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Abstract—We consider the capacity of memoryless finite-state with asymmetric delayed state information at the transmstt

multiple access channel (FS-MAC) with causal asymmetric risy  are studied and their capacity region is determined.
state information available at both transmitters and compkte

state information available at the receiver. Single letterinner
and outer bounds are provided for the capacity of such chanrle The most relevant work to our paperlis [11], which obtained

when the state process is independent and identically disbuted. g single letter characterization of the capacity region for
The outer bound is attained by observing that the proposed iner  yemoryless FS-MAC in which transmitters have asymmetric
bound is tight for the sum-rate capacity. . . - .
partial quantized state observations and the receiver tihs f

state information. In this work, the authors were inspinexaif
team decision theory [12], [13]. We herein mainly adopt the

Modeling communication channels with a state process fitenverse technique presented in][11] and partially exténd i
well for many physical scenarios. For single-user channets a noisy setup. The present paper, thus, studies the FS-
the characterization of the capacity with various degrees MIAC in which each of the transmitters have an asymmetric
channel state information at the transmitter (CSIT) andhat tstate information which is corrupted by an i.i.d. noise s
receiver (CSIR) is well understood. Among them, Shannamd the receiver has complete state information. We provide
[1] determined the capacity formula when causal noiseleassingle letter inner bound to the capacity region, in terins o
state information is available at the transmitter, wheatesis Shannon strategies|[1]. By observing that this inner bosnd i
independent identically distributed (i.i.d.). The samelpem tight for the sum-rate capacity, we also provide an outenou
with non-causal side information is consideredlin [2]. [} [3to the channel's capacity region. We modify the approach in
Shannon’s result is extended to the case where noisy stfdi§] to account for the fact that the decoder does not have
observation is available at both the transmitter and theivec access to the state information at the encoders, and that the
Later, in [4] this result has been shown to be a special casepaist state information does not lead to a tractable reaursio
Shannon’s model and the authors also determined that when

CSIT is a deterministic function of CSIR optimal codes can The rest of the paper is organized as follows. In Sedfibn I

be constructe.d directly 9” th_e Input -alphabet. ) we formally state the problem, present inner and outer bsund
In the multi-user setting) [5] provides a multi-letter chary, he capacity region with the achievability and converse

acterization of the capacity region of time-varying mueip ,q¢s and in Sectiofilll we present concluding remarks.
access channels (MACs) with various degrees of CSIT and

CSIR. In [6], a general framework for the capacity region ) ) )
of MACs with causal and non-causal CSI is presented. In Throughout the paper we will use the following notations. A

a related work, MACs where the encoders have degrad@pdom variable will be denoted by an upper case leftend
information on the channel state, which is coded to tHE particular realization by a lower case letierFor a vector
encoders, is considered [7]. [ [8], memoryless FS-MAC&wit> @nd a positive integei, v; will denote thei-th entry ofv,
two independent states (see alsb [9] for the single state),cad/hile vy = (v1, -+, v;) will denote the vector of the first
each known causally and strictly causally to one encoder, &ntries ofv. For a finite setd, P(A) will denote the simplex
considered and an achievable rate region, which is Showanoprobabmty distributions overA: Probability distributions
contain an achievable region where each user applies Shanfit denoted byP(.) and subscripted by the name of the
strategies, is proposed. 1A][8] and [9] it is also shown thigndom variables and conditioning, e.&by,ryv,s(u, t[v, 5)

strictly casual state information does not increase thesaten 'S the conditional probability of U = w,T" = ) given

capacity. More recently, i [10] finite-state Markovian MaC (V' = v,5 = s). Finally, for a positive integen, we shall
denote byA™ :=J,_,_, A° the set ofA-strings of length
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Research Council of Canada (NSERC). by 1;z;. All sets considered hereafter are finite.
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The system’s probability of erroi?, ) is given by

Sy L ‘
. gnRa gnRy
w. | Encoder | Xt sy Do 2o P (60 Spup) # (we, wn)[W = w).
W s : e |
L Channel Yy Decoder Wa,  Arate paw(]i_’a_, Ry) is achievable if for any > 0 there exists,
Sy X for all n sufficiently large, an(n, 2" 27%+) code such that
] PR S =6 (Vg Spe) Weo Liog M, > Ry > 0, Llog My > Ry > 0 and P < e. The
We | Encoder capacity region of the FS-MAQ] g, is the closure of the set
& (Wy, SY) Xt of all achievable rate pairR,, R,) and the sum-rate capacity
is defined as’f := max (g, r,)ccps(Ra + Rb).
Sf)t] Before proceeding with the main result, we introduncem-
oryless stationary team policigd1] and their associated rate

regions. We first define Shannon strategies.

Fig. 1. The multiple-access channel with noisy state feekdba Definition 2: Let the set of all possible functions frosf*
to X* andS® to X be denoted byT® and 7?, respectively,
where 7% = x5 and 70 = A%, Let 7o € 77 and
T® € T* be two T%-valued and7?-valued random vectors,
respectively, referred to as Shannon strategies.

Consider a two-user memoryless FS-MAC, with two en- Definition 3: _[11] A memoryless stationary (in time) team
coders,a, b, and two independent message sourdés and Policy is a family
W, which are uniformly distributed in the setdl/, < _ _ e . a b
{1,2,--- ,M,} and W, € {1,2,---, M}, respectively. The = {W = (mre () () € PTH) < P(T )} ®)
channel inputs of the encoders ak& and X?, respectively. of probability distributions on the two sets of random func-
The channel state process is modeled as a sequeh¢ge, tions. For every memoryless stationary team policyR(n)
of i.i.d. random variables in some spaSeThe two encoders denotes the region of all rate paifs= (R,, R;) satisfying
have access to causal noisy version of the state information

Il. ON THE CAPACITY OF FS-MAC WITH Noisy CSIT
AND COMPLETECSIR

a. b
at each time > 1 modeled byS¢ € §¢, S} € S, respectively Ra < I(Tb’ Y|Ta’ %) (4)
and as such the joint distribution 68, S¢, S?) satisfies Ry < I(T%Y|T*,5) (5)
R, +R, < I(T*T%Y|S) (6)

Poa $%, 8% s1) = Pgays, (s|s¢) P, $Y|s Ps,(s¢). (1
5 ’SS’St( it s) spis. (sEse) SS‘St( tlst)Ps. (). (1) where S, T¢, T andY are random variables taking values
We also assume tha, is fully available at the receiver (seein S, 72, 7 and), respectively and whose joint probability
) and that(S;, S¢, S?) are independent afiv,,, W) vt > 1.  distribution factorizes as
The channel inputs at timeg i.e., X and X?, are functions P (5,4% %, y)
of the locally available informatiofi,, Sf;;) and (W, Sp,). 8.Te. T, ¥ \5 50 Y o . ,
Let W := (W,, W) and X := (X¢ X°). Then, the laws = Ps(s) Py e, s(ylt?, 17, s)mra () mps (£7). (7)
governingn-sequences of state, input and output letters ajge can now state the inner bound to the capacity region. Let
given by .
Cin = c| U, R(m) ) denotes the closure of the convex
PYM\w.,x[n].,s[n].,s&],sfn] (y[n]|wvx[n}a3[n]aSfln]vsfn]) hull of the rate regionsk () given by [4){6) associated to
n all possible memoryless stationary team polices as defimed i
= HPyt|xg,x§),s,(yt|$?7$f7St), 2 @.
t=1 Theorem 1 (Inner Bound)C;y C Crs.
where the channel's transition distribution,The z_;tch|evabll|ty proof follows the standard argumentooft]
e-typical n-sequences [14, Section 15.2].

Py xa z%, al, s,), is given a priori. T : .
vi|xp xts, (Wlods 20, 5), 1 G b Definition 4: [14, Section 15.2] The set” of e-typical n-

Definition 1: An (n, 2"« 2nf) code with block lengtm

and rateg R,, R;,) for an FS-MAC with noisy state feedbacksequenceg‘(x[ln]’ o ’xfn])} With respect to the distribution
consists of Pyi .. xr(2!,--- 2F) is defined by
(1) A sequence of mappings for each encoder AP = {(x[ln]7 ... ,xfn]) exlx...xk.
A (S X W, = Xy, t=1,2,..m; 1
O S XWX, t=1,2, .. | = —~log (P(s)) — H(S)| < 6 VS C {X,--- ,X’“}}

2) An associated decoding function where s denotes ordered set of sequenceszly, - ,f,,

Y (S)" XY = We X W corresponding tcs.



Proof of Theoreni]1:Fix (R,, Ry) € R(r). are independent and(7%Y,T% S) = I(T%T%S) +
Codebook Generation Fix mra (t*) and 7y (t°). For each I(T®;Y|T¢,S) = I(T*Y|T*, S), where I(T*;T* S) = 0.

w, € {1,---,2"Ra} randomly generate its corresponding Following the same steps fén # 1,3 = 1) and(a # 1,3 #
tuple ¢f,, . each according tq[;_, mra(t{,, ). Similarly, 1) we get
For eachw, € {1 -, 2781 randomly generate its corre-

n[Ra—I(T%Y|T?,S)—3¢
spondingn-tuple ¢}, «,» €ach according §[;", 77 (tfwb) Z P(Eq,) < 20tV 573,
These codeword pairs form the codebook, which is revealed arlp=1 .
to the decoder while codewords,, is revealed to encodér Z P(Eq 5) < 2nlBatBo— 1T T7Y]S)=3¢] (10)
1 ={a,b}. a#1,5#1
Encoding Define the encoding functions as follows:
wi(we) = Of(wa,sy) = t2, (s8) and zl(w,) =

K2

and the rate conditions of ttfé(r) imply that each term tends
in (@) tends to zero aa — oco. This shows the achievability
Op(wy, sfy) = t7.,,(s}) where t?,wa and ¢}, denote the of 3 rate pai R,, R,) € R(r). Achievability of any rate pair
ith component oft, — and tn |y respectively, ands{ in C;y follows from a standard time-sharing argument. m

and s® denote the Iast componest, and s L respectively, We now present an outer bounddes, which is obtained by

¢t = 1,---,n. Therefore, to send the message,e and wy,, providing a tight converse to the sum-rate capacity. Let
we srmply transmit the correspondrrrgn] and tbn wp?
respectively. Cour = {(Ra,Rb) ERT xR":
Decoding After recervrng(y[n], n), the decoder looks for
the only (wq,w,) pair such that(t“]% (nLws  Yinl> Sin]) Ry + Ry < sup I(Ta’Tb;Yls)}.
are jointly e—typical and declares this pair as its estimate mra (1) (£°)
(waawb)
Error Analysis Without loss of generality, we can as- Theorem 2 (Outer BoundXrs C Cour-
sume that(w,,w,) = (1,1) was sent. An error occurs, Proof: We need to show that all achievable rates satisfy

if the correct codewords are not typical with the received
sequence or there is a pair of incorrect codewords that

are typrcal with the received sequence. Define the events
R i.e., a converse for the sum-rate capacity. We use the cemver
a,,é’—{ T[n]yaaT[n]_ﬂa naS[n] EAe}, a € {11 72 a}

5 : technique of [[11] and extend it to a noisy setup. Therefore,
andg € {1,---,2™%}. Then by the union bound we get following [L1] let a, :— %Ps[t,l (), ne) =

R.+ Ry < sup I(T*,T%Y|S),

mra (8) T (t°)

Pr=P(E, |J Eap)<P(ES,) ") Observe thatim, o 7(¢) = 0 and
(@,B)£(1,1) .
+ Y PBap)+ Y P(EBap)t+ Y P(Bag) > a0 = n > 2 Pugl)=1,
a=1,8#1 a#1,8=1 a#1,841 oesm Istsn oesCt-D

(8) whereS(™ andS~1 are the sets of alb-strings of length

whereP(E$ ;) denotes the probability that no message pair Té and (t = 1), respectivelyb First (lr)ecall thabt sincl:)K;l =
jointly typical. It can easily be verified thdt;, S;, T, TP}, o1 (WU«’S[t 1) a) and Xy = ¢, (Wb?s[t 1) St)r we

is an i.i.d. sequence and by [14, Theorem 15. 1P4{]El71) — have
0 for sufficiently largen. Next, let us consider the second term

To = ¢ (Wa, Sg,l]) e xelsl,
Y P(Bazipn)

b I5°
a=1,8#1 T = 6" (Wbast 1]) ex’” . (11)
= > P((T{1Thy s Vi Sial) € AY) We now show that the sum of any achievable rate pair can
a=1,8#1 be written as the convex combination of conditional mutual
O] Z Z P (t%n]) information terms Which_are indexed by the realization dftpa
a=TH#1 (12 " JeAn " complete state information.
SRR Lemma 1:Let T € 7% and T} € T be the Shannon
PT[n]-ranr St (2, [n]> Y[nl> S[n ) strategies induced by¢ and ¢!, respectively, as shown in
< Z | AT |2l H(T") =g =nlH(T*,Y,5)~d (IT). Assume that a rate pait = (R,, R;), with block length
sy ‘ n >1 and a constant € (0,1/2), is achievable. Then,
< gnfiegmnlH(IN)HH(T XY,8) ~H(T* 17.Y5) =5 Ro+ Ry < Y agl(T{, T} YilS,, Sy = 0) +n(e). (12)
@) gn[Ry—I(T";Y'|S,T)~3¢] 9) oeS™

. N a b [ i
where (i) holds since for3 # 1, T}, , is independent Proof: Let T := (T¢", T7). By Fano's inequality, we get

of (T3 1, Yn)» Spy) @nd (i) follows sinceT” and (7, ) H(W Y}, Siy) < H(e) 4 elog(IWa|[Wh)). (13)



Observing that where(a) is valid sincel (T{", T7; Y|Spy) < log|Y|. Further-

more,
= log(Wal[Wol) = H(W Y, Spa))(14) - 1(72, 125 V4| Sp)
Combining [18) and[{14) gives —n Z o I(T8, TE; Yy |Sh, Sppyy = o), (19)
(1 =€) log(|Wal|[Ws|) < I(W; Yi, Spuy) + H (€) oesty
and and substituting the above into {18) yields](12). [ |
1 Observe now that, for any> 1, (T, T}; Y3| S, Sji—1) = o)
Rat B = o log([Wal[Wel) is a function of the joint conditional distribution of chagin
11 stateS;, inputs72, T? and output’; given the past realization
l—en (LW Yiug, Siay) + H{(e)) - (15) (Sg—11 = o). Hence, to complete the proof of the outer
Furthermore (W Y],, Sj,,)) can be written as bound, we need to show thB. 7 v, g5, (tF: 17, Yt, 5e|0)
. factorizes as in[{7). This is done in the lemma below. In
H(Y,. S|S0 . Yo 1) — H(Y.. S, [W. S v parUcuIar it is crucial to .observe that thg complete state
;[ (¥, StlSje-1» Yie-1)) (Vi, 5[ W, Sje-1, Vie—1) observation at the decoder is enough to provide a produtt for
on onT* and7®. Before stating the lemma, let us introduce some
@ Z [H(Yy|Su), Yie—1)) — H(Y:[W, Sy, Yie—1))] more notations. Let, and o, denote particular realizations
t=1 of St andSt 1 respectively. Let
(i) &
< H(Y;|Si) — H(Y;|W, Sy, Y11, T « ra a a a
;[ (YelSp) (Y3 [t]> H[t—1] t)} e (t%) := {w, : ¢1(e )(wajs[t_l] = 0a) = t°},
n bo(4b (b) b b
(iid) Yo, (") == {ws : &y (wp, s}_q = 0b) =t"} (20)
=Y [H(YIS) — H(Yi|Spy, T1)] ’ Lo
=t and
= I(T4; Yi|S) (16) 1
t=1 7T’I‘a (ta) = Z |W |7
where(i) follows from the fact thas, is i.i.d. and independent wa€T5, (1)
of W, in (i), T := (Tta,Tb) are Shannon strategies whose o (th) = Z | 1 ,

realizations are mapping$ : S; — X} for i = {a,b} and
thus (i7) holds since conditioning reduces entropy. Finally,

(iii) follow since Ta(t*) = ZW _ylSi-n (7alo);

a 4b
Py, 1w, St,Sp—11: Y- 1],T37Ttb(yt|waStvs[tfl]vy[tfl]attvft)

wpETh (1) Wil

b
o 5 (%) = Zﬂ' [r e 1](ab|a). (21)
- Z PY,\St,S ,Sf,Tta,Ttb(yt|St75t7Stvttvtt)
‘St7‘st
XPsg,sg\st(S?asﬂst) Lemma 2:For everyl < t < n ando € (S)'!, the
following holds
= Py, s, 110 (Yelse, 18, 17) 17) 9

where the first equality is verified by1(2), wherg = ti(s;)  Pr. 1y, 5,15, ,, (1", 5l0)
for i = {a,b}, and by{St} being i.i.d. and independent of "

= Ps(s)Py|g.1e ) TG ()75 (). (22
W. Now, let x(e) := ﬁ( > and combining[(I5)K(16) gives 5(5)Py s e e (yls, 1, ) ()77 (1) (22)
1 : _
R, + Ry = — 1og(|Wa||Wb|) Proof: Let s:= (s, s%,s?) and observe that
n P ¢y, slo
LS KT IS+ 3@+ = (TS T slo) b
—en t=1 = Z Z PS,T“,TZ’.,Y|S[,5,1] (Sa tavt 7y|0)

L LSS 1 TS + () e
9 y Xt t +77 € a
Tena e . = Z Z Py s e (yls t*,")
e 1 — s{ES spest
1w 2 1T T YiIS) XPsgauis, (865100)  (23)
= ](TtajTtb;mg[t])jLn(e) (18) where the second equality verified b{] (2) singgé¢ =

e ti(st) for i = {a,b}. Let us now consider the term



Psa rois, (s,t*,t’|c) above. We have the following

PS,T“,Tb\S[t,l] (Sa tav tb|0)

=2 > 2D

Wq EWo WpEWp Ta  Ob

a 4b
PW,S[“FH,Sf’til],S,Ta,THS[t,l] (W, 0a,0b,5,t",1"|0)

SLCIDMDIDIY

Wq EWo wpyEW) Ta  Ob

a 4+b
PW,S[“FH,Sﬁil],Ta,THS[t,l] (W, 0a,0b,t",t"|0)

@ pys) > > ZZl{tz:wwm» I=ab}

Wq EWo WpEW) Ta  Ob
X Py ga

G Sh—y1Ste-1 (W, 0a,0|0)

@ py(s) D2 2 e e, 1=ty

Wa €Wo wpy€Wp 0a 0Ob
1 1
T W] Sty St 1 Ste (02, 0v[07)

(iv)
=" Ps(s) ZPS[LU\SH,H (0alo) Z Py 151 (0b]0)

Oa Ob

where the second step is valid sinb@}®, T?; Y;|S:, Spp—1) =
o) is a function of the joint conditional distribution of chagin
statesS;, inputs7?, T? and outputy; given the past realization
(Sj—1) = o). Hence, sincéim,, ., 1(¢) = 0, any achievable
pair satisfiesR, + Ry < sup,.., (), o) [(T*,T%Y|S). ®
As a direct consequence of Theorgm 2, we have the following
corollary.

Corollary 1:

cLs = sup

wra (t*) T (tb)

I(T*, T%Y|S).

Remark 1:One main observation about the proof of The-
orem[2 is the fact that, once we have the complete state
information, conditioning on which allows a product form
on 7% and 7", there is no loss of optimality (for the sum-
rate capacity) in using associated memoryless team pslicie
instead of using all the past information at the receiveisTh
fact is observed in [11] when the information at the encoders
are asymmetric quantized version of the information at the
decoder.

Remark 2:1t should be noted that the main difference

between the problem that we consider here and the one
considered in[[11] is the information at the decoder about
the information at the encoders. More explicitly, in [11jet

1 information at the encoders are available at the decoder and

(v)
:PS(S)ZPs[atflﬂs[t,u(UaW Z A

| as such, as the authors explicitly mention in their paper, th
a

1 1
E o7l a_g@ E = l_gp®
{te=®,"" (wq,0a)} {tt=®;" (wp,0b)}
we EWa |Wa| wpEWY |Wb| nee

wa €T, (t*) decoder does not need to estimate the coding policies used
ZP (on]0) Z 1 in a decentralized time-sharing. From this perspective, th
= St Se-1 1P (Wh| main contribution of our work can be thought as showing
b

b (g
wy €YY (%)

(vi) Oa (10
= PS(S)Zps[atil]‘s[tfl](O'a|0')7TTa(t )

that when this is not the case, by enlarging the input space,
there is no loss of optimality (for the sum-rate capacitythié
optimization is performed by ignoring the past informatain
- the encoders given that the decoder has complete CSI.

> Pos_ 15 (oblo)m 7 (1) 9 P
7o [1l. CONCLUSION AND REMARKS
(vii) o a\, o . .
=" Ps()mFa (t*) 7 (") (24)  The present paper has investigated the memoryless FS-MAC
with asymmetric noisy CSI at the encoders and complete
and (T, T"), (ii) is valid by [I1), (iii) is valid SinceW is CSI at the decoder. Single letter inner and outer bounds
indepen’dent from the state procesgés) is valid by [1) and are presented when the channel state is a sequence of i.i.d.
(L), (v) is valid due to[[20) andvi) — (vii) is valid due to random variables. The main contribution of the paper, e,
@)’ Substituting[(24) intd (23) proves the lemma - tight converse for the sum-rate capacity and hence an outer

We can now complete the proof of TheorEm 2. With Lemm ou_nd to th_e capapity region, is realize_d by observing t_hat
[ it is shown that the sum of any achievable rate pair can information available at th_e decoder_|s enough to again
approximated by the convex combinations of rate conditiou_‘?é()dUCt form on the c_han_nel Input functions and hgnce there
given in [8) which are indexed by € S and satisfy[{I7) for IS no Io§s of optimality if we ignore the past noisy state
joint state-input-output distributions. More explicithwe have information at the encoders.

where(i) is valid since the current state is independenWf
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