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Abstract—In distributed storage systems built using com-
modity hardware, it is necessary to have data redundancy in
order to ensure system reliability. In such systems, it is also
often desirable to be able to quickly repair storage nodes that
fail. We consider a scheme—introduced by El Rouayheb and
Ramchandran—which uses combinatorial block design in order
to design storage systems that enable efficient (and exact) node
repair. In this work, we investigate systems where node sizes
may be much larger than replication degrees, and explicitly
provide algorithms for constructing these storage designs. Our
designs, which are related to projective geometries, are based
on the construction of bipartite cage graphs (with girth 6)
and the concept of mutually-orthogonal Latin squares. Via
these constructions, we can guarantee that the resulting designs
require the fewest number of storage nodes for the given
parameters, and can further show that these systems can be
easily expanded without need for frequent reconfiguration.

I. I NTRODUCTION

Recent trends in distributed storage systems have been to-
ward the use of commodity hardware as storage nodes, where
nodes may be individually unreliable. Such systems can still
be feasible for large-scale storage as long as there is overall
reliability of the entire storage system. Recent research in
distributed storage systems has focused on using techniques
from coding theory to increase storage efficiency, without
sacrificing system reliability and node repairability [1].

In this work, we consider storage systems where failed
storage nodes must be quickly replaced by replacement
nodes. To achieve short downtimes, we consider techniques
where the repair of a particular node (i.e., by obtaining
replacement data) is via contacting multiple non-failed nodes
in parallel—where each contacted node contributes only a
small portion of the replacement data. Such replacement
strategies have been studied in the context of bothfunctional
repair [1]—where replacement nodes serve functionally for
overall data recovery—andexact repair—where replacement
nodes must be exact copies of the failed node.

We build upon the work of El Rouayheb and Ram-
chandran [2], who propose a storage system allowing for
exact repair. Using the idea of Steiner systems [3], the
authors design distributed storage systems with the desired
redundancy and repairability properties—where even though
each storage node is responsible for storing multiple data
chunks, replacement of any failed node is always possible
by obtaining only a single data chunk from each of several
non-failed nodes. In systems where multiple nodes can be
read in parallel, then such a scheme ensures high availability,

even in the presence of node failures. Moreover, since the
scheme described in [2] stores data in an uncoded manner,
for computing applications the storage nodes may also serve
as processing nodes.

A Steiner systemS(t, k, v) specifies a distribution ofv
elements into blocks of sizek such that the maximum number
of overlapping elements between any two blocks ist − 1
(so if t = 2, then no two blocks can share any pairs of
elements1). For instance, Example 1 shows a Steiner system
and the resulting distribution of data chunks to storage nodes.

Example 1. Consider a distributed storage system to store
9 total data chunks, where each chunk is stored within storage
nodes that can hold3 chunks each. Then it is possible to
distribute the chunks across12 nodes, where every chunk
has exactly4 replicas and any two distinct nodes share at
most only one overlapping chunk. This is shown in Figure 1.
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Fig. 1. Storage design from Steiner systemS(2, 3, 9); same as [2, Fig. 6(a)].

In most practical distributed storage systems, however, itis
often desirable for the number of data chunks per node2 to be
much greater than the replication degree of each chunk. For
example, the Google File System [4]—which stores data in
chunks of as small as 64 MB each—has a replication degree
on the order of three replicas but may store thousands of
chunks on each storage node. Thus in this work, we consider
a graph-based construction of Steiner systems where the
replication degree and node size are significantly asymmetric.

Specifically, we construct storage systems where the repli-
cation degree of each data chunk isq+1, whereas each node
may store up toqn+ qn−1+ · · ·+ q2+ q+1 chunks (for any
given integern). Although it is known from the theory of
projective geometries [3] that systems with these parameters
can be designed, by using our graph-based method we are
able to give a systematic construction that is highly scalable;

1In the rest of this paper, whenever we use the term Steiner system, we
are referring to Steiner systems witht = 2.

2For brevity, we refer to the number of chunks per node as thenode size.
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for a system constructed according to the methods in this
paper, it is always possible to increase the storage system
without moving any existing data chunks—and still be able
to preserve the property that no pairs of chunks recur in more
than one storage node.

Our construction is based on relating Steiner system prob-
lems with the problem of shortest cycles on bipartite graphs.
More specifically, our systems arise from the construction of
cage graphs[5], which are graphs with the minimum number
of vertices for a given allowable shortest cycle length and
other specified conditions on the vertex degrees. Because we
are constructing cage graphs, we further know that for a given
desired node size and replication degree, our constructions
are thesmallestpossible systems (in terms of total number of
storage nodes and total number of data chunks stored). This
is useful for the practical application of such constructions,
as it immediately translates into least hardware cost for the
desired system requirements.

A. Related Work

The problem of distributed storage with efficient repair is
discussed in [1]. Using network coding, the authors propose
a scheme for storing data where node repair is functional.
Dimakis et al. [1] also define the idea of a storage-bandwidth
tradeoff, and discuss ways to implement either minimum
storage or minimum bandwidth systems. Even though exact
repair of storage nodes is sometimes necessary, the storage-
bandwidth tradeoff under exact repair is not yet fully under-
stood. Building upon the network coding constructions of [1],
Rashmi et al. [6] give a scheme for achieving the minimum
bandwidth operating point under exact repair, finding a point
on the storage-bandwidth tradeoff curve.

El Rouayheb and Ramchandran [2] introduce a related
scheme, termedfractional repetition codes, which can per-
form exact repair for the minimum bandwidth regime. They
then derive information theoretic bounds on the storage
capacity of such systems with the given repair requirements.
Although their repair model is table-based (instead of random
access as in [1]), the scheme of [2] has the favorable
characteristics of exact repair and the uncoded storage of
data chunks. Randomized constructions of such schemes are
investigated in [7].

Uncoded storage has numerous advantages for distributed
storage systems. For instance, uncoded data at nodes allows
for distributed computing (e.g., for cloud computing), by
spreading out computation to the node(s) that contain the
data to be processed. Upfal and Widgerson [8] consider a
method for parallel computation by randomly distributing
data chunks among multiple memory devices, and derive
some asymptotic performance results. In contrast, our designs
are deterministic, and we are also able to guarantee the
smallest possible size for our storage system. Furthermore, if
uncoded data chunks are distributed among the nodes accord-
ing to Steiner systems, then load-balancing of computations
is always possible.

Steiner systems are an example of balanced incomplete
block design (BIBD), within the field of combinatorial design

theory [9]. Some parameters for which Steiner systems can
be designed are given in [10], [2]. In this work, we consider
Steiner systems similar to those from finite projective planes.
Specifically, designs in which the replication degree isq+1
and with each storage node storing up toqn + qn−1 + · · ·+
q2+ q+1 data chunks can also be found from the projective
geometryPG(n+1, q)—where the data chunks are the lines
and the storage nodes are the points of the corresponding
space. However, in this work we show that via our recursive
graph construction method, it is possible to initially deploy
small storage systems without needing to knowa priori the
future maximum extent of the storage system—while still
being able to preserve the Steiner property in subsequent
expanded systems.3 This alternate approach for constructing
projective geometries has tremendous benefits for practical
storage system designs, as otherwise the connection between
system design and the construction and extension of such
geometries is not immediately obvious. Furthermore, our
graph-based construction is simple to implement, and designs
are uniquely determined given knowledge of the base set of
mutually-orthogonal Latin squares (which we discuss later).

In addition to [2], the use of BIBDs for guaranteeing load-
balanced disk repair in distributed storage systems is also
considered in [11], [12], for application to RAID-based disk
arrays. In [12], the authors discuss how block designs may be
used to lay out parity stripes in declustered parity RAID disk
arrays. The block designs from our work may be helpful for
distributing parity blocks in this scenario, in order to build
disk arrays with good repair properties.

Certain block designs may also be applicable to the design
of error-correcting codes, particularly in the construction
of geometrical codes [13, Sections 2.5 and 13.8]. Graphs
without short cycles have been considered in the context of
Tanner graphs [14], and finite geometries in particular have
been considered in the context of LDPC codes [15]. Block
designs and their related bipartite graphs are also considered
in code design for magnetic recording applications in [16].

B. Outline of Paper

In the next section, we provide necessary background.
Section III illustrates how our constructions work, through
the construction of regular bipartite cage graphs; this con-
struction provides a base upon which the larger construction
of Section IV is built. In Section IV we give the main
contribution, which is the design of scalable storage systems
that can be expanded readily. Finally, Section V concludes.

II. PRELIMINARIES

A. Notation

When describing parameters for constructible graphs we
let pn(q) = qn + qn−1 + · · · + q2 + q + 1 = qn+1

−1
q−1 , for

n ∈ Z++. In the rest of this paper,q will always denote
either a prime number or a power of a prime.

3We do not describe this in detail, but very similar graph-based methods
can also be used to construct designs related to the affine geometryAG(n+
1, q). These constructions are just as expandable as the projective geometry–
based designs. A brief note on these constructions is given in Section IV-C.



In this work, we consider simple undirected bipartite
graphsG = (X,Y,E). Cardinality is denoted by| · |. For
a vertexx, deg(x) gives the number of incident edges. We
only consider graphs where all of the vertices in a vertex set
have the same degree, so we can writedeg(X) = deg(x) for
somex ∈ X . The symbol∼ is used to denote an edge; for
verticesx andy, we say thatx ∼ y if and only if (x, y) ∈ E.

B. Graph Interpretation of Steiner Systems

A Steiner system is a collection of elements,V , into
blocks,B, where any subset of elements only occurs once
in the block collection. We reinterpret the Steiner system
requirements by considering its incidence graph [17]. In this
work, we will consider bipartite graphsG = (X,Y,E),
where there areu vertices in X , each of degreek, and
v vertices inY , each of degreel. We call such a graph to be
biregular whenk 6= l. Clearly, lv = uk.

Now we label the vertices ofY as the elements ofV
(i.e., V = {yg | g = 0, 1, . . . , v − 1}), and the vertices
of X as the blocks ofB. Consider a particular vertexxh

(where h ∈ {0, 1, . . . , u − 1}), and define blockbh =
{yg ∈ Y | yg ∼ xh}. Then the collection of blocks,
B = {bh | h = 0, 1, . . . , u− 1}, satisfies the following:

1) Each elementyg ∈ V occurs in exactlyl blocks ofB.
2) Each blockbh ∈ B containsk elements.

It is clear that whenever two blocksbh and bh′ share some
pair of elementsyg and yg′ , then this is equivalent to the
4-cycle xh ∼ yg ∼ xh′ ∼ yg′ ∼ xh. Thus the nonexistence
of such4-cycles is equivalent to the nonexistence of shared
pairs of elements between blocks. In Figure 2, we show the
bipartite graph associated with Example 1.
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Fig. 2. Bipartite graph of Steiner system corresponding tok = 3, l = 4.

In the above, we construct Steiner systems wherel is the
repetition degree,k is the block size,v is the total number
of elements, andu is the total number of blocks. In the rest
of this paper, we shall always assume thatl ≥ k.4

SinceX andY are interchangeable, we could instead let
X be the elements andY be the blocks of another block
system,5 resulting in the transpose codesof [2]. Since
for practical cases we wish to construct distributed storage
systems where the repetition degree is smaller than the block
size, we will more often employ the transpose code. To stay
consistent withl ≥ k, in these cases we letk be the repetition
degree andl be the block size. Under this interpretation,u is
the number of elements andv is the total number of blocks.

C. Cage Graphs

In an undirected graphG = (V,E), a cycle of lengthd is
a set ofd vertices connected in a closed path. In the bipartite

4We can construct systems wherek > l by swapping the two vertex sets.
5In the language of finite geometries, interchanging the roles of elements

and blocks is the same as interchangingpoints and lines.

graphG = (X,Y,E), such a cycle must necessarily alternate
between vertices ofX and vertices ofY ; thus any cycles
must have even length. Thegirth of a graph is defined as the
length of the shortest cycle in the graph.

Then, ad-cageis a girth-d graph with minimum number of
vertices for a particular desired degree distribution [5],[17].
The goal of this work is to construct biregular cages of girth6
(so that no4-cycles are present)—in order to construct the
smallest possible Steiner system with the desired parameters.
Using transpose codes we can then construct systems requir-
ing the fewest possible storage nodes (i.e., smallestv) and
the least number of total distinct chunks (i.e., smallestu),
while still having the desired repetition degreek and block
sizel. Such systems will meet the lower bound of Lemma 1.6

Lemma 1. Consider a simple biregular bipartite graph
(X,Y,E) that does not have any cycle of4 or fewer vertices.
If deg(X) = k and deg(Y ) = l (where l ≥ k), then the
number of vertices,v = |Y | andu = |X |, has lower bounds

v ≥ 1 + l(k − 1) (1)

u ≥ l + l(l − 1)(k − 1)/k. (2)

Proof: We sketch the proof for (1) here; a more detailed
proof of (1) as well as for (2) is provided in Appendix B-A.

One method for constructing the bipartite graph is by
starting with a single vertexy ∈ Y (called the layer 0
vertex) and connecting it tol vertices ofX (called thelayer1
vertices). These vertices ofX must be connected tok − 1
distinct other vertices ofY (the layer 2 vertices). Note that
any remaining vertices ofX (the layer3 vertices) would then
need to be connected back to the layer2 vertices ofY in such
a way as to preserve the nonexistence of4-cycles.

Any bipartite cage achieving the lower bounds of Lemma 1
satisfies the Steiner system property that each pair of ele-
ments occurs inexactly one block. We already know that
every pair of elements occurs in at most one block. Since
v = 1+ l(k− 1) andu = l+ l(l− 1)(k− 1)/k also satisfies
(

v

2

)

= u
(

k

2

)

,7 we know that every pair of elements occurs in
at least one block—and therefore occurs in only one block.

The proof of Lemma 1 gives us clues on how to construct
bipartite graphs that achieve the lower bounds—which must
necessarily be cage graphs. We will show how to avoid
introducing4-cycles between the layer2 and layer3 ver-
tices, by considering the use of mutually-orthogonal Latin
squares (see Appendix A or [20]). Specifically, in order
to construct the cage graphs, we will require the exis-
tence of a set ofq mutually-orthogonalq × q squares,
{L(0), L(1), . . . , L(q−1)}, whereL(0) is a square with ev-
ery column in natural order, andL(1), L(2), . . . , L(q−1) are
mutually-orthogonal Latin squares where each square has its
zeroth column in natural order. Such a set always exists when
q is a prime or a prime power. We give an example forq = 3:

6The result of Lemma 1 is sometimes known as a Moore-type bound[18],
although we note that the bound in (2) is tighter than the corresponding
bound in [19] for our case, whenl > k.

7The condition
(

v

2

)

= u
(

k

2

)

comes from the fact that there are a total of
(

v

2

)

pairs of elements, which should correspond exactly to the sets of
(

k

2

)

pairs of elements in each of theu blocks.



Example 2. A set of3 mutually-orthogonal3× 3 squares is

L(0) =





0 0 0
1 1 1
2 2 2



 , L(1) =





0 1 2
1 2 0
2 0 1



 , L(2) =





0 2 1
1 0 2
2 1 0



 .

III. R EGULAR CAGE GRAPHS

We now show how to construct girth-6 bipartite cage
graphs where the degrees of both vertex sets are equal.
More specifically, the vertex degrees will satisfydeg(X) =
deg(Y ) = q + 1 (i.e., k = l = q + 1), where q is any
prime or power of a prime. The resulting graphs will have
|X | = |Y | = q2 + q + 1.

A. Construction of Regular Cage Graph

The construction of regular bipartite cage graphs of girth6
is inspired from the construction in Wong [5], and is given
in Algorithm 1. Bipartiteness arises from the construction.

Algorithm 1 Construction of bipartite cage whenk = l = q + 1

1: [Layer 0] Start with a single vertexy0 ∈ Y .
2: [Layer 1] Connecty0 to l = q + 1 vertices ofX. Without loss of

generality, call these verticesx0, x1, . . . , xl−1.
3: [Layer 2] For each vertexxj , j = 0, 1, . . . , l − 1, connectxj to

k − 1 = q vertices ofY . Let ŷj,m, m = 0, 1, . . . , k − 2, denote the
vertices of this step that are connected to vertexxj .

4: [Layer 3] Connect each vertex̂y0,m (m = 0, 1, . . . , k−2) to l−1 = q
distinct vertices ofX, called x̂m,i, i = 0, 1, . . . , l − 2. Therefore,
x̂m,i 6= x̂m′,i′ unlessm = m′ and i = i′. There will be(k − 1)(l−
1) = q2 such verticeŝxm,i.

5: Consider a vertexx̂m,i, where m ∈ {0, 1, . . . , k − 2}, i ∈
{0, 1, . . . , l − 2}. Connectx̂m,i to vertices ŷ

j+1,L
(m)
i,j

, where j =

0, 1, . . . , l− 2.

The q2 + q layer 2 vertices ŷj,m, j = 0, 1, . . . , q
and m = 0, 1, . . . , q − 1, coincide with the vertices
y1, y2, . . . , yq2+q, and can be mapped usingyjq+m+1 =
ŷj,m. Similarly, the q2 layer 3 vertices x̂m,i, m =
0, 1, . . . , q − 1 and i = 0, 1, . . . , q − 1, coincide with the
verticesxq+1, xq+2, . . . , xq+q2 , and can be mapped using
xq+mq+i+1 = x̂m,i.

Notice that the resulting graph consists of the layer0 and
layer 2 vertices on one side of the graph, connected only to
layer 1 and layer3 vertices on the other side.

We first show an example of Algorithm 1 withk = 4 and
l = 4 (soq = 3), before proving that this indeed results in the
desired cage graph. This graph will have|X | = |Y | = 13.

The first three steps are straightforward, as they involve
connecting the vertices of layers0, 1, and2 in a tree. Step 4
connects all the vertices associated withŷ0,m with thel−1 =
q verticesx̂m,i, i = 0, 1, . . . , q − 1. This gives Figure 3a.

Now we consider connecting the other outgoing edges of
eachx̂m,i vertex to the remaininĝyj,µ vertices,j 6= 0. The
set of mutually-orthogonal squares of orderq = 3, given in
Example 2, guarantees that4-cycles do not get introduced in
step 5. Figure 3b shows the resulting bipartite cage graph.

B. Properties of Graph Constructed from Algorithm 1

We show that the graph constructed from Algorithm 1 is
indeed a cage graph, as well as discuss additional properties.

Lemma 2. In the bipartite graph constructed from Algo-
rithm 1, the shortest cycle consists of at least6 vertices.

Proof: See Appendix B-B or [5, Section 4].
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Fig. 3. Construction of bipartite cage wherek = l = 4, using Algorithm 1.

Theorem 3 (see also [5, Section 4]). The regular bipartite
graph constructed from Algorithm 1 is a bipartite cage graph
of girth at least6, with degreeq + 1 at all vertices.

Proof: Algorithm 1 results in1+ l(k− 1) = q2 + q+1
vertices forY andl+ l(l−1)(k−1)/k = q2+ q+1 vertices
for X—where every vertex has degreeq + 1. Thusv = |Y |
andu = |X | achieve the lower bounds of Lemma 1 for the
required degree distributions. By Lemma 2, the shortest cycle
has at least6 vertices, so the result is shown.

By interpretingY as the elements andX as the blocks, we
have constructed aS(2, k, v) = S(2, q+1, q2+q+1) Steiner
system—and also a corresponding storage system design.

We see that in order to generate the cage graph and
associated block system, the only required information is the
generator element used to generate the multiplicative group
for the finite field—as the set of mutually-orthogonal squares
can then be uniquely determined. Thus lookup tables for the
entire block design need not be stored, since the tables can
always be generated easily.

In fact, the constructibility of a regular cage graph with
q2 + q + 1 vertices in each vertex set is equivalent to the
constructibility of a projective plane of orderq+1 [17]. The
regular cage graph withk = l = 3 is the Heawood graph;
see Figure 4, which also shows the associated Steiner system.
This construction of the Heawood graph is analogous to the
Skolem construction [9] of Steiner triple systems forv = 9.
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Fig. 4. Steiner system corresponding tok = 3, l = 3. Figure 4a visualizes
the system as a bipartite graph, and Figure 4b shows the blockdesign. This
gives the same Steiner system as in [2, Fig. 3 (Example 2)].

We also mention that similar methods can be used to
construct regular graphs (i.e.,k = l = q + 1) of girth 6
whenq is not a prime power (e.g., see [21], whereq = 6).

IV. SCALABLE DESIGNS

In Section IV-A, we construct cage graphs where the vertex
degrees of the two vertex sets are highly unbalanced, i.e.,
wheredeg(X) = k = q + 1 but deg(Y ) = l = pn(q). We
discuss some favorable scalability properties in Section IV-B.



A. Construction of Designs withk = q + 1, l = pn(q)

The construction here is recursive; thus we calll[n] =
pn(q) as the degree of the vertices inY , at iterationn.8 (For
notational simplicity, if no iteration number is specified,then
it is assumed that we are referring to the quantity for then-th
iteration.) The constructed cages have|X | = pn+1(q)pn(q)

q+1

and |Y | = pn+1(q). We show such a graph in Figure 5.
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Fig. 5. Construction of bipartite cage graph withk = q + 1, l = pn(q).

We will inductively construct bipartite cages withk = q+1
and l[n] = pn(q) using a layered method similar to before.
Notice that forn = 1, the graph is thek = l = q + 1 cage.

Thus suppose that a cage graph with parametersk = q+1
andl[n−1] = pn−1(q) exists. For this graph,v[n−1] = pn(q)

and u[n − 1] = pn(q)pn−1(q)
q+1 . By taking Y as the elements

andX as the blocks, this gives a Steiner system with block
sizek = q+1 and withv[n−1] = pn(q) total elements, i.e.,
S(2, q+1, pn(q)). (Here, each element is repeatedl[n−1] =

pn−1(q) times, and there areu[n−1] = pn(q)pn−1(q)
q+1 blocks.)

This system can then be used to construct thek = q + 1,
l = pn(q) cage—as given in Algorithm 2.

Algorithm 2 Construction of bipartite cage whenk = q+1, l = pn(q)

Require: A set of v[n − 1] = pn(q) elements, and a collectionB =
{bh | h = 0, 1, . . . , u[n − 1] − 1} of (q + 1)-element blocksbh,
such that each element has exactlyl[n−1] = pn−1(q) replicas and no
particular pair of elements occurs in more than one block.

1: [Layer 0] Start with a single vertexy0 ∈ Y .
2: [Layer 1] Connecty0 to l = pn(q) vertices ofX. Without loss of

generality, call these verticesx0, x1, . . . , xpn(q)−1.
3: [Layer 2] For each vertexxj , j = 0, 1, . . . , l − 1, connectxj to

k − 1 = q vertices ofY . Let ŷj,m, m = 0, 1, . . . , k − 2, denote the
vertices of this step that are connected to vertexxj .

4: for h = 0 to u[n− 1]− 1 do
5: Let the blockbh consist of elementsbh = {g0, g1, g2, . . . , gq}.
6: [Layer 3] Connect each vertex̂yg0,m (m = 0, 1, . . . , k − 2) to q

distinct vertices ofX, called x̂
(h)
m,i, i = 0, 1, . . . , q − 1. Therefore,

x̂
(h)
m,i 6= x̂

(h)
m′,i′

unlessm = m′ and i = i′. (For theh-th iteration,

there will be a total of(k − 1)q = q2 such verticeŝx(h)
m,i.)

7: Consider a vertex̂x(h)
m,i, where m ∈ {0, 1, . . . , k − 2}, i ∈

{0, 1, . . . , q−1}. Connect̂x(h)
m,i to ŷ

gj+1,L
(m)
i,j

, j = 0, 1, . . . , q−1.

8: end for
Ensure: Bipartite cage with degreesk = q+1, l[n] = pn(q), and number

of vertices|Y | = v[n] = pn+1(q), |X| = u[n] =
pn+1(q)pn(q)

q+1

Algorithm 2 differs from Algorithm 1 in steps 6 and 7
because we only connect viâygj ,m (wherej = 0, 1, . . . , q)
instead ofŷj,m for all j = 0, 1, . . . , l − 1. This is due to
only considering(q+1)-elementsubsetsinstead of the entire
set ofx0, . . . , xl[n] vertices when constructing each smaller
subcage.

8We let u[n], v[n] denote the respective quantities at iterationn. Since
k[n] = q + 1 for all n, we do not qualifyk with the iteration numbern.

For each iterationh where we select the subset of layer1
vertices denoted bybh = {g0, g1, g2, . . . , gq}, let us call the
bh-subgraphas the subgraph induced by the subset of vertices

{y0} ∪ {xj | j ∈ bh} ∪ {ŷj,m | j ∈ bh, m = 0, 1, . . . , k − 2}

∪{x̂
(h)
m,i |m = 0, 1, . . . , k − 2, i = 0, 1, . . . , q − 1}.

Lemma 4. The graph of Algorithm 2 has the desired number
of vertices,|X | and |Y |, and satisfies the degree require-
ments.

Proof: This can be shown via careful accounting. We
provide the complete proof in Appendix B-C.

Lemma 5. In the constructed bipartite graph of Algorithm 2,
the shortest cycle has length of at least6 vertices.

Proof: As there are neither odd cycles nor length-2
cycles, we only need to check that there are no length-4
cycles. Since each selectionbh of layer 1 vertices induces a
subgraph which is isomorphic to thek = l = q + 1 bipartite
regular cage graph, any properties from the regular graph
also hold for the subgraph. Thus within anybh-subgraph,
there are no4-cycles.

Consequently, any potential4-cycle must involve only
edges from layer2 to layer 3 vertices, where the layer2
vertices are connected to differentxj vertices of layer1.
Suppose that the layer2 vertices ŷj,µ and ŷj′,µ′ , where
j 6= j′, are involved in a4-cycle with the layer3 verticesx̂(h)

m,i

and x̂(h′)
m′,i′ .

9 Such a cycle implies that thebh-subgraph must

include the edge between̂yj,µ and x̂(h)
m,i, as well as the edge

between̂yj′,µ′ andx̂(h)
m,i; also, thebh′-subgraph must include

the edge between̂yj,µ andx̂(h′)
m′,i′ , as well as the edge between

ŷj′,µ′ andx̂(h′)
m′,i′ . This means that the subsetsbh andbh′ both

contain the elementsj andj′. However, sincebh andbh′ are
two subsets that do not share any pair of elements, the fact
that j, j′ ∈ bh andj, j′ ∈ bh′ is a contradiction.

Lemma 6. Supposing that a bipartite cage (of girth6) with
parametersk = q+1, l[n− 1] = pn−1(q), v[n− 1] = pn(q),
and u[n − 1] = pn(q)pn−1(q)

q+1 exists, then Algorithm 2 con-
structs a bipartite cage (of girth6) with parametersk = q+1,
l[n] = pn(q) (and v[n] = pn+1(q), u[n] =

pn+1(q)pn(q)
q+1 ).

Proof: Follows from Lemmas 4 and 5.

Theorem 7. A bipartite cage of girth6, with parameters
k = q+1 and l[n] = pn(q), exists and is constructible. This
graph hasv[n] = pn+1(q) andu[n] = pn+1(q)pn(q)

q+1 .
Proof: The base case wheren = 1 is thek = l = q+1

cage graph from Algorithm 1, and so is constructible. The
conclusion follows by induction, using Lemma 6.

In Figure 6, we show the resulting storage system design
after iterationn = 2, for the caseq = 2 (i.e., k = 3). This
system is in fact an extension of thek = 3, l = 3 block design
of Figure 4; for storage nodesb0, b1, . . . , b6, the first3 data
chunks in each node are exactly the same between Figures
4b and 6. This scalability will be explained in Section IV-B.

These cage graphs form a family of designs wherek =

9We knowh 6= h′, or else the4-cycle is entirely within thebh-subgraph.
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Fig. 6. Block design for distributed storage system corresponding tok = 3
and l = 7. Each data chunk has3 replicas and each storage node stores
7 chunks. In total there are35 distinct data chunks and15 storage nodes.

q+1, l = pn(q), v = pn+1(q), andu = pn+1(q)pn(q)
q+1 , and thus

are coincident with the Steiner systemsS(2, q+1, pn+1(q)).

B. Advantages of Scaled Constructions

The construction of Algorithm 2 is not merely a construc-
tion for a cage graph with large degreel[n] for the vertices
of Y . This particular construction also allows for the easy
expansion of storage systems built using these methods. That
is, if an extant system hasl[n− 1] = pn−1(q), it is relatively
simple to increase the size of the system so that the degree
of Y hasl[n] = pn(q). This is because the following holds:

Theorem 8. Consider a cage graph,G[n], with parameters
k = q + 1, l[n] = pn(q) constructed in iterationn of
Algorithm 2. The cage graph with parametersk = q + 1,
l[n−1] = pn−1(q) (i.e., constructed in the previous iteration
of Algorithm 2, and calledG[n− 1]) is a subgraph ofG[n].

Theorem 8 will be proved with the help of Lemma 9.

Lemma 9. Consider a cage graph withk = q + 1,
l[n] = pn(q), to be constructed in then-th iteration of
Algorithm 2. From the set ofpn(q) elements and the col-
lection of blocksB[n], it is possible to select a subset of
pn−1(q) elements, calledS[n−1], such that the subcollection
of blocks fromB[n] that contain only elements fromS[n−1]
is [isomorphic to] the entire collection of blocksB[n − 1]
required in the(n− 1)-th iteration of the algorithm.

Proof: Here, the elements areY and the blocks areX .
We now prove by induction.

The base case isn = 2. The cage graph with parameters
k = q+1, l[1] = q+1 is the graph from Algorithm 1. In order
to construct the cage graph with parametersk = q+1, l[2] =
q2 + q + 1 during iteration2, we choose elements from the
collection of blocksB[2] = X [1] (i.e., the block collectionB
at iteration2 corresponds to the vertex setX at iteration1).
By construction, the blockb0 ∈ B[2] containsq+1 elements,
so the subgraph associated withb0 is isomorphic to the cage
graph with parametersk = q + 1, l[1] = q + 1.

Now consider an arbitrary iterationn. From the(n−1)-th
iteration, we know thatB[n − 2] ⊂ B[n − 1] (up to
isomorphism with appropriate indexing of elements). Since
B[n− 1] is used in iterationn of Algorithm 2 for choosing
subsets of layer1 vertices to constructG[n], andB[n−2] was
used in iterationn−1 for choosing subsets of layer1 vertices
to constructG[n− 1], then the fact thatB[n− 2] ⊂ B[n− 1]
results inG[n − 1] being a subgraph ofG[n]. The block

systems corresponding toG[n − 1] and G[n] thus satisfy
B[n− 1] ⊂ B[n] (again, up to isomorphism with appropriate
indexing). Because the blocks ofB[n− 1] contain a total of
pn−1(q) elements (i.e.,|{y ∈ b | b ∈ B[n− 1]}| = pn−1(q)),
the result is shown.

Now we can prove Theorem 8.
Proof of Theorem 8: From Lemma 9, one can select

pn−1(q) layer1 vertices such that the block system consisting
of only these vertices is isomorphic toB[n−1]. The subgraph
constructed through these layer1 vertices is thus isomorphic
to the graph of the previous iteration,G[n− 1].

For the distributed storage system, we takeY as the blocks
andX as the elements. Thus each element hask = q + 1
repetitions and each block has sizel = pn(q) (such a system
requires a total ofv = pn+1(q) storage nodes and stores
a total of u = pn+1(q)pn(q)

q+1 distinct data chunks). From
Theorem 8, we see that becauseG[n − 1] is a subgraph
of G[n]—where the subgraph is a truncation of outgoing
edges from eachY vertex—this means that the blocks of
size l[n− 1] = pn−1(q) are truncations of the blocks of size
l[n] = pn(q). Equivalently, if we have constructed (using
Algorithm 2) the storage system with block sizel[n− 1] =
pn−1(q), then expanding to a storage system with block
size l[n] = pn(q) can be accomplished by appending the
remaining outgoing edges from eachY vertex. No elements
need to be moved from the existing system, and yet the
Steiner property (of no repeating pairs of elements) will still
hold—one need only append new elements to the appropriate
blocks. For instance, the expansion of the system of Figure 4b
results in the appended storage system of Figure 6.

It is similarly simple to construct a storage system which
has total number of elements,ũ, that is between the valid
quantitiesu[n − 1] and u[n] (i.e., u[n − 1] < ũ < u[n]).
One should construct the system foru[n] elements (i.e.,
k = q + 1 and l[n] = pn(q)) and then leave empty
slots in the blocks which are supposed to store elements
xũ, xũ+1, xũ+2, . . . , xu[n]−1. This will preserve the Steiner
property and also allow expansion of the storage system until
u[n] elements arrive.

C. Other Scalable Constructions

Due to space constraints, we do not discuss the construc-
tion of a related class of block designs, which are those that
coincide with affine geometries [3]. A similar construction
to Algorithm 1 can be used to construct cage graphs where
k = q andl = q+1—leading to the graph of Figure 2 when
q = 3. From this base case, similar scalability results can be
derived for storage system designs withk = q andl = pn(q).

V. CONCLUSION

In this paper, we give practical, scalable, and imple-
mentable constructions of bipartite cage graphs where the
vertex degrees are highly asymmetric. This allows for the
design of distributed storage systems based on Steiner sys-
tems, where the number of replicas of each data chunk
may be much smaller than the storage node size. Using our
constructions, a system designer can guarantee that a system



consuming the least amount of resources (e.g., fewest number
of storage nodes) has been deployed, and also be able to
easily expand the storage system when necessary.

We further comment that the chunk distribution schemes
given by our cage graph construction method can also be used
to guarantee collision resistance in existing storage system
implementations. As an example, for storage systems imple-
menting distributed hash tables (DHTs)—such as CAN [22],
Chord [23], Pastry [24], and Tapestry [25]—when the desired
replication degree and number of storage nodes are known,
then the chunk and replica locations from the appropriate
block design may be used as the hashing function.
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APPENDIX A
LATIN SQUARES

We discuss Latin squares and mutually-orthogonal Latin
squares—which will aid in the construction of bipartite cage
graphs of girth6. A comprehensive treatment of Latin squares
can be found in the text by Dénes and Keedwell [20].

Definition 1. Consider aq × q matrix L where the entries
take on values fromQ = {0, 1, 2, . . . , q − 1}. ThenL is a
Latin squareif for every rowi, the entries satisfyLi,j 6= Li,j′

wheneverj 6= j′; and for every columnj, the entries satisfy
Li,j 6= Li′,j wheneveri 6= i′.

Definition 2. A columnj of a squareL is considered to
be in natural orderif the symbols{0, 1, . . . , q − 1} occur in
sequential order, i.e.,Li,j = i for i = 0, 1, . . . , q − 1.

In fact—given any Latin square—by labeling symbols and
permuting columns appropriately, we can establish a Latin
square with a specified column in natural order. Next we
define the concept of orthogonality for Latin squares.

Definition 3. A pair of q×q squares,L(m), L(m′), is consid-
eredorthogonalif the set of ordered pairs of elements satisfies
{(L

(m)
i,j , L

(m′)
i,j ) | i, j ∈ Q} = {(a, b) | a, b ∈ Q}. ThusL(m)

and L(m′) are orthogonal if the pairwise catenation of the
two squares takes on allq2 pairs of symbols chosen fromQ.

Definition 4. A set ofr squares{L(1), L(2), . . . , L(r)} (each
of sizeq×q) is considered to bemutually-orthogonalif every
pair of squares,L(m), L(m′), wherem,m′ = 1, 2, . . . , r and
m 6= m′, are orthogonal.

When q is a prime or prime power, sets of mutually-
orthogonal Latin squares can be derived by first identifying
the generator of the multiplicative group associated with the
finite field of characteristicq. That is, consider a Galois field
GF (q) with primitive elementα, so that the elements are

e0 = 0, e1 = 1, e2 = α, e3 = α2, . . . , eq−1 = αq−2.

Then the Latin squares,L(1), L(2), . . . , L(q−1), with entries

L
(m)
i,j = ei+emej, ∀m = 1, 2, . . . , q−1, i, j = 0, 1, . . . , q−1

are mutually-orthogonal with natural order zeroth column.10

10If ei 6= i, then we can always reorder the rows ofL(m) so that the
zeroth column consists of the symbols{0, 1, . . . , q−1} in sequential order.



If we let the q × q matrix L(0) consist ofL(0)
i,j = i for

all i, j ∈ {0, 1, . . . , q − 1} (i.e., each column ofL(0) is the
same, and consists of symbols numbered sequentially), then
the set of squares{L(0), L(1), L(2), . . . , L(q−1)} is a set ofq
mutually-orthogonal squares—where onlyL(0) is not Latin.

Lemma 10. For {L(0), . . . , L(q−1)} as defined above, we
haveL(m)

i,j = L
(m′)
i,j if and only ifj = 0. That is, for any pair

of squares, only the zeroth column has overlapping entries.
Proof: Because all of the squares have the zeroth column

in natural order, sufficiency is immediate. Now, since there
areq entries in the zeroth column, and there are onlyq pairs
of elements(a, b) such thata = b (wherea, b ∈ Q), by the
definition of mutually-orthogonal squares, we know that no
other [non-zeroth] column will have overlapping entries.

APPENDIX B
PROOFS OFSELECTED LEMMAS

A. Proof of Lemma 1

The lower bound onv can be seen by considering an
arbitrary vertexy ∈ Y . The vertexy must be connected
to l distinct vertices ofX ; call this subset of vertices
X̃ ⊆ X . Now suppose that two verticesx1, x2 ∈ X̃ were
also both connected to some other vertexỹ 6= y. Then the
graph would have a cycle of length4, consisting of vertices
y ∼ x1 ∼ ỹ ∼ x2 ∼ y. Thus each vertex inX̃ must be
connected tok−1 unique vertices ofY ; we let these vertices
be Ỹ , where|Ỹ | = l(k−1). Because|{y}∪Ỹ | = 1+l(k−1)
(sincey 6∈ Ỹ ), we establish the lower bound onv = |Y |.

Now consider thel(k − 1) vertices ofỸ . These vertices
must each be connected to only one vertex ofX̃ . Otherwise,
a vertexỹ ∈ Ỹ connected to bothx1 ∈ X̃ andx2 ∈ X̃ would
form the 4-cycle ỹ ∼ x1 ∼ y ∼ x2 ∼ ỹ (similar to above).
Therefore for anỹy ∈ Ỹ , the vertex must connect to at least
l−1 vertices ofX\X̃. Let X̂ consist of vertices inX\X̃ such
that allx ∈ X̂ are connected to some vertex inỸ . Since there
are at leastl(k− 1)(l− 1) edges betweeñY andX̂, and any
vertexx ∈ X̂ has degreek, then|X̂| ≥ l(k−1)(l−1)/k. As
X̃∩X̂ = ∅, sou = |X | ≥ |X̃ |+ |X̂| ≥ l+ l(l−1)(k−1)/k.

B. Proof of Lemma 2

We show that there are no cycles of lengths2 or 4 (since
bipartite graphs have no odd cycles). Clearly, there are no
2-cycles, since the graph is simple (i.e., no multiple edges).

To show that there are no cycles of length4, we con-
sider vertices from each particular layer, and show that the
construction results in no4-cycle involving the vertices at
that layer. For layer0, there are no4-cycles which include
vertexy0, as layers0, 1, and2 form a tree of depth3. Now
consider any4-cycles which include some vertexxj from
layer1. Such a4-cycle must also includêyj,m and ŷj,m′ for
somem 6= m′ (andm,m′ ∈ {0, 1, . . . , k−2}). If j = 0, then
step 4 of the algorithm guarantees thatŷj,m andŷj,m′ do not
connect to any layer3 vertices in common. Forj 6= 0, since
any layer3 vertexx̂m,i is connected to at most one vertex of
{ŷj,µ | µ = 0, 1, . . . , k − 2}, so the verticeŝyj,m and ŷj,m′

can not be connected to the same layer3 vertex form 6= m′.

This leaves4-cycles consisting only of layer2 and layer3
vertices. Suppose that a vertex̂y0,m is a member of a4-
cycle (for anym ∈ {0, 1, . . . , k − 2}). Note that ŷ0,m is
only connected to thel− 1 verticesx̂m,i, i = 0, 1, . . . , l− 2.
BecauseL(m) has Latin columns (even forL(0)), we see
that the layer3 verticesx̂m,i and x̂m,i′ , wherei 6= i′, will
never connect to the same layer2 vertex, i.e.,ŷ

j+1,L
(m)
i,j

6=

ŷ
j+1,L

(m)

i′,j

for any j = 0, 1, . . . , l − 2. (Of course,x̂m,i and

x̂m,i′ are both connected tôy0,m, but they are connected to
no other common vertex.) Thus,ŷ0,m is not part of a4-cycle.

Now consider a potential4-cycle consisting of verticeŝyj,µ
and ŷj′,µ′ , wherej, j′ 6= 0 and j 6= j′. Then there will be
two layer3 verticesx̂m,i and x̂m′,i′ such thatL(m)

i,j−1 = µ =

L
(m′)
i′,j−1 andL

(m)
i,j′−1 = µ′ = L

(m′)
i′,j′−1. However, this would

imply that the two squaresL(m) andL(m′) have two separate
columns,j−1 andj′−1, where overlapping entries between
the two squares can be found; this contradicts Lemma 10,
since only the zeroth column has overlapping entries. Thus
no 4-cycles exist which involve layer2 vertices.

Since layer3 vertices must connect to layer2 vertices, this
implies that the shortest cycle consists of at least6 vertices.

C. Proof of Lemma 4

We want to show that all the vertices inY have exactly
l[n] = pn(q) outgoing edges, and all the vertices inX have
exactlyk = q+1 outgoing edges. Furthermore,|Y | = v[n] =

pn+1(q) and |X | = u[n] = pn+1(q)pn(q)
q+1 .

First we verify that we have the correct number of vertices.
For Y , there is1 layer 0 vertex. In layer2, we will have
l(k − 1) = pn(q)q = pn+1(q) − 1 vertices, since each of
the l verticesxj , j = 0, 1, . . . , l − 1, is connected tok − 1
different layer2 vertices ofY . Thusv[n] = |Y | = pn+1(q).
ForX , there arel[n] = pn(q) layer1 vertices. For layer3, in
each of theu[n−1] iterations of step 6, there are(k−1)q =
q2 distinct vertices ofX involved. Thus, layer3 consists
of q2u[n − 1] = q2pn(q)pn−1(q)

q+1 vertices. Therefore,u[n] =

|X | = pn(q) +
q2pn(q)pn−1(q)

q+1 = pn+1(q)pn(q)
q+1 .

Now we count the number of edges from each vertex. For
layer0, step 2 results in degree ofl[n] = pn(q) for vertexy0.
For layer1, each vertexxj , j = 0, 1, . . . , l− 1, is connected
to exactlyq+1 vertices (one edge toy0 and thenq edges to
the layer2 vertices), as can be seen from step 3.

Now consider a particular layer2 vertexŷj,m. We know in
the collection of subsets,B, that each elementj is selected
exactlyl[n−1] = pn−1(q) times; thus,̂yj,m occurs in exactly
l[n−1] = pn−1(q) iterations. Moreover, in each iteration that
ŷj,m occurs, it has exactlyq edges to the layer3 vertices
(whether or notj is the g0 or somegj′+1 of the current
subsetbh). Therefore, each layer2 vertex has1 edge to
its corresponding layer1 vertex, andqpn−1(q) edges to the
layer3 vertices, for a total of1+qpn−1(q) = pn(q) edges—
which is the desired degree for that vertex.

By construction, every layer3 vertexx̂(h)
m,i has degreeq+1,

that is,1 edge from the associated̂yg0,m andq edges to the
vertices ŷ

gj+1,L
(m)
i,j

, j = 0, 1, . . . , q − 1, connected via the

Latin squares method.
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