i

λip
(i)
j

)

−
∑

i

λifµ(p
(i)
j )

s.t.
∑

i

λi = 1,
∑

j

p
(i)
j = 1, λi ≥ 0, p

(i)
j ≥ 0 (21)

Note that the cyclic shift symmetry assumption on Bob’s

and Eve’s channels yields a significant reduction in the car-

dinalities of the auxiliary random variables. In particular, the

bound on the rate splitting variable reduces from |X | + 3 to

|X | and the bound on the channel prefixing variable reduces

from |X |2 +4|X |+3 to |X |2. In fact, the problem in (17) for

µ = 0 is equivalent to finding the secrecy capacity Cs. Thus, in

cyclic shift symmetric wiretap channels, solving a problem of

the same number of variables as finding the secrecy capacity

is sufficient to characterize the optimal selections of U and

V for any point on the boundary of the rate-equivocation

region. Another remark is that the constrained optimization

problem in (21) for µ = 0 is equivalent to finding the secrecy

capacity for general wiretap channels not necessarily cyclic

shift symmetric.

The structure of the optimal auxiliary selections U∗ and

V ∗ for cyclic shift symmetric wiretap channels in Theorem

2 indicates a sufficient condition for U = φ to be an optimal

selection: If the optimizing p(V̂ ) is uniform and p(X = x|V̂ =
vk), k = 1, . . . , |X | in (17) is such that

p(X = x|V̂ = vk)(k − 1) = p(X = x|V̂ = v1), ∀k (22)

that is, if the prefix channel V̂ → X has symmetric transition

probabilities and the optimum p(V̂ ) is uniform, then rate

splitting is not necessary. In this case, p(V̂ ) is uniform and as

V̂ has cardinality |X |, it generates a uniform distribution over

X . Therefore, selecting V̂ uniform with the prefix channel



V̂ → X maximizes I(X;Y ) and hence the objective function

in (8) (c.f. the proof of Theorem 2 in Appendix). In other

words, if (22) is satisfied, then U∗ and V ∗ as selected in

(13)-(16) yield a uniform PMF for p(X|U∗ = u) for all

u ∈ {1, . . . , |X |}, i.e., U∗ is independent of X . Therefore,

if (22) is satisfied, U = φ can be selected without losing

optimality, i.e., U is not necessary.

Next, we consider a sub-class of cyclic shift symmetric

channels, namely dominantly cyclic shift symmetric channels

(c.f. [3, Definition 5]).

Definition 1 A cyclic shift symmetric wiretap channel is dom-

inantly cyclic shift symmetric if f(u) ≥ f(Px), ∀Px ∈ ∆,

where u is the |X | dimensional uniform distribution.

Note that from [11, Theorem 3] and the fact that the uniform

distribution is capacity achieving for cyclic shift symmetric

channels, a less noisy cyclic shift symmetric wiretap channel

is also dominantly cyclic shift symmetric (see also [12]).

Based on the analysis in [4], we observe that the solution

of (17) satisfies the property in (22) if the wiretap channel is

dominantly cyclic shift symmetric.

Lemma 1 For dominantly cyclic shift symmetric wiretap

channels, a solution of the problem in (17) is a selection

p(X = x|V̂ = v) that satisfies the condition in (22).

By Lemma 1 and the structure in Theorem 2, U∗ = φ for

dominantly cyclic shift symmetric channels and the entire rate-

equivocation region can be attained by channel prefixing alone.

We remark here that if the wiretap channel is dominantly

cyclic symmetric, then known inner and outer bounds on the

corresponding broadcast channel capacity region are shown

to coincide in [3]. Therefore, the broadcast channel capacity

region, which is in general an open problem, can be fully

characterized for dominantly cyclic shift symmetric channels.

We observe here that dominant cyclic symmetry yields a

similar simplification for the wiretap channel, rendering rate

splitting variable U unnecessary. However, note that the class

of cyclic shift symmetric wiretap channels for which rate

splitting is unnecessary is strictly larger than the class of

dominantly cyclic shift symmetric channels. In fact, for all

cyclic shift symmetric channels which satisfy (22), U = φ
is optimal and dominant cyclic shift symmetry is just a

sufficient but not necessary condition for the property (22). In

Section IV, we provide examples for binary-input cyclic shift

symmetric wiretap channels that are not dominantly cyclic

shift symmetric but for which rate splitting is still unnecessary.

We note that the results obtained for discrete alphabet cyclic

shift symmetric channels naturally extend if the alphabets are

bounded continuous intervals. In particular, the definition of

cyclic shift symmetry extends naturally for X = [0, b): If

I(X;Y ) is invariant under any modular shift in the input

PDF, the channel is cyclic shift symmetric. Typical examples

of continuous alphabet cyclic shift symmetric channels are

modulo additive noise channels [13]. If cyclic shift symmetry

holds, the channel capacity is achieved at uniform distribution

over X . Hence, if both the main and eavesdropping channels

are cyclic shift symmetric, then the optimal selections U∗ and

V ∗ have the same structure as in Theorem 2. The definition

of dominant cyclic shift symmetry also extends similarly for

continuous alphabets and rate splitting is not necessary for

continuous alphabet dominantly cyclic shift symmetric wiretap

channels.

The result does not directly extend for unbounded input

alphabets, i.e., for b = ∞, with an average power constraint.

Even if the cyclic shift symmetry holds, it may not be possible

to generate Bob’s capacity achieving input PDF by shifting the

solution of the auxiliary optimization problem and therefore

the proof method in Theorem 2 is not directly applicable.

IV. BINARY-INPUT CYCLIC SHIFT SYMMETRIC WIRETAP

CHANNELS

In this section, we consider cyclic shift symmetric wiretap

channels with binary input: |X | = 2. Note that the cardinality

requirement on V to solve the problem in (17) is |V| = 2
for binary input wiretap channels. Let p(v1) = λ, p(x|v1) =
[p1, 1− p1] and p(x|v2) = [p2, 1− p2]. Let the resulting input

distribution be Px = [px, 1 − px]. The optimization problem

in (17) and (21) for the binary-input case reduces to:

max
λ,p1,p2

f(λp1 + (1 − λ)p2) − λfµ(p1) − (1 − λ)fµ(p2)

s.t. 0 ≤ λ, p1, p2 ≤ 1 (23)

A geometrical visualization for the problem in (23) is provided

in Fig. 4. Two points are picked from the x-axis and their

image on fµ are combined to form a line. λ determines the

point of operation and the value of the objective function is

the difference between f and the formed line segment at that

particular point.

The necessary optimality conditions for the problem in (23)

are found by taking the derivative of the objective function

with respect to p1, p2 and λ, respectively. If p∗1, p
∗
2, λ

∗ are

strictly interior to the [0, 1] interval, i.e., not equal to 0 or 1,

then

λ∗
(

f ′(λ∗p∗1 + (1 − λ∗)p∗2) − f ′µ(p∗1)
)

= 0
(24)

(1 − λ∗)
(

f ′(λ∗p∗1 + (1 − λ∗)p∗2) − f ′µ(p∗2)
)

= 0
(25)

(p∗1 − p∗2)f
′(λ∗p∗1 + (1 − λ∗)p∗2) − (fµ(p∗1) − fµ(p∗2)) = 0

(26)

Note that λ∗ 6= 0, 1 as the objective function in (23) takes

the value zero for λ = 0, 1. Hence, the optimality condition

in (26) always holds and we get:

f ′(λ∗p∗1 + (1 − λ∗)p∗2) =
fµ(p∗1) − fµ(p∗2)

p∗1 − p∗2
(27)

If, in addition, p∗1, p
∗
2 6= 0, 1,

f ′(λ∗p∗1 + (1 − λ∗)p∗2) = f ′µ(p∗1) = f ′µ(p∗2) (28)
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Fig. 4. Visualization of the optimization problem in terms of p1, p2 and λ.

If p∗1 = 0, 1 and p∗2 6= 0, 1, then

f ′(λ∗p∗1 + (1 − λ∗)p∗2) = f ′µ(p∗2) (29)

and similarly if p∗2 = 0, 1 and p∗1 6= 0, 1, then

f ′(λ∗p∗1 + (1 − λ∗)p∗2) = f ′µ(p∗1) (30)

The conditions in (27)-(30) have the following geometric

interpretation: In Fig. 4, the line drawn from (p∗1, fµ(p∗1)) and

(p∗2, fµ(p∗2)) must be tangent to the fµ curve at both points. If

p∗1 or p∗2 are 0 or 1, then this tangency does not have to hold at

that point. We illustrate these conditions in Fig. 5. We observe

that for the selections of p1 and p2 in the configurations a©
and d©, the line is tangent to fµ(px) at only one point and

the other point is either 0 or 1. However, b© and c© do not

satisfy the optimality condition as the p1 and p2 points lie

interior to [0, 1] but the line is not tangent to fµ. In fact, we

observe by inspection that a© and d© are the only possible

configurations in the particular values chosen in Fig. 5 that

satisfy the optimality conditions in (27)-(30).

Note that the geometric interpretation of the optimality

conditions provide a simple check if a point p ∈ (0, 1) is

one of the optimal selections p∗1, p
∗
2: Draw the tangent line

for fµ at p. If this tangent line does not intersect fµ other

than p or if it intersects at a point p′ ∈ (0, 1) but it is not

tangent at p′, then p cannot be an optimal selection. Also

note that optimality conditions do not rule out the trivial

selection p1 = 0 and p2 = 1. Hence, this selection is always

a candidate to be an optimal selection. This selection is

indeed optimal if f(px) ≥ 0 for all px ∈ [0, 1], i.e., when

the wiretap channel is more capable [4]. Geometrically, when

f(px) ≥ 0 the points (pi, fµ(pi)) have nonnegative y-axis

as fµ(px) ≥ f(px) ≥ 0. The level of the line segment is

the smallest when p1 = 0, p2 = 1. Moreover, the points

λp1 + (1 − λ)p2 span the space of two-dimensional PMFs

when p1 = 0 and p2 = 1. Hence, the difference of the function

and the line segment has the highest value when p1 = 0
and p2 = 1, that is, the optimal selection is p1 = 0 and p2 = 1.
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−0.04

0

0.04

px

f µ
(p

x
)

 

 

f(px)

fµ(px) for µ > 0
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a© b©
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Fig. 5. Optimality conditions for p1, p2 and λ. a© and d© satisfy the
optimality conditions while b© and c© do not satisfy the optimality condition.

A. The BSC-BEC Wiretap Channel

Let the main channel be BSC(ǫ) and the eavesdropper’s

channel be BEC(α). Note that both BSC and BEC are cyclic

shift symmetric. X = Y = {0, 1} and Z = {0, e, 1}. It can be

shown [3] that when p(y|x) is BSC(ǫ) and p(z|x) is BEC(α):

1) If α < 4ǫ(1 − ǫ), then f(px) is convex.

2) If 4ǫ(1 − ǫ) ≤ α ≤ h(ǫ), f(px) is non-convex and

f(px) ≤ 0.

3) If h(ǫ) < α, then f(px) is maximized at px = 0.5.

Rate splitting is not necessary [4] for α > h(ǫ) as f(px) is

maximized at px = 0.5 when α > h(ǫ). Moreover the required

channel prefixing has |V∗| = 2 with p(v1) = p(v2) = 1/2 and

p(x|v1) = [a, 1−a], p(x|v2) = [1−a, a] where [a, 1−a] is an

input distribution that maximizes [(µ+ 1)I(X;Y ) − I(X;Z)]
[4]. For α < 4ǫ(1 − ǫ), Eve is less noisy than Bob, and the

secrecy capacity is Cs = 0. We investigate the remaining case,

which is 4ǫ(1 − ǫ) ≤ α ≤ h(ǫ), in the next subsection.

1) The Case of 4ǫ(1 − ǫ) ≤ α ≤ h(ǫ): When 4ǫ(1 − ǫ) ≤
α ≤ h(ǫ) in the BSC-BEC channel, neither Eve is less

noisy nor the dominant cyclic shift symmetry holds. Secrecy

capacity is still non-zero in this case and the rate-equivocation

region has a non-empty interior. One can verify easily by

tracing all points in [0, 1] that there are only 5 configurations

that satisfy the necessary optimality conditions as well as the

trivial selection V = X , i.e., p1 = 0 and p2 = 1. However, the

trivial selection is immediately eliminated as fµ(px) ≤ 0 for

some px in this case, and hence V = X is strictly suboptimal

[4].

The other 5 configurations are shown in Fig. 6: In configu-

rations a©, b©, c© and d©, either p1 or p2 is on the boundary

and in configuration e©, both p1 and p2 are in the interior with

the property p1 ∈ arg minpx∈[0,1] fµ(px) and p2 = 1 − p1.

By comparing these three configurations, we observe that the

optimum selection is always configuration e©. In other words,

we have for µ ≥ 0 and for all 0 ≤ λ, p1, p2 ≤ 1,

f(0.5) − min
px

fµ(px)

≥ f(λp1 + (1 − λ)p2) − λfµ(p1) − (1 − λ)fµ(p2) (31)
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Fig. 6. Five configurations that satisfy optimality conditions. e© is always
the optimal.

Note that e© has the desirable property that cyclic shift of

[p1, 1 − p1] is [p2, 1 − p2], i.e., p2 = 1 − p1. This property

is equivalent to the one in (22) in the binary-input case.

Therefore, U = φ is optimal, and the upper right boundary of

the rate-equivocation region can be traced by V only. However,

unlike the case of h(ǫ) ≤ α, if 4ǫ(1 − ǫ) ≤ α ≤ h(ǫ), there

exists µ ≥ 0 such that f(0.5) < minpx
fµ(px). We define

µ∗ = min{µ : f(0.5) ≤ min
px

fµ(px)} (32)

For µ > µ∗, V defined as above cannot improve the objective

function. Thus, trivial V is the optimal selection for µ > µ∗.

However, the highest achievable equivocation with a trivial

V selection is zero as Eve’s channel is more capable with

respect to Bob’s channel in this case. Hence, for µ > µ∗, the

only possible achievable point is (CB , 0). The general form of

the rate-equivocation region is given in Fig. 7. The upper right

boundary includes the line segment that combines the point for

which the supporting line slope is µ∗ and the (CB , 0) point.

This line segment has the slope µ∗.

In conclusion, rate splitting U is not necessary for deter-

mining the rate-equivocation region of the BSC-BEC wiretap

channel and in particular the secrecy capacity is

Cs = f(0.5) − min
px

f(px) (33)

B. The BEC-BSC Wiretap Channel

Now, let the main channel be BEC(α) and the eavesdrop-

per’s channel be BSC(ǫ). X = Z = {0, 1} and Y = {0, e, 1}.

We have the following facts [3]:

1) If α < 4ǫ(1 − ǫ), then Bob is less noisy than Eve.

2) If 4ǫ(1 − ǫ) ≤ α ≤ h(ǫ), then Bob is more capable but

not less noisy than Eve.

and the rate-equivocation region is characterized for the above

cases in [4]. We investigate the remaining case, which is α ≥
h(ǫ) in the next subsection.

1) The Case of α ≥ h(ǫ): In the BEC-BSC wiretap

channel, if α ≥ h(ǫ), neither less noisy nor more capable

condition holds. We first solve the optimization problem in

(23) by inspecting the tangent lines drawn at interior points

p ∈ (0, 1). One can easily verify that, as in the BSC-BEC

slope= µ∗

CBCs R

Re

Cs

Fig. 7. The general form of the rate-equivocation region of the BSC-BEC
wiretap channel for 4ǫ(1 − ǫ) ≤ α ≤ h(ǫ).

channel, there are only 5 possible configurations that satisfy

the necessary optimality conditions in addition to the trivial

selection p1 = 0 and p2 = 1. As Bob’s channel is not

more capable with respect to Eve in this case and f(px) is

maximized at an interior point and the trivial selection V = X
is strictly suboptimal in this case [4]. In particular, the trivial

selection is not optimal for all µ such that fµ(p1) < 0 for

some p1 ∈ [0, 1]. We show the other 5 configurations in

Fig. 8. In configuration e©, p1, p2 ∈ (0, 1) with fµ(p1) =
fµ(p2) and f ′µ(p1) = f ′µ(p2) = 0. Hence, it satisfies the

optimality condition for λ = 0.5. However, the objective

function f(0.5) − 0.5 (fµ(p1) + fµ(p2)) < 0; therefore, this

configuration cannot be optimal. The other configurations a©,

b©, c© and d© have p1 or p2 on the boundary of [0, 1] interval

as shown in Fig. 8. We observe that a© and b© achieve the

same value of the objective function and it is always higher

compared to that achieved by c© and d©. Therefore, a© and

b© are optimal selections for the problem in (23). Note that

a© is obtained by cyclic shifts of b©. The configuration in

a© is also represented as p(X = 0|V = v1) = 0 and

p(X = 0|V = v2) = p1 where the line segment that combines

(0, 0) and (p1, fµ(p1)) is tangent to the curve (px, fµ(px)).
Similarly, b© is equivalent to p(X = 0|V = v1) = 1 and

p(X = 0|V = v2) = 1 − p1. The rate equivocation region is

traced by varying µ and finding p1 that satisfies the tangency

and λ∗ that yields the optimal value of the objective function

given p1. In particular, we define

µ∗ = min{µ ≥ 0|min
px

fµ(px) ≥ 0} (34)

For µ ≤ µ∗, we use the following U and V :

p(U = u1) = p(U = u2) = 0.5 (35)

p(V = v1|U = u1) = λ∗, p(V = v2|U = u1) = 1 − λ∗,
(36)

p(V = v3|U = u2) = λ∗, p(V = v4|U = u2) = 1 − λ∗,
(37)

p(X = 0|V = v1) = 0, p(X = 0|V = v2) = p1, (38)

p(X = 0|V = v3) = 1, p(X = |V = v4) = 1 − p1 (39)

For µ > µ∗, V is not necessary as fµ(px) ≥ 0 in this case.

We obtain a case similar to the more capable condition and

one can easily show that a non-trivial V does not improve

the objective function. As V is not used for µ > µ∗, the

achieved rate I(V ;Y ) = I(X;Y ) and optimal selection of U
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Fig. 8. Five configurations that satisfy the necessary optimality conditions
for the BEC-BSC wiretap channel. a© and b© are both optimal.

as in Theorem 2 generates uniform distribution on the channel

input X , which is capacity achieving for Bob’s channel.

Hence, for µ > µ∗, CB is achieved. The general form of

the rate-equivocation region is depicted in Fig. 9. Note that

the supporting line with slope µ∗ is on the boundary of the

rate-equivocation region.

V. CONCLUSIONS

In this paper, we studied cyclic shift symmetric wiretap

channels. We explicitly determined the optimal rate splitting

and channel prefixing variables that trace the rate-equivocation

region. We showed that in cyclic shift symmetric wiretap

channels, it suffices to solve an optimization problem only over

one auxiliary random variable, which significantly reduces the

amount of calculations needed and the required cardinalities

of the auxiliary random variables. We formulated the problem

as a constrained optimization problem and we applied our

results to binary-input cyclic shift symmetric wiretap channels

for which we solve a three-variable constrained optimization

problem. We characterized the rate-equivocation regions of the

BSC-BEC and BEC-BSC wiretap channels.

APPENDIX

For given µ ≥ 0, the optimal selections U∗ and V ∗ are the

solutions of the following optimization problem:

max
U→V →X→Y,Z

µI(V ;Y ) + I(V ;Y |U) − I(V ;Z|U) (40)

By using the fact that I(V ;Y ) = I(X;Y ) − I(X;Y |V ), we

obtain an equivalent statement for (40) as:

max
U→V →X→Y,Z

µI(X;Y ) + I(X;Y |U) − I(X;Z|U)

− [(µ+ 1)I(X;Y |V ) − I(X;Z|V )] (41)

We have the following for the objective function in (41):

µI(X;Y ) + I(X;Y |U) − I(X;Z|U)

−[(µ+ 1)I(X;Y |V ) − I(X;Z|V )]

Cs

slope= µ∗

CB

Re

R

Cs

Fig. 9. General form of the rate-equivocation region of the BEC-BSC wiretap
channel when α ≥ h(ǫ).

≤ max
Px

µI(X;Y )

+ max
U→V →X→Y,Z

I(X;Y |U) − I(X;Z|U)

− [(µ+ 1)I(X;Y |V ) − I(X;Z|V )] (42)

≤ µIu(X;Y ) + max
V̂ →X→Y,Z

I(X;Y ) − I(X;Z)

− [(µ+ 1)I(X;Y |V̂ ) − I(X;Z|V̂ )] (43)

where u denotes the |X | dimensional discrete uniform ran-

dom variable, and Iu(X;Y ) denotes the mutual information

obtained by choosing the PMF of X as u. In (43), we

used the fact that maxPx
I(X;Y ) = Iu(X;Y ) as Bob’s

channel is cyclic shift symmetric. Moreover, we used the

fact that U is not needed, i.e., U = φ, for maximizing

I(X;Y |U)− I(X;Z|U)− [(µ+ 1)I(X;Y |V )− I(X;Z|V )].
Because, for given U → V → X → Y,Z, we can always pick

ui ∈ U that maximizes

max
ui∈U

I(X;Y |U = ui) − I(X;Z|U = ui)

− [(µ+ 1)I(X;Y |V,U = ui) − I(X;Z|V,U = ui)]
(44)

and therefore, choose a deterministic U with U = u∗, where

u∗ is the argument of the maximization in (44). Note that the

last maximization in (43) is the claimed auxiliary optimization

problem in the statement of the theorem. We use V̂ notation

to emphasize that the channel prefixing auxiliary random

variables in (42) and (43) are different.

Next, we will show that the bound in (43) is satisfied with

equality for any cyclic shift symmetric wiretap channel. Let

V̂ with p(V̂ = v) and p(X|V̂ = v), v ∈ V , be the solution

of the auxiliary problem in (42). First, we note that it suffices

to consider V̂ such that |V̂| ≤ |X |. Given V̂ → X → Y,Z,

we fix |X |− 1 components of PX|V̂ (x|v̂), j = 1, . . . , |X |− 1,

together with (µ+ 1)I(X;Y |V̂ ) − I(X;Z|V̂ ). By Lemma 3

in [8] and the strengthened Caretheodory theorem of Fenchel-

Eggleston in [9], the problem in (42) can be solved with the

cardinality bound |V̂| ≤ |X |. Note the equivalence of the

operations performed for proving the bound in this problem

and those in (5).

Next, we will show that the bound in (43) is satisfied with

equality for any cyclic shift symmetric wiretap channel by a

specific structure of U∗, V ∗ in terms of the optimal V̂ for the

auxiliary problem in (42) as in the statement of the theorem. In



particular, we select U∗ and V ∗ as in the statement of Theorem

2 in (13)-(16) and as depicted in Fig. 3 with cardinalities

|U∗| = |X | and |V∗| = |X |2. Each element of U∗ generates

the optimizing selection p(V̂ ) for the problem in (42) over

disjoint |X | elements of V ∗. Each |X |-element block of V ∗

generates cyclic shifts of the optimizing selection p(X|V̂ ) for

the input X . In (13)-(16), we denote the kth cyclic shift of

the conditional PMF for the channel input X , p(x|V̂ = v), as

p(x|V̂ = v)(k). Note that the cardinality of V̂ is |X | while that

of the optimum V ∗ is |X |2 and |X |2 conditional input PMFs,

p(x|V ∗ = v), are obtained by cyclic shifts of |X | conditional

input PMFs, p(x|V̂ = v).

We first observe that p(x|U∗ = i) are cyclic shifts of a fixed

PMF over X for different i. In particular, in the construction in

(13)-(16), we selected p(x|V ∗ = v) as cyclic shifts of p(x|V̂ =
v) while we kept p(V ∗ = v) the same as p(V̂ = v). Hence,

we have

p(x|U∗ = i) = pf (x)(i− 1) (45)

where pf (x) =
∑|X |

v=1 p(x|V̂ = v)p(V̂ = v). Note that

pf (x) is the maximizing input PMF for the auxiliary problem.

Therefore, U∗ and V ∗ generate a uniform PMF for X:

p(x) =

|X |
∑

i=1

p(U∗ = i)p(x|U∗ = i) =

|X |
∑

i=1

1

|X |
pf (x)(i− 1)

(46)

=
1

|X |
(47)

Moreover, by construction of U∗ and V ∗ and the cyclic shift

symmetry of the channels, we observe that, for any given i,

|X |
∑

v=1

[

(µ+ 1)I(X;Y |V ∗ = v + (i− 1)|X |)

− I(X;Z|V ∗ = v + (i− 1)|X |)
]

p(V ∗ = v + (i− 1)|X ||U∗ = i)

=

|X |
∑

v=1

[

(µ+ 1)I(X;Y |V̂ = v) − I(X;Z|V̂ = v)
]

p(V̂ = v)

(48)

= (µ+1)I(X;Y |V̂ ) − I(X;Z|V̂ ) (49)

Therefore, we have

(µ+ 1)I(X;Y |V ∗) − I(X;Z|V ∗)

=

|X |2
∑

v=1

(

(µ+ 1)I(X;Y |V ∗ = v)

− I(X;Z|V ∗ = v)
)

p(V ∗ = v) (50)

=

|X |
∑

i=1

|X |2
∑

v=1

(

(µ+ 1)I(X;Y |V ∗ = v)

− I(X;Z|V ∗ = v)
)

p(v|U∗ = i)p(U∗ = i) (51)

=
1

|X |

|X |
∑

i=1

|X |
∑

v=1

(

(µ+ 1)I(X;Y |V ∗ = v + (i− 1)|X |)

− I(X;Z|V ∗ = v + (i− 1)|X |)
)

p(V̂ = v) (52)

= (µ+ 1)I(X;Y |V̂ ) − I(X;Z|V̂ ) (53)

where (53) is obtained by using (49) and the fact that

p(v|U∗ = i) is non-zero only for (i− 1)|X | + 1 ≤ v ≤ i|X |.
Note that

I(X;Y |U∗ = i) − I(X;Z|U∗ = i) = f(pf (x)(i− 1)) (54)

= f(pf (x)), ∀i (55)

Hence, given U∗ = i, we have

I(X;Y |U∗ = i) − I(X;Z|U∗ = i)

−
[

(µ+ 1)I(X;Y |V ∗) − I(X;Z|V ∗)
]

= f(pf (x)) −
[

(µ+ 1)I(X;Y |V̂ ) − I(X;Z|V̂ )
]

(56)

As pf (x) is the maximizing input PMF for the auxiliary

problem, we have

I(X;Y |U∗)−I(X;Z|U∗)

−[(µ+ 1)I(X;Y |V ∗) − I(X;Z|V ∗)]

= max
V̂ →X

I(X;Y ) − I(X;Z) (57)

−[(µ+ 1)I(X;Y |V̂ ) − I(X;Z|V̂ )] (58)

Since U∗ and V ∗ generate a uniform PMF for X by (47),

I(X;Y ) achieves its maximum, as well. Combining this with

(58), we conclude that the constructed U∗ and V ∗ achieve the

upper bound in (43) and hence are optimal.
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