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Abstract— Classical sampling theory for sampling and re-
constructing bandlimited fields in Rd addresses the problem of
sampling on lattice points. We consider a generalization of this
problem, in which one samples the field along 1-dimensional
spatial trajectories in Rd rather than at points. The process
of sampling records the value of the field at all points on the
sampling trajectories. Such a sampling setup is relevant in the
problem of spatial sampling using mobile sensors. We study
various possible designs of sampling trajectories and discuss
necessary and sufficient conditions for perfect reconstruction.
We introduce a density metric for trajectories which we call
path density, that quantifies the total length of these trajectories
per unit volume in Rd. We formulate the problem of identifying
optimal sampling trajectories that admit perfect reconstruction
of bandlimited fields and are minimal in terms of the path
density metric. We identify optimal sampling trajectories from
a restricted class of trajectories.

I. INTRODUCTION

Consider the problem of sampling a d-dimensional time-
invariant spatial field f(r) where r ∈ Rd. If f is bandlimited,
results from classical sampling theory (see e.g., [1], [2])
provide schemes for sampling and reconstructing the field
based on measurements of the field at a countable number
of spatial locations situated on a lattice. These results are
all motivated by the fact that one typically employs static
sensors to measure the field at their locations.

The scenario is a little different in the problem of sam-
pling a d-dimensional time-invariant spatial field (where
d = 2 or 3) using mobile sensors that move along fixed
continuous paths through space and take measurements along
their path. Mobile sensing has the advantage that a single
sensor can be used to take measurements at several positions
within an area of interest. Moreover, it is often inexpensive to
sample the field along the sensors’ paths at very high spatial
frequencies. This has been noted to lead to a significant re-
duction in the amount of spatial aliasing in some applications
[3]. Furthermore, as we point out in [4], a moving sensor
admits filtering over space in the direction of motion of the
sensor whereas no such spatial filtering is possible in the
case of static sampling.

Since it is inexpensive to increase the sampling rate
employed by the moving sensors it is reasonable to assume
that the sensors can record the field values at all points along

This research was supported by ERC Advanced Investigators Grant:
Sparse Sampling: Theory, Algorithms and Applications SPARSAM no
247006.

Fig. 1. Sampling a field in R2 on points and curves.

their paths. Therefore it is of interest to study schemes to
reconstruct the entire d-dimensional field using the values
of the field along the 1-dimensional curves representing the
paths of the sensors through Rd. Such problems call for
a generalization of the classical theory of sampling of d-
dimensional fields on countable sets of points to sampling
on countable sets of 1-dimensional trajectories on Rd. The
two different scenarios are illustrated in Figure 1 for 2-
dimensional fields. The first drawing depicts the conventional
sampling scheme of sampling on points while the second
drawing depicts sampling on one-dimensional curves on R2.

As a generalization of classical results in sampling the-
ory, we identify some sampling paths that admit perfect
reconstruction of bandlimited fields. We introduce a metric
for sampling trajectories as a natural generalization of the
sampling density metric in classical sampling. The new
metric which we call the path density can be interpreted as
the average distance that needs to be traveled by the sensors
per unit d-dimensional volume of the field being sampled. We
formulate the problem of designing sampling trajectories that
are minimal in the path density metric among all trajectories
that admit perfect reconstruction of bandlimited fields. We
provide a partial solution to this problem.

The literature on the design of sampling trajectories is
quite limited. In the past, some schemes for reconstructing
isotropic fields based on measurements taken along circular
trajectories have been proposed [5], [6]. Various sampling
trajectories have also been studied in the context of Magnetic
Resonance Imaging (see, e.g., [7]). However to the best of
our knowledge this paper is the first to explicitly address
the problem of designing trajectories for general bandlimited
fields and to introduce the notion of optimal trajectories for
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sampling and reconstructing bandlimited fields.
We will use the following notations for order statistics.

For a function h(.) of a real variable we say h(a) ∈ O(a) if
there exists k,A ∈ R such that for all a ≥ A, we have,

|h(a)| ≤ ka.

Similarly, we say h(a) ∈ o(a) if for every for ϵ > 0 there
exists A ∈ R such that and for all a ≥ A, we have,

|h(a)| ≤ ϵa.

The rest of this paper is organized as follows. In Section II
we describe several possible sampling strategies and provide
necessary and sufficient conditions for perfect reconstruction
of bandlimited fields. We discuss the design of optimal sam-
pling trajectories in Section III and reconstruction schemes
in Section IV. We summarize our results and discuss avenues
for future work in Section V. The proofs of most results are
provided in the appendix. However, the proofs of the main
Theorems 2.4 and 3.1 have been left out due to the lack of
space and will be provided in the journal version of the paper
[8].

II. SAMPLING TRAJECTORIES

A. Preliminaries

We will use the following terminology in this paper. A
trajectory pi in Rd refers to a curve in Rd. We represent a
trajectory by a continuous function pi(.) of a real variable
taking values on Rd:

pi : R 7→ Rd.

A trajectory set p is defined as a countable collection of
trajectories:

p := {pi : i ∈ I}

where I ⊆ Z and for each i ∈ I, pi is a trajectory in the
trajectory set p. The path density ℓ(p) of a given trajectory
set p is defined as follows:

ℓ(p) := lim sup
a→∞

Dp(a)

Vold(a)
(1)

where Dp(a) represents the total arc-length of trajectories
from p located within a d-dimensional spherical ball of radius
a centered at the origin in Rd, and Vold(a) represents the
volume of the ball. Clearly, Vol2(a) = πa2 and Vol3(a) =
4
3πa

3. For a trajectory set composed of differentiable func-
tions pi(.) we note that Dp(a) can be explicitly defined as

Dp(a) =
∑
i∈I

∫
t∈Ti(a)

∥∥∥∥dpi(t)dt

∥∥∥∥ dt (2)

where ∥x∥ represents the Euclidean norm of x ∈ Rd and

Ti(a) := {t ∈ R : ∥pi(t)∥ ≤ a}

represents the portion of trajectory pi(.) that lies within the
ball of radius a centered at the origin.

A d-dimensional field f is a real-valued function defined
on Rd

f : Rd 7→ R.

For a square integrable d-dimensional field f ∈ L2(Rd) we
define its Fourier transform F as

F (ω) :=

∫
Rd

f(r) exp(−i⟨ω, r⟩)dr, ω ∈ Rd

where i denotes the imaginary unit, and ⟨u, v⟩ denotes the
inner product between vectors u and v. Let Bf denote the
collection of fields f such that the Fourier transform F of f
is supported on the interior of a set f ⊂ Rd. For f ∈ Bf we
say that f is bandlimited to f. Let Cf denote the collection
of all trajectory sets p that satisfy the following conditions:

(C1) Any field f ∈ Bf can be reconstructed
exactly from its values on the trajectories
in p. I.e. the field f ∈ Bf is uniquely
determined by the values f(pi(t)) : i ∈
I, t ∈ R.

(C2) There is a continuous curve of length
Dp(a) + o(ad) that contains the portion of
the trajectory set p that is located within
a spherical ball of radius a centered at the
origin.

The condition (C1) ensures that the entire field can be recon-
structed exactly from its values on the sampling trajectories.
The condition (C2) ensures that the path density metric does
indeed capture the total length that needs to be traversed by a
single moving sensor using the trajectories in p for sampling.
This avoids degenerate static cases like the situation in which
every trajectory pi corresponds to a single point in a classical
sampling lattice for the field f . Such a degenerate trajectory
set satisfies condition (C1) and has path density equal to zero,
but any path that visits all of these points has a non-zero path
density. In fact, we know from Nyquist sampling theory that
if we have O(ad) sensors available for sampling spherical
regions of radius a, it is possible to sample bandlimited fields
without any movement at all.

In a practical deployment, it is not possible to take
measurements of the field at all points along a continuous
path because a continuous path has an infinite number of
points. However, if the sensor moving along a trajectory is
exposed to a bandlimited function of time it is possible to
reconstruct the entire field along its path from uniformly
spaced samples. This motivates the following additional
desirable condition (K1) for a trajectory set p :

(K1) For any field f ∈ Bf the 1-dimensional
signal f(pi(.)) is bandlimited1 for all pi ∈ p.

Almost all of the trajectory sets that we study in this paper
satisfy condition (K1). In the following lemma we show that
all trajectory sets that satisfy this condition are made up of
straight-line trajectories or points.

Lemma 2.1: Any trajectory set p that satisfies condi-
tion (K1) is made up of straight line trajectories, i.e., the
trajectories in p can be expressed as

pi(t) = (pi,1(t), pi,2(t), . . . , pi,d(t)), t ∈ R, i ∈ I ⊂ Z
(3)

1i.e. has compact support in the Fourier domain
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Fig. 2. Three choices of sampling trajectory sets for R2: Set of regular
parallel trajectories, union of sets of regular parallel trajectories, and
concentric equispaced circular trajectories.

where pi,j(t) is an affine function of t for each i, j. ⊓⊔

We also have the following lemma which we will use later
in the paper.

Lemma 2.2: Consider a field {f(r) : r ∈ Rd} with
Fourier transform supported on a compact set f ⊂ Rd.
For r0, r1 ∈ Rd let p(t) := r0 + r1t denote a linear
trajectory parameterized by t. Then the Fourier transform of
the function f(p(.)) is bandlimited to the set [Ω,Ω] where

Ω = min{⟨ω, r1⟩ : ω ∈ f} and Ω = max{⟨ω, r1⟩ : ω ∈ f}.

⊓⊔

We provide proofs for both the above lemmas in the ap-
pendix.

B. Sampling trajectories for R2

We now present some simple examples of trajectory sets
for sampling two-dimensional fields and compute their path
densities. For certain types of trajectory sets we provide
necessary and sufficient conditions that ensure that these
trajectory sets are elements in Cf for specific choices of
f ⊂ R2. These results can be interpreted as a generalization
of known results on conditions on sampling lattices [1] and
unions of sampling lattices [9] for perfect reconstruction of
bandlimited fields.

1) Set of regular parallel trajectories: Consider a trajec-
tory set pα = {pαi : i ∈ Z} composed of equispaced lines
parallel to the x-axis given by

pαi (t) = (t, αi)T , i ∈ Z, t ∈ R (4)

where α denotes the separation between adjacent trajectories
in this trajectory set. Such a trajectory set is the first example
in Figure 2. Suppose

Ω := inf
ω∈f

ωy and Ω := sup
ω∈f

ωy.

Let α∗ := 2π
Ω−Ω

. Then we have the following results that
follow easily from classical sampling theory [1]:

pα ∈ Cf if α < α∗

and
sup{α : pα ∈ Cf} = α∗.

Both these above results are special cases of Theorem 2.4
which we prove later in the paper. In the following lemma

we characterize the path density of a regular set of parallel
trajectories.

Lemma 2.3: For the trajectory set p defined in (4) we have

ℓ(p) =
1

α
. (5)

⊓⊔

We provide a proof in the appendix.
2) Union of sets of regular parallel trajectories: For

vectors v0,i, v1,i, v2,i ∈ R2 such that v1,i and v2,i are non-
colinear, let pαi denote the set of regular parallel trajectories
defined by pαi = {pαi,j : j ∈ Z} where

pαi,j(t) = v0,i + αjv1,i + tv2,i, j ∈ Z, t ∈ R. (6)

We also define the vector ui ∈ R2 as the unique vector that
satisfies,

⟨ui, v2,i⟩ = 0 and ⟨ui, v1,i⟩ = 2π. (7)

Suppose we have N such distinct trajectory sets {pαi : 1 ≤
i ≤ N} of the form (6) such that {pαi,j(t) : j ∈ Z, t ∈ R} ≠
{pαk,j(t) : j ∈ Z, t ∈ R} for i ̸= k. Let p̂α denote the union
of all the sets:

p̂α :=
N∪
i=1

pαi . (8)

An example for such a trajectory set is the second sketch
in Figure 2. It is easy to see that the separation between
trajectories in the set pαi is equal to α∆i where

∆i := ⟨v1,i, ui

∥ui∥
⟩ = 2π

∥ui∥
.

Hence it follows from Lemma 2.3 that the path density of
this trajectory set is given by

ℓ(p̂α) =
N∑
i=1

1

α∆i
=

1

2πα

N∑
i=1

∥ui∥. (9)

We now introduce some further notation. For f ⊂ Rd and
r ∈ Rd we define

f(r) := {x ∈ Rd : x− r ∈ f}.

We have the following result.
Theorem 2.4: Let f ⊂ R2 be a compact convex set. Let

p̂α denote the union of the sets of trajectories defined in (8).
Let Qα ⊂ R2 denote the set of points

Qα :=

{
N∑
i=1

(−1)ni
ui

2α
: ni ∈ {0, 1}, 1 ≤ i ≤ N

}
where {ui}N1 are chosen to satisfy (7). Further, let

α∗ := sup{α : Qα * f(r), for all r ∈ R2}. (10)

Then we have

p̂α ∈ Cf for all α ∈ (0, α∗), (11)

and,
sup{α : p̂α ∈ Cf} = α∗. (12)
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⊓⊔

Theorem 2.4 gives us necessary and sufficient conditions
on unions of sets of regular parallel trajectories that admit
perfect reconstruction. A proof of this result is provided in
[8]. The conclusion shows that it is possible to recover the
field completely using readings on multiple regular parallel
trajectory sets even when the measurements on each individ-
ual regular parallel trajectory set may be aliased. Theorem
2.4 can be generalized to higher dimensions where sampling
on lines is replaced with sampling on hyperplanes. Such a
generalization is also considered in [8].

These results can be interpreted as a special case of
sampling on a union of lattices. We know from Lemma 2.1
that for fields f ∈ Bf each of the trajectories pαi,j described
in (6) the signal f(pαi,j(.)) is bandlimited. We also know
from Lemma 2.2 that for a fixed i, the bandwidths of the
f(pαi,j(.)) are identical for all j. Now suppose that the sensors
moving along each of the trajectories in the set pαi take
uniform spatial samples that are ϵi apart. From the fact that
f(pαi,j(.)) is bandlimited, we know that, for each i, j, the field
values {f(pαi,j(t)) : t ∈ R} can be recovered exactly from
the samples {f(pαi,j(mϵi)) : m, j ∈ Z} provided ϵi is small
enough. It is also clear that the points {pαi,j(mϵi) : m, j ∈ Z}
form a lattice in R2. Thus the collection of sample locations
from all the trajectory sets, i.e., the set {pαi,j(mϵi) : m, j ∈
Z, 1 ≤ i ≤ N} corresponds to a union of N lattices. Thus
the result of Theorem 2.4 can be interpreted as a result on
sampling a 2-dimensional bandlimited field on a union of
lattices [9] when ϵi is small enough. We note that in this
example, the samples taken along each individual lattice are
aliased but given all sets of samples, perfect recovery is
possible.

The result of Theorem 2.4 on multiple trajectory sets is
similar in spirit to Papoulis’ result on generalized sampling
[10]. Papoulis [10, Example 2] provides necessary and suf-
ficient conditions for sampling on unions of shifted lattices
whereas, as the arguments in the previous paragraph suggest,
our results provide some conditions for sampling on unions
of lattices that are not necessarily shifted versions of each
other.

3) Concentric equispaced circular trajectories: Suppose
f is a disc of radius Ω centered at the origin. Let c = {ci :
i ∈ N∪{0}} where ci denotes a circular trajectory of radius
i πΩ centered at the origin. Such a trajectory set is shown in
the third sketch in Figure 2. It is known from [6] that any
field bandlimited to f is reconstructible from its values on
the trajectories in set c. Hence condition (C1) is satisfied.
It is also obvious that condition (C2) is also satisfied by
this trajectory set. Thus c ∈ Cf. However this trajectory
set does not satisfy condition (K1) in Section II-A because
the signals along the circles are not bandlimited in general.
Nevertheless, it can be shown [8] that these signals have a
finite essential bandwidth. We now compute the path density
for this trajectory set. A disc of radius a contains a total of
K ≈ Ωa

π concentric circles separated by radial distance of
π
Ω . This leads to a total trajectory length of π2

Ω K(K + 1)

whence we get ℓ(c) = Ω
π .

C. Sampling trajectories for Rd where d ≥ 3

For d ≥ 3, we consider only trajectory sets composed of
regular parallel trajectories analogous to the set of trajectories
considered in Section II-B.1 for d = 2. Let {v1, v2, . . . , vd}
denote a basis for Rd. Consider trajectories pm of the form

pm(t) =

d−1∑
i=1

miv
i + tvd, t ∈ R (13)

where m = (m1,m2, . . . ,md−1)
T ∈ Zd−1. Let p denote the

trajectory set
p = {pm : m ∈ Zd−1}. (14)

For f ⊂ Rd, we use Ef ⊂ Cf to denote the collection of all
trajectory sets in Cf that can be expressed in the form (14).
The following theorem provides sufficient conditions on the
vectors {v1, v2, . . . , vd} and the set f so that p ∈ Cf.

Theorem 2.5: Let p denote the trajectory set defined in
(14). Let {u1, . . . , ud−1} denote vectors in Rd satisfying
⟨ui, vj⟩ = 2πδij for 1 ≤ i ≤ d − 1 and 1 ≤ j ≤ d and
let f ⊂ Rd denotes a compact convex set with a point of
symmetry at the origin. Then we have p ∈ Cf if

1
2

d−1∑
i=1

miu
i /∈ f, for all m ∈ {−1, 0, 1}d−1 \{0}d−1. (15)

The condition (15) is also necessary in the sense that if there
exists m ∈ {−1, 0, 1}d−1\{0}d−1 such that 1

2

∑d−1
i=1 miu

i ∈
◦
f, where

◦
f denotes the interior of f in Rd, then p /∈ Cf. ⊓⊔

A proof of this result is provided in [8]. The path density of
the trajectory set p is given in the following lemma.

Lemma 2.6: The path density of the trajectory set p de-
fined in (14) is given by

ℓ(p) =
∥vd∥

|det(G)|

where det(G) denotes the determinant of the Gram matrix
defined by Gij = ⟨vi, vj⟩, 1 ≤ i, j ≤ d. ⊓⊔

We provide a proof outline in the appendix.

III. OPTIMAL SAMPLING TRAJECTORIES

As we argued earlier, the path density of a trajectory set
captures the total distance required to be traveled per unit
area for sampling spatial fields using the trajectory set. Hence
it is of interest to characterize the optimal trajectory set for
sampling fields that are bandlimited to a given set f ⊂ Rd.
We seek a solution to the following problem:

min
p∈Cf

ℓ(p). (16)

In this section we identify partial solutions to the problem,
solving it exactly for trajectory sets restricted to some subsets
of Cf.
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A. Optimality for R2

It is difficult2 to characterize all the trajectory sets that
satisfy conditions (C1) and (C2). However, as we show
below, it is possible to identify the optimal trajectory set
among those that can be written as a finite union of regular
sets of parallel trajectories like in (8). Such trajectory sets
have the added advantage that they satisfy the desirable
property of (K1), as proved in Lemma 2.1.

Let Df ⊂ Cf denote the collection of trajectory sets q ∈
Cf such that q can be expressed as a finite union of the form

q =
n∪

i=1

qi

where for each i, qi is a trajectory set of regular parallel tra-
jectories. We need the following definitions. For a nonempty
compact convex set f ⊂ Rd and any u ∈ Rd let Bu(f)
denote the distance between the two parallel supporting
hyperplanes of f that are perpendicular to the vector u. We
refer to Bu(f) as the breadth of f in the direction u. The
width of f is defined by the relation

W(f) := min
u∈R2

Bu(f). (17)

A chord of f is defined as the nonempty intersection of f
with a line in Rd. For u ∈ Rd, Wu(f) is defined as the
maximum length of a chord of f parallel to u. The width
W(f) can alternately also be interpreted as (see, e.g., [12])

W(f) = min
u∈R2

Wu(f). (18)

We have the following result which follows easily from
Theorem 2.4. We provide a proof in the appendix.

Theorem 3.1: For any nonempty compact convex set f ⊂
R2, let û be the minimizer in (17), and for ϵ > 0 let pϵ

denote a trajectory set of regular parallel trajectories given
by pϵ = {pϵj : j ∈ Z} where

pϵj(t) = j

[(
2π

W(f)
− ϵ

)
û

∥û∥

]
+ û⊥t, t ∈ R, j ∈ Z

where û⊥ ∈ R2 is orthogonal to û. Then pϵ ∈ Df for all
ϵ > 0 and is optimal in path density as ϵ → 0. I.e.,

lim
ϵ→0

ℓ(pϵ) = inf
q∈Df

ℓ(q) =
2π

W(f)
.

⊓⊔

Theorem 3.1 thus establishes the optimality of a regular
set of parallel trajectories p from all trajectory sets in Df. It
may be possible to demonstrate that such a trajectory set is
optimal in terms of path density among a more general class
of trajectory sets. A starting point for rigorously establishing
such a result would be Landau’s necessary conditions for
sampling bandlimited functions [13] (see also [11, Corollary

2Note that even in the case of non-uniform sampling of a bandlimited
function in 1-dimension, there is no known result that characterizes all
collections of sampling points that admit perfect reconstruction. This is
in spite of the fact that some necessary [11] conditions and sufficient [2]
conditions for perfect reconstruction are known - e.g., inter-sample spacing
less than Nyquist interval [2].

1]). However such a result is beyond the scope of this paper.
Some inconclusive evidence for this conjecture is provided
by our observation in [8] that there is a set of regular parallel
trajectories with path density arbitrarily close to the path
density of any trajectory set that visits all points in a sampling
lattice for f.

We can also make a stronger conjecture related to this
result. Suppose we relax condition (C2) so that we now allow
the use of up to N(a) number of mobile sensors for covering
the portions of the trajectories within circular fields of radius
a. It may be possible to show that even with this increased
number of sensors, the optimality of the single set of parallel
trajectories given by Theorem 3.1 continues to hold provided
N(a) = o(a2).

B. Optimality for Rd where d ≥ 3

For fields in Rd with d ≥ 3, we consider only trajectory
sets of the form in (14). We also restrict ourselves to fields
bandlimited to sets f that are compact convex subsets of
Rd and have a point of symmetry at the origin. As before,
let Ef denote the class of trajectory sets p ∈ Cf that are
composed of regular parallel trajectories expressed in the
form (14). From Theorem 2.5 we know the necessary and
sufficient conditions on the vectors {v1, v2, . . . , vd} required
for p ∈ Ef. We now seek the solution to the problem

min
p∈Ef

ℓ(p) (19)

where f ⊂ Rd is a compact convex set with a point of
symmetry at the origin. In this section we outline a procedure
for solving the above problem. In our approach we relate
this problem to the problem of designing optimal sampling
lattices for static sampling in Rd−1.

Let {v1, v2, . . . , vd} denote a basis for Rd and let p be a
trajectory set of the form (14). Let U denote a d× d unitary
matrix such that Uvd = ed, the unit vector along the d-th
principal axis. Define

f̂U := {r ∈ Rd−1 : U−1

(
r
0

)
∈ f}. (20)

Also let ṽi := Uvi and v̆i := (ṽi1, ṽ
i
2, . . . ṽ

i
d−1)

T denote the
vector composed of the first d−1 components of ṽi. Suppose
{b1, b2, . . . , bn} forms a basis for Rn. A lattice b of points
in Rn of the form

b = {
n∑

i=1

mib
i : m ∈ Zn} (21)

is called a sampling lattice for a set Φ ⊂ Rn if every n-
dimensional bandlimited field g : Rn 7→ R with Fourier
transform supported on Φ can be recovered perfectly using
only the values of the field g measured at points in the lattice
b. The sampling density of a sampling lattice of the form (21)
is defined as the average number of points per unit volume
in Rn. Then we have the following result.

Theorem 3.2: Let p be a trajectory set of the form in (14).
Let U , f̂U and v̆i be as defined above. Then the trajectory
set p satisfies p ∈ Cf if and only if bU := {

∑d−1
i=1 miv̆

i :

1234



m ∈ Zd−1} forms a sampling lattice for f̂U . Furthermore
the path density ℓ(p) is equal to the sampling density of bU .

Proof: Consider the field f̃ defined by

f̃(r) = f(U−1r), r ∈ Rd.

Clearly the Fourier transform of f̃ is supported on the set

fU := {Us : s ∈ f}.

Now the problem of sampling the field f along trajectories
pm(t) is equivalent to sampling the field f̃ along trajectories
p̃m(t) defined by

p̃m(t) =

d−1∑
i=1

miṽ
i + tṽd, t ∈ R (22)

where ṽi = Uvi. Hence if p̃ := {p̃m : m ∈ Zd−1} then it
follows that

p ∈ Cf ⇔ p̃ ∈ CfU

and that the path density of p̃ is identical to that of p. We
know from Theorem 2.5 that the necessary and sufficient
condition for p̃ ∈ CfU is given by

1
2

d−1∑
i=1

miũ
i /∈ fU , for all m ∈ {−1, 0, 1}d−1 \ {0}d−1

(23)
where ũi are defined as vectors in Rd that satisfy ⟨ũi, ṽj⟩ =
2πδij for 1 ≤ i ≤ d− 1 and 1 ≤ j ≤ d. Now since ṽd = ed,
it follows that ũi

d = 0 for i ≤ d − 1. Hence the condition
(23) is equivalent to

1
2

d−1∑
i=1

miŭ
i /∈ f̂U , for all m ∈ {−1, 0, 1}d−1 \ {0}d−1

(24)
where ŭi := (ũi

1, ũ
i
2, . . . ũ

i
d−1)

T . By construction it is clear
that ⟨ŭi, v̆j⟩ = 2πδij for 1 ≤ i, j ≤ d − 1. Thus it follows
from [1] that condition (24) is exactly the necessary and
sufficient condition to ensure that bU forms a sampling lattice
for f̂U .

We now consider the path density ℓ(p̃). Since ṽd = ed it
is clear that the collection of points

{
d−1∑
i=1

miṽ
i + tṽd : m ∈ Zd, t ∈ R}

remains unaltered if we replace ṽi by v̂i :=

(
v̆i

0

)
for

1 ≤ i ≤ d− 1. Thus it follows via Lemma 2.6 that the path
density ℓ(p̃) satisfies

ℓ(p̃) = |det(H)|−1

where H is a d − 1 × d − 1 matrix with entries Hi,j =
⟨v̂i, v̂j⟩ = ⟨v̆i, v̆j⟩. Since the sampling density of bU is equal
to |det(H)|−1 (see [1]) and ℓ(p) = ℓ(p̃) the result follows.

As an immediate consequence of the above result we
have the following corollary on the optimality of sampling
trajectory sets from Ef.

Corollary 3.2.1: Let f ⊂ Rd denote a compact convex set
with a point of symmetry at the origin. Among all possible
choices of d × d unitary matrices let Û be the one such
that the set f̂Û admits a sampling lattice with minimal
sampling density in Rd−1. Also suppose that the vectors
{w1, w2, . . . , wd−1} ⊂ Rd−1 generate an optimal sampling
lattice for fields bandlimited to f̂Û . Let p be a trajectory set
as defined in (14) where the vectors vi are given by

vi = Û−1w̌i, 1 ≤ i ≤ d− 1 and vd = Û−1ed (25)

where w̌i = (wi
1, w

i
2, . . . , w

i
d−1, 0)

T ∈ Rd. Then p ∈ Ef and
solves the optimization problem (19). ⊓⊔

The problem of identifying sampling lattices with minimal
density is well studied in the literature (see, e.g., [1], [14],
[15]). Such results can be used in conjunction with the above
corollary to design optimal sampling trajectories. In the
following corollary we present a simple example of a field
bandlimited to a spherical region for which we can explicitly
identify the solution for the optimal sampling trajectory set.

Corollary 3.2.2: Suppose f is a spherical ball in Rd

with radius α. Let {w1, w2, . . . , wd−1} ⊂ Rd−1 generate
a sampling lattice with minimal sampling density for fields
bandlimited to a ball in Rd−1 with radius α. Let

vi :=

(
wi

0

)
, 1 ≤ i ≤ d− 1 vd = ed.

Then the trajectory set p defined in (14) with the above
choices for vectors vi achieves the minimum in (19). For
d = 3 the vectors vi can be chosen as

v1 =
1

α

(√
3

2
,−1

2
, 0

)T

, v2 =
1

α
(1, 0, 0)T , v3 = (0, 0, 1)T .

Proof: Since f is a spherical ball in Rd, it follows
that f̂U defined in (20) is a ball of radius α in Rd−1 for
all choices of the unitary matrix U . Hence without loss of
optimality we choose Û in Corollary 3.2.1 to be the identity
matrix. Thus the first statement is immediate from Corollary
3.2.1. The second part follows from the fact that a sampling
grid based on a 120◦ rhombic lattice is optimal [1] for two-
dimensional isotropic fields.
We note that exact choices of vectors vi for fields bandlim-
ited to spherical balls in Rd for all d < 8 can be obtained
from the above result using the results on optimal lattices for
isotropic fields presented in [1, Table C.I]. As mentioned in
[1], these results are based on results on closest packing of
spheres in Rd.

IV. RECONSTRUCTION SCHEMES

We now consider schemes for reconstructing bandlimited
fields using measurements of the field taken by sensors
moving along the various trajectories we have considered so
far. As we discussed earlier we know from classical sampling
theory that if the trajectories satisfy condition (K1) then the
readings over a discrete set of points are sufficient to be able
to reconstruct values of bandlimited fields at all points on
the sampling trajectories. We know from Lemma 2.2 that
regular parallel trajectories of the form (4) for R2, or (8)
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with N = 1 for R2, or (14) for Rd, satisfy condition (K1).
Hence the field values at all points on these trajectories
can be reconstructed from samples taken at uniform spatial
intervals. The maximum spacing allowed between adjacent
samples on these trajectories can be calculated from Lemma
2.2. If we assume that the sensors on each of the parallel
trajectories take samples at identical uniform intervals and
that the sample locations on the various trajectories are
aligned with each other, then the collection of all samples
obtained on all these trajectories effectively corresponds to a
collection of samples of the field taken over a periodic lattice
of points. Hence, for such trajectory sets, any reconstruction
algorithms used for reconstructing bandlimited fields on
lattices is sufficient (see, e.g., [1], [2]). For unions of regular
sets of parallel trajectories like in (8) the resulting set of
points lie on a union of sampling lattices. In this case
reconstruction schemes for sampling on unions of lattices
are applicable (see, e.g., [9]).

Reconstruction schemes for the circular trajectories con-
sidered in Section II-B.3 are provided in [5] and [6]. How-
ever, since these trajectory sets do not satisfy condition (K1),
the reconstruction schemes require the exact field values
at all points on the circular trajectories, and unlike in the
case of linear trajectories, the information necessary for
reconstruction cannot be obtained by merely sampling along
the sensor trajectories.

V. CONCLUSION AND FUTURE WORK

In this paper we have introduced the problem of sampling
bandlimited fields in Rd on trajectories. We have presented
various examples of sampling trajectories that admit perfect
reconstruction of bandlimited fields, and some optimality
properties of select trajectories in terms of the path density
metric that we introduced.

This paper opens numerous avenues for future work in
terms of extensions and generalizations. For instance, it
would be of interest to ascertain the validity of the con-
jectures we mentioned in the end of Section III-A on the
optimality of the regular set of parallel trajectories among
a wider class of trajectory sets. Most results in this paper
assume that the field is bandlimited to a convex subset of Rd.
It is of interest to study extensions to more general sets so
as to address problems like that of sampling bandpass fields.
It would also be of interest to study the design of sampling
trajectories for non-bandlimited fields, e.g., spatial fields that
form shift-invariant spaces or parametric fields like diffusion
fields. In such contexts, the problem of optimizing the trade-
off between the total distance traveled by the sensors and the
reconstruction accuracy is also a relevant problem. Another
extension that we are currently studying is the design of
sampling trajectories for time-varying bandlimited fields. We
also have some ongoing work [8] on extensions of some of
our results on sampling trajectories to higher dimensional
sampling manifolds.

APPENDIX

A. Proof of Lemma 2.1

Let p ∈ Cf. Then for every i ∈ Z and every f ∈ Bf we
know that f(pi(.)) is bandlimited. In particular this holds
true for fields of the form f(r) = g(ri) where ri is the i-
the component of r, and g is a function of one real variable
which is bandlimited to [−Ω,Ω] for some Ω > 0. Therefore
if pi(t) = (pi,1(t), . . . , pi,d(t)) then for all such g the
function g(pi,1(.)) is bandlimited. Under such a condition,
it is known that pi,1(t) must be an affine function of t (see,
e.g., [16] and [17]). By identical arguments it follows that
pi,j(t) must also be an affine function of t for every i, j. ⊓⊔

B. Proof of Lemma 2.2

Let F denote the Fourier transform of the field f . Then we
have f(p(t)) = 1

(2π)d

∫
f F (ω) exp(i⟨ω, r0+ r1t⟩)dω. Hence

the Fourier transform Fp of f(p(.)) is given by

Fp(s)

=
1

(2π)d

∫
R

∫
f
F (ω) exp(i(⟨ω, r0 + r1t⟩ − st))dωdt

=
1

(2π)d−1

∫
f
F (ω) exp(i⟨ω, r0⟩)δ(⟨ω, r1⟩ − s)dω

and thus Fp(s) = 0 for s /∈ [Ω,Ω]. ⊓⊔

C. Proof of Lemma 2.3

Consider a disc of radius a centered at the origin. Let
ℓi denote the length of the intersection of the disc with the
trajectory pi defined in (4). Let N ≈ a

α denote the highest
index of the trajectories with non-zero intersection with the
disc. Now we can approximate the area of the disc above
and below by rectangular regions with sides ℓi×α to obtain
the inequality:

2
N∑
i=1

ℓiα ≤ πa2 ≤ 2
N∑
i=0

ℓiα. (26)

Now Dp(a) = ℓ0 + 2
∑N

i=1 ℓi. Hence we have

Dp(a)− ℓ0 ≤ πa2

α
≤ Dp(a) + ℓ0

and (5) follows by taking limits. ⊓⊔

D. Outline of proof of Lemma 2.6

Lemma 2.6 can be proved using the same approach as in
the proof of Lemma 2.3. Just as we approximated a circle
with rectangles in the proof of Lemma 2.3 we will now
approximate a d-spherical ball with parallelotopes. Let Sd

a

denote a d-dimensional spherical ball of radius a centered
at the origin in Rd. For r ∈ Rd let βi(r) denote the
coefficients in the basis expansion r =

∑d
i=1 βi(r)v

i. Now
for m ∈ Zd−1 define

Sm := {x ∈ Sd
a : βi(x) ∈ [mi,mi + 1), 1 ≤ i ≤ d− 1}.
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Let

Ma := {m ∈ Zd−1 : pm(t) ∈ Sd
a for some t ∈ R}

with pm(t) =
∑d−1

i=1 miv
i+ tvd as defined in (13). For each

m ∈ Ma let ℓm(a) denote the length of the line segment
representing the intersection of trajectory pm(.) with Sd

a . We
then have

Vol(Sd
a) =

∑
m∈Ma

Vol(Sm) + o(ad−1).

Now we can approximate Sm with the parallelotope gen-
erated by the vectors {v1, v2, . . . , vd−1, ℓm(a)

∥vd∥ vd} so that

Vol(Sm) ≈ |det(G)|
∥vd∥ ℓm(a). In fact it can be shown that∑

m∈Ma

Vol(Sm) =
∑

m∈Ma

|det(G)|
∥vd∥

ℓm(a) + o(ad−1).

Now
∑

m∈Ma
ℓm(a) = Dp(a) and hence the result follows.

⊓⊔

E. Proof of Theorem 3.1

From Theorem 2.4 it easily follows that pϵ ∈ Df. Suppose
pϵ is expressed in the form p̂1 as defined in (8) with α = 1.
Then the vector u1 appearing in Theorem 2.4 corresponding
to p̂1 = pϵ is given by

u1 =

(
1− ϵW(f)

2π

)−1

û

and hence by the definition of û and by (11) we have pϵ ∈
Df for all ϵ > 0. Also from (9) we have

lim
ϵ→0

ℓ(pϵ) =
2π

W(f)
.

In order to complete the proof we will establish that for
all p ∈ Df, we have ℓ(p) ≥ 2π

W(f) . Any trajectory set in
Df can be expressed in the form p̂1 as defined in (8) with
α = 1. Using the notations and assumptions of Theorem 2.4
it follows that if p̂1 ∈ Df we need

Q1 *
◦
f(r) for all r ∈ R2

where
◦
f(r) denotes the interior of set f(r). Together with

the relation (18) satisfied by the width of a convex set, it
follows that the length of some diagonal in the parallelotope
Q1 must be greater than W(f). This means that

∥
N∑
i=1

(−1)niui∥ ≥ W(f) for some ni ∈ {0, 1}, 1 ≤ i ≤ N.

This means that the path density defined in (9) satisfies

ℓ(p̂1) =
1

2π

N∑
i=1

∥ui∥ ≥ 1

2π
∥

N∑
i=1

(−1)niui∥

≥ W(f)
2π

.

⊓⊔
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