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Abstract—In this work we study zero vs. e-error capacity in  For general instances of the network coding problem, in
network coding instances. Formulticast network coding it is which there may be several source nodes transmitting infor-
well known that all rates that can be delivered with arbitrarily mation to different subsets of terminals. it is natural t& as
small error probability can also be delivered with zero error hether th h . t’ When inf fi
probability; that is, the e-error multicast capacity region and whe e_r e same_ phenomenon p§r5|s S. en intormation
zero-error multicast capacity region are identical. For geeral .transm'tt.ed from d!fferent sources wb?pendentthe answer
network coding instances in which all sources originate athe is negative. That is, allowing am-error can significantly
same source node, Chan and Grant recently showed [ISIT 2010] increase the achievable rate region, as shown, for example,
that, again, e-error communication has no rate advantage over for the Slepian-Wolf problem i [6]. In the network coding
zero-error communication. ) .

model, however, sources are assumed tanbependentin
We start by revisiting the setting of co-located sources, wdre this case, the question of whether there is a rate advantage

we present an alternative prOOf to that giVen by Chan and asso(:'ated Wlth a”OW|ng ap-error remalns open
Grant. While the new proof is based on similar core ideas, our

constructive strategy complements the previous argumeniWe
then extend our results to the setting ofindex coding, which A previous work
is a special and representative form of network coding that

encapsulates the “source coding with side information” prdlem.
Finally, we consider the “edge removal” problem (recently Chan and Grant explore the rate-advantage-efror com-

studied by Jalali, Effros, and Ho in [Allerton 2010] and [ITA° Munication over zero-error communication [ [7]. They use

2011]) that aims to quantify the loss in capacity associatedith  the notion of entropic functions (e.g.,[[8], [[9]) and their

;grmgc\)/ilnogc;t;éngloeuridegse I;/%mtig ?ri]‘éefl‘zgreg""\zk-eﬁzipg ?gélg:r?m connection to the characterization of the network coding

in general network coding instances with thfe “edgepremoval" capacity [8], [9], [10] to show that-error Commllmlc.atlon

problem. Loosely speaking, we show that the two problem are has no rate advantage over zero-error communication when

equivalent. all sources areo-locatedat a single node. Chan and Grant
also study the scenario in which the sources are not co-
located, but there is super-noden the network that has both

[. INTRODUCTION full knowledge of all the information present at the sources

andlow capacityoutgoing edges connecting it with each and

In the network coding paradigm, internal nodes of thevery one of the source nodes. In this scenario, they show

network may mix the information content of the receivethat e-error communication again offers no rate advantage

packets before forwarding them. This mixing (or encodirfg) ®ver zero-error communicationl[7].

information has been studied extensively over the lastakeca

(see, e.g.[ﬂl_],[ﬂZ],[[B],[M],[.[E] and rgfert_ances thereMjhile B. Our contribution

network coding in themulticastsetting is well understood,

far less is know abougeneralnetwork coding. This work begins with an investigation of the relationship

This work addresses the potential gap betwssn-errorand between zero- ang-error communication in network coding.
small non-zero error (here called-error”) communication AS in [7], we initially focus on networks with co-located
in the context of network coding. In the multicast setting, ources. For this scenario, we present another proofsthat
single source node transmits all of its information to a et §T0r communication offers no rate advantage over zemr-err
terminal nodes. In this setting, the zero- anerror capacities Communication. Our proof is constructive: we show how to
are the same, the capacity can be achieved precisely wi@nsform anye-error network code into a zero-error code at
linear codes, and the codes that achieve the capacity ¢a@ Price of a small loss in rate. Astends to zero, the rate
be efficiently found [[2], [[3], [4]. Hence, in this setting,'OSS also approaches zero. Thus any rate that can be achieved
there is no capacity advantage in relaxing the communicati#ith arbitrarily small error probability can also be acleelv
requirement and enab“ng an> 0 error in communication. W|th error prObablllty Zero and arbitrar”y |0W rate |OSShé'
core ideas in the proof of [7] and our proof are similar; we

This work was supported in part by NSF grant CCF-1018741,gst  include the proof nonetheless since the approach is central
480/08 and the Open University of Israel's research fundrigno. 46114). to proving the relationship between the vs. zero-error
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capacity problem and the “edge removal” problem describediges and that each terminak 7' has no outgoing edges.
below. Let c. denote the capacity of each edge E, and for any

After studying co-located sources, we turn our attention F%Z t?]’ deflnerEk] ;S (k] = {1, k}. TP?;:@IOJ any block
the index codingproblem [11], which is a special instanceengzcef' Tac € gi_ can carr:y one o Sh Ir(;wessagfs
of the network coding problem that has seen a significa [267]. In our setling, each source < olds z;\%iae
amount of interest recenty [11] [12]. [13[ [14]_[15]. & s random variableX; uniformly distributed over2/%-"].

index coding problem captures the problem of “source codir;r gva;at));es_(ﬁ different sourc;?s are mdepen_dent. Atmh;two
with side information” in which a single server wishes t& e,(F, &) = ({fe} U{ge}, {Xc}) is an assignment of a

communicate with several clients, each having differeté si pair (X., fe) to each edge € E, and a decoding function

information. Although index coding simulates a singlesseu \9t) 10 €acht € I'. Fore = (u, v), fc is a function taking as
communication problem, it does not meet the definitiowpm the random variables associated with incoming edges

eont :
of either the co-located source problem or the super-no 1‘6nodeu, and X, € [2°"] is the random variable equal to

problem described above. Nevertheless, the results for &e evaluation off, on its input. Ife is an edge leaving a

located sources extend naturally to the index coding @ttﬁource nodes_ €5, then Xs 1s _the input to fe. The m_put
to the decoding functiog; consists of the random variables

Finally, we consider the “edge removal” problem introducegssociated with incoming edges of terminalThe output of
by Jalali, Effros, and Ho in[[16][[17]. Here the goal is tq, is required to be a vector of all sources requiredtby
quantify the loss in capacity that results when a single éslgeGiven, the acyclic structure af, the network codd.F, X)
removed from a given network. While the problem is solvegan be defined by induction on the topological ordetGof

for a variety of special cases in[16], [17], many more cas . . L

remain unsolved. In fact, even the capacity consequencegi%'l'e 5| by || r_equweTen.t matrixs - [bi.s] has entrle_s n
removing edges that can carry asymptotically negligibte rathe set{Q, 1}, with b,,; = 1 if and only if terminalt requires
are understood only in a limited family of scenari[18]',nf0rmmIon from source.
[19], [20]. Loosely speaking, we show that the “zero- ws. A network code(F,X) is said to satisfy node ¢t under
error” problem ingeneralnetwork coding instances and thgransmission(x; : s € S) if the decoding functiory, outputs
“edge removal” problem are equivalent. Namely, we sho{x; : b(s,t) = 1) when (X, : s € S) = (x5 : s € ).

that quantifying the rate loss in the former problem woultletwork code(F, X) is said to satisfy instancg with error
imply a quantification for the latter and vice-versa. probability e > 0 if the probability that allt € T" are simul-

For example, as a corollary of our equivalence, we show thtf;i1 eously satisfied is at least- . The probability is taken

if removing an edge that can carry asymptotically negl'ﬂf.;iblover the joint distrib-uti.on on random variablex., : s € S)‘
rate (that is, an edge that can carry a number of bits thl\é?mely, (F, &) satisfies instancd = (G,5,T, B) with
grows sublinearly with the coding blocklength) has vamighi errore if

effect on the capacity of the network thererror network Pr [VteT: tis satisfied undefX;,:s € S)] > 1—-¢
coding has no rate benefit over zero-error network coding'*:*¢*)

We stress that the former assumption is currently opef\n instanceZ to the network coding problem is said to be
Our reduction between the two problems is based on ol I2, n)-feasible if there exists a network cod#, X') with
alternative proof for the “zero vs-error” problem with co- block lengthn and rateH (X) = R (for all s) that satisfies
located sources mentioned above. with error < e. An instanceZ to the network coding problem
Iis said to be(e, R)-feasible if for anyd > 0 there exists

The remainder of the paper is structured as follows. D block lengthn such that is (z, R(1 — ), n)-feasible.

Section[), we define the model of study. In Sectiod Mynder thec-error communication model, the capacity of an

we prove our reduction between zero- anrror netwo_rk instanceZ refers to the supremum over all rat&sthat are
coding in the co-located source and super-source setllngsq%
I

. . ; . ¢, R)-feasible for alle > 0. Often, the error probability
.Sect|on.|:|ﬂ, we address the index codlmg problem. Final ecomes small as the block lengthgrows sufficiently large.
in Section[V, we address the connection between the e

| bl d th i bl fider the zero-error communication model, the capacity of
removal problem and the- vs. zero-error capacily probiem., instancez refers to the supremum over all rat&sthat

are (0, R)-feasible.

Some remarks are in place. The given model assumes all
An instanceZ = (G, S, T, B) of the network coding problem sourcess € S transmit information at an equal rai& There
includes a directed acyclic netwoik = (V, E), a set of is no loss of generality in this assumption as a varying rate
source nodes C V, a set of terminal node¥ C V/, and sources can be modeled by several equal rate sources all
an |S| by |T| requirementmatrix B[l We assume, without co-located at.

loss of generality, that each sourge= 5 has no incoming In places throughout this work, we explicitly assume that th

1 To be precise, both the sétand the sef should be treated asultisets block 'e”_gth” is of sufflt_:lently _Iarge size. _ThIS IS1na Se_nse
as we allow several sources/terminals to be located at the sade. w.l.o.g. given the following claim proven in the Appendix.

Il. MODEL



Claim 2.1: Let 7 be a (g, R,n)-feasible network coding We now construct the pre-encoding phase of our new commu-
instance. For any integer > 0, there exists a block length nication protocol( 7/, X”). Our pre-encoding ties the source

n' > cen such thatZ is also (e, R(1 — 54/¢),n’)-feasible. informationy with a certain realizatiorx of X. The new
network code(F’, X”) first maps the source information
I1l. OUR PROOF FOR CEGLOCATED SOURCES to its corresponding. Then it proceeds using the encoding

functions specified by the original network codg, ') (with

x as the source information). Finally, decoding is done in
two phases: first the terminals decode using the decoding
functions from the original coddF,X’) to obtain their
relevant entries ok, and then they reverse the pre-encoding
to obtain the corresponding entries yof

In this section, we consider instancé&s with co-located
sources, showing that I is (e, R)-feasible forany e > 0,
then it is also(0, R)-feasible. Our proof is constructive: An
arbitrary code with error probability is used to design a
zero-error code with a negligible rate loss.

Theorem 1:Let Z = (G, S,T,B) be an instance to the
network coding problem withk sourcess,...,s; all co-
located at a single vertex itv. If Z is (e, R)-feasible for
all e > 0, then it is also(0, R)-feasible. Specifically, for any
sufficiently large block length it holds that ifZ is (¢, R, n)-
feasible it is also

<O, R <1 + log(1 — ¢) - 210g(Rn)> ,n> - feasible

Our pre-encoding is based on a “random binning” argument
and is done in two steps. First, for each soureee partition

the seti27"] into 2(=9 %" groups, each of siz2’*". Denote

the partition for sourceéby P = Py, ..., P, s r.- Roughly
speaking, partitiorP* corresponds to random variatifg and
each realizatiory; corresponds to a certain sB; in P’

Rn Rn Formally, to define the pre-encoding, we would like to tie
each realizatiory = yy, ...,y to a certain realizatiox =
Proof: Let (F, X') be a network code of rate and block x;,...,x; to be communicated over the network (using the

length » that satisfiesZ with error probability no greater original protocol). Eachx; belongs to the set corresponding
than e. Then (F, X) allows the communication of sourceto y;, namelyx; € P; (Recall that we viewy; as an integer
random variableg X }ses, which are all independent andin [2(1-9%7])) The k sources are encoded jointly in such a
uniformly distributed in[27"]. Let § = d(¢) be a parameter way that A(x) = 0 (that is,x does not cause a decoding
to be defined later in the proof. In what follows, we showrror). This ensures that if we use the original commurdeati
thatZ is (0, R(1—0))-feasible by constructing a new networkprotocol on realizatiorx then the terminals can successfully
code(F’, X') of rate R(1 — ¢) and the same block length  recover the entrieg; that they require. Now each terminal
Let{Y}ses denote the (new) source random variables whickan just check which realizatiop; corresponds tex; (that
are all independent and uniformly distributed[2f"~*)"]. s, find the realizatiory, such thatx; ¢ P;) and in such a
Thenewnetwork codeg( 7, ") enabling the communicationway decodey;.

of the random variable$Y;} uses the exact same network . lef i h h L defined and wh
coding at internal nodes of the network and essentially tg!S left to specify how the partitions are defined and what

same decoding at terminals, the only difference is a prggvgrns our mapping beMeen realizatiopsand . .The
encoding step at the single source node (which holds gﬁtmtmns are chosen uniformly at random (gnd mdepen-
information on the realization ofY;} to be transmitted). ently from egph other). N_OIW’ for_ihe maPP'”g'_fons'der
The ideas governing our pre-encoding are taken from t ef’et of Partltlons]P’ = (P "‘;lkp.); partlt_lon =
field of point to point channel coding (and especially th 1o Pyasymn) of_alphabet[2 | is used in the_ co_de
study of Arbitrarily Varying Channels, e.gl, [21]), wherte i or ¥;. We say thaﬂP is goodwith relspectzto a reahza}?on
is common to find an equivalence between the notion &f (¥1,---,¥%) if the product setPy, x Py, x --- x Py,
deterministic coding schemes with small average error afigntains a realizatioR = (x1,...,x;) such thatd(x) = 0.

stochastic coding schemes with small maximum error. Indeed, _'f th[S IS the case, we may map to X _and
communicatex without error over the network. It is left

To simplify our notation, denote the source random varip show that a random set of partitioffsis good forall
ables used in the original network cod#,X) by X = realizationsy (with some positive probability). In this case

(X1,...,Xx) and the source random variables used in thge say thafP is good Lemma[3]L, below, shows that when
new network code(F’, X’) by Y = (Y3,...,Y}). Denote 5 — 5(c) = _loggn—@ + 2lo;g%(an) and A is the uniform

a realization ofX = (Xy,...,Xy) by X = (x1,...,%k) distribution over all possible partitions of the given size
and a realization ot” = (Y1,...,Y%) by ¥y = (y1,.--.¥k).-  Prn[P is good > 3. This suffices to conclude our proof
Let A(x) be a function with rangg0, 1} that captures the sjnce it proves the existence of a goodBeand the existence

success or failure of the original communication protocos 5 good sef implies a sufficient pre-encoding scheme. To

Specifically, A(x) = 1 if and only if the original protocol prove that an instancg which is (¢, R)-feasible for alle > 0
fails on realizationx of X'. Here, the exact notion of “fail” js also (0, R)-feasible, we may use Claim 2.1. m

is of little significance. The analysis that follows onlyies
on the fact forX drawn uniformly at random ovee’"|*,

Lemmal3.1 is an intermediate result used in the proof of
B Theoren{]L, above. This result bounds the probability that a
I?,(1”[14(X) =1]<e. partition chosen uniformly at random from all partitions of



the right size is “good” in the sense that every cell of thdiagonalelements.) Since each enmg appears onlypnce
partition contains at least one element that can be decodedhis set, this restriction gives us the independence veel ne

correctly by a given code. to simplify our analysis.
Lemma 3.1:Let n be sufficiently large. Let Recall that partition cellP’ and its elementgx’}?_ 1" are
log(1—¢)  2log(Rn) random variables governed by the distributionGiven any
6=10() =— + . jo € [2°F] consider any realization of the random variables

Rn Rn

Let A be the uniform distribution over sets of partitiofis x; for alli and j 7 jo; denote this realization byR;,.

Claim[321, proved below, shows that

. 1
> . —Rn(1— _Rny—
I;r[P is good > 5 Pr[A( L xE Y = 1| Ry,] < (127 Fn(1=0) 9= Ry =k
Proof: Let the termbad be the complement ofjood Thus, by the chain rule, the intersection (oyepf the events
The proof works to show that “A(x},x3,...,x¥) = 1" has probability no greater than
. 1 n
Pr[P is bad fory] < - - 9~ (1=0)kkn ( c >2‘m
__ 9—Rn(1-46 —Rn\k
for any giveny = (y1,...,yx). We then obtain our assertion (1 —27fn=0) 4 2fn)
by the union bound over thg( %% values ofy. We next complete the proof by showing that this value is less

—(1-6)kRn—1 i i
Recall that the event than2 - for the § defined in the lemma statement
and sufficiently largea.
“IP is bad fory” . .
Y For ease of presentation, we introduce a new parameter
is (by definition) exactly the event defined bya = % or equivalentlye = 1 — 2—oFn,
_ _ In what follows we assume that is sufficiently large such
“ 1 2 k . — 1"
VK E By, x Py, e x By AR =17 thata < 1/3. Now letd = o + M be defined as in

When X is drawn uniformly at randomA(X) = 1 with the lemma statement.

probability at most. Thus, as a mental experiment, if onéNote that

would assume that for randofh the values ofx € P x En 58 Rn
Py22 X e X Py’“k are uniformly and independently distributed, ( 1-2 >
then one would have (1 —27Hn(1=0) 4 9—Rn)k
SRn
Pr[P is bad fory] < &2, o _(1-27efm)?
A = (1 — 2~ Bn(1-9))k25Rn
which would more than suffice for our needs. However, as the < 2¢(1— 27aRn)25R"’

reader surely noticed, we are not in the setting of this menta
experiment as there are dependencies between the diffexg@hére the last inequality follows sinekeis strictly less than
xin Py x PZ, x---x P} . In what follows we show that 1/2 and thus for sufficiently large values of

we are, nevertheless, not far from this scenario.
o o S (1 — 2~ Bn(1=0))k2""" 5 (1 _ 9=Rn(1-0))2%"C0=0 5 4 y9.),
To simplify the notation, fixy, and letP* = P for each - -
i. Note that wher is chosen uniformly at random, the sets$t now suffices to show that
{Pi}k_| are uniformly and independently distributed subsets

. —aRn~20 R
of size 2°F" of [27"]. Denote the2®®" elements ofP’ as (1 —27afn)2

< 27kRn < i . 27(175)]6]%77..
- ~ de

P={x},...,Xbsnn}. . : ;
The right most inequality follows from the fact that we are
While the choice of any two element§ andx’, in cell P; taking sufficiently large values of and by the fact that is
for sourcei are dependent the choice of any two elementsunded away from 1. For the left inequality, takihg and
X andx , for distinct sources # i’ areindependent using the fact thatn(1 — z) < —z, we have:

To obtain our bounds, we analyze an event that has proba- QbR (1 - g-afiny < _ (2Rn(5,a)) ’

bility greaterthan the event that we want to bound. Namely,

tud o :
e stucy which is less tharin(2-*#") for § — o > 218 (for
Pr[vj=1,...,208" . A(x}, ... xb) =1]. (1) sufficiently largen). This concludes the proof. [ |
A J J
Notice that the above equation does not treat the probabilf¢laimi3.1, used in the proof of Lemrha B.1, above, bounds the
that A(x) = 1 for all (20%")* values ofx in P! x P2 x Pprobability that the given code fails for the vector contiagn

. x P*. Rather, it restricts attention ta’f” elements the jo'th element of each partition celP; when all other

(x},...,x5) € Pt x...x P* (We refer to these elements aglements of( P;}}, are fixed.



Claim 3.1: Let {P'}iciy = {P} }iciy be the k par- “source coding with side information” problem in which a
tition cells corresponding to an observed source vectsingle server wishes to communicate with several clients,
(Y1.--..yx). Foreach, let{xi,...,x};x, } denote the’®" each having different side information.

elements ofP’. Given anyj, € [2°7"], fix the realizationx’
for all (,7) € [k] x ([2°%"] \ {jo}). Denote this realization
by Rj,. Then

Now that we have defined index coding instances, it may be
clear to the reader why the proof of Theorgim 1 should extend
to these instances as well. In index coding, encoding is done
7x§0) =1|Rj,] < (1—27Fn(1=0) fo=Fny=k, only at the bottleneck input node, and nodeu has access

to all of the source informatiofX;}scs. We formalize this
intuition below.

ottt

1
Iir[A(x

Proof: By our definition of the random variable{&g-},

for any realizationR;, the variablexi, is uniformly dis- Theorem 2:LetT be an instance of the index coding prob-
tributed in [257] \ {x'},.,. Thus, the vector;, = lem with k sourcessy,...,s;. If Z is (e, R)-feasible for

x! %2 x* is uniformly distributed in a subset ofdll € > 0, thenZ is also (0, R)-feasible. Specifically, for
Jo’ " Jo? " T o

[27n)F of size I = (2fn — 20Rn | 1)k = oRnk(] _ any sufficiently large block length, it holds that if Z is
9-Fn(1-8) 4 9=Rn)k Ag A(x) = 1 only on ane fraction of (& n)-feasible it is also

% € [2B7]* we conclude that the probability thatt(x) = 1 log(1—¢) 2log(Rn) , .
whenx is uniform in any subset of size greater thians at (0’ R (1 + Rn Rn ) ’”) - feasible

most27"#¢ /T'. This concludes our assertion. ] )

for a slightly larger block length’ of sizen’ = n —log(1 —
Remark 3.1:Essentially the same argument (of Theofdm D) + 21og(Rn).
can be applied to the scenario in which the sources are not co-
located but there is super-nodehat knows all of the source
information{Y;}scs and has links to all sourcese S with
capacity which asymptotically (im) tends to zero. In this
case, for every, the super-node computes the pre-encodi
x = (x1,...,%xx) and sends to sourcethe location ofx;
in P; This information can be transmitted using capac

JR links. Notice that by the analysis of Theoréin 1, one m
always take the location af; in P! to be identical for all

Proof: As mentioned above, the proof follows the line
of proof given in Theorerfll. To obtain a zero error network
code (F', X’) from ane error code(F, X), one performs
rrf\gpre-encoding step at node(which has knowledge of all
source symbols) and uses the ideas specified in Remdrk 3.1
itgp allow decoding. Specifically, using the notation of Theo-
J)?mll each source sends its informatiog; on its outgoing

eédges. Nodeu, after receivingy, uses the pre-encoding
Yi

i (as we analyzed thdiagonalevent in Equation[{1)). This procedure and obtains._ Using x and the_original network
fact is used in SectidAlV. As souré&nowsy;, and the good code (F,X), u determinesz the transmitted message on

P is known at all source nodes (and the super-node) — orlE® 0utgoing edge(u, v). In addition, u acts as the super-
each source knows the locationof in P: , it can transmit N°d€ in Remark 31 and appends Zothe (single) index
x; as desired. ' specifying for alli the location ofx; in Py . The fact that

we are appending additional information of rad&n =
—log(1—¢)+2log(Rn) to z is possible as the new network
code has block length’ = n — log(1 — ¢) + 2log(Rn).

In this section we Study SpeCial instancégo the network For decoding, terminmlj receives the message the mes-
coding problem known amdex codinginstances. We show sagesy; from edges(s;, t;) € Esiae, and the location ok;

that for these special instances, one can prove a theorﬁmii for each such edgés;, ;) € Esiq.. Using this infor-
similar to Theorerll even though the sources of index COdiﬁShtion,tj can reconstruck; for each edgés;, t;) € Faide
instances are not co-located. and thus use the decoding scheme of the original network

We begin with a definition of the instanc&s= (G, S, T, B) code(F, X) to obtain any source informatiox; it requires.
corresponding to the index coding problem. The Sets Finally,#; can invert the pre-encoding to obtain the messages

IV. e-ERROR VS ZERO-ERROR FOR“I NDEX CODING”

a set ofk sources{si,...,s.}. The setT is a set ofk Yi it requires. u
terminals{ty,...,t;}. The graphG consists of the vertices
{Sla o Sk} and{th e tk} and two Specia' vertices and V. CONNECTION TO THE"EDGE REMOVAL’ PROBLEM

v. The edge set of7 consists of an edgés;,u) from each
source node; to the bottleneck input node, an edggu, v)
which is the network bottleneck, an edge,¢;) from the
bottleneck output to each terminal nodg, and a collection
of side informationedges(s;,¢;) directly from sources; to
receivert; for some subsely;;. C S x T of source-terminal
pairs. All edges are of capacity The requirement matri®
and the side information edgés,;q. characterize the index Proposition 5.1 (Error reduction)Let ¢ = ¢(n) > 0. Let
coding instance. The index coding problem encapsulates the= a(n) = —losll=e) ‘5o =1-2"9" Lete € [0,1/2].

n

In this section, we discuss connections between the questio
of zero- vs.e-error network coding capacities and the ques-
tion studied in[[16],[[17] addressing the maximum change in
capacity that can result when a single edge is removed from a
network. Namely, we consider the following two proposison
and show that they are equivalent.



There exists a universal constait such that any instancegiven that (in Propositiofi 5.1} is sufficiently large and
I = (G,S,T,B) thatis (¢ + (1 — &)(1 — 27°"),R,n)- a(n) = —U=2) /3

. . , .
feasible is alsde’, R — c10,, n)-feasible. Proof: Below, we consider the case in whieh = 0.

Proposition 5.2 (Edge removal)etZ = (G, S,T, B) be an A similar analysis also holds far' > 0 (see remark located
instance of the network coding problem. Letce G’ be an at end of proof). LetZ = (G, S, T, B) be an instance to the
edge of capacityx. Let 7/ = (G’, S, T, B) be the network network coding problem that id —2~", R, n)-feasible. We
coding instance obtained by replacidg with the network show thatZ is also (0, R — c¢;a, n)-feasible.

! H H !/
.G ”,1 ;’z\’hlcr; edgbele 'r? rr;m.ove(lj.}é_ets < [0’1‘1/2]'.bllf fI We consider2 additional instance%; = (G4, 5,7, R) and
Eoﬁrfe’ uﬁzz/)(;rzglstoisttaﬁ is (¢, R — cza,n)-feasible for Ty = (G2, S92, T, R) similar to those considered inl[7]. We
’ start by defining the network,; networkG; is then obtained
We note that in Propositioi 3.1 a network code’s errdrom networkG» by a single edge removal.
parametee may be a function of the code’s block lengih
Thus both propositions are stated explicitly with the bloc

length parametem. In addition, Propositio 5l1 slightly r. For eachs; € G, there is a capacit edge(s’, s;) from

eneralizes the “zero- vs-error” problem to the problem )
9 P P new sources; to old sources;. For eachs; € Gs, there is a

of “error-reduction,” in which we seek to show that anCa acityR edge(s,, s) from new source’, to the super-node
(e'+(1—¢")e, R, n)-feasible instance is alde’, R— 4, n) for pactty geis, ! P

. s. There is a capacity-edge(s, ) from the super-source
! I
a S“.'t"?“?"e‘s 0(e). He_re, bothe ande” are error/paramgters,to the relayr; this edge is the networkottleneckand the
the initial error term is expressed as+ (1 — ¢’)e (which ; 2log (Rn) )
o : ottleneck capacity equalsa + =—=—==2. (Notice that the
implies that the error term is always less than or equal to ) : . n .
, , alue of§ is set to satisfy the requirements in Theofdm 1, as
and we seek to reduce the error frarn4 (1 — ¢’)e to €'. . ; .
f o . . . we have normalized byr.) Finally, the relayr is connected
Whene’ = 0, this is the familiar “zero- vsz-error” problem; :
to each source nodg by an edggr, s;) of capacityd. The
we here treat the general case. o )
new source ses, is {s/,...,s}}. ForZ;, we setS; = S,
We now show that Proposition 5.1 holds if and only ifind remove the bottleneck edge r) of capacityd.
Propositio 5.2 holds. Specifically we present two theore
below (one for each direction).

hletwork G4 is obtained fromG by addingk new source
nodess,---,s,, a new “super-node%, and a relay node

We prove the desired result by demonstrating the following
properties:
Theorem 3:Proposition (51 with parameter; implies , Com .
Propositio[ 5.2 with parametes equal toc;. (@) Instancel, is (1 —27°", R, ”)";‘?as("}g’l‘?' _
) (b) InstanceZ; is also(0, R — o — =2 n)-feasible.
Proof: Let Z = (G,S,T,B) be an instance to the

. .~ (c) InstanceZ; is (0,R—a — Zlog (Bn) _ caa), n)-feasible.
network coding problem. Let € G be an edge (of capacity . B ny : _
a). Let 7/ = (G',S,T, B) be the network coding instance @ Ilnita;rlloit(é}g)s also(0, R ~era,n)-feasible fore, = c; +
obtained by replacing: with the networkG’ in which the an
edgee of capacitya is removed. Lef be (¢', R, n)-feasible, The proof of (a) follows from our construction sinZes (1—
and consider the corresponding network cddg X'). As 2-2 R n)-feasible by assumption. The proof of (b) follows
studied in [16], [17], consider the valug < [2°"] trans- by applying Theorerfil1 (or more specifically RemiarK 3.1) to
mitted one for each and every setting of source informatio,. The proof of (c) follows by removing edge, ) from
X = (x1,...,xy) that results in correct decoding. Here, ag, to obtainG,, and then applying Propositign 5.2. Finally,
before, we takex; € [27"]. By an averaging argument, therefor (d), we note that by our construction, any cadg, X)
exists a valugy € [2*"] such that that is feasible fofZ, is also feasible fofZ.

Pr[yx = y | x results in correct decodihg 27". Fore’ € (0,1/2], in (b) above we may reduce the error from

x f+(l—e)1—-2"")=1—(1—¢)270on <] -2 0on1
We construct a new code’, &) for Z' which equalg 7, X)  to 0 via Theorenill by considering + 1/n instead ofa.
on all functions except the functions corresponding to sdg®iodifying the proof of Theorerfil1 slightly, this also implies
leavinghead(e). These changed functions use th@dvalue 3 value ofc; = ¢ + 1 + ﬂ%(an) as stated in the assertion.
y as input instead of the valu¥, = yx in the original code m
(F,X) for I. As (F', X’) is identical to(F, X') whenyz = . Lo . .
y, it holds that(F’, X") is a blocklengthw code with rater We note that the reduction above implies in particular that:
and error probability at most + (1 —&")(1—27"). ThusZ’ Corollary 5.1: If for capacitiesa that vanish in the block
is (' +(1—¢")(1—272"), R,n)-feasible. If Propositiof 5l1 length (i.e.,ac = o(1)) Proposition 5.2 holds with, such
holds, then this implies thaf’ is (¢, R — c1, n)-feasible. thatcaa = o(1) then a network coding instanc& which is
Thus Propositiofi 512 follows, withy = ¢;. B (e, R)-feasible for alle > 0 is also(0, R)-feasible.

Theorem 4:Proposition (52 with parameter, implies It is interesting to point out that connections similar togh
Proposition[5l with parameter; = co + 1 + 21%(1%") of Corollary[5.1 also exist between the edge removal problem

n



for vanishinga and thestrong convers@roblem studied in protocol overc rounds of communication. The terminal
[18], [19], [20]. This forges an intriguing connection b&®n nodet (after receiving the information of each and every

the three problems. communication round) first uses the original protocol to
decode a (possibly corrupted) versiﬁ = Zi1,.-.,Zic

VI. CONCLUDING REMARKS of x¢ = x;1,...,x;; and then uses the error correcting
capabilities of code’; to obtainx‘;' = X 1,.-.,X; and

In this work we have studied the potential gain in allowingnysy, (with high probability).

e-error communication when compared to zero-error com-

munication in the network coding scenario (where sourdie now analyze the new (block lengtfn protocol). Recall,

information is independent). For the setting of co-locatg§at for a randomx € [277]%, it holds that A(x) = 0

sources (and also that of index coding) we present %th probf/;lblhty at leastl —e. Th|§ implies that for random

alternative proof to that of Chan and Grait [7], which allow#IPUts {x{ }i = {x;1, ..., i« }; it holds that the expected

us to prove an equivalence with the edge removal probldii@mming distance betweesi andx; (defined above) is at

of [16], [17]. Both the capacity loss in the edge remove{PO,StEC'- Using the Chernoff bound, we conclude for random

problem, and the potential gain in capacity when aIIowinﬁXf }i that

ane > 0 error in network communication remain open in . ) o o ; _ (e

this work. Nevertheless, our equivalence shows thatl:)thaereEl)r[VZ =Lk lxf —af g < 2e¢) 21— k2 (;)

no gain ine- vs. zero-error communication if one can prove

that the removal of an edge of low (vanishing) capacity ha¥ow, for eachi, consider the cod€’; obtained by taking

low (vanishing) effect on the communication capacity of thany rater’ = R’/R code of minimum distancé = 4ec’ + 1

network at hand. over the alphabd®’™"] and applying an independent random
permutation on each of its coordinates.

ACKNOWLEDGMENTS We prove that with high probability over the random per-

|‘[gutations defining{C; };, it holds that with probability at
ast1 — e over the source informatioqY;} that indeed
[x¢" — 2z ||g < 2e’. As we will show, the above assertion
will essentially suffice to prove the claim. For the assertio
notice that for any = y1, ..., yx the corresponding values
A. Proof of Clain{ZIL in {Ci(yi)}: = {x¢'}i = {xi1,...,%;}; are all indepen-
dent and uniformly distributed if2%"]. Thus, by Equatiohl2
Proof: Roughly speaking, the proof is obtained byhe expected number (where the expectation is taken over the
applying a standard argument in which one uses the origermutations defining the codé€’; },) of source realizations
inal (e, R,n) coding scheme over multiple time instanceg for which the correspondingx¢'}; and {z¢'}; satisfy
combined with a carefully chosesuter code Vi: ||x¢ —z¢ ||g < 2ec is at leasf'¢ k(1 — 279,

We start by setting some notation. Consider the origingh'S |mpI|e_s the existence of a set of permutatlons (and
(¢, R,n) communication protocol. Let the source randorfiPrresPondingly a set of codgs’; ;) for which the number

variables beX,,..., X, each X, uniform in [25"]. For of source realizationg for w,hich the correspondingx? };
source realizatiork = xi,...,x;, let A(x) be a function aggc,;{f bi satisﬂ(f{j)z g - z ||[m < 2ec’ is at least
with range {0,1} that captures the success or failure of (1~ k2 )- Taking ¢’ large enough such that the

—Q(ec!) . . .
the original (¢, R, ) communication protocol. Specifically, €™M £2 () in Equation[2 is at most, and using the
AR) = 1 if aqd only if the original protocolfails on fact that the codeg’; all have minimum distancésc’ + 1,

realizationx of X. For¢ > ¢ and a rateR’ to be specified W& conclude that the new protocol is indeed 1, ¢'n)-
shortly, we now consider afe, R, ¢'n)-feasible communi- fea3|/ble. It/remams to specify the value ©f(and thus that
cation protocol obtained by applying the original protoco‘?f R = Rr').

over ¢’ time instances (to obtain total block Ieng/ti‘/n). The rater’ is set to be the highest rate for which there exist
Namely, letY = Yi,..., Y%, with Y; uniform in 2% ¢"],  codes of block lengtla’ and minimum distance’ = 4ec’ +

be the new source information, agd=y1, ...,y denote 1 over alphabets of siz?". Using the Gilbert-Varshamov
its realization. Consider an encodifg : [27¢"] — [277]  pound [22], [23] we can set’ > 1 — Hynn(4c + 1/¢) >

for each (n,ew) sourcé € [k]. For an inputy; to C; let 1 — Hy(4e +1/c’) > 1 — 5,/¢ for large enough values aof.
Ci(yi) =x{ =x;1,...,%;, be the encoding of realizationHere, H, denotes the-ary entropy function. ]

yi. Here, for each pait, j it holds thatx; ; € [27"].

The authors would like to thank Chandra Nair for suggesti
the codes used in the proof of Clalm12.1 of the Appendix.
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