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Abstract—In distributed storage systems built using com- even in the presence of node failures. Moreover, since the
modity hardware, it is necessary to have data redundancy in scheme described inl[2] stores data in an uncoded manner,

order to ensure system reliability. In such systems, it is & {4 computing applications the storage nodes may also serve
often desirable to be able to quickly repair storage nodes tht .
as processing nodes.

fail. We consider a scheme—introduced by El Rouayheb and ’ N o
Ramchandran—which uses combinatorial block design in orde A Steiner systemS(t, k,v) specifies a distribution o
to design storage systems that enable efficient (and exactpse elements into blocks of siZzesuch that the maximum number
repair. In this work, we investigate systems where node size of overlapping elements between any two blockg is 1
may be much larger than replication degrees, and explicitly (so if t = 2, then no two blocks can share any pairs of

provide algorithms for constructing these storage designsOur . . .
designs, which are related to projective geometries, are lsad elemeng). Fo_r mst_anc_:e, Examp 1 shows a Steiner system
on the construction of bipartite cage graphs (with girth 6) and the resulting distribution of data chunks to storageesod

and the concept of mutually-orthogonal Latin squares. Via . L
these constructions, we can guarantee that the resulting digns Example 1. Consider a distributed storage system to store

require the fewest number of storage nodes for the given 9 total data chunks, where each chunk is stored within storage

parameters, and can further show that these systems can be nodes that can hold chunks each. Then it is possible to

easily expanded without need for frequent reconfiguration. distribute the chunks acros& nodes, where every chunk
|. INTRODUCTION has exactly4 replicas and any two distinct nodes share at

Recent trends in distributed storage systems have beenrp(g)-St only one overlapping chunk. This is shown in Figure 1.

ward the use of commodity hardware as storage nodes, where

. - 50‘012‘ b4138‘ b8246‘
nodes may be individually unreliable. Such systems cah stil
be feasible for large-scale storage as long as there islbvera 5, | ¢ 3 & ‘ bs |1 4 7 ‘ bo|2 5 8 \
reliability of the entire storage system. Recent reseanch i
distributed storage systems has focused on using teclmique |0 4 8 ‘ be |1 5 6 ‘ bo| 3 4 5
from coding theory to increase storage efficiency, without
sacrificing system reliability and node repairability [1]. wlo s 7] w23 7| buls 7 s

In this work, we consider storage systems where failed
storage nodes must be quickly replaced by replacemé:f%
nodes. To achieve short downtimes, we consider technique$n most practical distributed storage systems, howeva, it
where the repair of a particular node (i.e., by obtainingften desirable for the number of data chunks per fodee
replacement data) is via contacting multiple non-failedeg much greater than the replication degree of each chunk. For
in paralle—where each contacted node contributes onlyejample, the Google File Systeim [4]—which stores data in
small portion of the replacement data. Such replacemetunks of as small as 64 MB each—has a replication degree
strategies have been studied in the context of latistional ©on the order of three replicas but may store thousands of
repair [I]—where replacement nodes serve functionally fothunks on each storage node. Thus in this work, we consider
overall data recovery—arekact repair—where replacement & graph-based construction of Steiner systems where the
nodes must be exact copies of the failed node. replication degree and node size are significantly asynicnetr

We build upon the work of El Rouayheb and Ram- Specifically, we construct storage systems where the repli-
chandran[[2], who propose a storage system allowing feation degree of each data chunlgis 1, whereas each node
exact repair. Using the idea of Steiner systems [3], tieay store up tg" +¢" ' +---+¢*+¢+1 chunks (for any
authors design distributed storage systems with the dksigiven integern). Although it is known from the theory of
redundancy and repairability properties—where even thougrojective geometries [3] that systems with these paramete
each storage node is responsible for storing multiple datan be designed, by using our graph-based method we are
chunks, replacement of any failed node is always possilfble to give a systematic construction that is highly sdalab
by obtf':umng only a single data chunk from each of SeverallIn the rest of this paper, whenever we use the term Steindéeraysve
non-failed nodes. In systems where multiple nodes can B referring to Steiner systems with= 2.
read in parallel, then such a scheme ensures high avayabili 2For brevity, we refer to the number of chunks per node asitiee size

1. Storage design from Steiner syst8ii2, 3, 9); same ad [2, Fig. 6(a)].
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for a system constructed according to the methods in thiseory [9]. Some parameters for which Steiner systems can
paper, it is always possible to increase the storage systbmdesigned are given in [10],/[2]. In this work, we consider
without moving any existing data chunks—and still be ablSteiner systems similar to those from finite projective pkan
to preserve the property that no pairs of chunks recur in mdspecifically, designs in which the replication degree is1
than one storage node. and with each storage node storing upyto+ ¢! + .- +

Our construction is based on relating Steiner system prafg-+ ¢ + 1 data chunks can also be found from the projective
lems with the problem of shortest cycles on bipartite graphgeometryPG(n + 1, ¢)—where the data chunks are the lines
More specifically, our systems arise from the constructibn and the storage nodes are the points of the corresponding
cage graphg5], which are graphs with the minimum numbeispace. However, in this work we show that via our recursive
of vertices for a given allowable shortest cycle length arglaph construction method, it is possible to initially dspl
other specified conditions on the vertex degrees. Because smeall storage systems without needing to kreyriori the
are constructing cage graphs, we further know that for angiveuture maximum extent of the storage system—while still
desired node size and replication degree, our constrisctidreing able to preserve the Steiner property in subsequent
are thesmallestpossible systems (in terms of total number oéxpanded systerﬂsThis alternate approach for constructing
storage nodes and total number of data chunks stored). Thiiejective geometries has tremendous benefits for practica
is useful for the practical application of such construtsip storage system designs, as otherwise the connection betwee
as it immediately translates into least hardware cost fer teystem design and the construction and extension of such

desired system requirements. geometries is not immediately obvious. Furthermore, our
graph-based construction is simple to implement, and desig
A. Related Work are uniquely determined given knowledge of the base set of

The problem of distributed storage with efficient repair igwutually-orthogonal Latin squares (which we discuss Jater
discussed in([1]. Using network coding, the authors proposeln addition to [2], the use of BIBDs for guaranteeing load-
a scheme for storing data where node repair is functionBRlanced disk repair in distributed storage systems is also
Dimakis et al.[1] also define the idea of a storage-bandwidg@nsidered in[[11],[12], for application to RAID-basedkdis
tradeoff, and discuss ways to implement either minimu@yrays. In[[12], the authors discuss how block designs may be
storage or minimum bandwidth systems. Even though exatsed to lay out parity stripes in declustered parity RAIDkdis
repair of storage nodes is sometimes necessary, the stor&jeays. The block designs from our work may be helpful for
bandwidth tradeoff under exact repair is not yet fully undeglistributing parity blocks in this scenario, in order to ldui
stood. Building upon the network coding constructiong §f [1disk arrays with good repair properties.

Rashmi et al.[[6] give a scheme for achieving the minimum Certain block designs may also be applicable to the design
bandwidth operating point under exact repair, finding a poiaf error-correcting codes, particularly in the constromti
on the storage-bandwidth tradeoff curve. of geometrical coded [13, Sections 2.5 and 13.8]. Graphs

El Rouayheb and Ramchandrén [2] introduce a relat@dthout short cycles have been considered in the context of
scheme, termedtactional repetition codeswhich can per- Tanner graphs [14], and finite geometries in particular have
form exact repair for the minimum bandwidth regime. Thebeen considered in the context of LDPC codes [15]. Block
then derive information theoretic bounds on the storagésigns and their related bipartite graphs are also careside
capacity of such systems with the given repair requiremeniig code design for magnetic recording applications_in [16].
Although their repair model is table-based (instead of cemd outline of Paper
access as in[[1]), the scheme dfl [2] has the favorabfé P
characteristics of exact repair and the uncoded storage ofn the next section, we provide necessary background.
data chunks. Randomized constructions of such schemesSgétion[Ill illustrates how our constructions work, thrbug
investigated in[[7]. the construction of regular bipartite cage graphs; this-con

Uncoded storage has numerous advantages for distribusé@ction provides a base upon which the larger constmictio
storage systems. For instance, uncoded data at nodes allgfv$ection[IV is built. In Sectior IV we give the main
for distributed computing (e.g., for cloud computing), byontribution, which is the design of scalable storage syste
spreading out computation to the node(s) that contain tHat can be expanded readily. Finally, Secfidn V concludes.
data to be processed. Upfal and Widgerson [8] consider a
method for parallel computation by randomly distributing
data chunks among multiple memory devices, and derife Notation
some asymptotic performance results. In contrast, ougdssi  When describing parameters for constructible graphs we
are determ|n|§t|c, gnd we are also able to guarantge q@gpn(q) ="+ ¢+t g+1 = Q"+_11—1, for
smallest possible size for o_urgtorage system. Furtherrifore, Z. .. In the rest of this paper will alwag/s denote
uncoded data chunks are distributed among the nodes accgligher a prime number or a power of a prime.
ing to Steiner systems, then load-balancing of computation
is always possible. 3We do not describe this in detail, but very similar graphethmethods

Stei t | f bal di |C?n also be used to construct designs related to the affimeedgoAG (n+
einer systems are an example or balanced incomp ?, 9) These constructions are just as expandable as the pvejgetometry—

block design (BIBD), within the field of combinatorial derig based designs. A brief note on these constructions is giv&ectior IV-C.

Il. PRELIMINARIES




In this work, we consider simple undirected bipartitgraphG = (X, Y, E), such a cycle must necessarily alternate
graphsG = (X,Y, E). Cardinality is denoted by- |. For between vertices o and vertices ofY"; thus any cycles
a vertexz, deg(z) gives the number of incident edges. Wemust have even length. Thyrth of a graph is defined as the
only consider graphs where all of the vertices in a vertex denhgth of the shortest cycle in the graph.
have the same degree, so we can wiitg(X) = deg(z) for Then, ad-cageis a girth< graph with minimum number of
somez € X. The symbol~ is used to denote an edge; fowvertices for a particular desired degree distribution [BF].
verticesz andy, we say that: ~ y if and only if (z,y) € E. The goal of this work is to construct biregular cages of girth
(so that no4-cycles are present)—in order to construct the
smallest possible Steiner system with the desired parasnete
A Steiner system is a collection of elements, into yUsing transpose codes we can then construct systems requir-
blocks, B, where any subset of elements only occurs onggg the fewest possible storage nodes (i.e., smalfpsind
in the block collection. We reinterpret the Steiner systefe least number of total distinct chunks (i.e., smallest
requirements by considering its incidence grelph [17]. Ia thwhile still having the desired repetition degreeand block

work, we will consider bipartite graph& = (X,Y,E), sizel. Such systems will meet the lower bound of Lenirf 1.
where there ares vertices in X, each of degreé;, and

v vertices inY’, each of degre& We call such a graph to beLemma 1. Consider a simple biregular bipartite graph

B. Graph Interpretation of Steiner Systems

biregular whenk +# 1. Clearly, lv = uk. (X,Y, E) that does not have any cycle 4br fewer vertices.
Now we label the vertices ot as the elements op |f deg(X) = k and deg(Y) = I (wherel > k), then the
e,V ={y, | g =0,1,...,0—1}), and the vertices number of verticesy = |Y| andu = | X|, has lower bounds
of X as the blocks of3. Consider a particular vertex,, v > 1+4+1k-1) 1)
(where h € {0,1,...,u — 1}), and define blockb, = u > 1+10-1)(k—1)/k )

{yg € Y | y4 ~ xp}. Then the collection of blocks,
B={b, | h=0,1,...,u— 1}, satisfies the following:
1) Each elemeny, € V occurs in exactly blocks of 5.
2) Each blockb;, € B containsk elements.

Proof: We sketch the proof fof{1) here; a more detailed
proof of (1) as well as for({2) is provided in Appendix B-A.
One method for constructing the bipartite graph is by
starting with a single verteyy € Y (called thelayer 0

It is clear that whenever two blocks, andby share some yertex) and connecting it tovertices ofX (called thelayer 1
pair of elementsy, andy,, then this is equivalent to the yertices). These vertices of must be connected th — 1
4-cycle xp ~ yg ~ xp ~ yg ~ xp. Thus the nonexistence gistinct other vertices o (the layer 2 vertices). Note that
of such4-cycles is equivalent to the nonexistence of shar%hy remaining vertices of (thelayer 3 vertices) would then
pairs of elements between blocks. In Figlte 2, we show th@ed to be connected back to the layerertices ofY” in such
bipartite graph associated with Example 1. a way as to preserve the nonexistence-afycles. [

8

7 elements

Any bipartite cage achieving the lower bounds of Lenitha 1
satisfies the Steiner system property that each pair of ele-
' s % ments occurs irexactly one block. We already know that
REARTS AR AT AP AR AT OFR ST ST ST N every pair of elements occurs in at most one block. Since
v=1+Il(k—1)andu =1+1(l—1)(k—1)/k also satisfies
(2) = u(¥) [l we know that every pair of elements occurs in
at least one block—and therefore occurs in only one block.
. The proof of Lemmall gives us clues on how to construct
of elements, and: is the total number of blocks. In the restbipartite graphs that achieve the lower bounds—which must

of this paper, we shall always assume that Kl necessarily be cage graphs. We will show how to avoid

XSt;nC'?hX alndY atlre mgrghatr;]gei?lei(we fcomdﬂ"nStE?d L%troducing 4-cycles between the laye and layer3 ver-
€ e elements antl be the biocks of another bloc tices, by considering the use of mutually-orthogonal Latin

?ystenﬁt_reslultmg n the_trf;l]ntspose ?Od‘?s(;f_ {223 t?ﬂlni; squares (see Appendix] A of [20]). Specifically, in order
or practical cases we WISh 1o COnstruct distributed sterag, - ,nqipct the cage graphs, we will require the exis-

systems where the repetition degree is smaller than thé bl%nce of a set ofy mutually-orthogonalg x ¢ squares
size, we will more often employ the transpose code. To st?%(o) Jaes L(q,ql)} where L is a gqua(rle with ev'-
consistent witH > &, in these cases we lgétbe the repetition ery C’Olum’n' .ir.lvnatural 'order ang» 7.2 1(a-1) gre

;jhegree abnd b? tr|1e blo?k S'nzj' LtJrr:d?rtths |ntebrpretfag?n|,i mutually-orthogonal Latin squares where each square has it
€ number of elements andis the total NUMDET Of BIOCKS. 7 o4t column in natural order. Such a set always exists when
C. Cage Graphs q is a prime or a prime power. We give an exampledet 3:

Fig. 2. Bipartite graph of Steiner system corresponding te 3, [ = 4.

In the above, we construct Steiner systems wlhidsethe
repetition degreek is the block sizey is the total number

In an undirected grapti = (V, E), a cycle of lengthd is 5The result of LemmEl1 is sometimes known as a Moore-type b{iL8jd

a set ofd vertices connected in a closed path. In the bipartigdthough we note that the bound i (2) is tighter than theesponding
bound in [19] for our case, wheh> k.

4We can construct systems whére> I by swapping the two vertex sets. ' The condition(}) = u(g) comes from the fact that there are a total of

5In the language of finite geometries, interchanging thesrofeelements (;) pairs of elements, which should correspond exactly to thg tsﬁe(g)
and blocks is the same as interchangpants and lines pairs of elements in each of theblocks.



Example 2. A set of3 mutually-orthogonaB x 3 squares is
0O 0 O o 1 2 0o 2 1
LO9=|1 1 1|, 2®W=1 2 o, 1®=]1 0 2
2 2 2 2 0 1 2 1 0

I1l. REGULAR CAGE GRAPHS

We now show how to construct girth-bipartite cage
graphs where the degrees of both vertex sets are equ ,
More specifically, the vertex degrees will satisfyg(X) =
deg(Y) =qg+1 (i.e., k=1=gq+ 1), whereq is any (a) Conclusion of stepl4. (b) Final bipartite graph.
prime or power of a prime. The resulting graphs will haveig. 3. Construction of bipartite cage whekre= [ = 4, using Algorithnid.

(X[=Y|=¢"+q+1 Theorem 3 (see also[[5, Section 4])The regular bipartite

A. Construction of Regular Cage Graph graph constructed from Algorithid 1 is a bipartite cage graph
of girth at least6, with degreeg + 1 at all vertices.

The construction of regular bipartite cage graphs of dirth _ k ] 5
is inspired from the construction in Wongl [5], and is given Proof: Algorithm[I results inl +I(k —1) = ¢* + ¢ +1

in Algorithm . Bipartiteness arises from the construction Vertices fory” andi+I(1—1)(k—1)/k = ¢*+ g+ 1 vertices
for X—where every vertex has degree- 1. Thusv = |Y|

T o] St with & Singie ver - andu = | X| achieve the lower bounds of Lemrhh 1 for the
. ayer art with a single verteyo € Y. . . . .
2+ [Layer 1] Connectyo to | — q + 1 vertices of X. Without loss of required degree (_1|str|but|ons. By Lemlﬁa 2, the shortedecyc
generality, call these verticesy, x1, ..., x;_1. has at leas6 vertices, so the result is shown. [ |
3 g—ay'if 2] Fort_eaCh f\gfrtﬁx?l i=0, 170- -l-vl - ; Cg“gethij :ﬁ By interpretingY” as the elements an¥l as the blocks, we
— 1 = q vertices ofY. Let §; m, m =0,1,...,k — 2, denote the - 9 -
vertices of this step that are connected to vetigx have constructed &(2, k, v) = 5(2_’ q+1,¢"+q+1) Ste'ner
4: [Layer 3] Connect each vertefo ., (m =0,1,...,k—2)tol—1=¢ System—and also a corresponding storage system design.
distinct vertices ofX, called Z,, ;, i = 0,1,...,!_ — 2. Therefore, We see that in order to generate the cage graph and
Em,i # &y i Unlessm = m' andi = 4’. There will be(k — 1)(I — : . . Lo
1) = g2 such verticesi,y, ;. associated block system, the only required informatiohés t
5. Consider a vertexi,,;, where m € {0,1,...,k — 2}, i € generator element used to generate the multiplicativepgrou

Algorithm 1 Construction of bipartite cage whén=1= ¢ + 1

{0,1,...,1 —2}. Connectin,; to verticesg ., ), Wherej = for the finite field—as the set of mutually-orthogonal sqsare
0,1,...,01—2. K can then be uniquely determined. Thus lookup tables for the
9 . N _ entire block design need not be stored, since the tables can
The ¢ + ¢ layer 2 vertices §;m, j = 0,1,...,¢ .
L2 : ; always be generated easily.
and m = 0,1,...,¢q — 1, coincide with the vertices B .
) In fact, the constructibility of a regular cage graph with
Y1, Y2, - - Yq2+q @Nd can be mapped usingqimi1 =

q*> + q + 1 vertices in each vertex set is equivalent to the

01.....q—1andi = 0.1,....q — 1, coincide with the constructibility of a prqjecnve plane_z of order-1 [17]. The .

VErtices .1, 1o 2o.02, and can be mapped usinglregular cage graph with = [ = 3 is the Heawood graph;
ety tat2y e Setet see Figurél4, which also shows the associated Steiner system

Tatmatitl = Lm,i: This construction of the Heawood i
) . . graph is analogous to the
Notice that the resulting graph consists of the layemnd kolem constructior(]9] of Steiner triple systems foe 9.

layer 2 vertices on one side of the graph, connected only {0
layer 1 and layer3 vertices on the other side.

9j.m. Similarly, the ¢* layer 3 vertices 2., m =

We first show an example of Algorithii} 1 with= 4 and bofo 1 2 ‘ b1 3 5 ‘
I = 4 (soq = 3), before proving that this indeed results in the
desired cage graph. This graph will ha\&| = |Y| = 13. o 3 6 ‘ b ‘ P16 ‘
The first three steps are straightforward, as they involve wlo 1 5 bs ‘ 5 3 4 ‘
connecting the vertices of layes 1, and2 in a tree. Stepl4
connects all the vertices associated wigh,, with thel—1 = TN, bs|2 5 6
q verticesi,, ;, 1 =0,1,...,q — 1. This gives Figuré¢ 3a. @ Bipartité grapﬂ. (b) Block design.

Now we consider connecting the other outgoing edges of , _ _ o
Fig. 4. Steiner system correspondingkte= 3, [ = 3. Figure[44 visualizes

eaChxm,i vertex to the remanings, , vertices,j # 0 Th_e the system as a bipartite graph, and Fidurk 4b shows the dlegign. This
set of mutually-orthogonal squares of order 3, given in  gives the same Steiner system aslin [2, Fig. 3 (Example 2)].

Examplel2, guarantees thatycles do not get introduced in e also mention that similar methods can be used to
step[$. Figuré 3b shows the resulting bipartite cage graphonstruct regular graphs (i.6k, = | = ¢ + 1) of girth 6

B. Properties of Graph Constructed from Algoritfiin 1~ Wheng is not a prime power (e.g., see [21], where- ).

We show that the graph constructed from Algorithm 1 is IV. SCALABLE DESIGNS

indeed a cage graph, as well as discuss additional propertie )
ge grap prop In Sectior V-4, we construct cage graphs where the vertex

Lemma 2. In the bipartite graph constructed from Algo-degrees of the two vertex sets are highly unbalanced, i.e.,
rithm [, the shortest cycle consists of at le@stertices. wheredeg(X) = k = ¢+ 1 butdeg(Y) = I = p,(q). We
Proof: See AppendiXB-B ori [5, Section 4]. m discuss some favorable scalability properties in Se€hGBl



A. Construction of Designs with = ¢+ 1, | = p,(q) For each iteratioth where we select the subset of layler
vertices denoted by, = {90, 91,92,...,94}, let us call the

The construction here is recursive; thus we dail] = bn-subgraphas the subgraph induced by the subset of vertices

pn(q) as the degree of the vertices¥f at iterationnd (For . .
notational simplicity, if no iteration number is specifigen ~ {vo} U{z;[j € bn} U{Jjm[j € br, m=0,1,... .,k —2}

it is assumed that we are referring to the quantity fortkté U{j;’lﬂi lm=0,1,....k—2, i=0,1,...,q— 1}.
iteration.) The constructed cages havé| = 7”"“;33{7”(‘1) ’ _ _
and|Y| = pn1(q). We show such a graph in Figuré 5. Lemma_l 4. The graph of AIgonthrﬁ]Z_ has the desired number
of vertices,|X| and |Y|, and satisfies the degree require-
ments.
Proof: This can be shown via careful accounting. We
provide the complete proof in Appendix B-C. [ |

Lemma 5. In the constructed bipartite graph of AlgoritHrh 2,
the shortest cycle has length of at leéstertices.
VNN VNNV N Proof: As there are neither odd cycles nor length-
cycles, we only need to check that there are no ledgth-
cycles. Since each selectiop of layer1 vertices induces a
We will inductively construct bipartite cages with= ¢+1 subgraph which is isomorphic to tie= [ = ¢ + 1 bipartite
and![n] = pn(q) using a layered method similar to beforeregular cage graph, any properties from the regular graph
Notice that forn = 1, the graph is théds =/ = ¢ + 1 cage. galso hold for the subgraph. Thus within ahy-subgraph,
Thus suppose that a cage graph with paraméters;+1  there are not-cycles.
andl[n—1] = p,—_1(q) exists. For this graphn—1] = p,(q) Consequently, any potential-cycle must involve only
anduln — 1] = %- By taking Y as the elements edges from layer to layer 3 vertices, where the laye?
and X as the blocks, this gives a Steiner system with blockertices are connected to different vertices of layerl.
sizek = ¢+ 1 and withv[n — 1] = p,(g) total elements, i.e., Suppose that the laye? vertices j;, and g; ., where

S(2,q+1,pn(q)). (Here, each element is repeatéd—1] = ; -« i/ are involved in al-cycle with the layes verticesz!").

pn-1(g) times, and there are[n —1] = pn(q)Tfl(q) blocks.)  and ™) B Such a cycle implies that the,-subgraph rﬁjst
This system can then be used to construct khe ¢ + 1, xm'”'ﬁ 4 P hie, -subgrap

| = pn(q) cage—as given in Algorithrl 2. include the edge betwee]) , andz") as well as the edge

Fig. 5. Construction of bipartite cage graph with= ¢ + 1, | = pn(q).

m,i?

betweeny; and2"").; also, theb, -subgraph must include

m,i?

Algorithm 2 Construction of bipartite cage whén= g+ 1, | = p,,(q) ")
Require: A set of v[n — 1] = pn(q) elements, and a collectio8 = the edge betweem}u andxm,,i,, as well as the edge between

{bp | h =0,1,...,u[n — 1] — 1} of (q¢ + 1)-element blocksby, 5 ~(h") : ,
such that each element has exadfly — 1] = p,,—1(g) replicas and no Yi'on andxm, i This means that the subséjsandb,, both

particular pair of elements occurs in more than one block. contain the elementsand;’. However, .SinCé’h andby, are
1: [Layer 0] Start with a single vertexo € Y. _ two subsets that do not share any pair of elements, the fact
2: [Layer 1] Connectyo to I = pn(q) vertices of X. Without loss of thatj, j/ € b, andj, j/ € by is a contradiction. m
generality, call these verticesy, z1,..., 2, ()1 ’ ’

3: [Layer 2] For each vertexc;, j = 0,1,...,1 — 1, connectz; 10 ) emmga 6. Supposing that a bipartite cage (of gir) with

k — 1 = q vertices ofY. Let §; ,n, m = 0,1,...,k — 2, denote the
vertices of this step that are connected to vetiex parameters: = ¢+ 1, l[n — 1] = pn—1(q), v[n — 1] = pn(q),

4: for h =h0 tglu[z— 1]-1 dof | . , andu[n — 1] = M"fl(“) exists, then Algorithril2 con-
5: Let the blockb;, consist of elementd;, = {go,91,92,..-,9¢}- : : . . _
6 [Layer 3] Connect each vertel, m (m = 0,1,k — 2) 0 g structs a bipartite cage (of girth) with para;neltg)rﬁ " q+1,
distinct vertices ofX, called ffﬁ)l i=0,1,...,q — 1. Therefore, l[n] = pn(q) (@ndv[n] = pni1(q), uln] = a+1 )-
2" # 2" unlessm = m/ andi = i'. (For theh-th iteration, Proof: Follows from Lemma$l4 and 5. n
. § . (b . . . .
there will be a total of(k — 1)g = ¢ such verticesi "), Theorem 7. A bipartite cage of girth6, with parameters

7. Consider a vertexi”,, wherem € {0,1,....k =2}, i € f=q+1 and![n] = p,(q), exists and is constructible. This

_ + (") 1o g P = — _ _ pnt1(@)pnlg
{0,1,...,¢—1}. Connectz, ~; tOyQHDLE,’?)’J =0,1,...,9=1.  graph hasv[n] = p,+1(¢) andu[n] = %.

E83 end fg_f _ i deareds — — - Proof: The base case where= 1 is thek =1 =q+1

nsg;ev'erti'gz:';f cage W't_ egre _;+_1, [”]:ifzi({)@f}fl(;}“m " cage graph from Algorithrfil]1, and so is constructible. The
Y1 =vln =pnia(@), [X] =uln] = =755 conclusion follows by induction, using Lemrh 6. [

Algorithm [2 differs from Algorithm[1 in stepgl6 arfd 7 N Eigur_e[@, we show the resulting storage system Qesign

because we only connect vig, , (wherej = 0,1,...,q) after iterationn = 2, for the case; = 2 (i.e., k = 3). This

instead ofg; ,,, for all j = 0, 1,...,1 — 1. This is due to Systemisinfactan extension of the= 3,/ = 3 block design

only considering g+ 1)-elemensubsetsnstead of the entire Of Figure[4; for storage nodés, by, . .., bs, the first3 data

set of zg, ...z, vertices when constructing each smalleghunks in each node are exactly the same between Figures

subcage. and’6. This scalability will be explained in Sectlon 1V-B.

These cage graphs form a family of designs where
8We let u[n], v[n] denote the respective quantities at iterationSince
k[n] = ¢+ 1 for all n, we do not qualifyk with the iteration number.. SWe knowh # R/, or else thel-cycle is entirely within theb, -subgraph.



8 131424 26 32 34‘ systems corresponding t@[n — 1] and G[n] thus satisfy
B[n —1] C B[n] (again, up to isomorphism with appropriate
9 1517192031 32‘ indexing). Because the blocks Bfn — 1] contain a total of
pn-1(q) elements (i.e.{y € b | b € Bln —1]}| = pn-1(q)),
the result is shown. ]
10 15 16 23 24 27 28‘ Now we can prove Theorefd 8.

Proof of Theoreni]8: From LemmdD, one can select
1017 18 25 26 29 30‘ pn—1(q) layer1 vertices such that the block system consisting
of only these vertices is isomorphic Bin—1]. The subgraph
Figd- 6. Block dﬁstggn forhdistkritr)]uted sthrage sx(/jstem r::oumawlim] tokd =3 constructed through these layewertices is thus isomorphic
?nch{Jnks?.InE ?cftal tﬁ;eca?&% di?t?n::(ipdlgsas c?:slnkesagntlzt(;g?aeggono%:g.)refo the graph O.f the previous |terat|oG,[n B 1]' u

For the distributed storage system, we takas the blocks

q+1,1=pu(g), v = pny1(q), andu = %, andthus and X as the elements. Thus each element has ¢ + 1
are coincident with the Steiner systei$i€2, ¢+ 1,p,+1(¢)).  repetitions and each block has size p,(g) (such a system
requires a total o = p,,11(¢) Storage nodes and stores
a total ofu = w distinct data chunks). From

. ; UG eorem B, we see that becaus¢n — 1] is a subgraph
tion for a cage graph with large degrge] for the vertices of G[n]—where the subgraph is a truncation of outgoing

of Y. This particular construction also allows for the eas dges from each’ vertex—this means that the blocks of

gxpansion of storage systems built using thgs_e methods. sfi‘el[n — 1] = pn—1(q) are truncations of the blocks of size
1S, if an ex_tant system ha@_ 1] = pn-1(g), itis relatively lné = pn(q). Equivalently, if we have constructed (using
simple to increase the size of the system so that the degr, Sorithm [2) the storage system with block side — 1] —

o : °A
of Y hasli[n] = p,(q). This is because the following h0|ds'pn,1(q), then expanding to a storage system with block

Theorem 8. Consider a cage graplG/[n], with parameters size [[n] = p,(q) can be accomplished by appending the
k = q+ 1, l[n] = pn(q) constructed in iterationn of remaining outgoing edges from eathvertex. No elements
Algorithm[2. The cage graph with parameteéts= ¢ + 1, need to be moved from the existing system, and yet the
I[n—1] = pn—1(q) (i.e., constructed in the previous iterationSteiner property (of no repeating pairs of elements) will st
of Algorithm[2, and called7[n — 1]) is a subgraph of7[n]. hold—one need only append new elements to the appropriate
. . blocks. For instance, the expansion of the system of Fighire 4
TheorenLB will be proved with the help of Lemrilh 9. results in the appended storage system of FiQure 6.
Lemma 9. Consider a cage graph withk = ¢ + 1, It is similarly simple to construct a storage system which
[[n] = pn(q), to be constructed in thex-th iteration of has total number of elements, that is between the valid
Algorithm[2. From the set op,,(¢) elements and the col- quantitiesu[n — 1] and u[n] (i.e., uln — 1] < @ < u[n]).
lection of blocksBn], it is possible to select a subset oOne should construct the system fafn] elements (i.e.,

bo

012789 10‘ bs |2 3 427303134‘ b1o

by

036 11141518‘ bs |2 5 628293233‘ b11

52‘0 45 12131617‘ bz 7111319212729‘ bi2| 9 161821223334‘

b3 [1 3 5 19222326‘ bs 7121420222830‘ b13

ba

14 620212425‘ by | 8 111223253133‘ b4

B. Advantages of Scaled Constructions
The construction of Algorithl2 is not merely a constru

pn—1(q) elements, calle§[n—1], such that the subcollectionk = ¢ + 1 and i[n] = p,(g)) and then leave empty
of blocks fromB[n] that contain only elements froin — 1] slots in the blocks which are supposed to store elements
is [isomorphic to] the entire collection of blockS[n — 1] x4, %441, Tat2,- .., Tupm)—1. This Will preserve the Steiner
required in the(n — 1)-th iteration of the algorithm. property and also allow expansion of the storage systerh unti

Proof: Here, the elements aié and the blocks arél. u[n] elements arrive.
We now prove by induction. )

The base case is — 2. The cage graph with parameters: Other Scalable Constructions
k = q+1,1[1] = g+1is the graph from Algorithril1. In order Due to space constraints, we do not discuss the construc-
to construct the cage graph with paramefets ¢+ 1, I[2] = tion of a related class of block designs, which are those that
q®> + ¢ + 1 during iteration2, we choose elements from thecoincide with affine geometrie$|[3]. A similar construction
collection of blocksB[2] = X[1] (i.e., the block collectio8  to Algorithm[1 can be used to construct cage graphs where
at iteration2 corresponds to the vertex s&t at iteration1). k& = ¢ andl = ¢+ 1—leading to the graph of Figufé 2 when
By construction, the block, € B[2] containsg+ 1 elements, ¢ = 3. From this base case, similar scalability results can be
so the subgraph associated withis isomorphic to the cage derived for storage system designs witk= ¢ and! = p,,(q).
graph with parameters = ¢ + 1, {[1] = ¢ + 1.

Now consider an arbitrary iteration From the(n — 1)-th
iteration, we know thatB[n — 2] C B[n — 1] (up to In this paper, we give practical, scalable, and imple-
isomorphism with appropriate indexing of elements). Sinaaentable constructions of bipartite cage graphs where the
B[n — 1] is used in iteratiom of Algorithm[2 for choosing vertex degrees are highly asymmetric. This allows for the
subsets of layet vertices to construaf[n], andB[n—2] was design of distributed storage systems based on Steiner sys-
used in iteratiom — 1 for choosing subsets of lay&rvertices tems, where the number of replicas of each data chunk
to constructG[n — 1], then the fact thaS[n — 2] C B[n—1] may be much smaller than the storage node size. Using our
results inG[n — 1] being a subgraph ofi[n]. The block constructions, a system designer can guarantee that arsyste

V. CONCLUSION



consuming the least amount of resources (e.g., fewest numfe] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and Sni&e “A

of storage nodes) has been deployed and also be able to scalable content-addressable network,Pioceedings of the Confer-
i d th h ' ence on Applications, Technologies, Architectures, anotd@ols for
easily expana the storage system when necessary. Computer Communications (SIGCOMMan Diego, CA, Aug. 27 —

We further comment that the chunk distribution schemes 31, 2001, pp. 161-172.
given by our cage graph construction method can also be u§&d |- Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.ldba

llisi . . - ishnan, “Chord: A scalable peer-to-peer lookup service ifibernet
to guarantee collision resistance In existing storageesyst applications,” inProceedings of the Conference on Applications, Tech-

implementations. As an example, for storage systems imple- nologies, Architectures, and Protocols for Computer Comigations
menting distributed hash tables (DHTs)—such as CAN [Zi A (SIGCOMM) San Diego, CA, Aug. 27 — 31, 2001, pp. 149-160.
d

- — . A. Rowstron and P. Druschel, “Pastry: Scalable, deediméd object
Chord [23], Pastry [24], and Tapestfy [25]—when the desir location and routing for large-scale peer-to-peer systeimsroceed-

replication degree and number of storage nodes are known, ings of the 18th IFIP/ACM International Conference on Distited

then the chunk and replica locations from the appropriate Systems Platforms (Middleware 200Beidelberg, Germany, Nov. 12
— 16, 2001, pp. 329-350.

block design may be used as the hashing function. [25] B.Y. Zhaoet al, “Tapestry: A resilient global-scale overlay for service
deployment,”IEEE J. Sel. Areas Commurvol. 22, no. 1, pp. 41-53,
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If we let the ¢ x ¢ matrix L(®) consist ofLE?J? = ¢ for This leavesl-cycles consisting only of layer and layer3
all i,5 € {0,1,...,¢q — 1} (i.e., each column of.(?) is the vertices. Suppose that a vertgx,, is a member of ai-
same, and consists of symbols numbered sequentially), tfeyele (for anym < {0,1,...,k — 2}). Note thatgo, is
the set of squaresL(®), L) L) .. Le=11 is a set ofy only connected to thé— 1 verticesz,, ;, i = 0,1,...,1—2.
mutually-orthogonal squares—where odl®) is not Latin. BecauseL(™ has Latin columns (even foL(?)), we see

) that the layer3 verticesz,, ; and &, ;;, wherei # i/, will
(0) (¢g—1) myi mits WI ,
Lemma 10. For {L'7,..., L'""} as defined above, We e e connect to the same layewvertex, i.e..§, ,  om #

haveL™ = L") if and only ifj = 0. That is, for any pair . . i
%,J .7 ! m = ceeyb— 2. Lm,i
of squares, only the zeroth column has overlapping entrie AJ+1=L§/,} for anyj = 0,1,...,1 = 2. (Of coursez,; and

Proof: Because all of the squares have the zeroth colur‘ﬁﬁ“"thare both connettzted Eﬁ)]m bufc the}{ aret c;)r;‘!\ecteld to
in natural order, sufficiency is immediate. Now, since thef&? Other common ver ex._) Ugh,m 1S not part of at-cycie.
Now consider a potentidl-cycle consisting of vertices; ,

areq entries in the zeroth column, and there are anpairs . L . ) k

of elements(a, b) such thata = b (wherea,b € Q), by the and gy, where],{’ # 0 anAd] # J'. Then t(t:ne)re will be
definition of mutually-orthogonal squares, we know that nY0 1ayers verticesi,, ; anday,i» such thatl; ;~, = pu =
other [non-zeroth] column will have overlapping entriem ngﬂl and LEZ-I,),l =pu = L%,),l. However, this would
imply that the two squares(™ andL(™") have two separate
columns,j —1 andj’ — 1, where overlapping entries between
the two squares can be found; this contradicts Lerhma 10,
A. Proof of Lemmall since only the zeroth column has overlapping entries. Thus

The lower bound onv can be seen by considering ar© 4-cycles exist which involve layez vertices. _
arbitrary vertexy € Y. The vertexy must be connected Since laye3 vertices must connect to lay2ivertices, this
to I distinct vertices of X: call this subset of vertices Implies that the shortest cycle consists of at le¢asertices.
X C X. Now suppose that two vertices, z, € X were C. Proof of Lemm&l4

also both connected to some other verfex: y. Then the  \we want to show that all the vertices ii have exactly
graph would have a cycle of length consisting of vertices I[n] = pn(q) outgoing edges, and all the verticesih have

y ~ x1 ~ gy~ x2 ~y. Thus each vertex inX’ must be exactlyk = ¢+ 1 outgoing edges. Furthermot&;| = v[n] =
connected td — 1 unique vertices ot’; we let these vertices Pri1(q) and | X| = un] = Pnt1(0)pn(9)

APPENDIXB
PROOFS OFSELECTED LEMMAS

s . - Fn
beY’, where|Y'| = I(k—1). Becausg{y} UY| = 1+I(k—1) First we verify that we have the correct number of vertices.
(sincey ¢ Y'), we establish the lower bound en=[Y|.  For vy, there is1 layer 0 vertex. In layer2, we will have
Now consider the/(k — 1) vertices ofY. These vertices Ik —1) = pn(q)qg = pns1(g) — 1 vertices, since each of
must each be connected to only one vertexXofOtherwise, ihe; verticesz;, j = 0,1,...,1 — 1, is connected td — 1

avertexy € Y connected to bothr, € X andz; € X would  gifferent layer?2 vertices ofY. Thusv[n] = |Y| = pn11(q).
form the d-cycle gy ~ a1 ~ y ~ x5 ~ g (similar to above). For X there areé[n] = p,(q) layer1 vertices. For layes, in
Therefore for any € Y, the vertex must connect to at leaspgch of theu[n — 1] iterations of stefl6, there afé —1)q =

[—1 vertices ofX'\ X. Let X consist of vertice;s id(_\x such q? distinct vertices ofX involved. Thus, layer3 consists
2
that allz € X are connected to some vertexiin Since there of qzu[n 1] q pn(g)f;fl(q) vertices. Thereforey|n]

are at least(k —1)(l — 1) edges betweel” and X, and any X = pula) + Pro(@Pn1(@) _ posi(@pnla)

vertexz € X has degreé, then|X| > I(k—1)(I—1)/k. As q+1 PRSI
XNX =0, sou= 1X| > |X|+|X| > 1+1(1-1)(k—1)/k. Now we count the number of edges from each vertex. For

layer0, stef 2 results in degree 8] = p,(q) for vertexyy.
B. Proof of Lemm&l2 For layerl, each vertex;;, j =0,1,...,l—1, is connected
We show that there are no cycles of lengther 4 (since (0 exactlyg+1 vertices (one edge tg, and then; edges to
bipartite graphs have no odd cycles). Clearly, there are H¥ layer2 vertices), as can be seen from sfép 3. _
2-cycles, since the graph is simple (i.e., no multiple edges% Now consider a particular layervertexy;,,. We know in
To show that there are no cycles of lengthwe con- the collection of subsetd3, that each element is selected
sider vertices from each particular layer, and show that tfgactlyl[n—1] = pn—1(q) times; thusy; ., occurs in exactly
construction results in na-cycle involving the vertices at ‘" 1/ = Pn—1(q) iterations. Moreover, in each iteration that
that layer. For layen, there are nol-cycles which include i OCCUrs, it has exactly edges to the layes vertices
vertexyo, as layers), 1, and2 form a tree of deptts. Now (Whether or notj is the go or someg;,, of the current

consider anyi-cycles which include some vertex; from SUDS€tbs). Therefore, each laye? vertex hasl edge to
layer 1. Such a4-cycle must also includg; ., andyji_m/ for s corresponding layer vertex, andgp,—1(¢) edges to the

somem # m’ (andm,m’ € {0,1,...,k—2}).If j = 0, then Iay§r3_vertices, fpr a total of +gp,—1(q) = pn(q) edges—
step@ of the algorithm guarantees that, andg;.. do not Which is the desired degree for that vertex.

connect to any layes vertices in common. Fof # 0, since  BY construction, every layervertexz,, ; has degree+1,
any layer3 vertexz,, ; is connected to at most one vertex ofhatis, 1 edge from the associatey,,, andq edges to the
(G5n | 1= 0,1,....k — 2}, S0 the vertices); ,, and ver.tlceSygj+17L5?), j =0,1,...,q — 1, connected via the
can not be connected to the same layeertex form £ m’/.  Latin squares method.
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