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Abstract

One of the most important challenges in the integration of renewable energy sources into
the power grid lies in their ‘intermittent’ nature. The power output of sources like wind and
solar varies with time and location due to factors that cannot be controlled by the provider.
Two strategies have been proposed to hedge against this variability: 1) use energy storage
systems to effectively average the produced power over time; 2) exploit distributed generation
to effectively average production over location. We introduce a network model to study the
optimal use of storage and transmission resources in the presence of random energy sources.
We propose a Linear-Quadratic based methodology to design control strategies, and we show
that these strategies are asymptotically optimal for some simple network topologies. For these
topologies, the dependence of optimal performance on storage and transmission capacity is
explicitly quantified.

1 Introduction

It is widely advocated that future power grids should facilitate the integration of a significant
amount of renewable energy sources. Prominent examples of renewable sources are wind and solar.
These differ substantially from traditional sources in terms of two important qualitative features:
Intrinsically distributed. The power generated by these sources is typically proportional to the
surface occupied by the corresponding generators. For instance, the solar power reaching ground
is of the order of 2 kWh per day per square meter. The wind power at ground level is of the order
of 0.1 kWh per day per square meter [1]. These constraints on renewable power generation have
important engineering implications. If a significant part of energy generation is to be covered by
renewables, generation is argued to be distributed over large geographical areas.
Intermittent. The output of renewable sources varies with time and locations because of exoge-
nous factors. For instance, in the case of wind and solar energy, the power output is ultimately
determined by meteorological conditions. One can roughly distinguish two sources of variability:
predictable variability, e.g. related to the day-night cycle, or to seasonal differences; unpredictable
variability, which is most conveniently modeled as a random process.

Several ideas have been put forth to meet the challenges posed by intermittent production. The
first one is to leverage geographically distributed production. The output of distinct generators is
likely to be independent or weakly dependent over large distances and therefore the total production
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of a large number of well separated generators should stay approximately constant, by a law-of-
large-number effect. This averaging effect should be enhanced by the integration of different types
of generators.

The second approach is to use energy storage to take advantage of over-production at favorable
times, and cope with shortages at unfavorable times. Finally, a third idea is ‘demand response’,
which aims at scheduling in optimal ways some time-insensitive energy demands. In several cases,
this can be abstracted as some special form of energy storage (for instance, when energy is demanded
for interior heating, deferring a demand is equivalent to exploiting the energy stored as hot air inside
the building).

These approaches hedge against the energy source variability by averaging over location, or by
averaging over time. Each of them requires specific infrastructures: a power grid with sufficient
transmission capacity in the first case, and sufficient energy storage infrastructure in the second
one. Further, these two directions are in fact intimately related. With current technologies, it is
unlikely that centralized energy storage can provide effective time averaging of –say– wind power
production, in a renewables-dominated scenario. In a more realistic scheme, storage is distributed
at the consumer level, for instance leveraging electric car batteries (a scenario known as vehicle-
to-grid or V2G). Distributed storage implies, in turn, substantial changes of the demand on the
transmission system.

The use of storage devices to average out intermittent renewables production is well established.
A substantial research effort has been devoted to its design, analysis and optimization (see, for
instance, [2, 3, 4, 5, 6, 7]). In this line of work, a large renewable power generator is typically
coupled with a storage system in order to average out its power production. Proper sizing, response
time, and efficiency of the storage system are the key concerns.

If, however, we assume that storage will be mainly distributed, the key design questions change.
It is easy to understand that both storage and transmission capacity will have a significant effect
on the ability of the network to average out the energy source variability. For example, shortfalls
at a node can be compensated by either withdrawals from local storage or extracting power from
the rest of the network, or a combination of both. The main goal of this paper is to understand
the optimal way of utilizing simultaneously these two resources and to quantify the impact of these
two resources on performance. Our contributions are:

• a simple model capturing key features of the problem;

• a Linear-Quadratic(LQ) based methodology for the systematic design of control strategies;

• a proof of optimality of the LQ control strategies in simple network topologies such as the
1-D and 2-D grids and in certain asymptotic regimes.

• a quantification of how the performance depends on key parameters such as storage and
transmission capacities.

The reader interested in getting an overview of the conclusions without the technical details can
read Sections 2 and 4 only. Some details are omitted and deferred to the journal version of this
paper.
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2 Model and Problem Formulation

The power grid is modeled as a weighted graph G with vertices (buses or nodes) V , edges (lines)
E. Time is slotted and will be indexed by t ∈ {0, 1, 2, . . . }. In slot t, at each node i ∈ V a
quantity of energy Ep,i(t) is generated from a renewable source, and a demand of a quantity Ed,i(t)
is received. For our purposes, these quantities only enter the analysis through the net generation
Zi(t) = Ep,i(t) − Ed,i(t). Let Z(t) be the vector of Zi(t)’s. We will assume that {Z(t)} is a
stationary process.

In order to average the variability in the energy supply, the system makes use of storage and
transmission. Storage is fully distributed: each node i ∈ V has a device that can store energy, with
capacity Si. We assume that stored energy can be fully recovered when needed (i.e., no losses). At
each time slot t, one can transfer an amount of energy Yi(t) to storage at node i. If we denote by
Bi(t) the amount of stored energy at node i just before the beginning of time slot t, then:

Bi(0) = 0, Bi(t + 1) = Bi(t) + Yi(t) (1)

where Yi(t) is chosen under the constraint that Bi(t + 1) ∈ [0, Si].
We will also assume the availability at each node of a fast generation source (such as a spin-

ning reserve or backup generator) which allows covering up of shortfalls. Let Wi(t) be the energy
obtained from such a source at node i at time slot t. We will use the convention that Wi(t)
negative means that energy is consumed from the fast generation source, and positive means en-
ergy is dumped. The cost of using fast generation energy sources is reflected in the steady-state
performance measure:

εW ≡ lim
t→∞

1

|V |
∑

i∈V

E{
(
Wi(t)

)
−
} (2)

The net amount of energy injection at node i at time slot t is:

Zi(t)− Yi(t)−Wi(t).

These injections have to be distributed across the transmission network, and the ability of the
network to distribute the injections and hence to average the random energy sources over space
is limited by the transmission capacity of the network. To understand this constraint, we need to
relate the injections to the power flows on the transmission lines. To this end, we adopt a ‘DC
power flow’ approximation model [8]. 1

Each edge in the network corresponds to a transmission line which is purely inductive, i.e.
with susceptance −jbe, where be ∈ R+. Hence, the network is lossless. Node i ∈ V is at voltage
Vi(t), with all the voltages assumed to have the same magnitude, taken to be 1 (by an appropriate
choice of units). Let Vi(t) = ejφi(t) denote the (complex) voltage at node i in time slot t. If
Ii,k(t) = −jbik(Vi(t) − Vk(t)) is the electric current from i to k, the corresponding power flow is
then Fi,k(t) = Re[Vi(t)Ii,k(t)

∗] = Re[jbik(1 − ej(φi(t)−φk(t)))] = bik sin(φi(t) − φk(t)), where Re[·]
denotes the real part of a complex number.

The DC flow approximation replaces sin(φi(t)−φk(t)) by φi(t)−φk(t) in the above expression.
This is usually a good approximation since the phase angles at neighboring nodes are typically
maintained close to each other to ensure that the generators at the two ends remain in step. This

1Despite the name, ‘DC flow’ is an approximation to the AC flow
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leads to the following relation between angles and power flow Fi,k(t) = bik(φi(t)−φk(t)). In matrix
notation, we have

F(t) = ∇φ(t), (3)

where F(t) is the vector of all power flows, φ(t) = (φ1(t), . . . , φn(t)) and ∇ is a |E| × |V | matrix.
∇e,i = be if e = (i, k) for some k, ∇e,i = −be if e = (k, i) for some k, and ∇e,i = 0 otherwise.

Energy conservation at node i also yields

Zi(t)− Yi(t)−Wi(t) =
∑

k

F(i,k)(t) =
(
∇Tb−1F(t)

)
i
,

where b = diag(be) is an |E| × |E| diagonal matrix. Expressing F(t) in terms of φ(t), we get

Z(t)− Y(t)−W(t) = −∆φ(t), (4)

where ∆ = −∇Tb−1∇ is a |V | × |V | symmetric matrix where ∆i,k = −∑
l:(i,l)∈E bil if i = k,

∆i,k = bik if (i, k) ∈ E and 0 otherwise. In graph theory, ∆ is called the graph Laplacian matrix.
In power engineering, it is simply the imaginary part of the bus admittance matrix of the network.
Note that if be ≥ 0 for all edges e, then −∆ < 0 is positive semidefinite. If the network is connected
(which we assume throughout), it has only one eigenvector with eigenvalue 0, namely the vector
ϕv = 1 everywhere (hereafter we will denote this as the vector 1). This fits the physical fact that
if all phases are rotated by the same amount, the powers in the network are not changed.

With an abuse of notation, we denote by ∆−1 the matrix such that ∆−11 = −M 1, and ∆−1 is
equal to the inverse of ∆ on the subspace orthogonal to 1. Here M > 0 is arbitrary, and all of our
results are independent of this choice (conceptually, one can think of M as very large). Explicitly,
let ∆ = −Vα2VT be the eigenvalue decomposition of ∆, where α is a diagonal matrix with non-
negative entries. Define α† to be the diagonal matrix with α†ii = M if αii = 0 and α†ii = α−1

ii

otherwise. Then ∆−1 = −V(α†)2VT .
Since the total power injection in the network adds up to zero (which must be true by energy

conservation), we can invert (4) and obtain

φ(t) = −∆−1(Z(t)− Y(t)−W(t)) . (5)

Plugging this into (3), we have

F(t) = −∇∆−1
(
Z(t)− Y(t)−W(t)

)
. (6)

There is a capacity limit Ce on the power flow along each edge e; this capacity limit depends
on the voltage magnitudes and the maximum allowable phase differences between adjacent nodes,
as well as possible thermal line limits. We will measure violations of this limit by defining

εF ≡ lim
t→∞

1

|E|
∑

e∈E

E{(Fe(t)− Ce)+ + (−Ce −Fe(t))+} . (7)

We are now ready to state the design problem:
For the dynamic system defined by equations (1) and (6), design a control strategy which, given

the past and present random renewable supplies and the storage states,
{
(Z(t),B(t)); (Z(t− 1),B(t− 1)), . . . ,

}

choose the vector of energies Y(t) to put in storage and the vector of fast generations W(t) such
that the sum εtot ≡ εF + εW , cf. Eq. (2) and (7), is minimized.
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3 Linear-Quadratic Design

In this section, we propose a design methodology that is based on Linear-Quadratic (LQ) control
theory.

3.1 The Surrogate LQ Problem

The difficulty of the control problem defined above stems from both the nonlinearity of the dynamics
due to the hard storage limits and the piecewise linearity of the cost functions giving rise to the
performance parameters. Instead of attacking the problem directly, we consider a surrogate LQ
problem where the hard storage limits are removed and the cost functions are quadratic:

Bi(0) =
−Si

2
, Bi(t + 1) = Bi(t) + Yi(t) , (8)

F (t) = −∇∆−1
(
Z(t)− Y (t)−W (t)

)
, (9)

with performance parameters:

εsurrogate
Wi

= lim
t→∞

E{
(
Wi(t)

)2}, i ∈ V , (10)

εsurrogate
Fe

= lim
t→∞

E{(Fe(t))
2}, e ∈ E , (11)

εsurrogate
Bi

= lim
t→∞

E{(Bi(t))
2} . (12)

The process Bi(t) can be interpreted as the deviation of a virtual storage level process from the
midpoint Si/2, where the virtual storage level process is no longer hard-limited but evolves linearly.
Instead, we penalize the deviation through a quadratic cost function in the additional performance
parameters εsurrogate

Bi
.

The virtual processes B(t), F (t), W (t), Y (t) and Z(t) are connected to the actual processes
B(t), F(t), W(t), Y(t) and Z(t) via the mapping (where [x]ba := max(min(x, b), a) for a ≤ b):

Zi(t) = Zi(t) , Fe(t) = Fe(t) , (13)

Bi(t) = [ Bi(t) + Si/2 ]Si
0 , (14)

Yi(t) = Bi(t + 1) −Bi(t) , (15)

Wi(t) = Wi(t) + Yi(t)− Yi(t) . (16)

In particular, once we solve for the optimal control in the surrogate LQ problem, (15) and (16) tell
us what control to use in the actual system. Notice that the actual fast generation control provides
the fast generation in the virtual system plus an additional term that keeps the actual storage level
process within the hard limit. Note also

Wi(t) ≥ Wi(t)− (Bi(t)− Si/2)+ − (−Bi(t)− Si/2)+ . (17)

Hence the performance parameters εF , εW can be estimated from the corresponding ones for the
virtual processes.

Now we turn to solving the surrogate LQ problem. First we formulate it in standard state-
space form. For simplicity, we will assume {Z(t)}t≥0 is an i.i.d. process (over time).2 Hence

2The case of a process {Z(t)}t≥0 with memory can be in principle studied within the same framework, by intro-
ducing a linear state space model for Z(t) and correspondingly augmenting the state space of the control problem.
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X(t) := [F (t− 1)T , B(t)T ]T is the state of the system. Also, U(t) := [Y (t)T ,W (t)T ]T is the control
and R(t) := [X(t)T , Z(t)T ]T is the observation vector available to the controller. Then

X(t + 1) = AX(t) + DU(t) + EZ(t), (18)

R(t) = CX(t) + ζ(t) , (19)

where

A ≡
[
0 0
0 I

]
, D ≡

[
−∇∆−1 −∇∆−1

I 0

]
, E ≡

[
∇∆−1

0

]
.

and C =

[
0 0
0 I

]
and ζ(t) =

[
I

0

]
Z(t). We are interested in trading off between the performance

parameters εFe , εWi and εBi ’s. Therefore we introduce weights γe’s , ξi’s, ηi’s and define the
Lagrangian

L(t) ≡
|E|∑

e=1

γeE{Fe(t)
2}+

|V |∑

i=1

ξiE{Bi(t)
2}+

|V |∑

i=1

ηiE{Wi(t)
2}

= E
{
X(t)T Q1X(t) + U(t)T Q2U(t)

}
, (20)

where Q1 = diag(γ1, . . . , γ|E|, ξ1, . . . , ξ|V |) and Q2 = diag(0, . . . , 0, η1, . . . , η|E|).

We will let E{Z(t)} = Z. We will also assume that ΣZ ≡ E[Z(t)T Z(t)] = I, since if not, then

we can define E = [∇∆−1
√

ΣZ
−1

0]T , where
√

ΣZ is the symmetrical square root of ΣZ .
An admissible control policy is a mapping {R(t), R(t − 1), . . . , R(0)} 7→ U(t). The surrogate

LQ problem is defined as the problem of finding the mapping that minimizes the stationary cost
L ≡ limt→∞ L(t).

Notice that the energy production-minus-consumption Z(t) plays the role both in the evolution
equation (18) and the observation (19). The case of correlated noise has been considered and solved
for general correlation structure in [9]. Let G = E[ζ(t)Z(t)T ] = [I 0]T , R1(t) = [(Z(t) − Z)T , 0]T

and R2(t) = [0, B(t)T ]T . Adapting the general result in [9] to our special case, we have

Lemma 3.1. The optimal linear controller for the system in (18) and (19) and the cost function
in (20) is given by

U(t) = −(LR1(t) + K−1DTSEGTM−1R2(t)) + U, (21)

where, letting η ≡ diag(η1, . . . , η|V |) and γ ≡ diag(γ1. . . . , γ|V |):

U =

[
Y

W

]

=

[
0[

I −∆(∇T γ∇)−1∆η
]−1

Z

]
, (22)

and S is given by the algebraic Riccati equation

S = ATSA + QT
1 Q1 − LTKL, (23)
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where K = DTSD + QT
2 Q2, L = K−1(DTSA + QT

2 Q1), and

M = CJCT +

[
I 0
0 0

]
, (24)

where J satisfies the algebraic Riccati equation J = AJAT + EET −OMOT , and O = (AJCT +
EGT )M−1.

Note that the optimal linear controller has a deterministic time-invariant component U =

[Y
T
,W

T
]T and an observation-dependent control −(LR1(t)+K−1DTSEGTM−1R2(t)). It is intu-

itive that Y = 0, since otherwise the storage process has a non-zero drift and will become unstable.
The deterministic component W for the fast generation can be seen to be the solution of a static
optimal power flow problem with deterministic net renewable generation Z and cost function given
by:

L =

|E|∑

e=1

γeF
2
e +

|V |∑

i=1

ηiW
2
i .

On the other hand, the observation-dependent control is obtained by solving the LQ problem with
the net generations shifted to zero-mean. Thus, the LQ design methodology naturally decomposes
the control problem into a static optimal power flow problem and a dynamic problem of minimizing
variances.

Notice that it might be also convenient to consider more general surrogate costs in which a
generic quadratic function of the means F e, W i is added to the second moment Lagrangian (20).

3.2 Transitive Networks

Lemma 3.1 gives an expression for the optimal linear controller. However, it is difficult in general
to solve analytically the Riccati equation. To gain further insight, we consider the case of transitive
networks.

An automorphism of a graph G = (V,E) is a one-to-one mapping f : V → V such that for
any edge e = (u, v) ∈ E, we have e′ = (f(u), f(v)) ∈ E. A graph is called transitive if for any
two vertices v1 and v2, there is some automorphism f : V → V such that f(v1) = v2. Intuitively,
a graph is transitive if it looks the same from the perspective of any of the vertices. Given an
electric network, we say the network is transitive if it has a transitive graph structure, every bus
has the same associated storage, every line has the same capacity and inductance, and Zi(t) is
i.i.d. across the network. Without loss of generality, we will assume Si = S, Ce = C, be = 1,
E[Zi(t)] = µ,Var[Zi(t)] = σ2. Since the graph is transitive, it is natural to take the cost matrices
as Q1 = diag(γ, . . . , γ, ξ, . . . , ξ) and Q2 = diag(0, . . . , 0, 1, . . . , 1). Moreover, it can be seen from
Eq. (22) that U = 0. Since the mean net production is the same at each node, the static optimal
power flow problem is trivial with the mean flows being zero. We are left with the dynamic variance
minimizing problem.

Recall that ∆ = −Vα2VT is the eigenvalue decomposition of ∆. Since ∆ = −∇T∇, the
singular value decomposition of ∇ is given by ∇ = UαVT for some orthogonal matrix U. The
basic observation is that, with these choices of Q1 and Q2, the Riccati equations diagonalize in the
bases given by the columns of V (for vectors indexed by vertices) and columns of U (for vectors
indexed by edges).
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A full justification of the diagonal ansatz amounts to rewriting the Riccati equations in the new
basis. For the sake of space we limit ourselves to deriving the optimal diagonal control. We rewrite
the linear relation from X(t) to U(t) as

Y (t) = HZ(t)−KB(t) , (25)

W (t) = PZ(t) + QB(t) . (26)

Substituting in Eq. (18), we get

B(t + 1) = (I−K)B(t) + HZ(t) , (27)

F (t + 1) = ∇∆−1
{
(I−H−P)Z(t) + (K−Q)B(t)

}
, (28)

W (t) = PZ(t) + QB(t) . (29)

Denoting as above by B, F , W the average quantities, it is easy to see that, in a transitive network,
we can take F = 0, W = µ and hence B = 0. In words, since all nodes are equivalent, there is
no average power flow (F = 0), the average overproduction is dumped locally (W = µ), and the
average storage level is kept constant (B = 0).

We work in the basis in which ∇ = UαVT is diagonal. We will index singular values by θ ∈ Θ
hence α = diag({α(θ)}θ∈Θ) (omitting hereafter the singular value α = 0 since the relevant quantities
have vanishing projection along this direction.) In the examples treated in the next sections, θ will
be a Fourier variable. Since the optimal filter is diagonal in this basis, we write K = diag(k(θ)),
H = diag(h(θ)) and P = diag(p(θ)), Q = diag(q(θ)).

We let bθ(t), zθ(t), fθ(t), wθ(t) denote the components of B(t)−B, Z(t)−µ, F (t)−F , W (t)−W
along in the same basis. From Eqs. (27) to (29), we get the scalar equations

bθ(t) = (1− k(θ))bθ(t− 1) + h(θ)zθ(t) , (30)

fθ(t) = −α−1(θ)
{
(1− h(θ)− p(θ))zθ(t) +

(k(θ)− q(θ))bθ(t− 1)
}

, (31)

wθ(t) = p(θ)zθ(t) + q(θ)bθ(t− 1) . (32)

We will denote by σ2
B(θ), σ2

F (θ), σ2
W (θ) the stationary variances of bθ(t), fθ(t), wθ(t). From the

above, we obtain

σ2
B(θ) =

h2

1− (1− k)2
σ2 , (33)

σ2
F (θ) =

1

α2

[
(1− h− p)2 +

h2(k − q)2

1− (1− k)2

]
σ2 , (34)

σ2
W (θ) =

[
p2 +

h2q2

1− (1− k)2

]
σ2 . (35)

(We omit here the argument θ on the right hand side.)
In order to find h, k, p, q, we minimize the Lagrangian (20). Using Parseval’s identity, this

decomposes over θ, and we can therefore separately minimize for each θ ∈ Θ

L(θ) = σW (θ)2 + ξ σB(θ)2 + γ σF (θ)2 . (36)

A lengthy but straightforward calculus exercise yields the following expressions.
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No transmission (C = 0) No storage (S = 0) Storage and Transmission

1-D
Θ( σ2

C
) for µC < σ2 σ exp

n
−

q
CS
σ2

o†
for µ = exp

n
−ω

“q
CS
σ2

”o

Θ( σ2

S
) for µS < σ2 σ exp

n
−µC

σ2

o
otherwise σ exp

n
−CS

σ2

o
for µ = exp

n
−o

“q
CS
σ2

”o

2-D
σ exp

n
−µS

σ2

o
otherwise σ exp

n
−C

σ

o†
for µ = exp

n
−ω

“
C
σ

”o

σ exp
n
−

C max(C,S)

σ2

o

σ exp
n
−C2

σ2

o
for µ = exp

n
−o

“
C
σ

”o

Table 1: Asymptotically optimal εW + εF in 1-D and 2-D grids. Logarithmic factors have been neglected
(also in the exponent). † indicates the lower bound requires a conjecture in probability theory.

Theorem 1. Consider a transitive network. The optimal linear control scheme is given, in Fourier
domain θ ∈ Θ, by

p(θ) = q(θ) = ξ

√
4β(θ) + 1− 1

2
, (37)

h(θ) =
2β(θ) + 1−

√
4β(θ) + 1

2β(θ)
, (38)

k(θ) =

√
4β(θ) + 1− 1

2β(θ)
, (39)

where β(θ) is given by

β(θ) =
γ

ξ(γ + α2(θ))
. (40)

It is useful to point out a few analytical properties of these filters: (i) γ/[ξ(γ +dmax)] ≤ β ≤ 1/ξ
with dmax the maximum degree in G; (ii) 0 ≤ k ≤ 1 is monotone decreasing as a function of β,
with k = 1− β + O(β2) as β → 0 and k = 1/

√
β + O(1/β) as β →∞; (iii) 0 ≤ h ≤ 1 is such that

h+ k = 1. In particular, it is monotone increasing as a function of β, with h = β +O(β 2) as β → 0
and h = 1− 1/

√
β + O(1/β) as β →∞; (iv) p = q = ξβk.

Theorem 2. Consider a transitive network, and assume that the optimal LQ control is applied.
The variances are given as follows in terms of k(θ), given in Eq. (38):

σ2
B(θ)

σ2
=

(1− k(θ))2

1− (1 − k(θ))2
, (41)

σ2
F (θ)

σ2
=

α2(θ)

(γ + α2(θ))2
k2(θ)

1− (1− k(θ))2
, (42)

σ2
W (θ)

σ2
=

γ2

(γ + α2(θ))2
k2(θ)

1− (1− k(θ))2
. (43)

4 1-D and 2-D Grids: Overview of Results

For the rest of the paper, we focus on two specific network topologies: the infinite one-dimensional
grid (line network) and the infinite two-dimensional grid. We will assume that the net generations
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are independent across time and position, with common expectation EZi(t) = µ, and we will place
weak assumptions on the distributions (to be specified precisely later in Section 6.) We will focus
on the regime when the achieved cost is small. In Section 5 we will evaluate the performance of the
LQ scheme on these topologies. In Section 7. we will derive lower bounds on the performance of
any schemes on these topologies to show that the LQ scheme is optimal in the small cost regime.
As a result, we characterize explicitly the asymptotic performance in this regime. The results are
summarized in Table 1.

Although the i.i.d. assumption simplifies significantly our derivations, we expect that the quali-
tative features of our results should not change for a significantly broader class of processes {Z i(t)}t.
In particular, we expect our results to generalize under the weaker assumption that Zi(t) is sta-
tionary but close to independent beyond a time scale T = O(1).

The parameter µ, the mean of the net generation at each node, can be thought of as a measure
of the amount of over-provisioning. Let us first consider that case of a one-dimensional grid and
assume that µ is vanishing or negligible. In other words, the average production balances the
average load. Our results imply that a dramatic improvement is achieved by a joint use of storage
and transmission resources. Consider first the case C = 0. The network then reduces to a collection
of isolated nodes, each with storage S. It can be shown that the optimal cost decreases only slowly
with the storage size S, namely as 1/S. Similarly, when there is only transmission but no storage,
the optimal cost decreases only slowly with transmission capacity C, like 1/C. On the other hand,
with both storage and transmission, the optimal costs decreases exponentially with

√
CS. Consider

now positive over-provisioning µ > 0. When there is no storage, the only way to drive the cost
significantly down is at the expense of increasing the amount of over-provisioning beyond σ2/C. The
same performance can be achieved with a storage S equalling to this amount of over-provisioning
and with the actual amount of over-provisioning exponentially smaller.

The 2-D grid provides significantly superior performance than the 1-D grid. For example, the
cost exponentially decreases with the transmission capacity C even without over-provisioning and
without storage. The increased connectivity in a 2-D grid allows much more spatial averaging of
the random net generations than in the 1-D grid. In order to understand the fundamental reason
for this difference, consider the case of vanishing over-provisioning µ = 0 and vanishing storage
S = 0 (also see Figure 1). Consider first a 1-D grid. The aggregate net generation inside a segment
of l nodes has variance lσ2 and hence this quantity is of the order of

√
lσ. This random fluctuation

has to be compensated by power delivered from the rest of the grid, but this power can only be
delivered through the two links, one at each end of the segment and each of capacity C. Hence,

Figure 1: Boxes of side l in 1-D and in 2-D. The ratio boundary/
√

volume is Θ(1/
√

l) in 1-D, and
Θ(1) in 2-D.
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successful compensation requires l . C2/σ2. One can think of l∗ := C2/σ2 as the spatial scale
over which averaging of the random generations is taking place. Beyond this spatial scale, the
fluctuations will have to be compensated by fast generation. This fluctuation is of the order of√

l∗σ/l∗ = σ2/C per node. Note that a limit on the spatial scale of averaging translates to a large
fast generation cost. In contrast, in the 2-D grid, (i) the net generation, and (ii) the total link
capacity connecting an l× l box to the rest of the grid, both scale up linearly in l. This facilitates
averaging over a very large spatial scale l, resulting in a much lower fast generation cost.

There is an interesting parallelism between the results for the 1-D grid with storage and the 2-D
grid without storage. If we set S = C, the results are in fact identical. One can think of storage as
providing an additional dimension for averaging: time (Section 7.2 formalizes this). Thus, a one
dimensional grid with storage behaves similarly to a two-dimensional grid without storage.

5 Performance of LQ Scheme in Grids

In this section we evaluate the performances of the LQ scheme on the 1-D and 2-D grids. Both are
examples of transitive graphs and hence we will follow the formulation in Section 3.2. For these two
examples, the operator ∆ is in fact invariant to spatial shifts so the θ-domain which diagonalizes
the operator is simply the (spatial) Fourier domain.

For simplicity, in this section, we consider the case where Zi(t) are gaussian. In the next section
we show how all our results immediately generalize to a much larger and more realistic class of
distributions.

Suppose that Zi(t) ∼ N(µ, σ2) iid across nodes and time. It follows that B,F,W are Gaussian,
and using Eq. (17), we get the following estimates

εF ≤ 2σF F

( C

σF

)
, εW ≤ σBF

( S

2σB

)
+ σW F

( µ

σW

)
. (44)

Here F is the tail of the Gaussian distribution F(z) ≡
∫∞
z φ(x) dx = Φ(−z), where φ(x) =

exp{−x2/2}/
√

2π the Gaussian density and Φ(x) =
∫ x
−∞ φ(u)du is the Gaussian distribution.

In order to evaluate performances analytically and to obtain interpretable expressions, we will
focus on two specific regimes. In the first one, no storage is available but large transmission capacity
exists. In the second, large storage and transmission capacities are available.

5.1 No storage

In order to recover the performance when there is no storage, we let ξ →∞, implying σ2
B → 0 by

the definition of cost function (36). In this limit we have β → 0, cf. Eq. (40). Using the explicit
formulae for the various kernels, cf. Eqs. (37) to (39), we get:

p, q =
γ

γ + α2(θ)
+ O(1/ξ) , h = O(1/ξ) , k = 1−O(1/ξ) .

Substituting in Eqs. (27) to (28) we obtain the following prescription for the controlled variables
(in matrix notation)

Y (t) = 0 W (t) = γ(−∆ + γ)−1Z(t) , (45)
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while the flow and storage satisfy

B(t) = 0 , F (t) = ∇(−∆ + γ)−1Z(t) , (46)

The interpretation of these equations is quite clear. No storage is retained (B = 0) and hence no
energy is transferred to storage. The matrix γ(−∆ + γ)−1 can be interpreted a low-pass filter and
hence γ(−∆+γ)−1Z(t) is a smoothing of Z(t) whereby the smoothing takes place on a length scale
γ−1/2. The wasted energy is obtained by averaging underproduction over regions of this size.

Finally, using Eqs. (42) and (43), we obtain the following results for the variances in Fourier
space

σF (θ)2

σ2
=

α2(θ)

(γ + α2(θ))2
,

σW (θ)2

σ2
=

γ2

(γ + α2(θ))2
.

5.1.1 One-dimensional grid

In this case θ ∈ [−π, π], and α(θ)2 = 2 − 2 cos θ (the Laplacian ∆ is diagonalized via Fourier
transform). The form of the optimal filter P is shown in Figure 2.

The Parseval integrals can be computed exactly but we shall limit ourselves to stating without
proof their asymptotic behavior for small γ.

Lemma 5.1. For the one-dimensional grid, in absence of storage, as γ → 0, the optimal LQ control
yields variances

σ2
F = σ2/4

√
γ

{
1 + O(γ)

}
, σ2

W = σ2√γ/4
{

1 + O(γ)
}

.

Using these formulae and the equations (44) for the performance parameters, we get the follow-
ing achievability result.

Theorem 3. For the one-dimensional grid, in absence of storage, the optimal LQ control with
Lagrange parameter γ = µ2/C2 yields, in the limit µ/C → 0, µC/σ2 →∞:

εtot ≤ exp
{
− 2µC

σ2

(
1 + o(1)

)}
. (47)

The choice of γ given here is dictated by approximately minimizing the cost. In words, the cost
is exponentially small in the product of the capacity, and overprovisioning µC. This is achieved by
averaging over a length scale γ−1/2 = C/µ that grows only linearly in C and 1/µ. Note that the
extent of averaging is limited by the transmission capacity C: the larger the extent of averaging,
the larger the amount of power which has to be transported across the network. Optimal filters P

for two different values of γ−1/2 are displayed in Figure 2.

5.1.2 Two-dimensional grid

In this case θ = (θ1, θ2) ∈ [−π, π]2, and α(θ)2 = 4−2 cos θ1−2 cos θ2. Again, we evaluate Parseval’s
integral as γ → 0, and present the result.

12



5 10 15 20 25 30 35 40 45
0

0.01

0.02

0.03

0.04

0.05
p

n

 

 

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

lo
g(

|p
|)

log(n)

γ−1/2 = 10
γ−1/2 = 30

Figure 2: The filter P for a one-dimensional grid Z in the case in which no storage is available.
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plot Pn for two values of the effective length scale 1/
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Lemma 5.2. For the two-dimensional grid, in absence of storage, as γ → 0, the optimal LQ control
yields variances

σ2
F =

σ2

4π

{
log

( 1

eγ

)
+ O(γ)

}
, σ2

W =
σ2γ

4π

{
1 + O(γ)

}
.

Using these formulae and the equations (44) for the performance parameters, and approximately
optimizing over γ, we obtain the following achievability result.

Theorem 4. For the two-dimensional grid, in absence of storage, the optimal LQ control with
Lagrange parameter γ = (µ2/C2) log(C2/µ2e) yields, in the limit µ/C → 0, C2/(σ2 log(C/µ)) ≡
M →∞:

εtot ≤ exp

{
− 2πC2

σ2 log(C2/µ2e)

(
1 + o(1)

)}
. (48)

Notice the striking difference with respect to the one-dimensional case, cf. Theorem 3. The cost
goes exponentially to 0, but now overprovisioning plays a significantly smaller role. For instance,
if we fix the link capacity C to be the same, the exponents in Eq. (47) are matched if µ2d ≈
exp(−πC/2µ1d)}, i.e. an exponentially smaller overprovisioning is sufficient.

5.2 With Storage

In this section we consider the case in which storage is available. Again we focus on the regime
where the optimal cost is small. Within our LQ formulation we want therefore to penalize σW

much more than σB and σF . This corresponds to the asymptotics γ → 0, ξ ≡ γ/s → 0 (the ratio s
need not to be fixed). It turns out that the relevant behavior is obtained by considering α2 = Θ(γ)
and hence β →∞. The linear filters are given in this regime by

p(θ) = q(θ) = (γ/
√

s)
(
γ + α(θ)2

)−1/2
,

k(θ) ≈ (1/
√

s)
(
γ + α(θ)2

)1/2
, h(θ) ≈ 1 .

Using these filters we obtain

σB(θ)2

σ2
≈ 1

2

(
s

γ + α(θ)2

)1/2

,

σF (θ)2

σ2
≈ α2(θ)

2
√

s

(
1

γ + α(θ)2

)3/2

,

σW (θ)2

σ2
≈ γ2

2
√

s

(
1

γ + α(θ)2

)3/2

.

5.2.1 One-dimensional grid

The variances are obtained by Parseval’s identity, integrating σ2
B,W,F (θ) over θ ∈ [−π, π]. The form

of the optimal filters P and K is presented in Figure 3. We obtain the following asymptotic results.
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Lemma 5.3. Consider a one-dimensional grid, subject to the LQ optimal control. For γ → 0 and
ξ = γ/s → 0

σ2
B

σ2
=

√
s

4π
log

1

γ
+ O(1) ,

σ2
F

σ2
=

1

4π
√

s
log

1

γ
+ O(1, s−1) ,

σ2
W

σ2
=

Ω1

2
√

s
γ + O(γ2, γ3/2/s) ,

where Ωd is the integral (here ddu ≡ du1 × · · · × dud)

Ωd ≡ 1/(2π)d

∫

Rd

1/(1 + ‖u‖2)3/2 ddu . (49)

Using Eqs. (44) to estimate the total cost εtot and minimizing it over γ we obtain the following.

Theorem 5. Consider a one-dimensional grid and assume CS/σ2 →∞. The optimal LQ scheme
achieves the following performance:

µ = e
−ω

(q
CS
σ2

)

⇒ εtot ≤ exp
{
−

√
πCS

2σ2

(
1 + o(1)

)}
,

µ = e
−o

(q
CS
σ2

)
⇒ εtot ≤ exp

{
− πCS(1 + o(1))

2σ2 log C/µ

}
,

under the further assumption
√

πCS/2σ2−log(C/S) →∞ (in the first case) and µ2 log(C/µ)/min(C,S)2 →
0 (in the second). In the first case the claimed behavior is achieved by s = S 2/4C2, and γ =
exp{−(2πCS/σ2)1/2}. In the second by letting s = S2/4C2, and γ = µ2 log(C/µ)/(πΩ1C

2).

This theorem points at a striking threshold phenomenon. If overprovisioning is extremely
small, or vanishing, then the cost is exponentially small in

√
CS. On the other hand, even a

modest overprovisioning changes this behavior leading to a decrease that is exponential in CS
(barring exponential factors). Overprovisioning also reduces dramatically the effective averaging
length scale γ−1/2. It also instructive to compare the second case in Theorem 5 with its analogue
in the case of no storage, cf. Eq. (47): storage seem to replace overprovisioning.

5.2.2 Two-dimensional grid

As done in the previous cases, the variances of B, F , W are obtained by integrating σ2
B,F,W (θ) over

θ = (θ1, θ2) ∈ [−π, π]2.

Lemma 5.4. Consider a two-dimensional grid, subject to the LQ optimal control. For γ → 0 and
s = Θ(1), we have

σ2
B

σ2
= GB(s) + O(1,

√
γ) ,

σ2
F

σ2
= GF (s) + O(

√
γ) ,

σ2
W

σ2
=

Ω2

2
√

s
γ3/2 + O(γ2) ,

where Ω2 is the constant defined as per Eq. (49), and GB(s), GF (s) are strictly positive and bounded
for s bounded. Further, as s → ∞ GB(s) = K2

√
s/2 + O(1), GF (s) = K2/(2

√
s) + O(1/s), where

K2 ≡
∫
[−π,π]2

1
|α(θ)| dθ.
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Minimizing the total outage over s, γ, we obtain:

Theorem 6. Assume CS/σ2 →∞ and C/S = Θ(1). The optimal cost for scheme a memory-one
linear scheme on the two-dimensional grid network then behaves as follows

εtot ≤ exp
{
− CS

2σ2Γ(S/C)

(
1 + o(1)

)}
. (50)

Here u 7→ Γ(u) is a function which is strictly positive and bounded for u bounded away from 0 and
∞. In particular, Γ(u) → K2 as u →∞, and Γ(u) = Γ0u + o(u) as u → 0 (Γ0 > 0).

The claimed behavior is achieved by selecting s = f(S/C), and γ as follows. If µ = exp{−o(CS/σ2)}
then γ = f̃(S/C)(µ2/CS)2/3. If instead µ = exp{−ω(CS/σ2)}, then γ = exp{−2CS/(3Γ(S/C)σ2)},
for suitable functions f, f̃ (In the first case, we also assume µ/C → 0.)

The functions Γ, f, f̃ in the last statement can be characterized analytically, but we omit such
characterization for the sake of brevity. As seen by comparing with Theorem 5, the greater con-
nectivity implied by a two dimensional grid leads to a faster decay of the cost.

6 Extension to a larger class of distributions

We find that our results from Section 5 immediately generalize to a much broader class of distri-
butions for Zi(t) than Gaussian.

To define this class, first we provide the definition of sub-Gaussian random variables. (See, for
instance, [10] for more details.)

Definition 6.1. A random variable X is sub-Gaussian with tail parameter s2 if, for any λ ∈ R,

E
{
eλ(X−EX)

}
≤ eλ2s2/2 . (51)

Two important examples of sub-Gaussian random variables are:

1. Gaussian random variables with variance σ2 are sub-Gaussian with tail parameter s2 = σ2.

2. Random variables with bounded support on [a, b] are sub-Gaussian with tail parameter s2 =
(b− a)2/4.

Notice that the tail parameter is always an upper bound on the variance σ2, namely σ2 ≤ s2 (this
follows by Taylor expansion of Eq. (51) for small λ). We will consider the class of distributions for
the net production Zi(t) to be sub-Gaussian with tail parameter of the same order as the variance.
More precisely:

Definition 6.2. Fix constant κ > 0. Let S(κ) be the class of distributions such that the sub-
Gaussian tail parameter s2 and the standard deviation σ2 satisfy:

1 ≤ s2

σ2
< κ.
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This is a natural class of distributions for modeling renewable power production. The power
generated by wind turbines, for example, are bounded between 0 and a upper power limit, with
significant probability that the power is near 0 or capped at the upper limit. Hence, it is of
bounded support with the range comparable to the standard deviation. It is sub-Gaussian with
tail parameter of the same order as the variance.

We will now argue that all the results we derived in Section 5 for Gaussian net productions
extend to this class of distribution. The only fact we used to connect variances with the costs,
where we used the Gaussianity assumption, is Eq. (44). This equation implies that εF decreases
exponentially with (C/σF )2, and εW decreases exponentially with (S/σB)2 and with (µ/σW )2,
which in turns leads to Theorems 3, 4, 5, 6. We will show that these exponential dependencies hold
for distributions in S(κ) as well, and a similar versions of these theorems hold for these distributions.

First we need some elementary properties of sub-Gaussian random variables. The first property
follows by elementary manipulations with moment generating functions.

Lemma 6.3. Assume X1 and X2 to be independent random variables with tail parameters s2
1 and

s2
2. Then, for any a1, a2 ∈ R, X = a1X1 + a2X2 is sub-Gaussian with tail parameter (a2

1s
2
1 + a2

2s
2
2).

Notice that by this lemma, the parameters of sub-Gaussian random variables behave exactly as
variances (as far as linear operations are involved). In particular, it implies that the class S(κ) is
closed under linear operations.

The second property is a well known consequence of Markov inequality, and shows that the tail
of a sub-Gaussian random variable is dominated by the tail of a Gaussian with the same parameter.

Lemma 6.4. If X is a sub-Gaussian random variable with parameter s2, then, for any a ≥ 0
P{X ≥ a + EX}, P{X ≤ −a + EX} ≤ exp{−a2/(2s2)}.

Now suppose the net productions Zi(t)’s have distributions in S(κ). The LQ scheme developed
in Section 3 implies that the controlled variables Bi(t), Fe(t), Wi(t) are linear functions of the net
productions Zi(t), and hence it follows that Bi(t), Fe(t), Wi(t) are in S(κ). Now, if we let Fe be
the flow at edge e at steady-state, with sub-Gaussian tail parameter s2

F , then

εF = E{(Fe − C)+ + (−C −Fe)+}

=

∫ ∞

C
P{Fe > a}da +

∫ −C

−∞
P{Fe < a}da

≤
∫ ∞

C
exp{−a2/(2s2

F )}da +

∫ −C

−∞
exp{−a2/(2s2

F )}da

≤ 2

∫ ∞

C
exp{−a2/(2κσ2

F )}da

= 2
√

2πσF F

( C√
κσF

)
.

Here, as in Eq. (44), F( · ) is the complementary cumulative distribution function of the standard
Gaussian random variable: F(x) = 1− Φ(x). Similarly, one can show that:

εW ≤
√

2πσBF

( S

2
√

κσB

)
+
√

2πσWF

( µ√
κσW

)
.
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Thus, εF decreases exponentially with (C/σF )2, and εW decreases exponentially with (S/σB)2

and with (µ/σW )2, as in the Gaussian case, except for an additional factor of 1/κ in the exponent.
This means that analogues of Theorems 3, 4, 5, 6 also hold for distributions in S(κ) with an
additional factor of 1/κ in the exponent of εtot. Note that all these exponents are proportional to
1/σ2, where σ2 is the variance of the Gaussian distributed Zi(t). Therefore, equivalently, one can
say that the performance under a sub-Gaussian distributed Zi(t) with tail parameter s2 is at least
as good as if Zi(t) were Gaussian with variance s2.

7 Performance limits

In this section, we prove general lower bounds on the outage εtot = εW + εF of any scheme, on
the 1-D and 2-D grids. Our proofs use cutset type arguments. Throughout this section, we will
assume the Zi(t) to be i.i.d. random variables, with Zi(t) ∼ N(µ, σ2), with the exception of the case
of a one-dimensional grid without storage, cf. Theorem 7. In this case, we will make the weaker
assumption that the Zi(t) are i.i.d. sub-Gaussian.

7.1 No storage

7.1.1 One-dimensional grid

Theorem 7. Consider a one-dimensional grid without storage, and assume the net productions
Zi(t) to be i.i.d. sub-Gaussian random variables in the class S(κ). (In particular this assumption
holds if Zi(t) ∼ N(µ, σ2).)

There exist finite constants κ0, κ1, κ3 > 0 dependent only on κ, such that the following happens.
For µ < κ0σ and σ < κ0C, we have

εtot ≥
{

κ1σ
2/C if µ < σ2/C ,

µ exp
{
−κ2µC/σ2

}
otherwise.

(52)

Proof. Consider a segment of length `. Let E be the event that the segment has net demand at
least 3C. Then we have

P[E] ≥ κ3 exp
{
− κ4(3C + `µ)2

2σ2`

}
, (53)

for some κ3, κ4 > 0. (This inequality is immediate for Zi(t) ∼ N(µ, σ2) and follows from Lemma
A.1 proved in the appendix for general random variables in S(κ).)

If E occurs at some time t, this leads to a shortfall of at least C in the segment of length `. This
shortfall contributes either to εW or to 2εF , yielding

2εtot ≥ εW + 2εF ≥
κ3C

`
exp

{
− κ4(3C + `µ)2

σ2`

}
. (54)

Choosing ` = min
(
C/µ,C2/σ2

)
, we obtain the result.

Note that the lower bound is tight both for µ ≥ σ2/C (by Theorem 3) and µ < σ2/C (by a
simple generalization of the same theorem that we omit).
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7.1.2 Two-dimensional grid

We prove a lower bound almost matching the upper bound proved in Theorem 4.

Theorem 8. There exists κ < ∞ such that, for C ≥ min(µ, σ),

εtot ≥ σ exp
{
− κC2/σ2

}
.

Proof. Follows from a single node cutset bound.

We next make a conjecture in probability theory, which, if true, leads to a significantly stronger
lower bound for small µ. For any set of vertices A of the two-dimensional grid, we denote by ∂A
the boundary of A, i.e., the set of edges in the grid that have one endpoint in A and the other in
Ac.

Conjecture 7.1. There exists δ > 0 such that the following occurs for all ` ∈ N. Let (Xv)v∈S be
a collection of i.i.d. N(0, 1) random variables indexed by S = {1, . . . , `} × {1, . . . , `} ⊆ Z

2. Then

E

[
max

A⊆S s.t.
|∂A|≤4l

∑

v∈A

Xv

]
≥ δl log l . (55)

It is not hard to see that this conjecture implies a tight lower bound.

Theorem 9. Consider the two-dimensional grid without storage, and assume Conjecture 7.1. Then
there exists κ < ∞ such that for any µ ≤ σ exp(−κC/σ) and C > σ we have

εtot ≥ σ exp
{
− κC/σ

}
. (56)

Proof. Consider a square of side `. Conjecture 7.1 yields that we can find a subset of vertices
in the square with a boundary capacity no more than 4C`, but with a net demand of at least
δσ` log `− µ`2. This yields

2εtot ≥ εW + 2εF ≥
δσ` log `− 4C`− µ`2

`2
. (57)

Choosing ` = exp(κC/σ) with an appropriate choice of κ, we obtain the result.

Our conjecture was arrived at based on a heuristic divide-and-conquer argument. We validated
our conjecture numerically as follows: We obtain a lower bound to the left hand side of Eq. (55),
by maximizing over a restricted class of subsets Sop, consisting of subsets that can be formed by
dividing the square into two using an oriented path (each step on such a path is either upwards or
to the right). It is easy to see that if S ∈ Sop, then |∂S| ≤ 4l. Define

G(l) ≡ max
S∈ Sop

∑

v∈S

Xv , (58)

where Sop is implicitly a function of l. The advantage of considering this quantity is that G(l)
can be computed using a simple dynamic program of quadratic complexity. Numerical evidence,
plotted in Figure 7.1.2, suggests that E[G(l)] = Ω(l log l), which implies our conjecture.
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Figure 4: Numerical evidence for Conjecture 7.1: The approximate straight line in the plot (cf.
definition of G(l) in Eq. (58)) suggests the validity of our conjecture.

7.2 With storage

7.2.1 One-dimensional grid

Our approach involves mapping the time evolution of a control scheme in a one-dimensional grid,
to a feasible (one-time) flow in a two-dimensional grid. One of the dimensions represents ‘space’ in
the original grid, whereas the other dimension represents time.

Consider the one-dimensional grid, with vertex set Z. We construct a two-dimensional ‘space-
time’ grid (V̂ , Ê) consisting of copies of each v ∈ V , one for each time t ∈ Z: define V̂ ≡ {(v, t) :
v ∈ Z, t ∈ Z}. The edge set Ê consists of ‘space-edges’ Esp and ‘time-edges’ Et.

Ê ≡ Esp ∪Et

Esp ≡ {((v, t), (v + 1, t)) : v ∈ Z, t ∈ Z}
Et ≡ {((v, t), (v, t + 1)) : v ∈ Z, t ∈ Z}

Edges are undirected. Denote by Ĉe the capacity of e ∈ Ê. We define Ĉe ≡ C for e ∈ Esp and
Ĉe = S/2 for e ∈ Et.

Given a control scheme for the 1-D grid with storage, we define the flows in the space-time grid
as

F̂e ≡ F(v,v+1)(t) for e = ((v, t), (v + 1, t)) ∈ Esp

F̂e ≡ Bv(t + 1)− S/2 for e = ((v, t), (v, t + 1)) ∈ Et

Notice that these flows are not subject to Kirchoff constraints, but the following energy balance
equation is satisfied at each node (v, t) ∈ V̂ ,

Zi(t)−Wi(t)−Yi(t) =
∑

(v′ ,t′)∈∂(v,t)

F̂(v,t),(v′ ,t′) (59)
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We use performance parameters as before (this definition applies to finite networks and must be
suitably modified for infinite graphs):

ε bF ≡ 1

|Ê|
∑

e∈ bE

E{(F̂e(t)− Ĉe)+ + (Ĉe − F̂e(t))+} ,

εW ≡ 1

|V̂ |
∑

(i,t)∈bV

E{
(
Wi(t)

)
−
} .

Notice that εW is unchanged, and ε bF = εF , in our mapping from the 1-D grid with storage to the
2-D space-time grid.

Our first theorem provides a rigorous lower bound which is almost tight for the case µ =

e−o(
√

CS/σ2) (cf. Theorem 5). It is proved by considering a rectangular region in the space-time
grid of side l = max(C/S, 1) in space and T = max(1, S/C) in time.

Theorem 10. Suppose µ ≤ min(C,S), CS/σ2 > max(log(σ/min(C,S)), 1). There exists κ < ∞
such that

εtot ≥ σ exp(−κCS/σ2) . (60)

Proof. Consider a segment of length ` = max(C/S, 1) and a sequence of T = `S/C consecutive
time slots. (Rounding errors are easily dealt with.) The number of nodes in the corresponding
region R in the space-time grid is

n ≡ `T = max(C,S)/min(C,S).

The cut, i.e., the connection between R and the rest of the grid, is of size 2(lS+TC) = 4max(C,S).
The net generation inside R is N(nµ, σ2n). Now µ ≤ C by assumption, implying nµ ≤ max(C,S).
Let E be the event that the net generation inside R is at least 5max(C,S). We have

P[E] ≥ exp

(
−κ1(max(C,S))2

σ2n

)
≥ exp

(
−κ1CS

σ2

)

for some κ1 < ∞. Moreover, E leads to a shortfall of at least max(C,S) over n nodes in the
space-time grid. It follows that

εtot ≥
(
max(C,S)/n

)
exp

(
−κ1CS

σ2

)
= min(C,S) exp

(
−κ1CS

σ2

)
,

which yields the result, using CS/σ2 > log(σ/min(C,S)).

Next we provide a sharp lower bound for small µ using Conjecture 7.1. Recall Theorem 9
and notice that its proof does not make any use of Kirchoff flow constraints (encoded in Eq. (3)).
Thus, the same result holds for a 2-D space-time grid. We immediately obtain the following result,
suggesting that the upper bound in Theorem 5 for small µ is tight.
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Theorem 11. There exists κ < ∞ such that the following occurs if we assume that Conjecture 7.1
is valid. Consider the one-dimensional grid with parameters C = S > σ, and µ ≤ exp(−κC/σ).
We have

εtot ≥ σ exp
{
− κ

√
CS/σ2

}
. (61)

We remark that the requirement C = S can be relaxed if we assume a generalization of Con-
jecture 7.1 to rectangular regions in the two-dimensional grid.

7.2.2 Two-dimensional grid

Theorem 12. There exists a constant κ < ∞ such that on the two-dimensional grid,

εtot ≥ σ exp

{
−κC max(C,S)

σ2
i

}
. (62)

The theorem is proved by considering a single node, using a cutset type argument, similar to
the proof of Theorem 10. It implies that the upper bound in Theorem 6 is tight up to constants in
the exponent.
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A A probabilistic lemma

Lemma A.1. Let {X1, X2, . . . , Xn, . . . } be a collection of i.i.d. sub-Gaussian random variables in
S(κ) with EX1 = 0, E{X2

1} = σ2.
Then there exists finite constants κ1 = κ1(κ) > 0, κ2 = κ2(κ) > 0,n0 = n0(κ) depending

uniquely on κ such that, for all n ≥ n0, 0 ≤ γ ≤ κ1σ, we have

P

{ n∑

i=1

Xi ≥ γn
}
≥ 1

4
exp

{
− nγ2

κ2σ2

}
. (63)

Proof. By scaling, we will assume, without loss of generality, σ2 = 1. Throughout the proof
κ′, κ′′, . . . denote constants depending uniquely on κ. We will use the same symbol even if the
constants have to be redefined in the course of the proof.

For any λ ∈ R, let Pλ, Eλ denote probability and expectation with respect to the measure
defined implicitly by

Eλ{f(X1, . . . , Xn)} ≡ E{f(X1, . . . , Xn) eλ
Pn

i=1 Xi}
E{eλ

Pn
i=1 Xi}

, (64)

for all measurable functions f . Notice that this measure is well defined for all λ by sub-Gaussianity.
Let g(λ) ≡ EλX1. Then λ 7→ g(λ) is continuous, monotone increasing with g(0) = 0, g ′(λ) =

Varλ(X1), g′′(λ) = EλX3
1 − 3EλX1EλX3

1 . Bounding these quantities by sub-Gaussianity, it follows
that, for 0 ≤ λ ≤ κ′, we have 1/κ′′ ≤ Varλ(X1) ≤ κ′′, and hence

λ

κ′′
≤ g(λ) ≤ κ′′λ . (65)
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Define γ+/− ≡ limλ→±∞ g(λ). Notice that γ− < 0 < γ+ and that g−1 (the inverse function of g) is
well defined on the interval (γ−, γ+).

Define

h(λ) ≡ (EeλX1)2

E(e2λX1)
. (66)

By Taylor expansion, we get h(λ) = 1− λ2
E(X2

1 ) + O(λ3) = 1− λ2 + O(λ3). Proceeding as above,
it is not hard to prove that h(λ) ≥ 1 − κ′′λ2 for all 0 ≤ λ ≤ κ′ for some finite constants κ′, κ′′ > 0
(eventually different from above). Finally, for γ ∈ (γ−, γ+) we define

H(γ) ≡ h(g−1(γ)) . (67)

Combining the above, we have H(γ) = 1− κ′′γ2 for all γ ∈ [0, κ′], and therefore

H(γ) ≥ e−γ2/κ2 for all γ ∈ [0, κ1] . (68)

Now, for γ ∈ [0, κ1], let E = E(γ) be the event that X1 + · · ·+ Xn ≥ nγ. Take λ = g−1(γ) and
define Z(λ) ≡ exp{λ ∑n

i=1 Xi}. By Cauchy-Schwarz inequality

P{E} ≥ E{IEZ(λ)}2}
E{Z(λ)2

= Pλ{E}2
{EZ(λ)}2

E{Z(λ)2}
= Pλ{E}2 H(γ)n

≥ Pλ{E}2 exp
{
− nγ2

κ2

}
.

The proof is completed by noting that Pλ{E}2 ≥ 1/4 for all n ≥ n0(κ), by Berry-Esseen central
limit theorem (note indeed that, under Pλ, X1,. . . ,Xn have mean γ, variance lower bounded by
Varλ(Xi) ≥ κ′ > 0 and Eλ(|Xi|3) ≤ κ′′ < ∞).
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