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Abstract—We define a class of multi—-hop erasure networks that
approximates a wireless multi-hop network. The network caries
unicast flows for multiple users, and each information packe
within a flow is required to be decoded at the flow destination
within a specified delay deadline. The allocation of codingates
amongst flows/users is constrained by network capacity. We
propose a proportional fair transmission scheme that maxinses
the sum utility of flow throughputs. This is achieved by jointly
optimising the packet coding rates and the allocation of bhits of
coded packets across transmission slots.

flow f; d v

Index Terms—Code rate selection, cross layer optimisation,
network utility maximisation, packet erasure channels, shedul-

ing

|. INTRODUCTION

|
In a communication network, the network capacity is shared \l
by a set of flows. There is a contention for resources among i
the flows, which leads to many interesting problems. One such A
problem, ishow to allocate the resources optimally across flow f3
the (competing) flows, when the physical layer is erroneous _ _ _ _
s ificallv. schedule/transmit time for a flow is a resour Fe|g. 1. An illustration of a wireless mesh network with 4 cells.Cells a,
peci Y, ) _9), ¢, andd use orthogonal channels GHCHz, CHs, and CH, respectively.
that has to be optimally allocated among the competingdes 3, 5, and 6 arbridge nodes The bridge node 3 (resp. 5 and 6) is
flows. In this work, we pose a network utility maximisatiorprovided a time slice of each of the channels ;C& CH> (resp. Ch &
bl biect t heduli traints that sol CHy for node 5 and Chi& CH3& CHy4 for node 6). Three flowsfi, fa2,
pro em subject to scheduling constraints a_ SOIVE aUreso ;4 f3 are considered. In this exampléy, = {a,b}, Cy, = {d,b,a}, and
allocation problem. In another work, we studied the probleay, = {c,d}.
of optimal resource allocation in networks [1].

We define a class of multi-hop erasure networks, and
consider packet communication over this class. The networkData is transmitted across this multi-hop network as &set
consists of a set o’ > 1 cellsC = {1,2,---,C} which — {1 9... F}, F > 1 of unicast flows. The route of each
define the “interference domains” in the network. We allowow f e F is given byC; = {ci(f), ca(f), - cee, ()},
intra—cell interferencei.e transmissions by nodes within thewhere the source node f) € ¢;(f) and the destination node
same cell interfere) but assume that there is no inter—cgfly) ¢ ce,(f). We assume loop-free flows (i.e., no two cells
interference. This captures, for example, common netwaigkC, are same). Figurds 1 aftl 2 illustrate this network setup.
architectures where nodes within a given cell use the samescheduler assigns a time slice of duratiép. > 0 time
radio channel while neighbouring cells using orthogonelaa ynits to each flowf that flows through celk, subject to the
channels. Within each cell, any two nodes are within t"lﬁ)nstraintthaEf_cec Tt.. < T. whereT. is the period of the
decoding range of each other, and hence, can communicaiBedule in celt. We consider a periodic scheduling strategy
with each other. The cells are interconnected using mult{see Figur€l2) in which, in each cell service is given to the
radio bridging nodes to create a multi-hop wireless networfows in a round robin fashion, and that each figvin cell ¢
A multi-radio bridging node: connecting the set of cells gets a time slice of’;. units in every schedule.
B(i) = {c1,..,cn} C C can be thought of as a set ofsingle  The scheduled transmit times for flofin source celk; (f)
radio nodes, one in each cell, interconnected by a high€spegefine time slots for flowf. We assume that a new information
loss—free wired backplane (see Figlife 1). packet arrives in each time slot, which allows us to simplify
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symbols. Each packet of flow is encoded into codewords foufy  flowfy fouf; flowf, flowfy  flowf

of lengthn; = ky/ry symbols, with coding raté < r; < 1.

The code employed for encoding is discussed in Se¢fion | | | |
We require sufficient transmit times at each cell along rdite Ta | Ta | Ta !
to a:||Oan coded SymbOIS to be .transmltted In every SChedull-‘ng. 2. An illustration of transmission scheme in cella of the network
period. Hence there is no queueing at the cells along the rouitFigure [ Every transmission schedule ®f, time units is time—shared by
of a flow. It is not apparent at this point whether it is optimatodes 1 and 3. Note thata (f) Ny Ry symbols of the encoded packetare
for flow f to transmit a single code—word af; symbols or transmitted in transmission schedyle- A, whereA € {0, 1,2, -+ ,ny—1}.

. g 7 Sy . The scheduling or capacity constraint of celmay not be tight (indicated by
transmit a block of.; symbols where each block carries somempty time slice in the figure), as the rates of flofisand f» are governed
portions of each of a set of coded packets. by the whole network.

Channel Model: The channel in celle for flow f is

considered to be a packet erasure channel with the prolyabilj i . . . .
of packet erasure being;. € [0,1]. Thus, the end-to- the optimum rate allocation (in general) gives unequal air—

end channel for flowf is a packet erasure channel with thdMeS which is quite different from the previously known
probability of packet erasure being result of proportional fair allocation being the same ag tfa

equal air-time allocation[(]2]). This problem, which we sho
Br=1- H [1— Byl in Section[ll, requires solving a non—convex optimisation
ceCy problem. Our work differs from the previous work on network
utility maximisation (see[[3] and the references thereim) i
the following manner. To the best of our knowledge, this
is the first work that computes the optimal coding rate for
a given scheduling (or capacity) constraints in the utdity
optimal framework.
The rest of the paper is organised as follows. In Sedfion I,
Each packet has a deadline 8f; slots, by which time we obtain a measure for the end—to—end packet erasure, and

it must be decoded. Such a delay constraint is natural qﬁscribe the throughput of the network. We then formulate a

applications such as video streaming. A packet is in erririf nhetwork utility maxwrr]uzatllorlw protr)llem sgbje_ct to constltahltrg
destination fails to decode the packet by the deadlineirigett (N€ ransmission schedule lengths. In Section lll, we o

es(ry) denote the error probability that a packet fails to be g@ptimum transmission strategy and the optimum packett-leve

coded before its deadline, the expected number of infon"natiCOd”_1g rates fo_r each flow in the _network. In Sectioh V, we
symbols successfully received B (1) = k;(1 — e;(r;)) provide some simple examples to illustrate our results. Bue

Other things being equal, we expect that decreasing.e., lack of space, the proofs of various Lemmas are omitted.
increasing the number of coded symbals = k;/r; sent)
decreases error probability and so increaseS;. However, Il. PROBLEM FORMULATION
since the network capacity is limited, and is shared by iplglti  The encoding has two stages. The first stage is the encoding
flows, increasing the coded packet sizg of flow f; gen- of each information packet using a standard generator xnatri
erally requires decreasing the packet size for some other such as a Reed—Solomon code or a fountain dode [4]P}gt
flow f,. That is, increasingy, comes at the cost of decreasinglenote the information packet that arrives at the source of
Sy,. We are interested in understanding this trade—off, andflow f in slot¢. A packetP;[t] of flow f hask; symbols, the
analysing the optimal fair allocation of coding rates ansingencoded packet/ [¢] of which is of sizeny = ky/r; with 0 <
users/flows. ry < 1, and we assume that the code is such that the packet
Our main contribution is the analysis of fairness in th&,[t] can be reconstructed froemyof its k; encoded symbols
allocation of coding rates between users/flows competing ftthis is possible, for example, by Reed—-Solomon codes).
limited network capacity. In particular, we adopt a utiity The second stage allocates the content of the encoded packet
fair framework, and propose a scheme for obtaining th@ of the first stage across theeansmitted packets. Each
proportional fair allocation of coding ratese. the allocation encoded packet is segmented infty portions (where we
of coding rates that maximise€s, ;. - log S¢(ry) subject to recall thatDy is the decoding deadline requirement for each
network capacity constraints. This problem, which we shopacket of flowf), the size of theAth portion beingp(A)ny,
in Section lll, requires solving a non—convex optimisatiowhere A € {0,1,---,D; — 1} and0 < ¢;(A) < 1. At
problem. Specifically, at the physical layer, the (channeBansmission slot, a transmitted packet is assembled from the
coding rate of a flow can be lowered (to alleviate its channel(0) portion of C[t], the ¢ (1) portion of C;[t — 1], and so
errors) only at the expense of increasing the coding ratesaf until the¢ (D, — 1)th portion of packeC;[t — D; + 1].
other flows. Also, at the network layer, the length of schedul This procedure is illustrated in Figufé 3 far; = 3. Note
of each flow should be chosen in such a way that it maximistsat the transmitted packet is of sizg symbols. To decode a
the network utility. Interestingly, we show in our problenpacketP;t] of flow f, we use the transmitted packets that are
formulation that the coding rate and the scheduling areljighreceived during the transmission sléf$+1,--- ,t+ Dy —1.
coupled. Also, we show that forlag (network) utility function Note that the conventional strategy of transmitting an eedo
(which typically gives proportional fair allocation of srces) packet every transmission slot corresponds to the spexsal ¢

Let the Bernoulli random variabl&[i] indicate the end—to—
end erasure seen by thth block of flow f (independent of the
erasure seen by other blocks) of flgfv Note thatE[i] = 1
means that theéth block is erased, and;[i] = 0 means that
the ith block is received successfully. Note tHa{E[i] =

1} =By =1 P{Ey[i] = 0}.



For flow f, the total expected throughput as a result of

Pr1] Prl3] 1. NETWORKUTILITY MAXIMISATION

| transmitting7’ > 1 packets is given by

I o2 | Cy13]
/v S(T)
T
| $0C1] | | || ¢0C[2] 1 C[1] || $0C13] [¢1C12] ¢2C7|1] _ Z <Z kf%t) P{af[t] =g t=12 - T}
) ) (w1,@g, - ,op)e{0,1}T \t=1
L 2 Time 3 Note that the joint probabilty mass function
Fig. 3. Two stage encoding (exampleof; = 3): information packets[1] P{loflt] = a4, t=1,2,---, T} is not a product-form

of sizek s is encoded ta’;[1] of sizeny = ky /ry, the contents of which are distribution as the packet erasures|t]s are correlated.
allocated across subpacketsC'r[1], $1C¢[1], p2C'r[1] across3 timeslots. However, the above expectation can be written as

T
6;(0) = 1 and ¢;(1) = ¢4(2) = -+ = ¢;(Dy — 1) = 0. SpT) =" > kpeP{aglt] =}
We call the transmission scheme outlined above with general t=1 z,€{0,1}
¢.(A)s ageneralised block transmission scheme. =T -kf-(1—ey)

) , Thus, the (average expected) flow throughput is defined as
A. Network Constraints on Coding Rate

Letwy . be the PHY rate of transmission of flofvin cell c. Sy = lim 54(T)
For each transmitted packet of flofy each cellc € C; along Toeo T
its route must allocate at Iea%ff— units of time to transmit = k- (1—ep).

f,c
the packet (or encoded block). LéL. := {f € 7 : c € C;} We are interested in maximising the utility of the network
be the set of flows that are routed through eel\We recall which is defined as the sum utility of flow throughputs.
that the transmissions in any celare scheduled in a TDMA \we consider the log of throughput as the candidate for the

fashion, and hence, the total time required for transngttintjjity function being motivated by the desirable propesti

packets for all flows in celt is given by, 7. Since, jike proportional fairness that it possesses.

for cell ¢, the transmission schedule intervallisunits of time, We define the following notations: the Chernoff-bound

the codig(}:] rates; must satisfy the schedulability constrainparametersd := [0;];c, coding ratesr := [rf];ex, and
D fer wrn S Te the allocation of coded bits across transmission s{bts=
[Ps]rer wheregy := [¢7(0),¢5(1),- -+, ¢y (Dy—1)]. Thus,
B. Error Probability — Upper bound we define the network utility as
Lemma 1._ The end-to—end probability of a packet erasure (7(«1),071“) — Z In (kf (1= ep(ds,05,7¢)))
for flow f is bounded by =
e = > In(ky)+U(®,0,7) (1)
Dy-1 L fer
= PS> ¢f(A)T—fEf [A] > ny — ky The problem is to obtain the optimum coded bit allocatish
A=0 / the optimum Chernoff-bound parameé&t, and the optimum
Dy—1 coding rater* that maximises the network utility. Sincgy,
< exp|—|0;(1—7rp)— Z In (1 — B¢ +5fe"f'¢f(A)) the size of information packets of each floy is given,
A=0 maximising the network utility is equivalent to maximising
= ey _U(<I>7 0,7) =3 ;crIn(1—ey). Thus, we define the follow-
ing problem
wheref; > 0 is the Chernoff-bound parameter. P1:
Let the random variable ¢[t] indicate whether packe?; [¢] max U(®,0,r)
is successfully decoded or not, i.e., o ks
. . ' <T,
1 = 1, if packetP;[t] is decoded successfully subject to f:cze; TIWfe T Te, VeeC )
“f a 0, otherwise b 71’"
f
We note here that the decoding errors for the successive > or(A) =1, vVfeF ®3)
packets are correlated, as each encoded packet overldps wit A=0
the transmission of previousy — 1 packets and the successive ¢s(A) 20, VieF0<A<Ds-1
D; — 1 packets. Hence, the sequence of random variables 05 >0, VieF
ar[l], af[2],af[3],--- are correlated. But, the probability of T < Ay VfeF

any a;[t] = 0 is upper bounded by Lemnia 1. rr > Ap VfeF



We note that the Eqn[](2) enforces the network capacity (@he sub—problem is given by

the network schedulability) constraint. The objectivediion

U(®,0,r) is separable in(¢ys,07,r;) for each flow f. max > (1l —ep(dy,b5,75))

Importantly, the component of utility function for each flow fer

f given byIn (1 —ef(¢ps,0,7¢)) is not jointly concave in Dyl

(¢ps,0s,7¢). However,In (1 —es(¢ps,0f,77)) iS concave in subject to Eo 0s(A) = 1, ¥ferF

each of¢;(-), 0y, andr;. Hence, the network utility maximi- or(A) > 0, Vfe F,YyA<Dy;—-1

sation problenP1 is not in the standard convex optimisation_ . L
framework. Instead, we pose the following problem This is a separable convex optimisation problem, and hence
' ' can be solved by Lagrangian method. l.gtbe a Lagrangian

P2: Dy—1
. . . f .
max max max Z In(1—ep(¢y,05,75)) 4) multiplier for the constrauntg::0 ¢5(A) =1, and defineu =
fer i [r]rer. The Lagrangian function is given by
; s
SubjeCt to fcze:cfm S TC7 VC € C Df—l
LV EDWIEIED WA ESILTY)
Y gs(a) =1, VfeF _ N B
A=0 Applying KKT condition,
¢f(A)20, VfE}-,OSASDf—l oL
0r >0, vVfeF —_— e 0,
f-0 8o (i) lo5()
T < Af Vf e F
rp > VfeF we get
In general, the solution t@2 need not be the solution to es 87007470
P1. However, in our problem, we show thR2 achieves the 0 = T L. A aen TR
solution of P1. ;f 1 _(ff + )ﬁfe !
.o 1-— —e
. . Op%(1) f fIRf
Lemma 2. . For a functionf : ¥ x Z — R that is concave ~ ©% ¢’ 10 = ()

By Oper—pr(l—ep)

in y and in z, but not jointly in(y, z), the solution to the joint _ ! _f d d ! )
optimisation problem for convex se}sand Z fori =0,1,2,--- ,n; — 1. Since, the RHS of Eqill 7 is the
same for alli, we get¢; (i) = ¢3(j), and hence

5
| yergi)ézf(y,Z) (5) ) .
is the same as ¢f(A):D_fa VA=0,1,---,Df — 1.

P f(y;2), (6)  Thus,®* allocates equal portions of an encoded packet across
if f(y*(2), 2) is a concave function af, where for eachr € Z, transmission schedules with a delayoot, - - - , D¢ —1, unlike
y*(2) = argmaxf(y, z). the conventional transmission scheme which transmitshaell t

yey coded bits of a packet in one shot. Heneg(¢%,0y,7¢) is

We note that for eaclh; and 6, the probability of error o
ey is convex ingy, and henceln(1 — ey) is concave ingy. ey = exp <— {9,»(1 —ry)—Dysln <1 — By + ﬂfeDf)D .
Thus, we first solve for the optimum code bit allocati¢n
in Sectio IV=A. Then, using the optimum code bit allocation
we solve for the optimum Chernoff bound paramétémhich
we describe in subsectidn TWB. After having solved for th8. Optimal 6*
optimumé*, we show in Sectiof IV-IC thalt (€, 6"(r),7) IS \we now consider the optimum Cheroff—bound parameter
a concave function of. Hence, from Lemma&l2, the solution,pjem with the optimum coded bits allocati€, and for
to problem(P2) (the maximisation problem that separatel)ény given coding rate vector € [\, ;]
obtains the optimur@* and optimumr*) is globally optimum. =

We study the rate optimisation problem that obtairfsin max Y In (1 —ep(d% 0,7 (9)
subsectiof TV-D. 6 ); ( 1(95:01:71))
subject to 0y > 0, VfeF
IV. UTILITY OPTIMUM RATE ALLOCATION We note that the objective function is separablé js, and
thate is convexinf;. Hence, the problem defined in Eql (9),
A. Optimal Code Bit Allocatior® is a concave maximisation problem. The partial derivatife o

ey with respect tad; is given by

We consider the maximisation problem defined in Edn. 4 for
a given coding rate vectar and Chernoff-bound parameter ey =—ep- [(1—7f) =
vector 6, and obtain the optimung; for each flowf € F. 90y ' 1— By + Bpels/Ps

ﬁfeef/Df




60r/D L. ) ) ) )
Observe that% is an increasing function of;.  condition, and hence, the rate optimisation problem is a
. Psthye 8y concave maximisation problem. For the sake of completeness

Thus, if, for0; =0, 1 —ry — 7—L—= <0orry > 1— Gy, ; . o .
: : we include this as a constraint in the problem formulation.

S " L=Bs+Py . . !
the derivative is positive for alt; > 0, or ey is an increasing However, this condition is not an active constraint.

function of ;. Hence, forr; > 1 — gy, the optimumg; is
arbitrarily close to0 which yieldse; arbitrarily close tol.
Thus, for error recovery, for any end—to—end error prolitgbil . Optimal Coding Rate
B¢, the coding rate should be smaller thhr- 3¢, in which
case, we obtain the optimuri; by equating the partial
derivative ofe; with respect tof; to zero.

From the previous subsection, we observe under the delay
constraint Eqn.[(10) that; (¢}, 05 (ry),7r) is convex inry,
and hence, we obtain the optimum coding rgteising convex

ie. % = 1-1y optimisation method. Also, from Lemnid 2, it is clear that
1—,8f+18f€0£/Df vy 1-5; 7% is the unique globally optimum rate. Thus, we solve the
or, e e following network utility maximisation problem
0n = Dy|ln(Z2) —In(22-)].
o f ! [n( By ) n(l_f@fﬂ mﬁXZln (1 —ep(@5,05(rp),r5)) (11)
Thus, the probability of a packet decoding error for a given feF
r¢ with the optimum allocation of coded bit®*, and the : ky
optimum Chernoff-bound paramety, is subject to f% WS . s T, veel
iceCy ’
e VfeF
1—
= exp (—Df [(1—rf)1n( Tf)—l—rfln( ' )}) VieF
' ' By L= By
=exp(—Dy;-KL(B(1—rp)||B(5))) —a<0 vVfeF (12)

where KL(f1, f2) is the Kullback—Leibler divergence betweenRynereq — In

—=L ). ltis clear that the objective func-
the probability mass functions (pmfg) and f».

tion is separal le’and concave, and hence, can be solved using
Lagrangian relaxation method. Also, we note here that the
C. A convex optimisation framework to obtain optimal constraint represented by Eqi.](12) is not an active cdnstra

If In(1 — ef(¢p3,0%, 7)) is concave inry, then one can and hence, there is nolLagrangian cost to this constra_int. We
obtain the optimum} using convex optimisation framework.note here that the coding rate should be such &hgt; is
To show the concavity dh(1—e (¢}, 6%, 7¢)) it is sufficient an integer, and hence, obtaining is a discrete optimisation

to show thatef(¢},9},rf) is convex inry. Note that problem. This is, in general, an NP hard problem. Hence, we
P relax this constraint, and allow, to take any real value in
ger _ er - 05(ry) [As; Af]. The Lagrangian function for the rate optimisation
Iy ' problem is thus
es _ . g2 Dy
87"?0 - f Tf(l—’l’j) L('r,p,u,v)
ey is convex if k
/ 2 DI RN S0 DB P
|:1n<1—7’f> _1n< T ):| > Df feF ceC feF. % e
Bf 1_Bf Tf(l—?”f) +Zuj (Tf—Af)— Z’Uf (Tj—Xj)
or, feF ferF
In <1 —rpl- ﬂf) > v Dy Applying KKT condition, gTLf r»= 0, we have
vy By re(L—ry)
o, — VP <1_Tf—1_ﬂf)<0 — %W:Zp%kf—i—vf—“f
, —In < — T C &
rr(l—ry) ry B L—epory ™/ ey Ty Wie
The function 1 is convex inrs. Also, | (17”) —ky c
rr(i=ry) " "\ - r*,zj > j +up—up
is decreasing withry, and hence,—In (1:;7 1;}{*‘) < T cec; he
. 1-Xy 1—/3f) - o i
ln( . B ) Thus, we have a sufficient condition ef ;= *fZ Z pe | S
VD 1-X;1-8 boes "r \eec; e
7f—1n< = f—f>§0 (10) _
rp(l=ry) A By If the optimumyr 7 is eitherA, or Ay, then it is unique. It} €

The above condition requires the delay deadlidg to be (A;,Af), thenuy = vy = 0, which is the most interesting
smaller than somé¢(r;). We considerDys to satisfy this case, and we consider only this case for the rest of the paper.



Let A\f := Zcecf T Thus, a sub—gradient dD(-) at anyp is given by the vector

ey . Arky ky
0% = 13 -3 —L | . 19
l—e; T rp? 49 fe7 T Pwye (19)
€ ceC

Ark
er = W (14)  We obtain an iterative algorithm based on sub—gradientoaketh
/ f/\ ) i that yieldsp*, with p(i) being the Lagrangians at thih
Iy

—D:D(B(1 — r* ))) = — 2 iteration.
exp (=DyD(B(1 —r})[IB(By))) Ny + O N
. Arky + 037 ) = )y (oSSR
DsD(B(1—r3)|B(B5)) = In ( )\fk:ff f pe(i+1) = pe(i) —v- | Te j; 5 (p(i))wy.c

(15) wherey > 0 is a sufficiently small stepsize, and(x)]" :=

In the above equation, the LHS is a strictly convex decrepsiftax{/(«), 0} ensures that the Lagrange multiplier never goes
function of r%. Since, the utility maximisation problem is anegative. Note that the Lagrangian updates can be locatlg,do

concave maX|m|sat|on problem, the optimum rates (0,1— 85 each celk is required to know only the rates;(p(i))
3;) exists and is unique. of flows f € F.. Thus, at the beginning of each |terat|®n

the flows choose their coding ratesitp(p(i)), and each cell

computes its cost based on the rates of flows through it. The
E. Sub—gradient Approach to Compute optimpim updated costs along the route of each flow are then fed back
to the source node to compute the rate for the next iteration.

Shlndthls SetCt'OnthW?_ discuss the proc_?r(;lurde t? Obé?m the ®The Lagrange multipliep. can be viewed as the cost of
adow costs or the Lagrange variatgés The dual problem transmitting traffic through cele. The amount of service

for the primal problem defined in Eqrii_{11) is given by time that is available is given by = T, — Z}T T}(p(zx)wﬁc.
11{1;101 D(p), When § is positive and large, then the I{gg?angian cpst
B decreases rapidly (becaude is convex), and whery is

where the dual functioD(p) is given by negative, then the Lagrangian cpstincreases rapidly to make
0 > 0. We note that the increase or decreas@obetween

D(p) successive iterations is proportionalitahe amount of service

. time available. Thus, the sub—gradient procedure provades
= max Z In(1 —e(ry)) + ch T, — Z / dynamic control scheme to balance the network loads.

" ojer cec fer, fWhe We explore the properties of the optimum rate parameter
(16) 7} in SectiorIV-F. In Sectiofi.V, we provide some examples

that illustrate the Optill um utiIity—fair resource alloioat
k
=Y (1 —es(rj(p) +§pci—§7*f

fer cec fer. f (P)wy.e F. Properties ofr}
(17)  Lemma 3. r(Dy) is an increasing function ob;.

Lemma3B is quite intuitive. For any given channel ernsor
as the deadline become less stringent, it is optimal to ga for
high rate code. In other words, it is optimal for a flow to use as
nauch scheduling time as possible (for a lafi@g, and hence,
ai
use a high rate code); however, the resources are sharedgjamon

multiple flows, and hence, we ask the following question:
“what is the optimal share of the scheduling tintlieat each

In the above equationg(ry) denotesey (¢}, 0% (ry),7r).
Since the dual function (of a primal problem) is convéxjs
convex inp. Hence, we use a sub—gradient method to obt
the optimump*. From Eqn.[(IB), it is clear that for any,

D(p) > Z In(1—ef(ry)) + ch T, — Z ky flow should have. Interestingly, in our problem formulation
B C riwre | the code rate; also solves this optimal scheduling i fi
feF cec feF. ) f ptimal scheduling times for
each flows.

and in particularD(p) is greater than that far = % (p), i.e.,
V. EXAMPLES

D(p) A. Example 1: Two cells with equal traffic load
X ky We begin by considering the example shown in Fidure 4
> - - Y S
- fzfln(l es(r; () + ;pc T fz; rHP)wy,e consisting of two cells: andb having three nodes 1, 2, and
© ¢ e 3. Each cell has the same packet erasure probapilagd the
kg schedule lengt”. There are three flowg,;, f2, and fs, with
D(p) + Z T. - Z i (P)wy (18)  two of the flows f1 and fs having one—hop routeS;, = {b}
ceC fEF. ©

andC;, = {a}, and one flowf, having a two—hop route
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Fig. 4. Cells with equal traffic load Fig. 5. Cells with unequal traffic load

C;, = {a,b}. Each flow has the same information packet SiZf(laows while cell a carries only one flow. The encoding rate

k, decoding deadlin® and PHY transmit raté,e. wy . = w. Constraints are given by

This is analogous to the so—called parking—lot topologgroft 1 < wTl’ (from cell 1),
used to explore fairness issues. Y
The end-to—end erasure probability experienced by the two— i n i - ﬂ’ (from cell 2)

hop flow f5 is greater than that experienced by the one hop r r =k
; . f1 f2
flows f and f3, since each hop has the same fixed erasug, . bothr;, andr;, are at most 1, it is clear that at
ili 1 1 ' 1 J2 !

fgofli)(?vlalll;y. tﬂzr?cteo’ \;\I/gwnsefed;a da;SI?: (a)lrldeesrsir) C&ig?}”ﬁtee the optimal point, the rate constraint of cell a is not tight
2 " ! 3 while the constraint of cell b is tight. Thus, the shadow esic

same error p_robablllty (after decoding) across flows. Hcaw,ev_ Lagrange multipliersp, — 0 andp, > 0. That is, at the first

when operathg _at_ the boundary of the netvyork capacny reg! op the cell is not opgrating at capacity, and'so the “price”

(thereby maximising throughput), decreasing th? coding "For using this cell is zero. In this exampllaf = Ay, and

ry, Of the two—hop flow/, requires that the coding rate c.)fhence from Eqn.[{13), we deduce that fc,)r1 sufficizéntly low

bothone—hop flowsf; and f5 be increased in order to remain. er’asure probabilit;é e/ ~ ey, Alternatively, as the

within the available network capacity. In this sense, atowg delay deadlineD — oo f’rorrj11 Eqn EtB) we have ’ .

. B . - ) . fi = €fa-
coding rate to the twq hop flow; imposes a _greater marglnaIThese proportional fair allocations make sense intuijigaice
cost on the network (in terms of the sum-utility) than the-ene

hop flows, and we expect that a fair allocation will thereforgIthough flowf, crosses two hops, it is only constrained at the

assign higher coding rate to the two—hop flgyw The solution (S)(?(t:r?ir;dsre]cégnznﬂoso; Isrgiit;rgeﬁo Zhiglthge?:vzlleibltiec%%\?vcslt
optimising this trade—off in a proportional fair manner dam b app y equa’ty '

understood using the analysis in the previous section. When the erasure probability is sufficiently small, thislgge

In this example, both the cells are equally loaded and, $pprOX|mater the same error probabilities for both flows: F

symmetry, the Lagrange multipliegs, — py. Hence,\;, — ﬁ_lrgererasure probq@hugs, it Ieadgto the two—hop flowira
Xf ! higher error probability, in proportion to the per—hop eras
=2 = \y,. For the Chernoff-bound parametr= [0, 4], we

2 robability 3.
find from Eqn. [IB), P yb
ef, l—ep Ap TF REFERENCES
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Thus the proportional fair allocation is;, = e, =~ 1/2-ey,.

That is, the coding rates are allocated such that the one—hop
flows have approximately half the error probability of thetw

hop flow.

B. Example 2: Two cells with unequal traffic load

We consider the same network as in the previous example,
but now with only the flowsf; and f; (i.e., the flow fs5 is not
present) in the network. In this example, cell b carries two
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