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Abstract— We introduce the application of semi-field analysis
to stochastic dynamic games of information. Such problems
typically have a high curse-of-dimensionality; hence a method
of managing this issue is developed by formulating the payoff
function as a min-log sum whose structure is preserved. This
technique is applied to a problem of deception and search
with a risk-sensitive payoff function where the information is
represented using a log-plus probability space.

I. INTRODUCTION

There has been a strong growth, in the recent past, of the
application of max-plus and idempotent analysis methods to
nonlinear optimal control problems. Such methods exploit
the preservation of the form of the optimal cost function
when it is propagated via the semi-group operator associated
with the control problem. Some applications of these tech-
niques to various problems are described in [6], [7], [11],
[12].

Recently, the second author developed an idempotent
method for deception games involving two players where
the opponent is allowed to distort information in order to
hinder the achievement of the desired objectives [9]. Such a
game problem leads to a min-max value function since the
opponent’s strategy is assumed to be antagonistic. However,
even given an opponent with a purely malevolent agenda, not
all noise sources are necessarily antagonistically generated.
This implies that a more suitable model would be that of a
stochastic game. Of course, that added generality implies
added theoretical and computational difficulties. One ap-
proach to attenuating these additional difficulties is through
the use of a risk-sensitive stochastic model. This was seen
to be superior to a purely stochastic model in an air tasking
application in [8]. There, it is also noted that in the linear-
quadratic case, the risk-sensitive stochastic control problem
formulation yields the same dynamic programming equation
and solution as a stochastic game formulation. Consequently,
here we consider a risk-sensitive framework – obtained via a
relaxation of the payoff used in the robust control approach
(in which the worst case payoff is the quantity of interest).
This change in the assumptions leads to an intriguing change
in the problem framework and the mathematical structure
used to describe it; specifically the algebra that describes
this problem is no longer an idempotent semi-field.

We demonstrate that the structure of the optimal cost func-
tion is preserved in this case, thereby offering the potential to
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manage the curse-of-dimensionality. However, just as in the
idempotent case, the solution complexity in the risk-sensitive
case grows exponentially with back-propagation step due
to the use of the distributed dynamic programming (DDP)
procedure. This will be handled through the use of a certain
projection, taking the form of a pruning operation.

II. PROBLEM FORMULATION

We begin by formulating the deception game problem that
leads in a natural way to the log-plus algebra framework.
Consider a two player game (with Player 1 (P1) and Player
2 (P2)). P1 searches for the assets of P2 by choosing a set
of observations. P2 is able to deceive P1 by influencing the
measurements made by P1, albeit at a cost. After several rep-
etitions of this measurement and deception actions, P1 uses
the information state obtained from its various measurements
to takes an action, at the terminal time, drawn from the set A
of possible final time actions (c.f Fig. 1). The true location
of the asset of P2 is denoted by x which takes values from
the set X . In this article, we assume that the time steps are
discrete, the action set A is discrete and has finite cardinality
A. i.e., it can be represented by the set ]1,A[. Throughout,
for integers a ≤ b, ]a,b[ denotes {a,a + 1, . . .b}. The asset
location set (X ) of P2 is also assumed to be discrete and
to have finite cardinality (and can therefore be represented
without loss of generality by the set ]1,L[). Now if the true
asset location of P2 is x and P1 takes an action a, then
we denote the loss incurred by P2 by c(x,a). Hence P1
wishes to minimize (make more negative) the loss c(x,a)
and P2 attempts to maximize (make less negative) this loss.
We represent the vector of values c(x,a), of length L, across
all possible states x ∈X by C(a).

We define qx to be the cost to P2 to make P1 believe that
the state is ‘x’. Now, in the case when P2’s objective is purely
antagonistic and there are negligible stochastic observation
errors (robust/worst case formulation), the costs are taken to
be elements of a max-plus idempotent semi-field. The cost
q is normalized via the condition maxx∈X [qx] = 0 (where
we note that ‘0’ is the multiplicative identity element for
the semi-field). In the case where not all noise sources are
antagonistic, we use a different algebraic structure to repre-
sent and determine the risk-sensitive cost. The normalization
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condition for the cost in this case is taken to be
ε⊕

x∈X
qx = 0, (1)

where
ε⊕

x∈X
qx := ε log

{
∑

x∈X
exp
[qx

ε

]}
.

Note that the max function is obtained as a limiting case of
the log-plus function as ε→ 0. The product operation ⊗ε for
this new algebraic structure is taken to be the same (⊗) as for
the max-plus semi-field, namely the standard sum operation.
It can be shown that the log-plus sum and product operations
used above to represent the costs in this risk-sensitive case,
define a log-plus semi-field. However unlike the max-plus
case, this structure lacks the idempotent property. The max-
plus algebra is thus obtained as a limiting case of the log-plus
semi-field as ε→ 0. Furthermore, the expected payoff in the
antagonistic case is given by

J(q,a) =
⊕
x∈X

[c(a,x)⊗qx].

Hence in the log-plus case the payoff has the form

J(q,a) =
ε⊕

x∈X
[c(a,x)⊗ε qx]. (2)

III. ANALYSIS OF THE DECEPTION GAME AND
DIMENSIONALITY REDUCTION

We now discuss some intriguing aspects of the log-plus
structure and its interpretation. Firstly, if qx takes up values
in R∪{−∞} then the log-plus structure is a semi-field (but
not a field) as there is no additive inverse operation in this
case. However by extending the set of possible costs to the
set R∪{−∞}∪ [R+ iπε], the algebraic structure becomes a
field where the log-plus additive inverse to any element a∈ IR
is a+ iπε (and vice-versa for a+ iπε). Secondly, the costs q
can be viewed as a log-plus probability mass function taking
up values qx at any point x∈X . This is intuitively supported
by the fact that qx ∈]Iε

a , Iε
m[, where Iε

a :=−∞ and Iε
m := 0 are

the additive and multiplicative identities respectively for the
log-plus semi-field. The normalization constraint on the log-
plus probability takes the form in Eq. (1). A more detailed
introduction to a probabilistic interpretation of idempotent
analysis can be found in [1], [2], [3], [10]. In addition, a risk-
sensitive version for two different applications is described
in [4], [5].

In the log-plus case the cost function Eq. (2) can be
interpreted as a log-plus expectation of c(a,x) distributed
according to qx. Hence the cost function (payoff) in Eq. (2)
is

E⊕
ε

[c(a,ξ )] :=
ε⊕

x∈X
[c(a,x)⊗ε qx] := C(a)�ε q,

where ξ is distributed according to q. This can be viewed
as the value of the information q. The notation E⊕

ε

denotes
the risk-sensitive expectation operator arising from the dis-
tribution q.

Thus the payoff that P1 wishes to minimize (the value of
information q at the terminal time T which is the cost to P2)
is

φ(q) := min
a∈A

J(q,a) =
∧

a∈A
[C(a)�ε q] . (3)

Now if ‘q’ is the log-plus probability distribution after
observation at time t. Then the cost for any true state x ∈X
is

q̂x(t +1) = p(y|x; û)+qx(t),
= p(y|x; û)⊗ε qx(t).

However this can be normalized such that Eq. (1) holds.
This normalized cost (denoted q) is obtained from the
unnormalized q̂ using the expression

qx(t +1) = p⊕
ε

(y|x; û)⊗ε q̂x(t)−
ε⊕

ξ∈X

[
p⊕

ε

(y|ξ , û)⊗ε q̂ξ (t)

]
. (4)

Note that given the above form of the cost, the normalization
condition in Eq. (1) holds due to the following result.

Lemma 1 (Distributive property):

ε⊕
x∈X

[gx⊗ε M] = M⊗ε

[
ε⊕

x∈X
[gx]

]
, (5)

for any finite sequence, g·, and any constant, M.
Proof: From the definition of ⊕ε we have

ε⊕
x∈X

[gx⊗ε M] = ε log

[
∑

x∈X
exp
{gx +M

ε

}]

= ε log

[
∑

x∈X
exp(gx/ε)× exp(M/ε)

]

= M +

[
ε⊕

x∈X
gx

]
= M⊗ε

[
ε⊕

x∈X
gx

]
. (6)

The fact that Eq. (4) satisfies the normalization condition can
be seen by applying this result after setting

M =−
ε⊕

ξ∈X
[p⊕

ε

(y|ξ , û)⊗ε q̂ξ (t)].

At the terminal time the optimal cost function has the form

V (T,q) = φ(q) =
∧

a∈A
[C(a)�ε q] . (7)

We now demonstrate that this form of the cost function is
preserved under propagation by the dynamic programming
propagation operator over each time step. This is a core result
as it helps enable the efficient computation of the solution
to this optimal control problem. This structure preservation
approach has in fact, also been exploited to tackle a range
of optimal control problems (c.f., [9], [11]) where such a
idempotent field structures arise.
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Fig. 1. A scenario of interest that demonstrates an instance of a deception game. Here player 1 (P1) could direct the UAVs depending on the choice of
measurements to be made. Player 2 (P2) can influence the observations of P1 and P1 takes actions depending on the measurements obtained.

The DPP applied to Eq. (7) yields

V (t,q) =
∧

u∈U
E⊕

ε

[V (t +1,q(t +1))] ,

=
∧

u∈U

ε⊕
y∈Y

[
V (t +1,q(t +1))⊗ε p⊕

ε

t+1(y)
]
.

Here p⊕
ε

t (y) is the max-plus probability of observing y at
time t. The probability distribution q(·)(t + 1) is generated
from q(·)(t) using Eq. (4). In order to indicate the preser-
vation of this structure, we suppose that at a time t + 1 the
form of the value function is given by

V (t +1,q) =
∧

z∈Zt+1

[dt+1(z)�ε q], (8)

for some index set Zt+1 of finite cardinality. This structure is
intuitively inspired by the form of the value function Eq. (3)
and the approach in [9]. Here Zt+1 is an index set with
associated coefficient vectors dt+1(z). Thus

V (t,q) =
∧

u∈U

ε⊕
y∈Y

{ ∧
z∈Zt+1

[(
dt+1(z)�ε q(t +1)

)

⊗ε p⊕
ε

t+1(y)

]}
(9)

Note that

p⊕
ε

t+1(y) =
ε⊕

ξ∈X
p⊕

ε

(y|ξ ; û)⊗ε qξ (t). (10)

Applying (10) to (9) yields

V (t,q) =
∧

u∈U

ε⊕
y∈Y

∧
z∈Zt+1

[
[dt+1(z)�ε q(t +1)]⊗ε

ε⊕
ξ∈X

(
[p⊕

ε

(y|ξ , û)⊗ε qξ ]
)]

. (11)

For consistency of notation we denote ⊕ε by ∨ε and
⊕

ε by∨
ε . Hence Eq. (11) becomes

V (t,q) =
∧

u∈U

ε∨
y∈Y

∧
z∈Zt+1

[
[dt+1(z)�ε q(t +1)]⊗ε

ε⊕
ξ∈X

[p⊕
ε

(y|ξ , û)⊗ε qξ ]
]
. (12)

We can rewrite all components of Eq. (4) into a single
equation of the form

q(t +1) = Dy,û
ε⊗
q(t)�ε

{
ε⊕

ζ∈X

[
p⊕

ε

(y|ζ ; û)⊗ε qζ

]}
,

(13)

where �ε denotes log-plus division. Here Dy,û is a diagonal
matrix with diagonal terms

Dy,û
x,x = p⊕

ε

(y|x; û),

and the remaining terms set to the log-plus additive identity
{−∞}. Substituting Eq. (13) into Eq. (12) and canceling
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terms yields

V (t,q) =
∧

u∈U

ε∨
y∈Y

{ ∧
z∈Zt+1

[
d̂t(z,y,u)�ε q

]}
, (14)

where d̂t(z,y,u) := [Dy,u]T •dt+1(z) = Dy,u •dt+1(z). Here the
operation • is interpreted as a log-plus matrix vector product.

In order to proceed with transforming Eq. (14) to the
simpler structural form in Eq. (8) we now prove that

Lemma 2:
ε∨

y∈Y

∧
z∈Zt+1

[d̂t(z,y,u)�ε q] =
∧

z̃∈Z̃t

[d̃t(z̃,u)�ε q], (15)

where

d̃t(z̃,u) :=
ε⊕

y∈Y
d̂t(z̃y,y,u),

Z̃t := {z̃ = {z̃y}y∈Y |z̃y ∈Zt+1,∀y ∈ Y }. (16)
Proof: The notation z̃ in the statement of the result

denotes a particular action strategy that returns an action z̃y
for any possible observation y (drawn from the set Y ). We
first simplify the symbols used in the proof of this result as
follows.

Noting that the result holds for any time t and choice of
sensing action u, we define

ãz̃ := d̃t(z̃,u)�ε q,

ây,z := d̂t(z,y,u)�ε q.

We can thus reformulate the statement in Eq. (15) into the
form

ε∨
y∈Y

∧
z∈Zt+1

ây,z =
∧

z̃∈Z̃t

ãz̃. (17)

Without loss of generality we assume that the observations
Y and the set of actions Zt+1 take on values which are
parameterized by a set of integers {1,2, . . . I} and {1,2, . . .J}
respectively. This is valid due to the assumptions that the
observations (and actions) are drawn from a discrete set of
finite cardinality. The LHS of Eq. (17) is

ε∨
y∈Y

∧
z∈Zt+1

ây,z =

(â11∧ â12∧ . . .∧ â1J)∨ε . . .∨ε (âI1∧ âI2∧ . . .∧ âIJ). (18)

Here â1,1 denotes the value â1,z1 i.e., the value of â corre-
sponding to the output y1 (indexed by 1) and the action z1
(indexed by 1). Similarly â1,2 is the value of â for the output
y1 with the action used being z2 (indexed by 2). The RHS
of Eq. (17) is of the form∧

z̃∈Z̃

ãz̃ =
∧

z̃∈Z̃

{
d̃t(z̃,u)�ε q

}
=
∧

z̃∈Z̃

{[ ε⊕
y∈Y

d̂t(z̃y,y,u))
]
�ε q

}
.

Applying the distributive property from lemma 1 this is

=
∧

z̃∈Z̃

ε⊕
y∈Y

[
d̂t(z̃y,y,u)�ε q

]
.

Using
∨

ε to denote
⊕

ε in the preceding equation, it follows
that the RHS of Eq. (17) is∧

z̃∈Z̃

ãz̃ =
∧

z̃∈Z̃

ε∨
y∈Y

[
d̂t(z̃y,y,u))�ε q

]
. (19)

This proof will proceed by demonstrating that the RHS
Eq. (19) and LHS Eq. (18) are equal.

We start by considering the RHS. Now, for every strategy
z̃, there is a product bJ

1(z̃) defined as

bJ
1(z̃) := [â1,z̃1 ∨

ε â2,z̃2 . . .∨ε âJ,z̃J ] . (20)

Rewriting Eq. (20) as

[â1,z̃1 ∨
ε â2,z̃2 . . .∨ε âJ,z̃J ] = â1,z̃1 ∨

ε bJ
2(z̃),

where
bJ

2(z̃) := â2z̃2 ∨
ε â3z̃3 . . .∨ε âIz̃I , (21)

and using this in Eq. (19) yields∧
z̃∈Z̃

[â1,z̃1 ∨
ε â2,z̃2 . . .∨ε âJ,z̃J ] =

∧
z∈Zt+1

b∈BJ
2

[
â1,z∨ε b

]
. (22)

Here BJ
k is defined to be the set of log-plus products of the

form âk,z̃k ∨
ε âk+1,z̃k+1 . . .∨ε âJ,z̃J .

We note from the definition of ∨ε that it is monotonic in
each of its terms, i.e., for any a ∈ R−

a∨ε x≤ a∨ε y, ∀x≤ y,

and x∨ε a≤ y∨ε a, ∀x≤ y. (23)

Using Eqns. (22)-(23) in Eq. (19) yields

∧
z̃∈Z̃

ε∨
y∈Y

ây,z̃y =
∧

b∈BJ
2

{ ∧
z∈Zt+1

â1,z

∨ε b

}
.

Denoting
∧

z∈Zt+1
â1,z by A1 and using the distributive prop-

erty demonstrated in lemma 1, we can rewrite the above as∧
b∈BJ

2

(A1∨ε b) = A1∨ε

[ ∧
b∈BJ

2

b
]
. (24)

We can now rewrite Eq. (21) as follows

bJ
2(z̃) = â2,z̃2 ∨

ε bJ
3(z̃), (25)

where bJ
3(z̃) := â3z̃2 ∨

ε â4z̃3 . . .∨ε âIz̃I .

Therefore using Eq. (25) and Eq. (24), we write Eq. (19) as

∧
z̃∈Z̃

ε∨
y∈Y

ây,z̃y = A1∨ε

[ ∧
b∈BJ

2

b
]

= A1∨ε

[ ∧
z∈Zt+1

b∈BJ
3

(â2,z∨ε b)
]
,

(26)
which, using the monotonicity of the ∨ε operator as before,
becomes
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= A1∨ε
∧

b∈BJ
3


[ ∧

z∈Zt+1

â2,z

]
∨ε b

 ,

and denoting
∧

z∈Z â2,z by A2 this is

= A1∨ε A2∨ε

 ∧
b∈BJ

3

b

 . (27)

From Eqns. (26), (27) it is seen that by repeating this
procedure we have that Eq. (19) can be written as

A1∨ε A2∨ε . . .AJ =( ∧
z∈Zt+1

â1,z

)
∨ε

( ∧
z∈Zt+1

â2,z

)
∨ε . . .

( ∧
z∈Zt+1

âJ,z

)

=
ε∨

y∈Y

∧
z∈Zt+1

ây,z. (28)

This Eq. (28) is equal to Eq. (18) and hence the statement
of the result follows.
We now obtain the required result on the preservation of the
structure of the payoff function.

Corollary 3: Given the payoff function Eq. (8) at time
t +1, the payoff function in Eq. (14) has the form

V (t,q) =
∧

z∈Zt

[dt(z)�ε q], (29)

Proof: Applying Lemma 2 to Eq. (14) we have

V (t,q) =
∧

u∈U

ε∨
y∈Y

{ ∧
z∈Zt+1

[
d̂t(z,y,u)�ε q

]}
=
∧

u∈U

∧
z̃∈Z̃t

[d̃t(z̃,u)�ε q].

By identifying Zt with U × Z̃t this is
=
∧

z∈Zt

[dt(z)�ε q], (30)

where the dt(z) terms correspond to d̃t(z̃,u).
Thus, it is seen that the structure of the optimal payoff

function is preserved. This feature of the problem helps
manage the rate of growth of memory and computational
time requirements, as the solution is propagated backwards
from the terminal time, during the numerical solution pro-
cedure for the optimal control problem. This leads to the
potential for efficiently obtaining the solution to the risk-
sensitive deception game problem.

IV. CONCLUSIONS

In this article we describe a risk sensitive analogue to the
idempotent field approach for the representation of deception
games. It was proved that the value function has a invariant
property with respect to the dynamic programming operator -
a feature that enables us to avoid the curse of dimensionality.
However there still remains a curse of complexity i.e., a
growth in the number of control, sensing actions that cause
a growth in the number of parameters to be stored while
computing the value function. The avenues for future work
are therefor to develop an approach to reduce this growth in

complexity by removing certain parameters (termed pruning)
via ordering their contribution to achieving the optimal value
function. Furthermore there exists a need to obtain error
analysis for such pruning.
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