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Abstract— The optimal power flow (OPF) problem is critical
to power system operation but it is generally non-convex and
therefore hard to solve. Recently, a sufficient condition has
been found under which OPF has zero duality gap, which
means that its solution can be computed efficiently by solving
the convex dual problem. In this paper we simplify this
sufficient condition through a reformulation of the problem and
prove that the condition is always satisfied for a tree network
provided we allow over-satisfaction of load. The proof, cast as a
complex semi-definite program, makes use of the fact that if the
underlying graph of an n× n Hermitian positive semi-definite
matrix is a tree, then the matrix has rank at least n− 1.

I. MOTIVATION

Optimal operation of a power grid has been extensively
studied since the pioneering work of Carpentier [1] in 1962.
The general optimal power flow (OPF) problem seeks to
minimize some cost function, such as power loss, generation
cost and/or user utilities, subject to capacity and network
constraints on the voltages, powers (real and reactive) and the
loads [2]–[4]. The general OPF problem is non-convex and
NP hard. Given the practical importance of the problem there
has been a lot of research into efficient solution algorithms,
and historically the most common solution techniques have
relied on linear programming techniques [5], [6]. Researchers
have also proposed a number of relaxations to make the OPF
problem more tractable. The simplest of which is the DC
Power Flow problem, which is widely used because it is a
linear program and thus easy to solve. However this approx-
imation makes a number of assumptions that are not always
valid in a real power circuit. A number of studies have sought
to characterize the instances where the DC approximation is
acceptable, e.g. [7], [8] and the references therein. A detailed
overview of some other common instances of OPF along with
various solution strategies are provided in the survey articles
[9]–[12].

Recently there has been some effort toward convexifying
the full AC problem. Jabr provided a conic quadratic model
of radial distribution systems [13] and meshed networks
[14] and demonstrated an efficient solution method to these
problems using an interior point method for convex conic
quadratic programming. The implementation of this method
on a distribution system containing various reactive power
components such as tap changers and shunt capacitors was
also studied [15]. The trigonometric angle constraints in
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these works make the results difficult to generalize. For radial
networks the method in [14] also requires the additional
step of traversing the tree to recover the angles after the
optimization problem is solved. In [16], [17], Baran and
Wu introduced a new model for a radial network and an
efficient computational method that makes use of the loop-
free nature of such a network. Farivar et al. [18] builds
on the model in [16], [17] and studies a second order
cone relaxation to determine the optimal control strategy
for the multi-timescale problem of simultaneous optimal
inverter and shunt capacitor control and conjectures that the
relaxation is exact. In all of these works the relaxations seem
to perform well but no guarantees are provided as to the
ability to recover the solution of the original problem nor is
there a characterization of the worst-case distance from their
solution to that of the original problem.

Bai et al. show in [19], [20] that under certain conditions
the OPF problem can be cast as a semi-definite program.
This idea was further refined and extensively analyzed by
Lavaei et al. in [21], [22] who proved that these conditions
always hold for resistive power networks and provided strong
evidence that the method works for most practical circuits.
In [22] the OPF is shown to be equivalent to a semi-
definite program with a rank-constraint through transforming
the voltage and power constraints, which are quadratic in
nature, into linear matrix inequalities. The use of semi-
definite relaxations for quadratically constrained quadratic
programs has long been of interest in the literature [23]–
[25]. The technique is described in detail in [26], [27] and
a number of applications have been studied, see e.g., [28],
[29].

Instead of solving the OPF problem directly, [22] proposes
to solve the Lagrangian dual problem [26], [30], which is an
SDP. The dual of the SDP is a convex rank relaxation of the
OPF problem, and since both the SDP and the rank relaxation
are convex, strong duality holds between them. They prove
a sufficient condition under which the rank relaxation is
exact. This implies that the duality gap between OPF and its
Lagrangian dual (SDP) is also zero, and hence an optimal
primal solution to OPF can be obtained from an optimal
solution of its Lagrangian dual. Even though many IEEE
benchmark systems have been shown to satisfy the sufficient
condition, a complete understanding as to why it holds for
so many practical circuits remains elusive. In this paper we
take a closer look at this condition in a simplified setting
where the underlying graph of the power system is a tree
(radial) network.

Radial networks are common in distribution circuits [31],
[32]. As in [22], we construct the Lagrangian dual (which



we denote by the problem DP ) of the OPF problem using
standard techniques, e.g. [26], [27], [30], and show that OPF
turns out to be equivalent to the dual of DP (the so-called
DDP ) with an additional (non-convex) rank constraint. We
prove a sufficient condition (similar to [22]) that guarantees
that solutions of DDP satisfy the rank constraint and there-
fore closes the duality gap [27]. Our key result proves that the
condition is always satisfied for a tree network provided the
load is over-satisfactied. The proof, cast as a complex semi-
definite program, makes use of the fact that if the underlying
graphs of a certain n × n Hermitian matrix induced by the
admittance matrix is a connected tree, then the matrix has
rank at least n− 1.

The paper is organized as follows. Section II formulates
our OPF problem. Section III describes the solution approach
and proves that the sufficient condition for zero duality gap
is always satisfied if the underlying graph of the matrix is a
connected tree (Section III-B) or if over-satisfaction of load
is allowed (Section III-C). These results carry over when
storage devices are integrated with the system as explained
in Section III-D. Finally we conclude with some future
directions of inquiry.

II. PROBLEM FORMULATION

Consider a distribution circuit modeled as a radial network
with n nodes (buses) and define [n] := {1, 2, . . . , n} as the
set of nodes. There is an edge between nodes i and j if the
corresponding buses i and j are connected. We denote the
admittance-to-ground at bus i by yii, and the admittance of
the line by yij = gij − jbij if buses i and j are connected.
We assume both gij > 0 and bij > 0, i.e., the lines are
resistive and inductive. The graph G(Y ) of Y is defined with
n vertices with an undirected edge between vertices i ̸= j
if Yij ̸= 0. (Note: The diagonal entries of Y do not play
a role in G(Y ).) Using this notation we can state the key
assumption of the paper,

Assumption 1: The graph G(Y ) is a tree with n−1 edges.
We define the quantities in our model as follows.

• Y : the n× n admittance matrix defined as

Yij =


yii +

∑
j∼i

yij , if i = j

−yij , if i ̸= j and i ∼ j

0 otherwise,

where i ∼ j indicates that bus i is connected to bus j.
Note that Y is symmetric but not necessarily Hermitian.

• V and I: The n-dimensional vectors of complex volt-
ages and currents where Vk, Ik respectively denote the
voltage and the injection current at bus k. They are
related by Kirchhoff’s law i.e., I = Y V . The square of
the voltage magnitude at bus k is bounded as:

W k ≤ |Vk|2 ≤ W k.

• S = P + iQ: The vector of (complex) apparent power
S, real power P , reactive power Q, respectively. They
are related to the voltage and current at bus k through
the relation Sk = Pk + iQk = VkI

∗
k , k ∈ [n].

• PD
k and QD

k : The real and reactive power demands at
bus k. They are assumed to be fixed and given.

• PG
k and QG

k : The real and reactive power generation at
bus k. They are decision variables and constrained to
be within certain ranges depending on the generation
capacity at each bus:

PG
k ≤ PG

k ≤ P
G

k and QG

k
≤ QG

k ≤ Q
G

k .

At each bus k power must be balanced such that PG
k =

PD
k + Pk and QG

k = QD
k +Qk. Let

P k := PG
k − PD

k , P k := P
G

k − PD
k

Q
k

:= QG

k
−QD

k , Qk := Q
G

k −QD
k .

Then the power injections must satisfy

P k ≤ Pk ≤ P k, Q
k

≤ Qk ≤ Qk.

Optimal operation may correspond to minimizing the
power loss over the network, the total generation cost, or the
average voltage levels while keeping them within a certain
band. For distribution circuits, studies have shown that volt-
age reduction can produce significant energy savings [33].
We choose our objective function to be ∥V ∥2 =

∑
k |Vk|2

but the results presented in this paper would work for any
quadratic function of the form V ∗MV where M is diagonal
or G(M) is a tree. We neglect line limits for our analysis.

Finally, we relate the power injections to bus voltages. Let
e1, e2, . . . , en be the standard basis vectors in Cn, i.e., ek is
the column vector with ‘1’ in its kth position and ‘0’ in the
other n−1 positions. Let Jk = eke

∗
k. Let Yk = eke

∗
kY . Then

Sk = e∗kV I∗ek = e∗kV V ∗Y ∗ek = tr (V V ∗(Y ∗eke
∗
k))

= (V ∗Y ∗
k V )

=

V ∗
(
Y ∗
k + Yk

2

)
︸ ︷︷ ︸

=Φk

V

+ i

V ∗
(
Y ∗
k − Yk

2j

)
︸ ︷︷ ︸

=Ψk

V

 .

Since Φk and Ψk are Hermitian matrices, the two quantities
V ∗ΦkV and V ∗ΨkV are real numbers. Thus,

Pk =V ∗ΦkV = tr(ΦkV V ∗)

Qk =V ∗ΨkV = tr(ΨkV V ∗).

Define the OPF problem as follows:

Primal Problem (P ):

minimize
V

V ∗V

subject to:
P k ≤ V ∗ΦkV ≤ P k, k ∈ [n] (1)
Q

k
≤ V ∗ΨkV ≤ Qk, k ∈ [n] (2)

W k ≤ V ∗JkV ≤ W k, k ∈ [n], (3)

where (1), (2) and (3) are the constraints on real powers,
reactive powers and voltages respectively.



III. CONDITIONS FOR ZERO DUALITY GAP

The primal problem P is a non-convex quadratically
constrained quadratic program. The matrices involved are
Hermitian but indefinite in general. This means that P is
hard to solve for large problem instances. To circumvent
this difficulty, we follow the approach in [22] and take the
following steps in the rest of this paper:

1) Construct the dual problem DP of P . The dual prob-
lem is convex and therefore can be solved efficiently.
In order to obtain a primal optimal solution to P from
a dual optimal solution the duality gap must be zero.
Directly determining the duality gap between P and
DP is hard.

2) Construct the dual problem DDP of DP . Strong dual-
ity holds between DP and DDP if Slater’s condition
holds since both are convex problems.

3) Observe that problem P is equivalent to DDP with
a rank constraint, i.e., DDP is a convex relaxation of
P . Therefore if any solution of DDP satisfies the rank
constraint, then it is also primal optimal.

4) Compute the optimal value of the convex problem DP ,
which by 2, equals the optimal value of DDP . When
the rank constraint from 3 holds the solution of DDP
is equivalent to the solution of P , i.e., the duality
gap between P and DP is zero. In other words, we
obtain an optimal solution of P by solving DP ; see
description after Theorem 3.1.

In [22] a sufficient condition is proved for general networks
that guarantees that a solution of problem DDP indeed
satisfies the rank constraint in 3 above and hence the duality
gap between P and DP is zero. In this paper, we invoke
Assumption 1 from Section II and study the sufficient
condition in [22] for a radial (tree) network.

A. Condition for general network

Let λk, λk be the Lagrange multipliers for the real power
constraints in problem P for the upper and lower inequalities.
Similarly define µk, µk

for the reactive power constraints and
γk, γk

for the voltage constraints. Define

λk = λk − λk, µk = µk − µ
k
, γk = γk − γ

k
.

The dual of P and its own dual are the following problems
[27].
Dual of P (DP ):

maximize
λ,λ,µ,µ,γ,γ

∑
k

{
λkP k − λkP k + µ

k
Q

k
− µkQk

+γ
k
W k − γkW k

}
subject to I +

∑
k

(λkΦk + µkΨk + γkJk) ≽ 0

λk ≥ 0, λk ≥ 0 for k ∈ [n]

µk ≥ 0, µ
k
≥ 0 for k ∈ [n]

γk ≥ 0, γ
k
≥ 0 for k ∈ [n].

Dual of the dual problem (DDP ):

minimize
W

tr(W )

subject to P k ≤ tr(ΦkW ) ≤ P k, k ∈ [n]

Q
k
≤ tr(ΨkW ) ≤ Qk, k ∈ [n]

W k ≤ tr(JkW ) ≤ W k, k ∈ [n]

W ≽ 0,

where W = V V ∗. Using the identity tr(V ∗BV ) =
tr(BV V ∗) = trBW for any matrix B, it is apparent that the
primal problem P is equivalent to DDP with the additional
constraint that rank W = 1. Hence, as mentioned earlier,
DDP is a convex relaxation of P and any rank-1 optimal W∗
for DDP defines a unique optimal V∗ for P . In summary,
provided Slater’s condition is satisfied, we have

optimal value of P ≥ optimal value of DP

= optimal value of DDP.

Equality holds if DDP has a rank-1 optimal solution.
We start with a key observation motivated from [22], [27].

To simplify the notation from DP , we denote
x :=

(
λk, λk, µk, µk

, k ∈ [n]
)

, r :=
(
γk, γk

, k ∈ [n]
)

,
and A(x, r) := I +

∑
k(λkΦk + µkΨk + γkJk).

Theorem 3.1: Suppose the dual problem DP is strictly
feasible and has a finite optimal solution (x∗, r∗) ≥ 0. If
rank A(x∗, r∗) = n− 1 then the duality gap between P and
DP /DDP is zero.

Proof: Since DP has a strictly feasible solution,
Slater’s condition is satisfied and strong duality holds be-
tween DP and DDP . Let W∗ ≽ 0 be an optimal solution
of DDP . The complementary slackness condition at the
primal-dual optimal point (x∗, r∗,W∗) of DP − DDP is
tr (A(x∗, r∗)W∗) = 0. Let the positive eigenvalues of W∗
be ρi’s and the corresponding eigenvectors be wk’s. Then

tr (A(x∗, r∗)W∗) =

rank(W∗)∑
i=1

ρi w
∗
iA(x∗, r∗)wi = 0.

Since A(x∗, r∗) ≽ 0 and ρi > 0 we must have
w∗

iA(x∗, r∗)wi = 0 for all i. Thus wi ∈ N (A(x∗, r∗)), the
null space of A(x∗, r∗). Since wi’s span the column space of
W∗, rank(W∗) ≤ dimN (A(x∗, r∗)) = n− rank A(x∗, r∗).
Hence if rank A(x∗, r∗) = n− 1 then W∗ is rank-1 and the
proof is complete.
Remark 1: Strict feasibility of DP . For strictly feasibility it
is sufficient that there is an (x, r) ≥ 0 such that A(x, r) ≻ 0,
for if such a point has any component that is not strictly
positive, say, λk ≥ 0, λk ≥ 0, we can always replace that
component by a strictly positive component λ

′
k := λk + ϵ,

λ′
k := λk + ϵ with ϵ > 0, and maintain A(x′, r′) ≻ 0 at this

new strictly feasible point.

Remark 2: OPF algorithm when duality gap is zero. In
the absence of duality gap, solving the dual problem offers an
efficient way to compute an optimal voltage V∗ for the primal
problem. One can solve DP for the 6n variables (x∗, r∗),



construct A(x∗, r∗) and verify that it has rank n−1, in which
case the optimal voltage V∗ is in its null space. Alternatively,
one can solve DDP for an 1

2n(n− 1)-variable optimal W∗.
Since W∗ is positive semi-definite and rank 1, it has a unique
decomposition W∗ = ρ∗w∗w

∗
∗ where ρ∗ > 0 is its positive

eigenvalue and w∗ is the associated eigenvector. Then the
optimal voltage is V∗ =

√
ρ∗w∗.

We now specialize to radial networks with tree graphs
G(Y ) and prove for two cases that rank A(x∗, r∗) is indeed
n− 1. We will use the following result from [34, Corollary
3.9] on the minimum rank of matrices with an underlying
tree graph.

Lemma 3.2: If an n×n matrix H is positive semi-definite
and the associated graph G(H) is a connected tree, then
rank H ≥ n− 1.
We refer the reader to [34] for its proof. See [35], [36]
for surveys on the minimum rank of graphs. The case of
Hermitian positive semi-definite matrices are studied in e.g.,
[37]–[40].

B. Case 1: G(A(x∗, r∗)) is connected tree

Lemma 3.2 implies the following characterization of zero
duality gap in tree networks.

Theorem 3.3: Suppose Assumption 1 holds. Suppose the
dual problem DP is strictly feasible and has a finite optimal
solution (x∗, r∗) ≥ 0. If [A(x∗, r∗)]ij ̸= 0 whenever Yij ̸= 0,
i ̸= j, then the duality gap between P and DP /DDP is zero.

Proof: We first show that under Assumption 1, the
graph G(A(x∗, r∗)) consists of possibly more than one tree
and follows the same structure as the graph of the underlying
network, i.e., we show that, for i ̸= j, if Yij = 0 then
[A(x∗, r∗)]ij = 0. Now, for i ̸= j

Φk(i, j) =


1
2Yij if k = i
1
2Y ij if k = j

0 if k ̸= i, k ̸= j

Ψk(i, j) =


−1
2i Yij if k = i
1
2iY ij if k = j

0 if k ̸= i, k ̸= j,

where Φk(i, j) and Ψk(i, j) denote the (i, j)th entries of
these matrices and Y ij denotes the complex conjugate of
Yij . Hence if Yij = 0 then

[A(x∗, r∗)]ij =
∑
k

(λkΦk(i, j) + µkΨk(i, j))

=
1

2

(
λiYij + λjY ij + iµiYij − iµjY ij

)
= 0. (4)

This, together with Assumption 1, implies that the (undi-
rected) graph G(A(x∗, r∗)) has no loops. The condition in
the theorem that [A(x∗, r∗)]ij ̸= 0 whenever Yij ̸= 0 then
guarantees that G(A(x∗, r∗)) is a connected tree. Hence by
Lemma 3.2 rank A(x∗, r∗) = n− 1, whenever W∗ ̸= 0 (i.e.,
V∗ ̸= 0 and we have a nontrivial solution) and the claim
follows from Theorem 3.1.

Without the condition in Theorem 3.3, A(x∗, r∗) may have
a zero off-diagonal entry where Y has a nonzero entry and
G (A(x∗, r∗)) may consist of a collection of disjoint trees.
In this case the rank of A(x∗, r∗) may be strictly less than
n − 1 and we cannot rely on Theorem 3.1 to prove zero
duality gap.

C. Case 2: Load can be over-satisfied

From (4) the graph G (A(x∗, r∗)) is indeed a connected
tree if, for any buses i and j that are connected (i.e., Yij ̸= 0),
all of λi, µi, λj , µj are nonnegative and at least one of them
is strictly positive. This motivates the case where the loads
can be over-satisfied, i.e., the real and imaginary powers
supplied to a node can be greater than the real and imaginary
powers demanded by them respectively. This corresponds
to the case where the real and reactive power constraints
in problem P do not have lower bounds. In this case the
Lagrange multipliers λ and µ are indeed nonnegative. Note
that the problem still remains non-convex as the matrices
Φk and Ψk are generally indefinite. Hence we consider the
following:
Modified Primal Problem (mP ):

minimize
V

V ∗V

subject to V ∗ΦkV ≤ P k, k ∈ [n]

V ∗ΨkV ≤ Qk, k ∈ [n]

W k ≤ V ∗JkV ≤ W k, k ∈ [n].

Let λ =
(
λk, k ∈ [n]

)
be the Lagrange multipliers corre-

sponding to the upper inequalities for the real power and
µ = (µk, k ∈ [n]) be those for the reactive power. We
consider both-sided inequalities on the voltages and hence
r =

(
γk, γk

, k ∈ [n]
)

remains the same. The definition of

A naturally carries over: A(λ, µ, r) := I +
∑

k(λkΦk +
µkΨk + γkJk) where γk := γk − γ

k
as before. Let

P :=
(
P k, k ∈ [n]

)
be the upper bounds on the real power,

Q :=
(
Qk, k ∈ [n]

)
be those on the reactive power, and

d :=
(
W k,−W k, k ∈ [n]

)
be the upper and lower bounds

on the voltages. Consider the following pair of problems:
Dual of mP (mDP ):

maximize
λ,µ,r≥0

−λ
T
P − µTQ− dT r

subject to A(λ, µ, r) ≽ 0, λ ≥ 0, µ ≥ 0. (5)

Dual of mDP (mDDP ):

minimize
W,α,β

tr(W )

subject to tr(ΦkW ) + αk = P k, k ∈ [n] (6)
tr(ΨkW ) + βk = Qk, k ∈ [n] (7)
W k ≤ tr(JkW ) ≤ W k, k ∈ [n] (8)
W ≽ 0, α ≥ 0, β ≥ 0, (9)

where α, β are the Lagrange multipliers corresponding to
the constraints λ, µ ≥ 0. It is clear that the modified primal
problem mP is equivalent to the problem mDDP with the



additional constraint that rank W = 1, and that strong duality
holds between mDP and mDDP provided that Slater’s
condition is satisfied. Our main result is

Theorem 3.4: Suppose Assumption 1 holds. Suppose the
dual problem mDP is strictly feasible and has a finite
optimal solution (λ∗, µ∗, r∗) ≥ 0. Then the duality gap
between mP and mDP /mDDP is zero.

Proof: Since mDP is strictly feasible, Slater’s condi-
tion is satisfied and strong duality holds between mDP and
mDDP . Hence, as for the unmodified problems, we have

optimal value of mP ≥ optimal value of mDP

= optimal value of mDDP.

Theorem 3.1 implies that the duality gap between mP and
its dual mDP is zero if the matrix A(λ∗, µ∗, r∗) has rank
n− 1. The KKT conditions for the pair of problems mDP
and mDDP consist of: primal feasibility (5), dual feasibility
(6)–(9), the complementary slackness

tr
(
A(λ∗, µ∗, r∗)W∗

)
= 0, αT

∗ λ∗ = 0, βT
∗ µ∗ = 0 (10)

and the gradient condition for primal optimality

(γ∗)k
(
tr(JkW∗)−W k

)
= 0, k ∈ [n] (11)(

γ∗

)
k
(tr(JkW∗)−W k) = 0, k ∈ [n]. (12)

Any set of variables (λ∗, µ∗, r∗,W∗, α∗, β∗) that satisfies the
KKT conditions is optimal for the primal-dual pair mDP −
mDDP . We now construct such a point with rank W∗ = 1.

By Lemma 3.2 and Theorem 3.1, to prove that W∗ is
rank-1, it suffices to show that the graph G(A(λ∗, µ∗, r∗))
is a connected tree. This requires that [A(λ∗, µ∗, r∗)]ij ̸= 0
wherever Yij ̸= 0, which however may not be true for

Re{A(λ∗, µ∗, r∗)}ij
= − 1

2

[
gij(λi + λj) + bij(µi + µj)

]
. (13)

Since λk, µk are only nonnegative but not necessarily posi-
tive, it is possible that [A(λ∗, µ∗, r∗)]ij = 0 but Yij ̸= 0 for
some link (i, j), i.e., G(A(λ∗, µ∗, r∗)) may not be connected
even when G(Y ) is. To deal with this problem, we consider
a sequence of problems, each of which has (λ, µ) > 0
and therefore has a rank-1 solution (by Lemma 3.2 and
Theorem 3.1), and prove that the sequence converges to the
pair mDP -mDDP .

Specifically consider the ϵ-shifted problem mDP ϵ where
we replace the constraint (λ, µ) ≥ 0 by (λ, µ) ≥ ϵ1 where
ϵ > 0 and 1 is a vector of all 1’s of appropriate size. This
changes mDDP to a ϵ-shifted problem mDDP ϵ whose ob-
jective function becomes trW−ϵ1T (α+β) but the constraints
remain the same as those of mDDP . The KKT conditions
for mDP ϵ−mDDP ϵ differ from those of mDP −mDDP
only in part of the primal feasibility condition in (5) and the
corresponding complementary slackness condition in (10), as
follows:

λ∗(ϵ) ≥ ϵ1, µ∗(ϵ) ≥ ϵ1
α∗(ϵ)

T
(
λ∗(ϵ)− ϵ1

)
= 0, βT

∗ (ϵ) (µ∗(ϵ)− ϵ1) = 0.

All other conditions remain the same. Moreover we can
choose small enough ϵ0 > 0 such that mDP ϵ0 remains
strictly feasible and hence strong duality holds between
mDP ϵ0 and mDDP ϵ0 . Also, since the feasible set of
mDP ϵ0 is a subset of mDP , there exists a finite optimal(
λ∗(ϵ0), µ∗(ϵ0), r∗(ϵ0)

)
that solves mDP ϵ

0 by continuity of
the objective function.

For any 0 < ϵ < ϵ0, the linearity of mDP implies
that there is an optimal solution (λ∗(ϵ), µ∗(ϵ), r∗(ϵ)) that
lies on the line segment between the given (λ∗, µ∗, r∗)
and (λ∗(ϵ0), µ∗(ϵ0), r∗(ϵ0)). Hence these optimal points
(λ∗(ϵ), µ∗(ϵ), r∗(ϵ)) for all ϵ ∈ (0, ϵ0) live in a compact
set independent of ϵ. Since the constraints (6)–(9) of DDP
are the same as those of mDDP ϵ and are independent of ϵ,
the optimal solutions (W∗(ϵ), α∗(ϵ), β∗(ϵ)) for every ϵ also
live in a fixed compact set. Hence as we take ϵ → 0, there
is a subsequence of the set of primal-dual optimal points(
λ∗(ϵ), µ∗(ϵ), r∗(ϵ),W∗(ϵ), α∗(ϵ), β∗(ϵ)

)
that converges. Let

the limit be
(
λ∗, µ∗, r∗,W

′
∗, α

′
∗, β

′
∗
)
. Clearly, this point sat-

isfies the KKT conditions, (5), (6)–(9), (10), (11)–(12), and
hence is primal-dual optimal for mDP − mDDP . We are
left to show that W∗ is rank 1.

For each such ϵ ∈ (0, ϵ0), (13) and Assumption 1 imply
that G(A(λ∗(ϵ), µ∗(ϵ), r∗(ϵ))) is a connected tree. Hence
A(λ∗(ϵ), µ∗(ϵ), r∗(ϵ)) has rank n − 1 and W∗(ϵ) has rank
1 (W∗(ϵ) ̸= 0 because the voltage constraints make the
diagonal elements nonzero ). Since the set of positive semi-
definite matrices with rank ≤ 1 is closed [41], the limit W ′

∗
of the convergent subsequence can have at most rank 1. By
construction W ′

∗ = (V ′
∗)(V

′
∗)

∗ and V ′
∗ ̸= 0 is not feasible,

W ′
∗ must have rank 1. This completes the proof.

D. Extension: with storage

Assume that every node k in the network has some storage
element (e.g., a battery) with finite energy capacity Bk.
Consider discrete time t = 1, . . . , T , where bk(t) denotes
the state of charge of the storage at node k and time t. The
ramp rate of the storage is constrained such that

Dk ≤ bk(t+ 1)− bk(t) ≤ Dk, t ∈ [1, T − 1].

Given an initial state of the storage 0 ≤ b0k ≤ Bk, for k ∈
[n], the OPF with storage problem becomes:
Primal Problem with Storage(SP ):

minimize
V (t),

bk(t) for k∈[n]

T∑
t=1

V (t)∗V (t)

subject to P k(t) ≤ V (t)∗ΦkV (t) ≤ P k(t)

Q
k
(t) ≤ V (t)∗ΨkV (t) ≤ Qk(t)

W k(t) ≤ V (t)∗JkV (t) ≤ W k(t)

0 ≤ bk(t) ≤ Bk

Dk ≤ bk(t+ 1)− bk(t) ≤ Dk

for t ∈ [1, T − 1]

bk(1) = b0k



where k ∈ [n] and t = 1, . . . , T , unless otherwise indicated.
As in [42], the addition of storage charge/discharge dy-

namics yields a dual problem with storage (SDP ) that has an
LMI condition of the form A(x, r)(t) for each t = 1, . . . , T .
The structure of this matrix at each t remains the same as in
the original DP (or mDP for Case 2: Load is over-satisfied)
so, the results described in sections III-A-III-C carry over to
the SP case.

IV. CONCLUSION

This paper examined power network optimization over
radial (tree) networks, which is the topology commonly
found in distribution systems. As in previous works, we
show that the OPF problem can be reformulated as a rank
constrained (i.e. non-convex) semi-definite program, with a
sufficient condition regarding when the rank constraint is
satisfied. We introduce a complex formulation that simplifies
this sufficient condition and then show that in a radial
network this condition is always met provided we allow over-
satisfaction of load. In other words, we prove that if the loads
are over-satisfied, then the duality gap for OPF over a tree
network is always zero. The proof technique relies on the fact
that if the underlying graph of an n× n Hermitian positive
semi-definite matrix is a tree, then the matrix has rank at
least n − 1. Our results extend to the case where simple
distributed storage dynamics are added to the problem.

For future work, we will investigate the conditions for zero
duality gap without the load over-satisfaction assumptions
and study the effectiveness of the proposed algorithm using
practical distribution (radial) test circuits. Further extensions
will include analysis of the more general OPF problem
and more extensive study regarding the underlying system
properties that yield zero duality gap solutions for most
practical circuit models.
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