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Abstract—In this work we study zero vs. ε-error capacity in
network coding instances. Formulticast network coding it is
well known that all rates that can be delivered with arbitrar ily
small error probability can also be delivered with zero error
probability; that is, the ε-error multicast capacity region and
zero-error multicast capacity region are identical. For general
network coding instances in which all sources originate at the
same source node, Chan and Grant recently showed [ISIT 2010]
that, again, ε-error communication has no rate advantage over
zero-error communication.

We start by revisiting the setting of co-located sources, where
we present an alternative proof to that given by Chan and
Grant. While the new proof is based on similar core ideas, our
constructive strategy complements the previous argument.We
then extend our results to the setting ofindex coding, which
is a special and representative form of network coding that
encapsulates the “source coding with side information” problem.
Finally, we consider the “edge removal” problem (recently
studied by Jalali, Effros, and Ho in [Allerton 2010] and [ITA
2011]) that aims to quantify the loss in capacity associatedwith
removing a single edge from a given network. Using our proof
for co-located sources, we tie the “zero vs.ε-error” problem
in general network coding instances with the “edge removal”
problem. Loosely speaking, we show that the two problem are
equivalent.

I. I NTRODUCTION

In the network coding paradigm, internal nodes of the
network may mix the information content of the received
packets before forwarding them. This mixing (or encoding) of
information has been studied extensively over the last decade
(see, e.g., [1], [2], [3], [4], [5] and references therein).While
network coding in themulticastsetting is well understood,
far less is know aboutgeneralnetwork coding.

This work addresses the potential gap betweenzero-errorand
small non-zero error (here called “ε-error”) communication
in the context of network coding. In the multicast setting, a
single source node transmits all of its information to a set of
terminal nodes. In this setting, the zero- andε-error capacities
are the same, the capacity can be achieved precisely with
linear codes, and the codes that achieve the capacity can
be efficiently found [2], [3], [4]. Hence, in this setting,
there is no capacity advantage in relaxing the communication
requirement and enabling anε > 0 error in communication.

This work was supported in part by NSF grant CCF-1018741, ISFgrant
480/08 and the Open University of Israel’s research fund (grant no. 46114).

For general instances of the network coding problem, in
which there may be several source nodes transmitting infor-
mation to different subsets of terminals, it is natural to ask
whether the same phenomenon persists. When information
transmitted from different sources isdependent, the answer
is negative. That is, allowing anε-error can significantly
increase the achievable rate region, as shown, for example,
for the Slepian-Wolf problem in [6]. In the network coding
model, however, sources are assumed to beindependent. In
this case, the question of whether there is a rate advantage
associated with allowing anε-error remains open.

A. Previous work

Chan and Grant explore the rate-advantage ofε-error com-
munication over zero-error communication in [7]. They use
the notion of entropic functions (e.g., [8], [9]) and their
connection to the characterization of the network coding
capacity [8], [9], [10] to show thatε-error communication
has no rate advantage over zero-error communication when
all sources areco-locatedat a single node. Chan and Grant
also study the scenario in which the sources are not co-
located, but there is asuper-nodein the network that has both
full knowledge of all the information present at the sources
andlow capacityoutgoing edges connecting it with each and
every one of the source nodes. In this scenario, they show
that ε-error communication again offers no rate advantage
over zero-error communication [7].

B. Our contribution

This work begins with an investigation of the relationship
between zero- andε-error communication in network coding.
As in [7], we initially focus on networks with co-located
sources. For this scenario, we present another proof thatε-
error communication offers no rate advantage over zero-error
communication. Our proof is constructive: we show how to
transform anyε-error network code into a zero-error code at
the price of a small loss in rate. Asε tends to zero, the rate
loss also approaches zero. Thus any rate that can be achieved
with arbitrarily small error probability can also be achieved
with error probability zero and arbitrarily low rate loss. The
core ideas in the proof of [7] and our proof are similar; we
include the proof nonetheless since the approach is central
to proving the relationship between theε- vs. zero-error
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capacity problem and the “edge removal” problem described
below.

After studying co-located sources, we turn our attention to
the index codingproblem [11], which is a special instance
of the network coding problem that has seen a significant
amount of interest recently [11], [12], [13], [14], [15]. The
index coding problem captures the problem of “source coding
with side information” in which a single server wishes to
communicate with several clients, each having different side
information. Although index coding simulates a single-source
communication problem, it does not meet the definition
of either the co-located source problem or the super-node
problem described above. Nevertheless, the results for co-
located sources extend naturally to the index coding setting.

Finally, we consider the “edge removal” problem introduced
by Jalali, Effros, and Ho in [16], [17]. Here the goal is to
quantify the loss in capacity that results when a single edgeis
removed from a given network. While the problem is solved
for a variety of special cases in [16], [17], many more cases
remain unsolved. In fact, even the capacity consequences of
removing edges that can carry asymptotically negligible rate
are understood only in a limited family of scenarios [18],
[19], [20]. Loosely speaking, we show that the “zero- vs.ε-
error” problem ingeneralnetwork coding instances and the
“edge removal” problem are equivalent. Namely, we show
that quantifying the rate loss in the former problem would
imply a quantification for the latter and vice-versa.

For example, as a corollary of our equivalence, we show that
if removing an edge that can carry asymptotically negligible
rate (that is, an edge that can carry a number of bits that
grows sublinearly with the coding blocklength) has vanishing
effect on the capacity of the network thenε-error network
coding has no rate benefit over zero-error network coding.
We stress that the former assumption is currently open.
Our reduction between the two problems is based on our
alternative proof for the “zero vs.ε-error” problem with co-
located sources mentioned above.

The remainder of the paper is structured as follows. In
Section II, we define the model of study. In Section III,
we prove our reduction between zero- andε-error network
coding in the co-located source and super-source settings.In
Section IV, we address the index coding problem. Finally,
in Section V, we address the connection between the edge
removal problem and theε- vs. zero-error capacity problem.

II. M ODEL

An instanceI = (G,S, T,B) of the network coding problem
includes a directed acyclic networkG = (V,E), a set of
source nodesS ⊂ V , a set of terminal nodesT ⊂ V , and
an |S| by |T | requirementmatrix B.1 We assume, without
loss of generality, that each sources ∈ S has no incoming

1 To be precise, both the setT and the setS should be treated asmultisets
as we allow several sources/terminals to be located at the same node.

edges and that each terminalt ∈ T has no outgoing edges.
Let ce denote the capacity of each edgee ∈ E, and for any
k ≥ 0, define[k] as [k] = {1, . . . , k}. Then, for any block
lengthn, each edgee can carry one of the2cen messages
in [2cen]. In our setting, each sources ∈ S holds a rate
Rs random variableXs uniformly distributed over[2Rsn].
The variables of different sources are independent. A network
code,(F ,X ) = ({fe} ∪ {gt}, {Xe}) is an assignment of a
pair (Xe, fe) to each edgee ∈ E, and a decoding function
{gt} to eacht ∈ T . For e = (u, v), fe is a function taking as
input the random variables associated with incoming edges
of nodeu, andXe ∈ [2cen] is the random variable equal to
the evaluation offe on its input. If e is an edge leaving a
source nodes ∈ S, thenXs is the input tofe. The input
to the decoding functiongt consists of the random variables
associated with incoming edges of terminalt. The output of
gt is required to be a vector of all sources required byt.
Given, the acyclic structure ofG, the network code(F ,X )
can be defined by induction on the topological order ofG.

The |S| by |T | requirement matrixB = [bi,j ] has entries in
the set{0, 1}, with bs,t = 1 if and only if terminalt requires
information from sources.

A network code(F ,X ) is said to satisfy node t under
transmission(xs : s ∈ S) if the decoding functiongt outputs
(xs : b(s, t) = 1) when (Xs : s ∈ S) = (xs : s ∈ S).
Network code(F ,X ) is said to satisfy instanceI with error
probability ε ≥ 0 if the probability that allt ∈ T are simul-
taneously satisfied is at least1− ε. The probability is taken
over the joint distribution on random variables(Xs : s ∈ S).
Namely, (F ,X ) satisfies instanceI = (G,S, T,B) with
error ε if

Pr
(Xs:s∈S)

[∀ t ∈ T : t is satisfied under(Xs : s ∈ S)] ≥ 1−ε

An instanceI to the network coding problem is said to be
(ε,R, n)-feasible if there exists a network code(F ,X ) with
block lengthn and rateH(Xs) = R (for all s) that satisfiesI
with error≤ ε. An instanceI to the network coding problem
is said to be(ε,R)-feasible if for anyδ > 0 there exists
a block lengthn such thatI is (ε,R(1 − δ), n)-feasible.
Under theε-error communication model, the capacity of an
instanceI refers to the supremum over all ratesR that are
(ε,R)-feasible for allε > 0. Often, the error probabilityε
becomes small as the block lengthn grows sufficiently large.
Under the zero-error communication model, the capacity of
an instanceI refers to the supremum over all ratesR that
are(0, R)-feasible.

Some remarks are in place. The given model assumes all
sourcess ∈ S transmit information at an equal rateR. There
is no loss of generality in this assumption as a varying rate
sources can be modeled by several equal rate sources all
co-located ats.

In places throughout this work, we explicitly assume that the
block lengthn is of sufficiently large size. This is in a sense
w.l.o.g. given the following claim proven in the Appendix.



Claim 2.1: Let I be a (ε,R, n)-feasible network coding
instance. For any integerc > 0, there exists a block length
n′ ≥ cn such thatI is also(ε,R(1− 5

√
ε), n′)-feasible.

III. O UR PROOF FOR CO-LOCATED SOURCES

In this section, we consider instancesI with co-located
sources, showing that ifI is (ε,R)-feasible forany ε > 0,
then it is also(0, R)-feasible. Our proof is constructive: An
arbitrary code with error probabilityε is used to design a
zero-error code with a negligible rate loss.

Theorem 1:Let I = (G,S, T,B) be an instance to the
network coding problem withk sourcess1, . . . , sk all co-
located at a single vertex inG. If I is (ε,R)-feasible for
all ε > 0, then it is also(0, R)-feasible. Specifically, for any
sufficiently large block lengthn it holds that ifI is (ε,R, n)-
feasible it is also

(

0, R

(

1 +
log(1− ε)

Rn
− 2 log(Rn)

Rn

)

, n

)

- feasible.

Proof: Let (F ,X ) be a network code of rateR and block
length n that satisfiesI with error probability no greater
than ε. Then (F ,X ) allows the communication of source
random variables{Xs}s∈S, which are all independent and
uniformly distributed in[2Rn]. Let δ = δ(ε) be a parameter
to be defined later in the proof. In what follows, we show
thatI is (0, R(1−δ))-feasible by constructing a new network
code(F ′,X ′) of rateR(1− δ) and the same block lengthn.
Let {Ys}s∈S denote the (new) source random variables which
are all independent and uniformly distributed in[2R(1−δ)n].
Thenewnetwork code(F ′,X ′) enabling the communication
of the random variables{Ys} uses the exact same network
coding at internal nodes of the network and essentially the
same decoding at terminals, the only difference is a pre-
encoding step at the single source node (which holds all
information on the realization of{Ys} to be transmitted).
The ideas governing our pre-encoding are taken from the
field of point to point channel coding (and especially the
study of Arbitrarily Varying Channels, e.g., [21]), where it
is common to find an equivalence between the notion of
deterministic coding schemes with small average error and
stochastic coding schemes with small maximum error.

To simplify our notation, denote the source random vari-
ables used in the original network code(F ,X ) by X̄ =
(X1, . . . , Xk) and the source random variables used in the
new network code(F ′,X ′) by Ȳ = (Y1, . . . , Yk). Denote
a realization ofX̄ = (X1, . . . , Xk) by x̄ = (x1, . . . ,xk)
and a realization of̄Y = (Y1, . . . , Yk) by ȳ = (y1, . . . ,yk).
Let A(x̄) be a function with range{0, 1} that captures the
success or failure of the original communication protocol.
Specifically,A(x̄) = 1 if and only if the original protocol
fails on realizationx̄ of X̄. Here, the exact notion of “fail”
is of little significance. The analysis that follows only relies
on the fact forX̄ drawn uniformly at random over[2Rn]k,

Pr
x̄

[A(x̄) = 1] ≤ ε.

We now construct the pre-encoding phase of our new commu-
nication protocol(F ′,X ′). Our pre-encoding ties the source
information ȳ with a certain realization̄x of X̄. The new
network code(F ′,X ′) first maps the source information̄y
to its correspondinḡx. Then it proceeds using the encoding
functions specified by the original network code(F ,X ) (with
x̄ as the source information). Finally, decoding is done in
two phases: first the terminals decode using the decoding
functions from the original code(F ,X ) to obtain their
relevant entries of̄x, and then they reverse the pre-encoding
to obtain the corresponding entries ofȳ.

Our pre-encoding is based on a “random binning” argument
and is done in two steps. First, for each sourcei we partition
the set[2Rn] into 2(1−δ)Rn groups, each of size2δRn. Denote
the partition for sourcei by P̄ i = P i

1 , . . . , P
i
2(1−δ)Rn . Roughly

speaking, partition̄P i corresponds to random variableYi, and
each realizationyi corresponds to a certain setP i

yi
in P̄ i.

Formally, to define the pre-encoding, we would like to tie
each realization̄y = y1, . . . ,yk to a certain realization̄x =
x1, . . . ,xk to be communicated over the network (using the
original protocol). Eachxi belongs to the set corresponding
to yi, namelyxi ∈ P i

yi
. (Recall that we viewyi as an integer

in [2(1−δ)Rn].) The k sources are encoded jointly in such a
way thatA(x̄) = 0 (that is, x̄ does not cause a decoding
error). This ensures that if we use the original communication
protocol on realization̄x then the terminals can successfully
recover the entriesxi that they require. Now each terminal
can just check which realizationyi corresponds toxi (that
is, find the realizationyi such thatxi ∈ P i

yi
) and in such a

way decodeyi.

It is left to specify how the partitions are defined and what
governs our mapping between realizationsȳ and x̄. The
partitions are chosen uniformly at random (and indepen-
dently from each other). Now, for the mapping, consider
a set of partitionsP = (P̄ 1, . . . , P̄ k); partition P̄ i =
(P i

1 , . . . , P
i
2(1−δ)Rn ) of alphabet[2nR] is used in the code

for Yi. We say thatP is good with respect to a realization
ȳ = (y1, . . . ,yk) if the product setP 1

y1
× P 2

y2
× · · · × P k

yk

contains a realization̄x = (x1, . . . ,xk) such thatA(x̄) = 0.
Indeed, if this is the case, we may map̄y to x̄ and
communicatex̄ without error over the network. It is left
to show that a random set of partitionsP is good for all
realizationsȳ (with some positive probability). In this case
we say thatP is good. Lemma 3.1, below, shows that when
δ = δ(ε) = − log(1−ε)

Rn
+ 2 log(Rn)

Rn
and Λ is the uniform

distribution over all possible partitions of the given size,
PrΛ[P is good] ≥ 1

2 . This suffices to conclude our proof
since it proves the existence of a good setP, and the existence
of a good setP implies a sufficient pre-encoding scheme. To
prove that an instanceI which is(ε,R)-feasible for allε > 0
is also(0, R)-feasible, we may use Claim 2.1.

Lemma 3.1 is an intermediate result used in the proof of
Theorem 1, above. This result bounds the probability that a
partition chosen uniformly at random from all partitions of



the right size is “good” in the sense that every cell of the
partition contains at least one element that can be decoded
correctly by a given code.

Lemma 3.1:Let n be sufficiently large. Let

δ = δ(ε) = − log(1− ε)

Rn
+

2 log(Rn)

Rn
.

Let Λ be the uniform distribution over sets of partitionsP.

Pr
Λ
[P is good] ≥ 1

2
.

Proof: Let the termbad be the complement ofgood.
The proof works to show that

Pr
Λ
[P is bad forȳ] ≤ 1

2
· 2−(1−δ)kRn

for any givenȳ = (y1, . . . ,yk). We then obtain our assertion
by the union bound over the2(1−δ)kRn values ofȳ.

Recall that the event

“P is bad forȳ”

is (by definition) exactly the event

“∀x̄ ∈ P 1
y1

× P 2
y2

× · · · × P k
yk

: A(x̄) = 1”.

When X̄ is drawn uniformly at random,A(X̄) = 1 with
probability at mostε. Thus, as a mental experiment, if one
would assume that for randomP the values of̄x ∈ P 1

y1
×

P 2
y2

×· · ·×P k
yk

are uniformly and independently distributed,
then one would have

Pr
Λ
[P is bad forȳ] ≤ ε2

δkRn

,

which would more than suffice for our needs. However, as the
reader surely noticed, we are not in the setting of this mental
experiment as there are dependencies between the different
x̄ in P 1

y1
× P 2

y2
× · · · × P k

yk
. In what follows we show that

we are, nevertheless, not far from this scenario.

To simplify the notation, fixȳ, and letP i = P i
yi

for each
i. Note that whenP is chosen uniformly at random, the sets
{P i}ki=1 are uniformly and independently distributed subsets
of size2δRn of [2Rn]. Denote the2δRn elements ofP i as

P i = {xi
1, . . . ,x

i
2δRn}.

While the choice of any two elementsxi
j andxi

j′ in cell Pi

for sourcei are dependent the choice of any two elements
x
i
j andxi′

j′ for distinct sourcesi 6= i′ are independent.

To obtain our bounds, we analyze an event that has proba-
bility greater than the event that we want to bound. Namely,
we study

Pr
Λ

[

∀j = 1, . . . , 2δRn : A(x1
j , . . . ,x

k
j ) = 1

]

. (1)

Notice that the above equation does not treat the probability
that A(x̄) = 1 for all (2δRn)k values ofx̄ in P 1 × P 2 ×
· · · × P k. Rather, it restricts attention to2δRn elements
(x1

j , . . . ,x
k
j ) ∈ P 1×· · ·×P k. (We refer to these elements as

diagonalelements.) Since each entryxi
j appears onlyonce

in this set, this restriction gives us the independence we need
to simplify our analysis.

Recall that partition cellP i and its elements{xi
j}2

δRn

j=1 are
random variables governed by the distributionΛ. Given any
j0 ∈ [2δRn] consider any realization of the random variables
x
i
j for all i and j 6= j0; denote this realization byRj0 .

Claim 3.1, proved below, shows that

Pr
Λ
[A(x1

j0
, . . . ,xk

j0
) = 1 | Rj0 ] ≤ (1−2−Rn(1−δ)+2−Rn)−kε.

Thus, by the chain rule, the intersection (overj) of the events
“A(x1

j ,x
2
j , . . . ,x

k
j ) = 1” has probability no greater than

(

ε

(1 − 2−Rn(1−δ) + 2−Rn)k

)2δRn

.

We next complete the proof by showing that this value is less
than2−(1−δ)kRn−1 for the δ defined in the lemma statement
and sufficiently largen.

For ease of presentation, we introduce a new parameterα
defined byα = − log(1−ε)

Rn
or equivalentlyε = 1 − 2−αRn.

In what follows we assume thatn is sufficiently large such
that α < 1/3. Now let δ = α + 2 log (Rn)

Rn
be defined as in

the lemma statement.

Note that
(

1− 2−αRn

(1− 2−Rn(1−δ) + 2−Rn)k

)2δRn

≤ (1− 2−αRn)2
δRn

(1 − 2−Rn(1−δ))k2δRn

≤ 2e(1− 2−αRn)2
δRn

,

where the last inequality follows sinceδ is strictly less than
1/2 and thus for sufficiently large values ofn:

(1− 2−Rn(1−δ))k2
δRn ≥ (1− 2−Rn(1−δ))2

Rn(1−δ) ≥ 1/(2e).

It now suffices to show that

(1− 2−αRn)2
δRn ≤ 2−kRn ≤ 1

4e
· 2−(1−δ)kRn.

The right most inequality follows from the fact that we are
taking sufficiently large values ofn and by the fact thatδ is
bounded away from 1. For the left inequality, takingln, and
using the fact thatln(1− x) ≤ −x, we have:

2δRn ln(1− 2−αRn) ≤ −
(

2Rn(δ−α)
)

,

which is less thanln(2−kRn) for δ − α ≥ 2 log (Rn)
Rn

(for
sufficiently largen). This concludes the proof.

Claim 3.1, used in the proof of Lemma 3.1, above, bounds the
probability that the given code fails for the vector containing
the j0’th element of each partition cellPi when all other
elements of{Pi}ki=1 are fixed.



Claim 3.1: Let {P i}i∈[k] = {P i
yi
}i∈[k] be the k par-

tition cells corresponding to an observed source vector
(y1, . . . ,yk). For eachi, let {xi

1, . . . ,x
i
2δRn} denote the2δRn

elements ofP i. Given anyj0 ∈ [2δRn], fix the realizationxi
j

for all (i, j) ∈ [k]× ([2δRn] \ {j0}). Denote this realization
by Rj0 . Then

Pr
Λ
[A(x1

j0
, . . . ,xk

j0
) = 1 | Rj0 ] ≤ (1−2−Rn(1−δ)+2−Rn)−kε

Proof: By our definition of the random variables{xi
j},

for any realizationRj0 the variablexi
j0

is uniformly dis-
tributed in [2Rn] \ {xi

j}j 6=j0 . Thus, the vectorx̄j0 =

x
1
j0
,x2

j0
, . . . ,xk

j0
is uniformly distributed in a subset of

[2Rn]k of size Γ = (2Rn − 2δRn + 1)k = 2Rnk(1 −
2−Rn(1−δ) +2−Rn)k. As A(x̄) = 1 only on anε fraction of
x̄ ∈ [2Rn]k, we conclude that the probability thatA(x̄) = 1
when x̄ is uniform in any subset of size greater thanΓ is at
most2Rnkε/Γ. This concludes our assertion.

Remark 3.1:Essentially the same argument (of Theorem 1)
can be applied to the scenario in which the sources are not co-
located but there is asuper-nodethat knows all of the source
information{Ys}s∈S and has links to all sourcess ∈ S with
capacity which asymptotically (inn) tends to zero. In this
case, for everȳy, the super-node computes the pre-encoding
x̄ = (x1, . . . ,xk) and sends to sourcei the location ofxi

in P i
yi

. This information can be transmitted using capacity
δR links. Notice that by the analysis of Theorem 1, one may
always take the location ofxi in P i

yi
to be identical for all

i (as we analyzed thediagonalevent in Equation (1)). This
fact is used in Section V. As sourcei knowsyi, and the good
P is known at all source nodes (and the super-node) – once
each source knows the location ofxi in P i

yi
, it can transmit

xi as desired.

IV. ε-ERROR VS. ZERO-ERROR FOR“I NDEX CODING”

In this section we study special instancesI to the network
coding problem known asindex codinginstances. We show
that for these special instances, one can prove a theorem
similar to Theorem 1 even though the sources of index coding
instances are not co-located.

We begin with a definition of the instancesI = (G,S, T,B)
corresponding to the index coding problem. The setS is
a set ofk sources{s1, . . . , sk}. The setT is a set ofk
terminals{t1, . . . , tk}. The graphG consists of the vertices
{s1, . . . , sk} and{t1, . . . , tk} and two special verticesu and
v. The edge set ofG consists of an edge(si, u) from each
source nodesi to the bottleneck input nodeu, an edge(u, v)
which is the network bottleneck, an edge(v, tj) from the
bottleneck outputv to each terminal nodetj , and a collection
of side informationedges(si, tj) directly from sourcesi to
receivertj for some subsetEside ⊂ S×T of source-terminal
pairs. All edges are of capacity1. The requirement matrixB
and the side information edgesEside characterize the index
coding instance. The index coding problem encapsulates the

“source coding with side information” problem in which a
single server wishes to communicate with several clients,
each having different side information.

Now that we have defined index coding instances, it may be
clear to the reader why the proof of Theorem 1 should extend
to these instances as well. In index coding, encoding is done
only at the bottleneck input nodeu, and nodeu has access
to all of the source information{Xs}s∈S . We formalize this
intuition below.

Theorem 2:Let I be an instance of the index coding prob-
lem with k sourcess1, . . . , sk. If I is (ε,R)-feasible for
all ε > 0, then I is also (0, R)-feasible. Specifically, for
any sufficiently large block lengthn, it holds that if I is
(ε,R, n)-feasible it is also

(

0, R

(

1 +
log(1− ε)

Rn
− 2 log(Rn)

Rn

)

, n′

)

- feasible

for a slightly larger block lengthn′ of sizen′ = n− log(1−
ε) + 2 log(Rn).

Proof: As mentioned above, the proof follows the line
of proof given in Theorem 1. To obtain a zero error network
code (F ′,X ′) from an ε error code(F ,X ), one performs
a pre-encoding step at nodeu (which has knowledge of all
source symbols) and uses the ideas specified in Remark 3.1
to allow decoding. Specifically, using the notation of Theo-
rem 1, each sourcesi sends its informationyi on its outgoing
edges. Nodeu, after receivingȳ, uses the pre-encoding
procedure and obtains̄x. Using x̄ and the original network
code (F ,X ), u determinesz the transmitted message on
its outgoing edge(u, v). In addition,u acts as the super-
node in Remark 3.1 and appends toz the (single) index
specifying for all i the location ofxi in P i

yi
. The fact that

we are appending additional information of rateδRn =
− log(1−ε)+2 log(Rn) to z is possible as the new network
code has block lengthn′ = n− log(1− ε) + 2 log(Rn).

For decoding, terminaltj receives the messagez, the mes-
sagesyi from edges(si, tj) ∈ Eside, and the location ofxi

in P i
yi

for each such edge(si, tj) ∈ Eside. Using this infor-
mation,tj can reconstructxi for each edge(si, tj) ∈ Eside

and thus use the decoding scheme of the original network
code(F ,X ) to obtain any source informationxi it requires.
Finally, tj can invert the pre-encoding to obtain the messages
yi it requires.

V. CONNECTION TO THE“ EDGE REMOVAL” PROBLEM

In this section, we discuss connections between the question
of zero- vs.ε-error network coding capacities and the ques-
tion studied in [16], [17] addressing the maximum change in
capacity that can result when a single edge is removed from a
network. Namely, we consider the following two propositions
and show that they are equivalent.

Proposition 5.1 (Error reduction):Let ε = ε(n) > 0. Let
α = α(n) = − log(1−ε)

n
, so ε = 1 − 2−αn. Let ε′ ∈ [0, 1/2].



There exists a universal constantc1 such that any instance
I = (G,S, T,B) that is (ε′ + (1 − ε′)(1 − 2−αn), R, n)-
feasible is also(ε′, R− c1α, n)-feasible.

Proposition 5.2 (Edge removal):Let I = (G,S, T,B) be an
instance of the network coding problem. Lete ∈ G be an
edge of capacityα. Let I ′ = (G′, S, T,B) be the network
coding instance obtained by replacingG with the network
G′ in which edgee is removed. Letε′ ∈ [0, 1/2]. If I
is (ε′, R, n)-feasible thenI ′ is (ε′, R − c2α, n)-feasible for
some universal constantc2.

We note that in Proposition 5.1 a network code’s error
parameterε may be a function of the code’s block lengthn.
Thus both propositions are stated explicitly with the block
length parametern. In addition, Proposition 5.1 slightly
generalizes the “zero- vs.ε-error” problem to the problem
of “error-reduction,” in which we seek to show that an
(ε′+(1−ε′)ε,R, n)-feasible instance is also(ε′, R−δ, n) for
a suitableδ = δ(ε). Here, bothε andε′ are error parameters,
the initial error term is expressed asε′ + (1 − ε′)ε (which
implies that the error term is always less than or equal to 1),
and we seek to reduce the error fromε′ + (1 − ε′)ε to ε′.
Whenε′ = 0, this is the familiar “zero- vs.ε-error” problem;
we here treat the general case.

We now show that Proposition 5.1 holds if and only if
Proposition 5.2 holds. Specifically we present two theorems
below (one for each direction).

Theorem 3:Proposition 5.1 with parameterc1 implies
Proposition 5.2 with parameterc2 equal toc1.

Proof: Let I = (G,S, T,B) be an instance to the
network coding problem. Lete ∈ G be an edge (of capacity
α). Let I ′ = (G′, S, T,B) be the network coding instance
obtained by replacingG with the networkG′ in which the
edgee of capacityα is removed. LetI be(ε′, R, n)-feasible,
and consider the corresponding network code(F ,X ). As
studied in [16], [17], consider the valueyx̄ ∈ [2αn] trans-
mitted one for each and every setting of source information
x̄ = (x1, . . . ,xk) that results in correct decoding. Here, as
before, we takexi ∈ [2Rn]. By an averaging argument, there
exists a valuey ∈ [2αn] such that

Pr
x

[yx̄ = y | x results in correct decoding] ≥ 2−αn.

We construct a new code(F ′,X ′) for I ′ which equals(F ,X )
on all functions except the functions corresponding to edges
leavinghead(e). These changed functions use thefixedvalue
y as input instead of the valueXe = yx̄ in the original code
(F ,X ) for I. As (F ′,X ′) is identical to(F ,X ) whenyx̄ =
y, it holds that(F ′,X ′) is a blocklength-n code with rateR
and error probability at mostε′+(1−ε′)(1−2−αn). ThusI ′

is (ε′+(1− ε′)(1− 2−αn), R, n)-feasible. If Proposition 5.1
holds, then this implies thatI ′ is (ε′, R − c1α, n)-feasible.
Thus Proposition 5.2 follows, withc2 = c1.

Theorem 4:Proposition 5.2 with parameterc2 implies
Proposition 5.1 with parameterc1 = c2 + 1 + 2 log(Rn)

αn

given that (in Proposition 5.1)n is sufficiently large and
α(n) = − log(1−ε)

n
< 1/3.

Proof: Below, we consider the case in whichε′ = 0.
A similar analysis also holds forε′ > 0 (see remark located
at end of proof). LetI = (G,S, T,B) be an instance to the
network coding problem that is(1−2−αn, R, n)-feasible. We
show thatI is also(0, R− c1α, n)-feasible.

We consider2 additional instancesI1 = (G1, S1, T, R) and
I2 = (G2, S2, T, R) similar to those considered in [7]. We
start by defining the networkG2; networkG1 is then obtained
from networkG2 by a single edge removal.

Network G2 is obtained fromG by addingk new source
nodess′1, · · · , s′k, a new “super-node”s, and a relay node
r. For eachsi ∈ G, there is a capacity-R edge(s′i, si) from
new sources′i to old sourcesi. For eachs′i ∈ G2, there is a
capacity-R edge(s′i, s) from new sources′i to the super-node
s. There is a capacity-δ edge(s, r) from the super-sources
to the relayr; this edge is the networkbottleneckand the
bottleneck capacityδ equalsα + 2 log (Rn)

n
. (Notice that the

value ofδ is set to satisfy the requirements in Theorem 1, as
we have normalized byR.) Finally, the relayr is connected
to each source nodesi by an edge(r, si) of capacityδ. The
new source setS2 is {s′1, . . . , s′k}. For I1, we setS1 = S2,
and remove the bottleneck edge(s, r) of capacityδ.

We prove the desired result by demonstrating the following
properties:

(a) InstanceI2 is (1 − 2−αn, R, n)-feasible.
(b) InstanceI2 is also(0, R− α− 2 log(Rn)

n
), n)-feasible.

(c) InstanceI1 is (0, R−α− 2 log (Rn)
n

− c2α), n)-feasible.
(d) InstanceI is also(0, R−c1α, n)-feasible forc1 = c2+

1 + 2 log(Rn)
αn

.

The proof of (a) follows from our construction sinceI is (1−
2−αn, R, n)-feasible by assumption. The proof of (b) follows
by applying Theorem 1 (or more specifically Remark 3.1) to
I2. The proof of (c) follows by removing edge(s, r) from
G2 to obtainG1, and then applying Proposition 5.2. Finally,
for (d), we note that by our construction, any code(F ,X )
that is feasible forI1 is also feasible forI.

For ε′ ∈ (0, 1/2], in (b) above we may reduce the error from
ε′ + (1− ε′)(1 − 2−αn) = 1− (1 − ε′)2−αn ≤ 1− 2−αn−1

to 0 via Theorem 1 by consideringα + 1/n instead ofα.
Modifying the proof of Theorem 1 slightly, this also implies
a value ofc1 = c2 + 1+ 2 log(Rn)

αn
as stated in the assertion.

We note that the reduction above implies in particular that:

Corollary 5.1: If for capacitiesα that vanish in the block
length (i.e.,α = o(1)) Proposition 5.2 holds withc2 such
that c2α = o(1) then a network coding instanceI which is
(ε,R)-feasible for allε > 0 is also(0, R)-feasible.

It is interesting to point out that connections similar to those
of Corollary 5.1 also exist between the edge removal problem



for vanishingα and thestrong converseproblem studied in
[18], [19], [20]. This forges an intriguing connection between
the three problems.

VI. CONCLUDING REMARKS

In this work we have studied the potential gain in allowing
ε-error communication when compared to zero-error com-
munication in the network coding scenario (where source
information is independent). For the setting of co-located
sources (and also that of index coding) we present an
alternative proof to that of Chan and Grant [7], which allows
us to prove an equivalence with the edge removal problem
of [16], [17]. Both the capacity loss in the edge removal
problem, and the potential gain in capacity when allowing
an ε > 0 error in network communication remain open in
this work. Nevertheless, our equivalence shows that there is
no gain inε- vs. zero-error communication if one can prove
that the removal of an edge of low (vanishing) capacity has
low (vanishing) effect on the communication capacity of the
network at hand.
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APPENDIX

A. Proof of Claim 2.1

Proof: Roughly speaking, the proof is obtained by
applying a standard argument in which one uses the orig-
inal (ε,R, n) coding scheme over multiple time instances
combined with a carefully chosenouter code.

We start by setting some notation. Consider the original
(ε,R, n) communication protocol. Let the source random
variables beX1, . . . , Xk; each Xi uniform in [2Rn]. For
source realization̄x = x1, . . . ,xk, let A(x̄) be a function
with range {0, 1} that captures the success or failure of
the original (ε,R, n) communication protocol. Specifically,
A(x̄) = 1 if and only if the original protocolfails on
realizationx̄ of X̄. For c′ ≥ c and a rateR′ to be specified
shortly, we now consider an(ε,R′, c′n)-feasible communi-
cation protocol obtained by applying the original protocol
over c′ time instances (to obtain total block lengthc′n).
Namely, let Ȳ = Y1, . . . , Yk, with Yi uniform in [2R

′c′n],
be the new source information, and̄y = y1, . . . ,yk denote
its realization. Consider an encodingCi : [2

R′c′n] → [2Rn]c
′

for each (new) sourcei ∈ [k]. For an inputyi to Ci let
Ci(yi) = x

c′

i = xi,1, . . . ,xi,c′ be the encoding of realization
yi. Here, for each pairi, j it holds thatxi,j ∈ [2Rn].

The new protocol has the following natural structure: the
source inputyi is first encoded (at each source) to obtain
x
c′

i . The encoded source informationxc′

i = xi,1, . . . ,xi,c′

is now transmitted over the network using the original

protocol over c′ rounds of communication. The terminal
node t (after receiving the information of each and every
communication round) first uses the original protocol to
decode a (possibly corrupted) versionzc

′

i = zi,1, . . . , zi,c′

of xc′

i = xi,1, . . . ,xi,c′ ; and then uses the error correcting
capabilities of codeCi to obtainx

c′

i = xi,1, . . . ,xi,c′ and
thusyi (with high probability).

We now analyze the new (block lengthc′n protocol). Recall,
that for a randomx̄ ∈ [2Rn]k, it holds thatA(x̄) = 0
with probability at least1− ε. This implies that for random
inputs{xc′

i }i = {xi,1, . . . ,xi,c′}i it holds that the expected
Hamming distance betweenzc

′

i andxc′

i (defined above) is at
mostεc′. Using the Chernoff bound, we conclude for random
{xc′

i }i that

Pr[∀i = 1, . . . , k : ‖xc′

i − z
c′

i ‖H ≤ 2εc′] ≥ 1− k2−Ω(εc′).
(2)

Now, for eachi, consider the codeCi obtained by taking
any rater′ = R′/R code of minimum distanced′ = 4εc′+1
over the alphabet[2Rn] and applying an independent random
permutation on each of itsc′ coordinates.

We prove that with high probability over the random per-
mutations defining{Ci}i, it holds that with probability at
least 1 − ε over the source information{Yi} that indeed
‖xc′

i − z
c′

i ‖H ≤ 2εc′. As we will show, the above assertion
will essentially suffice to prove the claim. For the assertion,
notice that for anȳy = y1, . . . ,yk the corresponding values
in {Ci(yi)}i = {xc′

i }i = {xi,1, . . . ,xi,c′}i are all indepen-
dent and uniformly distributed in[2Rn]. Thus, by Equation 2
the expected number (where the expectation is taken over the
permutations defining the codes{Ci}i) of source realizations
ȳ for which the corresponding{xc′

i }i and {zc′i }i satisfy
∀i : ‖xc′

i − z
c′

i ‖H ≤ 2εc′ is at least2R
′c′nk(1− k2−Ω(εc′)).

This implies the existence of a set of permutations (and
correspondingly a set of codes{Ci}i) for which the number
of source realizations̄y for which the corresponding{xc′

i }i
and {zc′i }i satisfy ∀i : ‖xc′

i − z
c′

i ‖H ≤ 2εc′ is at least
2R

′c′nk(1− k2−Ω(εc′)). Takingc′ large enough such that the
term k2−Ω(εc′) in Equation 2 is at mostε, and using the
fact that the codesCi all have minimum distance4εc′ + 1,
we conclude that the new protocol is indeed(ε,R′, c′n)-
feasible. It remains to specify the value ofr′ (and thus that
of R′ = Rr′).

The rater′ is set to be the highest rate for which there exist
codes of block lengthc′ and minimum distanced′ = 4εc′ +
1 over alphabets of size2Rn. Using the Gilbert-Varshamov
bound [22], [23] we can setr′ ≥ 1 − H2Rn(4ε + 1/c′) ≥
1−H2(4ε+1/c′) ≥ 1− 5

√
ε for large enough values ofc′.

Here,Hq denotes theq-ary entropy function.
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