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ABSTRACT OF THE THESIS

Distributed Storage with Communication Costs

by

Craig Armstrong

Master of Science in Electrical & Computer Engineering
(Communication Theory and Systems)

University of California, San Diego, 2011

Professor Alexander Vardy, Chair

Distributed storage systems provide reliable storage of data by dispersing

redundancy across multiple nodes. As individual nodes are unreliable this protects

the integrity of the data against the failure of nodes. In order to maintain this

reliability new nodes must be introduced into the system whenever nodes are lost

which restore the redundancy. This process involves having a new node download

information from remaining nodes and is known as the repair problem.

In this thesis, we consider networks with communication costs associated

to each link and explore means to minimize the cost of performing these repairs.

We do this by considering a generalized method of repair wherein the amount

of information downloaded to a new node varies amongst the other nodes in the

network. We find that when nodes store the minimum amount of data that the

minimum cost can be achieved by quasi-uniform repair, where the same amount of

data is downloaded from each node communicated with. We also consider systems

with the additional freedom that the amount of storage is allowed to vary from

node to node and look at repair cost minimization there as well.

vii



Chapter 1

Motivation and Overview

The need for efficient and reliable means to store large amounts of data

across a collection of devices has become increasingly important in recent years.

In systems where the individual nodes can be be unreliable a method of introducing

redundancy to create a reliable system as a whole that also takes into consideration

the limitations of the system is an important problem. In particular, individual

nodes may have limited storage capacity and the transfer of data throughout the

network may be a costly or time-consuming procedure. Examples of distributed

storage systems include data centers, peer-to-peer storage applications, wireless

sensor networks and distributed file systems.

A particular issue for these systems that has been studied is how to replace

a node after it fails or leaves the network. It is a critical feature of distributed

storage systems that they maintain their reliability over a long period of time and

thus when a node is lost we must create a new node in its place that restores the

lost redundancy and prevents degradation of the system. Methods of coding that

allow this node regeneration to be performed efficiently were first introduced in [3]

by Dimakis et al., which we will present the results of as well as other works in

Chapter 2. The repair model covered here is what we call quasi-uniform repair

where a node is required to download the same amount of information from all

existing nodes to which it connects during repair.

In this thesis we seek to model deployable systems more accurately by im-

posing communication costs on the links in the network as variable communication

1
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link qualities are to be expected in real systems. We then study techniques to min-

imize the cost of data transfers when operating such systems.

In Chapter 3 we present results on a generalization of the repair model seen

in Chapter 2 where we allow variable download quantities and use these to analyze

the behavior of the system when imposing the communication costs. We then

present our main result on the optimality of the restriction to the quasi-uniform

repair model from [3] for minimizing cost during node repair when nodes store the

minimum possible amount of data.

Finally, in Chapter 4 we add an additional level of generality to the system

model by allowing the storage capacities of the nodes to vary. We explore the

requirements on repairs in this scenario and observe the changes in behavior of

repair cost minimization.



Chapter 2

An Introduction to Coding for

Distributed Storage

In this chapter we formally state the repair problem and present some rele-

vant results from other authors. The main result that we cover is a theorem from [3]

which establishes the fundamental tradeoff between the amount of data stored at

each node and the total amount of bandwidth required for a repair. Throughout

this thesis the data quantities will be referred to as bits, but we will allow the

values to be real numbers as files that would actually be considered are quite large

and fractional amounts can be approached by dividing them into relatively small

fragments.

2.1 The Repair Problem

We now establish the mathematical model and setup for the repair problem.

A file of size M bits needs to be reliably stored across a network consisting of n

storage nodes, where each storage node has a non-negligable risk of failure. In

the event of a failure, the entirety of the data stored at the node is lost. So, the

questions we would like to answer are how can we code and store this file across the

distributed storage network so as to incur as little storage expansion as possible

while also maximally avoiding data loss in the event of node failures and how do

we restore the lost redundancy in such events?

3
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It is apparent that in answer to the latter question we should create a

new node in place of the failed node, a process that we call node repair. Thus,

any proposed coding scheme must be designed with this process as a fundamental

consideration.

A naive solution to the problem is to store the entire file at every node in

the network so that at any point where we have at least one node remaining we

can recover the file. Here, redundancy can be restored via full replication of the

file into a new node each time a failure occurs. This solution requires the storage

of the entire file size, M , at every node and a total storage of n ·M bits in the

network. Additionally, the repair of any lost node requires the transfer of a full M

bits.

A more efficient approach is to use an (n, k)-MDS (maximum distance sep-

arable) code in order to distribute the file across the network. In this way, each

node will store a block of size M
k

bits and any k nodes will be sufficient for re-

construction of the original file. Thus, this system can tolerate n − k failures,

without repair, while still maintaining reliability. This scheme also optimizes the

redundancy-reliability tradeoff for any system that requires at least k nodes for re-

construction as each individual node here requires the minimum amount of storage

to satisfy this condition.

In terms of storage this approach is thus very desirable, but we also need

to establish a procedure for node repair. A very straightforward method would

be to have the new node connect to any k of those remaining and download all

of the data from each. This node could then completely reconstruct the original

file and compute a newly encoded block of data to store. But what if network

resources are limited and we need to incur as little bandwidth consumption as

possible during the repair process? This method, again, would require each repair

to transfer the entirety of the file size M . This leads to the question as to if it

is possible to improve upon this, which we may, in fact, as demonstrated in the

following example.
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Example provided in [2]:

In this example we use a (4, 2)-MDS code and also allow sub-packetization.

That is, the data at each node is split into multiple blocks, in this case 2. Thus,

M = 4 blocks here.

Figure 2.1: Original contents of the nodes.

Figure 2.1 shows the original contents of the storage nodes. Assume then

that node 1 fails and must be repaired by downloading information from the re-

maining 3 nodes. From Figure 2.2 we see that only 3 blocks (as opposed to a full

M = 4) need to be communicated.
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Figure 2.2: Repair of node 1.

Now assume that node 4 fails. In Figure 2.3 we see that again only 3 blocks

are needed for repair, but now we require that nodes be able to compute linear

combinations of their data before transmission. It turns out that this example

is optimal in terms of the minimum required repair bandwidth, which we will

establish in the next section.
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Figure 2.3: Repair of node 4.

The repairs in this example demonstrate exact repair. Exact repair is where

a failed node is replaced by a new node with the exact data as was previously stored.

Alternatively, we could consider functional repair where the constraint on the data

in the new node is only that the reconstruction requirement is maintained in the

system so that any k nodes remain sufficient for reconstruction. In this case, we

may not restore exactly what was lost, but the system maintains the same level of

reliability. There is also a third type of repair known as hybrid repair, which is a

combination of the previous two types. There, the data is stored using a systematic

code and the systematic parts are repaired exactly while the remaining parts need

only be repaired functionally.

In this thesis, we will allow sub-packetization and the computation of linear

combinations within nodes, as was seen in the previous example, and we will be

considering exclusively functional repair.
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2.2 Minimum Repair Bandwidth

The problem of finding the minimum bandwidth necessary for a successful

repair was completely characterized in [3] for quasi-uniform functional repair, where

quasi-uniform repair imposes the requirement that a node download the same

quantity from all of the nodes to which it connects during repair. As the other

forms of repair are encompassed within functional repair this also provides a lower

bound on the bandwidth necessary in those cases.

First, let’s establish the parameters for the problem:

• we have a complete network of n nodes

• every k nodes are required to suffice for reconstruction

• the size of the file to be stored is M bits

• each node stores α bits

• when a node fails it is repaired by downloading β bits each from any d (≥ k)

of the remaining (n− 1) nodes

• the repair bandwidth is then dβ

It was shown that this problem could be solved by making use of multicas-

ting results by introducing information flow graphs. An information flow graph is

a graph representing the network and its progression as failures and repairs occur.

It consists of storage nodes, a source (S) and Data Collectors (DCs). Each storage

node is represented by an input node and an output node which are connected by

an edge of capacity α, the storage capacity of a node. Each time a node fails it

will become inactive and a new node will be added to the system.

Initially, the source node, S, is connected to the original n nodes via links

of infinite capacity. When a node fails and becomes inactive, a new node enters

the system and is connected to any d of the currently active nodes with links of

capacity β. Data Collectors represent all possible requests for reconstruction and
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at any point in the evolution of the graph may connect to any set of k active nodes

with infinite capacity links. Figure 2.4 shows an example.

Figure 2.4: Example information flow graph where n = 5, k = 2, d = 3.

A set of values n, k, d, α, β is achievable if the minimum cut between S and

all possible DCs are ≥ M for all possible evolutions of node failures and repairs.

This provides both an information theoretic lower bound and is achievable through

deterministic network codes. The following result was established in [3].

Theorem: For any α ≥ α∗(n, k, d, γ = dβ), the points (n, k, d, α, γ) are

feasible and linear network codes suffice to achieve them. It is information theoret-

ically impossible to achieve points with α < α∗(n, k, d, γ). The threshold function

is the following:

α∗(n, k, d, γ) =


M
k
, γ ∈ [f(0),∞)

M−g(i)γ
k−i , γ ∈ [f(i), f(i− 1))

(2.1)
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where

f(i)
4
=

2Md

(2k − i− 1)i+ 2k(d− k + 1)
, (2.2)

g(i)
4
=

(2d− 2k + i+ 1)i

2d
(2.3)

for i ∈ {0, ..., k − 1} (2.4)

It was also shown that for given n, k, d the minimum bandwidth is

γmin = f(k − 1) =
2Md

2kd− k2 + k
(2.5)

and that this minimum bandwidth is a decreasing function of d. Thus, the repair

bandwidth is smallest when d = n− 1, where the new node communicates with all

remaining nodes during repair.

2.3 Extremal Points

The optimal tradeoff curve for achievable codes given in the above theorem

has two extremal points which are of particular interest:

• The Minimum Storage Regenerating (MSR) codes have minimum possible

α, and

• The Minimum Bandwidth Regenerating (MBR) codes with minimum possi-

ble γ

It is clear that we must have α ≥ M
k

to satisfy the reconstruction require-

ment and so the MSR point, which we get by minimizing γ after fixing this α in

the theorem (giving i = 0), corresponds to

(αMSR, γMSR) =

(
M

k
,

Md

k(d− k + 1)

)
Then, letting d = n− 1 to minimize γ, we get

(αMSR, γ
min
MSR) =

(
M

k
,
M

k
· n− 1

n− k

)
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and so we see that at the MSR point a factor of at least n−1
n−k more data must be

downloaded during repair than will be ultimately stored in the node.

The MBR point, which we get by first minimizing γ in the theorem then α

(giving i = k − 1), on the other extreme is

(αMBR, γMBR) =

(
2Md

2kd− k2 + k
,

2Md

2kd− k2 + k

)
With d = n− 1,

(αMBR, γ
min
MBR) =

(
M

k

2n− 2

2n− k − 1
,
M

k

2n− 2

2n− k − 1

)
Note how here the repair bandwidth is the same as the amount of stored data,

although more data must be stored at each node and these codes are no longer

optimal in terms of the redundancy-reliability tradeoff.



Chapter 3

Minimization of the Cost for

Repair

We now begin the original work of this thesis where we explore the mini-

mization of repair cost. In order to accomplish this we must first establish condi-

tions on a generalized method of repair, which will provide flexibility to the system

over which we can optimize. We then establish our cost function and show that

repair cost minimization can be achieved by quasi-uniform repairs when the nodes

contain minimum storage.

3.1 Generalized Repair

The majority of existing work has considered the quasi-uniform model of

repair, as seen in the previous chapter, and explored how to achieve minimal repair

bandwidth within each of the repair types. In this paper, we will be considering

a more general method of repair where the amounts of data downloaded from

the remaining nodes are variable. That is, if node 1 fails then it is repaired by

downloading βi,1 bits from each of the remaining nodes i ∈ {2, .., n}. We will need

to find a characterization of achievable rate tuples, (β2,1, β3,1, ..., βn,1), for successful

functional repair in this scenario.

This repair model was also considered in [4], but only a bound on the total

repair bandwidth required was presented there. In [5], variable rate repair was also

12
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analyzed, but under a more general requirement for reconstruction referred to as

‘flexible reconstruction,’ where any DC that is connected to all active nodes and

downloads µi from each node i such that
∑n

i=1 µi ≥M must be able to reconstruct

the file.

Here, we continue to use the reconstruction requirement that at all times

any k nodes are sufficient for reconstruction. The following 2 lemmas provide a

partial characterization of achievable repair rates.

Lemma 1: For functional repair of a node, i, and with storage capacity

α for all nodes, we have the following necessary condition on repair rates {βj,i}
communicated from the remaining nodes j ∈ [n]\{i}:

min
R⊆[n]\{i},
|R|=n−k

∑
j∈R

βj,i ≥M − (k − 1)α (L1)

and any set {βj,i} satisfying this condition is achievable using network codes for a

single repair.

Proof of Lemma 1:

We will consider first a single functional repair. This proof will use informa-

tion flow graphs as discussed in Section 2.2. WLOG let node 1 fail and be replaced

via repair with a new node 1∗. We must ensure that the repair rates {βj,1∗} are

sufficient so that the minimum cut in the graph is ≥M . This is both an informa-

tion theoretic minimum bound and achievable with deterministic network codes,

as shown in [3]. See Figure 3.1 for a single repair information flow graph.
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Figure 3.1: Information flow graph for 1 repair.

Consider any DC that is connected to our newly repaired node 1∗ and (k−1)

others (as reconstruction for any other DC is trivial) and call this set of (k − 1)

storage nodes D. Let the set S of nodes in the information flow graph be a graph

cut, where the source S must be in S and DC ∈ SC . For each of the (k− 1) nodes

i ∈ D, we must have xi,out ∈ SC for any minimum cut as xi,out connects to DC

with infinite capacity and these edges will not be included in a minimum cut. So,

each of these (k − 1) nodes will contribute α to the min cut. Note also that for

the same reason x1∗,out ∈ SC . A cut with x1∗,in ∈ S would include an additional

α and thus have value at least kα, which is always ≥ M (as α ≥ M
k

) and satisfies

the cut requirement. So, let x1∗,in ∈ SC .

For the nodes j ∈ DC it just remains to be checked if xj,out ∈ S or SC

for the min cut. It is clear that we must have βi,j ≤ α, ∀i, j as a node can not

transmit more information than it is storing and so, as βj,1∗ ≤ α ∀j, we get that

xj,out must be in S. These storage nodes then provide altogether
∑

j∈DC βj,1∗ to

the cut. Taking the minimum over all possible sets D ⊆ {2, ..., n} gives:

min
D⊆[n]\{1},
|D|=k−1

∑
j∈DC

βj,1∗ + (k − 1)α
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Requiring this to be ≥M gives the condition (L1) for a single repair.

Now that we have that the condition is necessary and sufficient for the first

repair, it remains to be argued that the condition is necessary in general. For

this we simply note that for any subsequent repair as the minimum cut between

S and DC must be ≥ M then every possible cut must be ≥ M . So, for any

repair, if we consider cuts such that for every currently active node i (original or

previously repaired) we have xi,in ∈ S the potential minimum cuts of this type

will be independent of previous repairs and follow the exact analysis as was just

given for the first repair in the system. Therefore, the stated condition must be

necessary for any repair.

�

Next we present a result on sufficient conditions when extending the system

to a second repair. This lemma pertains to codes at the minimum storage point

where the nodes all store the minimum required amount of M
k

.

Lemma 2: For functional repair of any node i at the minimum storage

point, α = M
k

, the condition from Lemma 1 is both necessary and sufficient for

achievability for a second repair in the system as well as the first. That is,

min
R⊆[n]\{i},
|R|=n−k

∑
j∈R

βj,i ≥
M

k
(L2)

characterizes the sets {βj,i} of repair rates that are achievable for at least 2 fail-

ures/repairs at the minimum storage point.

Proof of Lemma 2:

In this proof we will begin with a general α and later introduce the restric-

tion α = M
k

.

We have already covered the first repair in Lemma 1 and so now consider

the second.

WLOG let node 1 be the first failure and node 2 be the second. Note that

having the same node failing twice follows the same constraints as a single failure
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above as the repair would be performed from the same active nodes as before.

Let the new nodes be 1∗ and 2∗, respectively. The original nodes 1 and 2

will become inactive and thus no DC may connect to them here. Also, we must

already have that (L1) holds for the first repair, 1∗. We again need to ensure that

the every cut on the graph is ≥M .

Figure 3.2: Information flow graph for 2 repairs.

Case 1: DC connects to 1∗, but not 2∗

Constraint:

min
D⊆{3,..,n},
|D|=k−1

β2,1∗ +
∑
i∈DC

βi,1∗ + (k − 1)α ≥M

which holds by (L1) for 1∗.

Case 2: DC connects to 2∗, but not 1∗

Constraints:

x2∗,in ∈ S :

(k − 1)α + α ≥M (3.1)
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x2∗,in ∈ SC , x1∗,out ∈ S :

(k − 1)α + β1∗,2∗ + min
D⊆{3,..,n},
|D|=k−1

∑
i∈DC

βi,2∗ ≥M (3.2)

x2∗,in ∈ SC , x1∗,out ∈ SC , x1∗,in ∈ S :

(k − 1)α + α + min
D⊆{3,..,n},
|D|=k−1

∑
i∈DC

βi,2∗ ≥M (3.3)

x2∗,in ∈ SC , x1∗,out ∈ SC , x1∗,in ∈ SC :

(k − 1)α + β2,1∗ + min
D⊆{3,..,n},
|D|=k−1

∑
i∈DC

min{α, βi,1∗ + βi,2∗} ≥M (3.4)

Case 3: DC connects to 2∗ and 1∗

Constraints:

x2∗,in ∈ S, x1∗,in ∈ SC :

(k − 1)α + β2,1∗ + min
D⊆{3,..,n},
|D|=k−2

∑
i∈DC

βi,1∗ ≥M (3.5)

x2∗,in ∈ SC , x1∗,in ∈ S :

(k − 1)α + min
D⊆{3,..,n},
|D|=k−2

∑
i∈DC

βi,2∗ ≥M (3.6)

x2∗,in ∈ SC , x1∗,in ∈ SC :

(k − 2)α + β2,1∗ + min
D⊆{3,..,n},
|D|=k−2

∑
i∈DC

min{α, βi,1∗ + βi,2∗} ≥M (3.7)

These constraints can be reduced by the following:

• Contraints (3.1) and (3.3) are satisfied as α ≥ M
k

• (3.4) and (3.5) follow from (L1) for node 1∗

• (3.2) and (3.6) combined are equivalent to (L1) for node 2∗



18

Lastly, we consider constraint (3.7):

Since the constraint must hold for the minimization over all sets D then it

must hold for each D. So consider any fixed D∗. If min{α, βi,1∗+βi,2∗} = α for any

i ∈ D∗C then the inequality becomes the same as (3.4), which holds. So, assume

βi,1∗ + βi,2∗ < α, ∀i ∈ D∗C . Then,

LHS of (3.7) = (k − 2)α + β2,1∗ +
∑
i∈D∗C

(βi,1∗ + βi,2∗)

by (L1) for 1∗ and 2∗

≥ (k − 2)α + β2,1∗ + 2(M − (k − 1)α)

= 2M − kα + β2,1∗

≥ 2M − kα

which is guaranteed ≥ M when α ≤ M
k
⇒ α = M

k
. Therefore, when α = M

k
,

constraint (L1) ≡ (L2) on both repairs is both necessary and sufficient for achiev-

ability.

�

We will now show with the following example the strictness of the require-

ment that α = M
k

for the sufficiency of (L1) in the achievability of the second

repair.

Example 1:

As we are considering a system with two repairs we must have k > 2 so

that we may consider the case where the DC connects to both newly repaired

nodes as well as original nodes. We will construct a scenario where the constraint

(L1) is satisfied for both repairs, but the constraint (3.7) is not satisfied for the

second repair. Thus, (3.7) will not be redundant in this case and is required in the

characterization of achievable repair rates. Moreover, this example will use α > M
k

such that α may be made arbitrarily close to M
k

to illustrate the strictness of this

requirement in Lemma 2.

Let (n− k) be arbitrarily large by setting n >> k.

Now, consider α = M
k

+ M
(k(n−k)+k−1)k

+ ε (→ M
k

+ ε as (n− k)→∞)
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Then, define τ := RHS of (L1) = M − (k − 1)α = M(n−k)
k(n−k)+k−1

− (k − 1)ε

If we let all of the repair rates for both repairs be

τ

(n− k)
=

M

k(n− k) + k − 1
− (k − 1)

(n− k)
ε (↓ 0 as (n− k)→∞)

then, by design, (L1) is satisfied for both repairs.

But,

LHS of (3.7) = (k − 2)α + β2,1∗ + min
D⊆{3,..,n},
|D|=k−2

∑
i∈DC

min{α, βi,1∗ + βi,2∗}

= (k − 2)α +
τ

(n− k)
+ 2τ

= M − ε
(k(n− k) + k − 1

(n− k)

)
< M

And so, constraint (3.7) is not satisfied here. Therefore, α = M
k

is a strict

requirement in Lemma 2.

Based on the results of Lemmas 1 and 2, we are now led to conjecture that

the condition we found will hold in the general case of arbitrarily many failures and

repairs, not just the first 2. This conjecture, which will be formally stated below,

then provides a complete characterization of achievable generalized repair rates for

functional repair at the minimum storage point that we may use to explore further

properties of codes for distributed storage networks.

Conjecture: The following condition on repair rates when functionally

repairing any node i is necessary and sufficient for achievability via network coding

at the minimum storage point for any number of node repairs

min
R⊆[n]\{i},
|R|=n−k

∑
j∈R

βj,i ≥
M

k
(C1)
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3.2 The Cost Function

We will now associate a cost with the use of communication links between

nodes in the network. This scenario models more accurately the variability in

capacity among the various links in a network that is likely to take place in practice.

These links will then incur varying penalties when used for repair. We will again

be considering a fully connected network. Here, though, we will associate a cost

of pi,j per bit for using link (i, j). We will assume that when a node fails, it is

replaced by a new node which inherits all of the cost relationships of the failed

node with respect to the other (n − 1) nodes. This is a reasonable assumption

as the node would likely be repaired at the same location and this will prevent

the cost functions from evolving over time. The cost of repairing node i when

communicating βj,i from each node j is then∑
j∈[n]\{i}

pj,iβj,i

The introduction of data transfer costs in distributed storage networks has

been previously explored in [6]. The scenario that was presented in this paper was

that of the nodes being partitioned into two disjoint sets, where all nodes in each

set have the same download cost, C1 and C2, respectively. So any node that is

downloading information from a node in set 1, regardless of the receiving nodes

location, would incur a cost per bit of C1. Repair is performed by downloading

β1 bits from each of d1 nodes in the first set and β2 bits from each of d2 nodes in

the second set. The effect of the choice of these parameters on the repair cost was

then analyzed.

Cost functions were also used in [7], where general functional repair condi-

tions with varying repair rates were given by matrices and minimizing repair cost

for a single repair was explored numerically.

In this thesis, we will use our conjecture stated at the end of section 3.1 to

explore functional repair cost minimization for a system allowing arbitrarily many

repairs at the minimum storage point and derive our result on the optimality of

quasi-uniform repairs under these conditions.
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Definition: Under the assumption of our conjecture, we can define the

minimum cost of functionally repairing node i at the minimum storage point as

C(i) := minP
j∈R βj,i≥

M
k

∀R⊆[n]\{i},|R|=n−k

∑
j∈[n]\{i}

pj,iβj,i

With this definition in hand, we could then consider the following properties of

the network:

• Maximum repair cost:

Cmax = maxi∈[n]C(i)

• Average repair cost:

C̄ = 1
n

∑
i∈[n]C(i)

• or Expected repair cost if varying failure probabilities exist:

E[C] =
∑

i∈[n] P (node i failure) · C(i)

3.3 Minimizing Repair Cost

Let’s now see how the minimization of the cost function for a single, specific

repair behaves. Say node 1 fails, WLOG, and consider the simplified equation by

dropping unnecessary subscripts, giving

C(1) = minP
j∈R βj≥

M
k

∀R⊆{2,..,n},|R|=n−k

∑
j∈{2,..,n}

pjβj
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This is just a linear optimization problem which can easily be solved using

linear programming for any given set of parameter values. Consider the following

examples:

Let α = 5

• n = 6, k = 3, p[i] = [0, 1, 2, 3, 4] :

C = 15, β1 = β2 = β3 = β4 = 2.5, β5 = 0

• n = 6, k = 3, p[i] = [0, 0, 1, 1, 1] :

C = 5, β1 = β2 = β3 = β4 = 2.5, β5 = 0

• n = 6, k = 3, p[i] = [2, 9, 5, 9, 7] :

C = 53.33, β1 = β2 = β3 = β4 = β5 = 1.66

• n = 10, k = 6, p[i] = [3, 1, 7, 2, 1, 5, 10, 3, 10] :

C = 52.5, βi = 1.25,∀i

We can immediately notice of these examples that every solution is of the

quasi-uniform repair type as seen in Chapter 2. This suggests that quasi-uniform

repair may, in fact, always be able to achieve the minimum repair cost which leads

us to the following result.

Theorem: At the minimum storage point α = M
k

, the minimum functional

repair cost C(i) can always be achieved by a quasi-uniform set of repair rates. Thus,

the minimization for C(i) is equivalent to a cost minimization over the parameter

d in the quasi-uniform repair model (and minimum associated β = α
(d−k+1)

).

Before we prove this theorem, it should be noted that linear optimization

over symmetric constraints does not always result in a quasi-uniform solution and

so this result is non-trivial. The following example demonstrates this fact.
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Example 2: Consider the objective function to be minimized

p1x1 + p2x2 + p3x3 + p4x4 where p1 < p2 < p3 < p4

subject to

x1 + x2 + x3 + x4 ≥ m1

0 ≤ xi ≤ m2

if m2 < m1 < 2 ·m2 then we get the optimal solution

x1 = m2

x2 = m1 −m2

x3, x4 = 0

which is not quasi-uniform.

Proof of Theorem:

Without loss of generality the theorem will be proved for C(n).

We first note a few key facts that we will use later:

(a) The constraints being minimized over in C(n) are symmetric in the βi’s. That

is to say if any two βi, βj are swapped then the constraints remain the same.

(b) d must be ≥ k for any feasible repair.

(c) There is an optimal solution achieving C(n) that has the sum over the βi’s in

the minimum R set achieving the lower bound α.

Let an optimal solution be given and let d be the number of non-zero βi’s

that it has.

Re-label these βi’s so that the corresponding pi’s are non-decreasing (p1 ≤
· · · ≤ pn−1). We must then have that the βi’s are non-increasing, otherwise by (a)

we could swap the values of some βi and βj so as to decrease the cost, but this is

not possible as the solution is already optimal.
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We will now show that an optimal solution exists with d′ non-zero βi’s such

that the smallest is ≥ α
d′−k+1

. If such a solution exists then it must be quasi-

uniform as β1 = β2 = · · · = βd′ = α
d′−k+1

satisfies the constraints and has cost ≤
to any other such solution.

Assume then that βd <
α

d−k+1
, as otherwise the given solution would already

be quasi-uniform and we would be done.

With the βi’s ordered in non-increasing fashion it is easy to see the smallest

set R for the constraints:

β1, ..., βk−1,︸ ︷︷ ︸
RC

βk, βk+1, ..., βd, 0, 0, ..., 0︸ ︷︷ ︸
R

As βd <
α

d−k+1
, then at least one of βi∗ ∈ {βk, ..., βd−1} must be > α

d−k+1
.

We also now observe another general fact:

(d) for any optimal solution we must have that β1 = β2 = · · · = βk as βk is the

largest rate in the minimum constraint set and thus the largest necessary rate

for feasibility.

Case 1: β1 = β2 = · · · = βk = · · · = βd−1 >
α

d−k+1
> βd

Let α
d−k+1

− βd =: D > 0. Then, since β1 = · · · = βd−1 = β and the given

solution is optimal, by (c) we get

(d− k)β + βd = α

⇒ β =
α

d− k + 1
+

D

d− k

We will now compare the given optimal solution to two closely related

quasi-uniform solutions and show that one must be at least as good.
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Quasi-Uniform Solution #1: Number of non-zero repair rates is d′ = d− 1

β =
α

d− k + 1
+
D + βd
d− k

=
α

d− k + 1
+

α

(d− k + 1)(d− k)

=
(d− k + 1)α

(d− k + 1)(d− k)

=
α

d− k

Change to objective function from given solution:

∆1 :=
( βd
d− k

)( d−1∑
i=1

pi
)
− βd · pd (3.8)

Quasi-Uniform Solution #2: Number of non-zero repair rates is d

β =
α

d− k + 1

Change to objective function from given solution:

∆2 := D · pd −
( D

d− k
)( d−1∑

i=1

pi
)

(3.9)

Now,

∆1 = βd

( 1

d− k
( d−1∑
i=1

pi
)
− pd

)
= −

(βd
D

)
∆2

∆2 = D
(
pd −

1

d− k
( d−1∑
i=1

pi
))

= −
(D
βd

)
∆1

As both βd > 0 and D > 0 we have that either ∆1 or ∆2 must be ≤ 0.

Therefore, either Quasi-Uniform Solution #1 or #2 is at least as good as the given

optimal solution ⇒ in Case 1 an optimal quasi-uniform solution exists.

Case 2: ∃ a smallest j ∈ {k + 1, ..., d− 1} such that βj < βk

In this case, we may shift some rate from βd to βj, without increasing βj

beyond the value of βk, and we will still have a valid solution as the minimum set

R will retain the same total value and set of βi’s.
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If pj < pd, then this transfer will create a strictly better solution than

the one given, which contradicts the optimality. Thus, it must be the case that

βd ≥ α
d−k+1

in the given solution ⇒ the solution is quasi-uniform.

If pj = pd, this transfer will not strictly improve the solution, but we will

be in the following situation

RC︷ ︸︸ ︷
β1 = · · · = βk−1 =

R︷ ︸︸ ︷
βk = · · · = βj−1 > βj ≥ · · · ≥ βd > 0, 0, ..., 0

p1 ≤ · · · ≤ pk−1 ≤ pk ≤ · · · ≤ pj−1 ≤ pj = · · · = pd ≤ · · · ≤ pn−1

Here, shifting rate around within βj, ..., βd will not affect the value of the

cost function and the set of repair rates are guaranteed to remain feasible as long

as none of βj, ..., βd are made > βk.

So, we will shift rate within this set to the left so that

βj = βj+1 = · · · = βj+l = βk, βj+l+1 < βk and βj+l+2 = · · · = βd = 0

As the cost function has not changed, this is still an optimal solution, but

with new d′ = j + l + 1 (≤ d) and now of the form handled by Case 1. Therefore,

a quasi-uniform optimal solution exists.

�

This theorem shows that for any repair the cost can be minimized by a

quasi-uniform repair. Moreover, even without the assumption of our conjecture,

the definition of C(i) is a minimization over a condition we showed was necessary

in Lemma 1 and thus C(i) is a lower bound on the minimum possible functional

repair cost. As the form of the optimal quasi-uniform solution we get from the

proof of the theorem is shown to be feasible in [3] for any number of repairs, it

follows that we have proven that for any individual functional repair, at any point

in the evolution of the system, a quasi-uniform repair where we have the freedom

to choose the parameter d will minimize the cost.
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3.4 Minimum Costs for Reconstruction and Flex-

ible Reconstruction

Minimizing reconstruction cost is a very simple problem that we will now

cover. With our condition of complete download from any k nodes being required

and sufficient for reconstruction it is clear that to minimize the cost of reconstruc-

tion a DC should connect to the k storage nodes from which it has least cost per

bit to download. With pi,DC being the cost of using link (i,DC), the minimum

reconstruction cost is then

min
D⊆[n],|D|=k

α ·
∑
i∈D

pi,DC

Similarly, for the case of flexible reconstruction presented in [5], a greedy

cost minimization is also optimal. As the reconstruction requirement is to down-

load µi bits from each node i such that
∑n

i=1 µi ≥ M then downloading the max-

imum amount through the lowest cost links will minimize reconstruction cost. If

we let (p(1),DC, ..., p(n),DC) be a non-decreasing ordering of the set of costs {pi,DC}
then this minimum cost is

α ·
bM
α
c∑

i=1

p(i),DC + frac
(M
α

)
· p(bM

α
c+1),DC

Also, the associated repair rate requirement in this flexible framework for

repairing node j is of the form

n∑
i=1(i 6=j)

βi,j ≥ γ, with 0 ≤ βi,j ≤ βmax

and so again a greedy cost minimization is optimal resulting in a repair cost of

βmax ·
b γ
βmax

c∑
i=1

β(i),j + frac
( γ

βmax

)
· p(b γ

βmax
c+1),j



Chapter 4

Varying the Capacity of Storage

Nodes

In this chapter, we will consider the repair model of Chapter 3, but gener-

alize it further by allowing storage nodes to have varying storage capacity. This

extended model broadens the flexibility of the distributed storage network even

further to cover a greater number of real systems. We characterize the achievable

repair rates for up to 2 repairs and explore repair cost minimization for this model

numerically.

4.1 Characterizing Repair Rates

We will now let αi denote the available storage in node i.

We first require that αi ≥ M
k
, ∀ i as this is the standard minimum storage

assumption and ensures that any k nodes contain ≥ M bits for reconstruction.

Also, we make the reasonable assumption that repaired nodes will have the same

storage capacity as the originals they are replacing. We will now establish results

on the achievable repair rates for these networks.

28



29

Lemma 3: For functional repair of a node i, we have the following nec-

essary condition for repair rates {βj,i} communicated from the remaining nodes

j ∈ [n]\{i}:

min
D⊆[n]\{i},
|D|=k−1

{∑
l∈D

αl +
∑
m∈DC

βm,i
}
≥M (L3)

and this condition is also achievable using network codes for a single repair.

Figure 4.1: Information flow graph for 1 repair with varying storage capacity
nodes.

Proof of Lemma 3:

For a single repair, let node 1 fail and be replaced by repaired node 1∗

and let the DC connect to {1∗} ∪ D where we will minimize over all possible sets

D ⊆ {2, ..., n}, |D| = k − 1.

Letting S be a cut set, for each j ∈ D we must have xj,out ∈ SC for a

minimum cut, each thus providing αj. As βi,1∗ ≤ αi ∀ i, if x1∗,in ∈ SC then the

nodes in DC will all contribute βi,1∗ , otherwise if x1∗,in ∈ S we get α1.
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Thus, we require

min
D⊆{2,...,n},
|D|=k−1

{∑
i∈D

αi + α1︸ ︷︷ ︸
always ≥M

,
∑
i∈D

αi +
∑
j∈DC

βj,1∗
}
≥M

which leaves us the contraint:

min
D⊆{2,...,n},
|D|=k−1

{∑
i∈D

αi +
∑
j∈DC

βj,1∗
}
≥M

The general necessity of this constraint follows by the same argument as

was presented in the proof of Lemma 1, where we consider only cuts with xi,in ∈ S
for all active nodes i.

�

4.2 Single Repair Cost Minimization

We now have a necessary condition for functional repair in this scenario

that is also achievable for a single repair.

So let’s now define the following cost minimization for repair that we get

by using (L3).

C ′(i) := minP
l∈D αl+

P
m∈DC βm,i≥M

∀D⊆[n]\{i},|D|=k−1

∑
j∈[n]\{i}

pj,iβj,i

This function satisfies the following properties, by Lemma 3:

i) C ′(i) is the minimum possible functional repair cost for node i in a system

allowing a single repair

ii) C ′(i) is a lower bound on the minimum repair cost of node i for a system

allowing any number of repairs

This function is again a linear optimization problem that we can solve

using linear programming for any chosen parameter values, so let us consider a few

examples:
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Let M = 12, n = 10, k = 3

• α[i] = [8, 5, 6, 5, 5, 7, 6, 6, 4], p[i] = [7, 10, 6, 2, 4, 6, 5, 1, 8] :

C ′ = 8, β[i] = [0, 0, 0, 1, 1, 0, 0, 2, 0]

• α[i] = [6, 8, 9, 10, 10, 6, 8, 7, 6], p[i] = anything :

C ′ = 0, β[i] = 0

Note that every (k − 1) α′is sum to ≥M

• α[i] = [5, 5, 6, 5, 7, 10, 5, 4, 8], p[i] = [8, 10, 3, 1, 1, 3, 5, 5, 10] :

C ′ = 4, β[i] = [0, 0, 0, 1, 3, 0, 0, 0, 0]

We find in this case, where the storage capacities may vary, that the optimal

repair solution is no longer always quasi-uniform. Thus, a general means of repair

is required to achieve minimum repair cost in a system with individual freedom in

node storage capacities.

4.3 Multiple Repair Rate Characterization

In Lemma 3 we found a necessary condition on achievable functional repair

rates, but we would like to know what conditions are sufficient when allowing more

than a single repair, as would be required of any practical system. The following

lemma covers a second repair and shows the dependence between repairs which

exists making a general characterization difficult.

Lemma 4: For functional repair of two node failures, say i first then j being

replaced by i∗ and j∗ respectively, necessary and sufficient conditions for achiev-

able repair rates are (L3) for both the first and second repair and the following

additional condition on the second:

βj,i∗ + min
D⊆[n]\{i,j},
|D|=k−2

{∑
l∈D

αl +
∑
m∈DC

min(αm, βm,i∗ + βm,j∗)
}
≥M (L4)
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Proof of Lemma 4:

WLOG, let node 1 be the first failure and node 2 be the second. As before,

let the new nodes be 1∗ and 2∗, respectively. We must check for the conditions

that ensure every cut on the graph is ≥M .

Figure 4.2: Information flow graph for 2 repairs with varying storage capacity
nodes.

From Lemma 3 we have that condition (L3) is necessary and sufficient for

repair of the first node failure. So, for node 1∗ we have

min
D⊆[n]\{1},
|D|=k−1

{∑
l∈D

αl +
∑
m∈DC

βm,1∗
}
≥M

As before, let the set S be a graph cut where the source S must be in S
and DC ∈ SC and notice that for a min cut we must have for each of the nodes, l,

connected to the DC that xl,out ∈ SC as xl,out connects to DC with infinite capacity.

Case 1: DC connects to 2∗, but not 1∗

Constraints:

x2∗,in ∈ S :

α2 + min
D⊆{3,..,n},
|D|=k−1

∑
i∈D

αi ≥M (4.1)
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x2∗,in ∈ SC , x1∗,out ∈ S :

β1∗,2∗ + min
D⊆{3,..,n},
|D|=k−1

{∑
i∈D

αi +
∑
j∈DC

βj,2∗
}
≥M (4.2)

x2∗,in ∈ SC , x1∗,out ∈ SC , x1∗,in ∈ S :

α1 + min
D⊆{3,..,n},
|D|=k−1

{∑
i∈D

αi +
∑
j∈DC

βj,2∗
}
≥M (4.3)

x2∗,in ∈ SC , x1∗,out ∈ SC , x1∗,in ∈ SC :

min
D⊆{3,...,n},
|D|=k−1

{∑
i∈D

αi +
∑
j∈DC

min(αj, βj,1∗ + βj,2∗)
}
≥M (4.4)

Case 2: DC connects to 2∗ and 1∗

Constraints:

x2∗,in ∈ S, x1∗,in ∈ SC :

α2 + β2,1∗ + min
D⊆{3,..,n},
|D|=k−2

{∑
i∈D

αi +
∑
j∈DC

βj,1∗
}
≥M (4.5)

x2∗,in ∈ SC , x1∗,in ∈ S :

α1 + min
D⊆{3,..,n},
|D|=k−2

{∑
i∈D

αi +
∑
j∈DC

βj,2∗
}
≥M (4.6)

x2∗,in ∈ SC , x1∗,in ∈ SC :

β2,1∗ + min
D⊆{3,...,n},
|D|=k−2

{∑
i∈D

αi +
∑
j∈DC

min(αj, βj,1∗ + βj,2∗)
}
≥M (4.7)

These constraints can be reduced in the following ways:

• Contraints (4.1) and (4.3) are satisfied as αi ≥ M
k

• (4.4) and (4.5) follow from (L3) for node 1∗

• (4.2) and (4.6) combined are equivalent to (L3) for node 2∗
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Leaving constraint (4.7) ≡ (L4).

�

Recall that in the case of non-varying α we found that the additional con-

straints were made redundant at the minimum storage point of α = M
k

. We find

here that any constraint of the form αi ≤ B, ∀i, other than the minimum stor-

age point constraint of B = M
k

as explored earlier, fails to make constraint (L4)

redundant in the second repair. We show this with the following example, a slight

modification of Example 1.

Example 3:

Let any upper bound B > M
k

be given.

Let αi = M
k

+ M
(k(n−k)+k−1)k

+ ε, ∀i and let (n − k) be large enough and ε

sufficiently small such that αi ≤ B.

By our choice for the αi’s, we now have the same non-varying storage ca-

pacity as in Example 1.

Then, comparing the constraints we see (L3) ≡ (L1) and (L4) ≡ (3.7) and

by the same calculations given in Example 1 we get that (L3) holds for both repairs,

but (L4) is not satisfied.

We have found that for the model with varying storage capacities the nec-

essary condition is again only sufficient for > 1 repair when we are at the minimum

storage point. In contrast to the uniform storage capacity model, though, cost min-

imization over the necessary condition can no longer be achieved by quasi-uniform

repair.



Chapter 5

Conclusion

We explored the minimization of repair cost in distributed storage systems

with communication costs associated to links in the network. In order to do this

we explored conditions on repair rates for achievable codes under a generalized

functional repair model. Allowing the amount of information downloaded from

different nodes to vary and minimizing the cost for a repair we found that the

quasi-uniform repair method of downloading the same quantity from each of d

nodes attains the minimum cost when storing the minimum amount of information

at each node. This result applies to any of the functional repairs in the lifetime of

the system.

We then generalized the model further by allowing the storage capacities

of the nodes to vary and found a general necessary condition for achievable re-

pair rates as well as sufficient conditions for the first and second repairs in the

system. We then established that quasi-uniform repairs are not optimal for cost

minimization in this case.
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