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Computation Alignment: Capacity Approximation
without Noise Accumulation

Urs Niesen, Bobak Nazer, and Phil Whiting

Abstract

Consider several source nodes communicating across aegsraktwork to a destination node with the help of
several layers of relay nodes. Recent work by Avestinethal. has approximated the capacity of this network up
to an additive gap. The communication scheme achievingcdyigcity approximation is based on compress-and-
forward, resulting in noise accumulation as the messagesrise the network. As a consequence, the approximation
gap increases linearly with the network depth.

This paper develops@mputation alignmerdtrategy that can approach the capacity of a class of laytnest
varying wireless relay networks up to an approximation dnegt is independent of the network depth. This strategy
is based on the compute-and-forward framework, which esal#lays to decode deterministic functions of the
transmitted messages. Alone, compute-and-forward idfiosnt to approach the capacity as it incurs a penalty for
approximating the wireless channel with complex-valueefficients by a channel with integer coefficients. Here,
this penalty is circumvented by carefully matching chameellizations across time slots to create integer-valued
effective channels that are well-suited to compute-amdsdiod. Unlike prior constant gap results, the approxinratio
gap obtained in this paper also depends closely on the fadaitptics, which are assumed to be i.i.d. Rayleigh.

. INTRODUCTION

Consider a line network, consisting of a single source comoating to a single destination via a
sequence of relays connected by point-to-point channdis. cRpacity of this simple relay network is
achieved by decode-and-forward and is determined solelthé&wweakest of the point-to-point channels.
As a consequence, the performance of the optimal schemeifeared by noise accumulation, regardless
of the length of the relay network. This raises the questibativer the same holds true in general multi-user
wireless relay networks, i.e., if the capacity depends emtitwork depth. In this paper, we investigate this
guestion in the context of multiple sources communicatiriigp \& single destination across a multi-layer
wireless relay network.

A. Motivation and Summary of Results

In a multi-layer wireless relay network, each relay obsgraenoisy linear combination of the signals
transmitted by the relays in the previous layer. In orderwuoichnoise accumulation, the relays should
perform some type of decoding to eliminate noise at eachr.ldyaatural approach is to use decode-and-
forward, in which each layer of relays decodes the messagu@shy the previous layer and retransmits
them, just as in the line network mentioned above. Unfottelgawhile the performance of this scheme
is independent of the network depth, it is often interfeeshimited and, as a result, its performance can
diverge significantly from the capacity.

Instead of combating interference, as is done in the deaodeforward approach, other communica-
tion strategies embrace the signal interactions introdune the wireless channel. One such strategy is
compress-and-forward, in which each relay transmits a cesged version of its received signal. Such
strategies can offer significant advantages over decoddeaward. Indeed, recent work by Avestimehr
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et al. [1] has shown that, for a large class of wireless relay netwdhat includes the layered network
model considered here, compress-and-forward approxiynathieves capacity up to a gap independent
of the power constraints at the nodes in the network.

One important feature of this approximation guarantee as ithis uniform in the channel coefficients
and hence the fading statistics. However, since the corsyaned-forward scheme does not remove noise
at each relay, noise accumulates from one layer in the nktwrthe next. As a consequence, the
approximation gap in_J1] (and related ones such as thosedb@seanoisy network coding [2]) increases
linearly with the number of layers in the relay network. Thas the depth of the network increases, the
approximation guarantee becomes weaker.

In this paper, we make progress on this issue by deriving agapacity approximation result for the
time-varying, multi-layer relay network with an approxitizen gap that is independent of the depth of the
network. However, unlike the approximation resultin [1lir@uarantee depends on the fading statistics.
Specifically, we assume that each channel coefficient is mriadependently according to a Rayleigh
distribution.

Our approach is built around the compute-and-forward fr@onk proposed by [3]. In this framework,
each transmitter encodes its message into a codeword dramrttie same lattice codebook. As a result, all
integer combinations of codewords are themselves codeywerdhbling relays to decode linear functions
of the transmitted codewords rather than treating interfee as noise. If these functions are invertible,
then the destination can use them to infer its desired messag

While the use of lattice codes seems like a natural fit for $kising, it alone is insufficient to approach
the network capacity, as was shown recently_in [4]. The prymmaason is that this scheme approximates
the wireless channel with complex-valued channel gains blgaanel with integer-valued channel gains.
The residual signals not captured by this integer approxamare treated as additional noise. It is this
non-integer penalty that ultimately limits the performaraf this scheme in the high signal-to-noise ratio
(SNR) regime. This obstacle was overcomelin [4] in the higlRShnit by combining compute-and-
forward with the rational alignment scheme due to Motalearl. [5].

For the time-varying channels considered here, we propasavascheme, termecbmputation align-
ment that allows for a much sharper analysis at finite SNRs. Oberse combines compute-and-forward
with a signal-alignment scheme inspired by ergodic interiee alignment [6]. By carefully matching
channel realizations, our approach decomposes the warelesnnel with time-varying complex-valued
channel gains into subchannels with constant integerdatihannel gains, over which lattice codes can
be employed efficiently.

B. Related Work

Relay networks have been the subject of considerable siteferwired networks (i.e., networks of
point-to-point channels), Koettet al. recently proved that it is capacity-optimal to separatenaeaand
network codingl[7]. It is now well known that routing over thesulting graph of bit pipes is optimal for
unicasting [[8], [[9] and, as demonstrated by Ahlswedel. [10], network coding is required to achieve
the multicast capacity.

For wirelessnetworks, channel-network separation is not always optimgher rates can be achieved
using more sophisticated relaying techniques such as deaod-forward (see, e.gl, [11]-]13]) compress-
and-forward (see, e.g.,.|[1]./[2],_[11], [13], [14]), amptiand-forward (see, e.g., [12], [15]-[18]), and
compute-and-forward (see, e.d.| [3]] [4], [19]=[21]). W¢hfor certain classes of deterministic networks
the unicast and multicast capacity regions are known [12],[f23], in the general, noisy case, these
problems remain open. Recent progress has been made bynfparsfinding capacity approximations
[1], [24]-{27].

As mentioned above, our approach combines signal alignmvéhtlattice coding techniques. Signal
alignment for interference management has proved usegbealcesly for the Gaussian interference channel
[5], [6], [25], [28]-[30Q]. In particular, ergodic alignmeinas been used to show that half the interference-
free rate is achievable at any SNR [6] as well as derive shagaing laws for ad-hoc networks [31].



More recently, several groups have used alignment to mabkgress on the multiple unicast problem in
wireless networks [32]-[35].

Lattice codes provide an elegant framework for many clas€&@ussian multi-terminal problenis [36],
[37]. Beyond this role, it has recently been shown that theeyeha central part to play in approaching the
capacity of networks that include some form of interferefie[19], [20], [25], [30], |38], [39].

C. Organization

The remainder of this paper is organized as follows. Sedfiamroduces the problem setting as well
as notation. Section 1l presents the main results as well amtivating example that captures the key
features of the computation alignment scheme. Seciioh¥Vprovide detailed proofs for our main
results. Sectiof IX concludes the paper.

[I. PROBLEM SETTING AND NOTATION

This section formally introduces the problem setting anthtion. Although we are interested here in
relay networks with several layers, it will be convenienfitst discuss networks with a single layer. This
single-layer network model is presented in Secfionlll-B. t&n apply the insights obtained for networks
with a single layer of relays to networks with more than ongetaof relays. This multi-layer network
model is presented in Section [I-C. Before we formally déscthese two problem settings, we introduce
some notational conventions in Section 1I-A.

A. Notational Conventions

Throughout this papelog(-) denotes the logarithm to the base two, and all capacitieseded are hence
expressed in terms of bits. We use bold font lower and uppse,cguch a® and H, to denote vectors
and matrices, respectively. Whenever the distinction isngortance, realizations of random variables
will be denoted by sans-serif font, e.d, is a realization of the random matrix variabké.

B. Single-Layer Relay Networks

We start with a model for a wireless relay network with a stntdyer. This single layer is to be
interpreted as a part of a larger relay network, to be intteduformally in Sectior II-C. The single-
layer relay network consists df” transmitters andy receivers as depicted in Figl. 1. We think of the
transmitters as being located at either the source nodeistbe aelay nodes in some layer, séyof the
larger relay network. We think of th& receivers as being located at the relay nodes at ldyerl of
the larger relay network.

z1t]
z1[t] y1[t]

w1 — & D1 = i1
22[t]
ws ] & zat] y2[t] Dy |
HIt]
zK[t]
wi—| ex zx ] yx[t] .
Fig. 1. K transmitters communicate an invertible set of functiens= fir(w1,w2,...,wx) of their messages té& receivers over a

time-varying interference channel.



Each transmitter, indexed Bye {1, ..., K}, has access toraessagey;, that is generated independently
and uniformly over{1,...,27%} where R, is the rate of transmitterk. Each receiver, indexed by
m € {1,..., K}, aims to recover a@eterministic function

U, é fm(wl, e ,’U}K)

of the K messagesw,, ..., wx). We impose that the functions,,)X_, computed at the receivers are
invertible. In other words, there must exist a functipisuch thatg(uy, us, ..., ux) = (w1, wa, ..., wk).
Since the functions to be computed at the receivers arendigiistic, noise is prevented from accumulating
as messages traverse the larger relay network. Moreoreg #ie functions to be computed are invertible,
no information is lost from one layer to the next in the largelay network.

The transmitters communicate with the receivers over a diglylfading complex Gaussian channel

modeled as follows. Thehannel output,,,[t] € C at receiverm € {1,..., K} and timet € N is given
b
y K
Ymlt] £ B it [t] + 2 2], 1)
k=1

wherez[t] € C is the channel inputat transmitterk, h,, ;[t] is the channel gainbetween transmittek
and receivern, andz,,[t] is additive receiver noiseall at timet¢. The noisez,, [t is circularly-symmetric
complex Gaussian with mean zero and variance one, and indepeof the channel inputs;[t] for
ke {l,...,K}, t € N, and independent of all othe,, [t'] for (m',t') # (m,t). Each channel gain
himk[t] is assumed to be circularly-symmetric complex Gaussiath miean zero and variance one, i.e.,
we assume Rayleigh fading. As a function of timéh,, . [t]).cn IS @ Stationary ergodic process for every
m and k. The K? processes$h,, [t]):eny are mutually independent as a functionmof k. Denoting by

HIt] £ (R k[t])
the matrix of channel gains at tinte this implies that the matrix process
H[1], H[2], H[3], ...

is also stationary and ergodic. The channel gdihg] are known at all nodes in the network at tirhe
In other words, we assume availability of full instantane@hannel-state information (CSI) throughout
the network.

Each transmitter consists of @mcoderE, mapping its message; into a sequence df channel inputs

(zrlt]) =y = Erlwp),

satisfying anaverage power constraint

1 T
=Yl < P
t=1
Each receiver consists ofdecoderD,, mapping its observed channel output into an estimate

U, £ D (ym(1]s - ymlT])

of the desired functiom,,, = f,,(w1, ..., wg). The average probability of error across all relays is define
as

B(US_ (it # )

Definition. A computation sum rat&(P) is achievabldf, for everys > 0 and every large enoudh, there
exist encoders with blocklength, average power constraift, and rates satisfyinEf:1 R, > R(P), and
there exist decoders computing some invertible detertiinfisnction (f,,,)X_, with average probability



of error at most. Thecomputation sum capacity(P) of the single-layer relay network is the supremum
of all achievable computation sum ratg$P).

Observe that the definition of computation sum capacity adeprescribe the function of the messages
to be computed at the receivers. The only requirement is ttiegde functions are deterministic and
invertible. In other words, the computation sum capacitheslargest sum rate at whigome(as opposed
to a specifig function can be reliably computed.

C. Multi-Layer Relay Networks

Having described the single-layer network setting, we nom to networks with multiple layers of
relays. These networks consist of a concatenatiof giingle-layer networks as defined in Section 11-B.
The network contaings source nodes at layer zero connected through a Rayleighgfatiannel toX
relay nodes at layer one. Layérin the network containg( relay nodes connected through a Rayleigh-
fading channel td< relay nodes at layet+ 1. The relay nodes at lay€p are connected to the destination
node at layerD + 1 through orthogonal bit pipes of infinite capacity. This aesuthat the intermediate
relay layers, not the bit pipes, are the bottleneck in thevoet (see also the remark below). This scenario
is depicted in Figl 2.
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Fig. 2. A multi-layer relay network withD = 2 layers andK relays per layer.

Formally, each transmitter at a source node, indexefl by{1, ..., K'}, has access tomessagev;. of
rate R, that is generated independently and uniformly ofgr. .., 275}, The receiver at the destination

node aims to recover the transmitted messdggsws, ..., wg).
The transmitters at layed € {0,...,D — 1} communicate with the receivers at layér- 1 over
a Rayleigh-fading complex Gaussian channel modeled aseirsitigle-layer case. Thehannel output

yf;f“)[ t] € C at the receiver at relay, € {1,..., K} in layerd + 1 and timet € N is given by

d+1 Z h(d+1 t] + Zﬁff“) 1],

wherex,(‘C )[ t] is the channel inputat the transmitter at relay or souréec {1,..., K} at layerd. The

channel galnsh (d+1) [] and theadditive noisez{¢*" satisfy the same statistical assumptions as in the
single-layer network described byl (1), and they are assumé@ independent across different layers.

As mentioned eatrlier, the relay nodes in layerare connected to the destination node at layer 1
through K orthogonal bit pipes with infinite capacity. Without lossg#nerality, we can assume that the
relays in layerD simply forward their observed channel outpyﬁg) [t] to the destination node.

Remark:The bit pipes from the final relay layer to the destination ¢enreplaced with another
(symmetric) multiple-access channel model without affectour main results. We have used a model



with orthogonal links with infinite capacity in order to fagwn the case when the capacity bottleneck
occurs between relay layers, not in the final hop.

Each transmitter at source noéleconsists of arencoder&, mapping its message;. into a sequence
of T' channel inputs,
(2 [y 2 Exlwn),

satisfying an average power constraint/ef

The receiver-transmitter pair at relay nodén layerd € {1,..., D — 1} consists of aelaying function
]—",gd) mapping the block of observed channel outp@g)[l], Y. [T]) from layerd into a block of
channel inputs

(@ E, 2 FO O,y D)

for layerd + 1, satisfying an average power constraintzof]
Finally, the receiver at the destination node in lajef 1 consists of alecoderD mapping its observed
channel outputs (forwarded from the relays at lajgrinto an estimate

(i1, b, . 1bi) 2 D((7 [, V(1D 1,y (D)
of the message@u, ..., wg). The average probability of error is defined as
P(Ule{u?k # wk})

Definition. A sum rate RP)(P) is achievableif, for every ¢ > 0 and every large enougit, there
exist encoders, relaying functions, and a decoder withkbdogth 7', average power constrairit, rates
satisfying>_~ | R, > R”)(P), and average probability of error at mastThe sum capacityC'”)(P)
of the multi-layer relay network is the supremum of all avhigle sum rate(”)(P).

. MAIN RESULTS

We now state our two main results, an approximate charaaten of the computation sum capacity
C(P) of the single-layer relay network (Section IlI-A) and an eppmate characterization of the sum
capacity C”)(P) of the D-layer relay network (Section II[3C), both under i.i.d. Reigh fading. The
proofs will be presented in detail in Sectidnd [V=VIII. In@en[I-Bl we explore a simple example that
captures the intuition behind our computation-alignmetiesne used to prove the main results.

A. Single-Layer Relay Networks

We start with the analysis of the computation sum capa€ify’) of a single-layer relay network
consisting of K source nodes anfl’ relay nodes.

Theorem 1. For a single-layer network with' source nodesK relay nodes, and time-varying i.i.d.
Rayleigh channel coefficients, the computation sum capatiP) is lower and upper bounded as

Klog(P) — TK?® < O(P) < K log(P) + 5K log(K)
for every power constrainP > 1.

The proof of the lower bound in Theorém 1 is presented in 8esiM (for K = 2) and[V] (for K > 2).
The proof of the upper bound in Theorém 1 is presented in @&l

Theorem[ll provides an approximate characterization of tmpatation sum capacitg'(P) of the
single-layer relay network. Comparing the upper and lowaurigls shows that the approximation is up

1As may be seen from the definition of the relaying function,deenot impose causality for the operations at the relay. Eh@imption
is only for ease of notation—since we are dealing with a leglanetwork, all results are also valid for causal relayingcfions by coding
over several blocks.



to an additive gap of K*® + 5K log(K) bits/s/Hz. In particular, the gap does not depend on the powe
constraintP. In other words, Theorein 1 asserts that

C(P) = Klog(P) £ O(1).

This is considerably stronger than the best previously kndwunds in[[4] on the computation sum
capacity of such networks, which only provide the degrdefseedom approximation

C(P) = Klog(P) £+ o(log(P))

as P — oo.

The upper bound in Theorelmh 1 results from the cut-set bodlmlying cooperation among the sources
and among the relays. This transforms the channel inkd >a K multiple-input multiple-output system,
and the upper bound follows from analyzing its capacitynfritheorent I, we hence see that computation
of a (carefully chosen) invertible function can be perfodie a distributed manner with at most(x(1)
loss in rate compared to the centralized scheme in whiclkttensmitters cooperate and thereceivers
cooperate.

The communication scheme achieving the lower bound in Tmél is based on a combination of a
lattice computation code with a signal-alignment strat@gyich we termcomputation alignmeniVe now
provide a brief description of these two components and hHwy tnteract—the details of the argument
can be found in the proof of Theordm 1 in Sectiéds V VL.

A latticeis a discrete subgroup &, and hence has the property that any integer combinaticattide
points is again a lattice point. Rattice computation codas defined in[3] uses such a lattice, intersected
with an appropriate bounding region to satisfy the powerst@mnt, as its codebook. This strategy is
designed for the case where the channel coefficients renoaistant over the duration of the codeword,
honk[t] = hm,i- Assume for the moment that the channel gains are all inkegéen each receiver observe
an integer combination of codewords plus Gaussian noisehBy\attice property, this is equal to some
other codeword plus noise. If the lattice is carefully chipdbe receivers can remove the noise, and are
hence left with the integer combination of the codewordscitiorresponds to a deterministic function
of the messages.

In general, the channel coefficients will not be integer iplds of one another. In this case, each receiver
may aim to decode an integer combination of codewords thstt &y@oroximate the linear combination
produced by the channel.l[3, Theorem 3] states that thewersetan decode integer combinations with
coefficientsa,, » € Z + /—1Z if the rates (from the transmitters) satisfy

, P
R < moin,  max log (oz?n TP b — amk\?) ' @)

From the denominator in{2), we see that the performance isfldtice-coding approach is closely
tied to how well the channel gairts,, , can be approximated by integers.Hlf, . is not a rational, then
this approximation cannot be done perfectly, resultingigmi§icant rate loss especially for larger values
of power P as shown in[[4]. Using lattices by itself as described abeveeince not sufficient to prove a
constant-gap result as in Theoréin 1.

Instead, in this paper we combine lattice codes with an algmt scheme inspired by ergodic interfer-
ence alignment [6]. By exploiting the time-varying naturfettoe channels, we code over several channel
uses to create subchannels with integer coefficients oveahwattice codes can then be efficiently used.
We term this combination of alignment and lattice codemputation alignmentBelow, we discuss a
simple example of our scheme that elucidates some of thedatyres of the general construction.



B. Motivating Example

The computation-alignment scheme is best illustrated foe= 2 users. Consider a time slot and
consider the four channel gains, . [t1] at timet,. For simplicity (and without too much loss of generality),
assume that

hy1[t1] = hio[ti] = healti] = 1,
hgvg[tl] =h

for someh € C. If we communicate over only time slot alone, the channel outputs are

yilta] = a1 [ta] + wo[ta] + 21 [ta],

Yolth] = @1[t1] + haa[te] + 22[t1].
Since the channel gains to receiver one are both integétiselaodes can be used to efficiently compute
a linear combination of the transmitted codewords. On thermband, for most values @&f lattice codes
as described above can not be used for efficient computaticgcaiver two. As a result, over one time
slot, we can only reliably compute invertible functionsarfe data stream. This yields a computation sum
rate of roughlylog(P).

We now argue that if we code over and a second, carefully matched, time glgtwe can in fact

reliably compute invertible functions dfireedata streams. This yields a computation sum rate of roughly
2 log(P). Assume we can find a second time siptsuch that

hyalte] = haofts] =1,
ho1lta] = —1,
hzg[tz] - h

Over the two time slotst; andt,, the channel outputs are
a (nlt]) _ (=]t] Tolt1] z1[t]

Y1 = < t2 ) o <$1[t2]) T <l’2[t2] T Zl[tg] ’

A

y2 fr— < prg

1[t]

1[t2]

1[t1] 1 [t1] Ta[t1] Zt]

1[t2]) <—$1[t2] h [to] - 2lta] )

Over this block channel, transmitter one aims to send sysnal and s; » and transmitter two aims

to send symbok, ;. These symbols are mapped onto the two time slots usingniimectorsv, i, v 2,
andvll, i.e.,

)
Y
)
)

) = 01,1511 + V12512

[t1]
[t2]
Ta[t1]
= V918 .
(Z'Q[tg]> 2,192,1
We now describe how to choose these transmit vectors.

We begin with the special case whefd = 1. We choose the transmit vectors to bg, = (1 1),
vio=nh(1 —1)T, andvy; = (1 1)T. This leads to the effective channel

1 1

Y = (1) (81,1 + 82,1) + h (_1) S1,2 + 21,
1 1

Yo =h 1 (51,2 + s2,1) + _1) stz

2While we consider only a single pait:, t2) of time slots, it can be shown that with high probability abhall time slots can be matched
such that these conditions are (approximately) satisfied.



Thus, each receiver sees two orthogonal subchannels, @aghing integer combinations of symbols.
Receiver one observes the sum + s, ; on one subchannel and , on the other; receiver two observes
the sums; » + s, ; on one subchannel and; on the other. We say that the subchannelsadigned for
efficient computation in that they are orthogonal and haveger coefficients. Given the orthogonality
of the subchannels, they can be recovered at both receigéng matched filters. And given that all
subchannels have integer coefficients, lattice codes caffiogently employed to achieve a computation
sum rate of roughly? log(P). See Fig[B for an illustration.

x1[t1] = s1,1 + hs1,2 yi[t1] +y1lt2) = 2(s1,1 + s2,1) + ZIL
x1[t2] = s1,1 — hs1,2 y1[t1] — yilte] = 2hs1 2 + 21
TX 1/ 10 RX 111
0 1
. N .
q A

1 0

0 —1

1 0
TX 2 0 1 RX2 A

/ N '1
R 0 \
0 h
z2lt1] = s2,1 yalt1] + y2lta] = 2h(s1,2 + s2,1) + 2
x2lte] = s2,1 y2[t1] — y2(ta] = 2511 + 25

Fig. 3. Computation alignment scheme for two users over tlwts.sTransmitterl sends symbols;,; and s;,» from two independent
lattice codewords while transmitter,; sends one symbol from a single lattice codeword. After gmiste scaling, receiver observes the
sum of two symbols in one subchannel and the remaining syimbible other subchannel. Put together, these integer catibis form a
full rank set of linear equations. In the figurg! £ zx[t1] + zx[t2] andz, £ zi[t1] — zi[ta).

Next, consider the casé| < 1 (the casgh| > 1 can be dealt with similarly). In this setting, one can
improve upon the scheme above by steering the effectivenghaains of aligned symbols to the nearest
integer, rather than fully equalizing them. Lebe the smallest natural number such that

1 <blh| <2,

and set the transmit vectors to bg; = (1 1)T, v = bh(1 —1)T, andwvy; = (1 1)T. The key
observation here is that, siné&h| € [1,2), all transmit vectors have comparable lengths, leading to a
better power allocation across subchannels than the saoieechf transmit vectors with = 1.

With this, the effective channel becomes

1 1

Y = (1) (8171 + 82,1) +h (_1) b31,2 + zq,
1 1

y2=nh (1) (bs12 + s21) + (_1) S1,1 1 Z2.

Sinceb is an integer, this is again aligned for efficient computatamd achieves the same computation
sum rate of roughly? log(P).

Building on this example, the general scheme developed atid®gV encode. — 1 data streams
acrossL time slots to reach a computation sum rate of approxima%%tﬁ log(P). By taking L — oo,
this strategy can approach the desired computation sun2 tag¢P) to within a constant gap. As shown
in SectionV], we can establish aligned subchannelsifor 2 users in a similar fashion.
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C. Multi-Layer Relay Networks

Having analyzed the computation sum capacity for singyedaelay networks, we now turn to the
sum capacity of relay networks with multiple layers. Unlitkee single-layer network, there is only one
destination node, which is interested in recovering thgioal messages (and not merely a function of
them). We are hence interested here in sum capacity in tbaioraal sense.

Theorem 2. Consider a multi-layer relay network with > 1 layers, K > 2 source nodes, and relay
nodes per layer. If the channel coefficients are time-vayynd i.i.d. Rayleigh, the sum capacity”’ (P)
is lower and upper bounded as

Klog(P) — 7K3 < C'P)(P) < Klog(P) + 5K log(K)
for every power constrainP > 1.

The proof of Theorer]2 is presented in Secfion VIIl. The ugpmsnd follows directly from the same
cut-set bound argument as in Theorem 1. The lower bound wepute-and-forward in each layer as
analyzed in Theorerh] 1. The destination node gathers all dhepated functions and inverts them to
recover the original messages sent by the source nodes.

Theorenm 2 provides an approximate characterization of the capacity of theD-layer relay network.
The gap between the lower and upper boundshs + 5K log(K) bits/s/Hz as in Theorefl 1. This gap
is again independent of the power constraihtshowing that

CP)(P) = Klog(P) £ O(1).

Moreover, the gap in Theoref 2 is also independent of the arktwlepth D. In other words, the
approximation guarantee is uniform in the network paraméte

It is interesting to compare this approximation result teestknown capacity approximations for general
Gaussian relay networks of the form considered here. Foergémelay networks, these bounds rely on
a compress-and-forward scheme and achieve an additivexapyation gap ofl.26(D + 1)K bits/s/Hz
[1], [2]. Unlike the gap in Theoreral 2, this gap is not uniformthe network depthD. This is due to
the use of compress-and-forward: In each relay layer, tlaamdl output, consisting of useful signal as
well as additive noise, is quantized and forwarded to thet tegyer. Thus, with each layer additional
noise accumulates, degrading performance as the netwptk dereases. The result is an approximation
guarantee that becomes worse with increasing network depth

Theorem 2 in this paper avoids this difficulty by completedynoving channel noise at each layer in
the network. This is achieved by decoding a deterministic (aence noiseless) function of the messages
at each relay. Thus, noise is prevented from accumulatinbeamessages traverse the network. It is this
feature of compute-and-forward that enables the uniforpr@pmation guarantee in Theordmh 2.

We remark that th& K3 term in the lower bound of Theorelm 2 is due to the construatiasuring that
all received signals are integer multiples of each othandfead of Rayleigh fading we consider channel
gains with equal magnitude and independent uniform phatiedathe lower bound in Theorelh 2 can be
sharpened tds log(P), resulting in an approximation gap &f log(K'). Deriving capacity approximations
with better dependence adid for general fading processes is an interesting directiorfufture work.

It is also worth mentioning that, unlike the gap presenta@ hidne approximation gap inl[1] is uniform
in the fading statistics. Developing communication scheth@t guarantee an approximation gap that is
uniform in both the network depth and the fading statistecthierefore of interest.

Finally, like other signal alignment schemes for time-wagy channels such as [29] and| [6], the
communication scheme proposed in this paper suffers frowp dilays. This limits the practicality of these
schemes even for moderate valueskaf Finding ways to achieve signal alignment (be it for intezfece
management or function computation) with less delay is dasfdmportance.
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IV. CHANNEL QUANTIZATION

The achievable scheme in Theorem 1 groups together tireessidhat an appropriate linear combination
of the channel outputs within each group yields a more delgiraffective channel. This grouping of time
slots is performed such that the corresponding channetatiains “match” in a sense to be made precise
later. Since each possible channel realization has measuoe we cannot hope for channel matrices to
match exactly. Instead, we will look for channel matriceatthpproximately match. This approximate
matching is described by considering a quantized versigheo€hannel gains. In this section, we describe
such a quantization scheme, similar to the one used for ergategrference alignment in_[6].

We divide the complex plane from the origin up to distamcénto concentric rings centered at the
origin and with spacing /v for some natural number > 2 to be chosen later. Then, we divide each of
theser? rings intov? L segments with identical central angles of size/(v?L) for somelL € N also to
be chosen later. These segments serve as quantizatioriarettee channel coefficients. Each segment is
represented by the mid-point on the bisector of the cormedipg central angle (see Fig. 4). We add one
additional quantization point at infinity to which we will mpaall channel gains with magnitude larger
thanv. Note that multiplying a quantization point by ayh root of unity results again in a quantization
point. We will use this property frequently in the sequel.

S(hmk)

Fig. 4. Quantization scheme for channel coefficients. Cueffts up to magnitude are quantized by magnitude and angle. The number
of angular regions is a multiple df to ensure that multiplying a quantization point by afh root of unity results again in a quantization
point. In the figurey =2 andL = 2

Let h,,,[t] denote the quantized version of the channel coefficignt[t] € C. We then have that
hilt] = o0 if |hmilt]] > v, and thath,, ,[t] is the point in the “middle” of the quantization cell
containingh,,, ;[t] otherwise (with ties broken arbitrarily). We denote Hythe collection of all possible
guantized channel values. It will be convenient in the folltg to denote by

pr(H) £ P(H[1] = H)
the probability mass function of the quantized channel gain
HI[t] £ (g [t])
Note that the number of quantization regions is

H|=v'L+1. 3)
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By choosingv large enough, we can ensure that the distance between amywith magnitude less than
v and its closest quantization point is arbitrarily small.faeat, for anyh,, ;[t] with |h,, [t]| < v,

] = g lt]] < (0 + 1) /0. (4)

Furthermore, for any > 0,
P(|hmilt]] < v Vm,k) >1-10

for large enough/, and hence R
P(|hmlt]] < 0o Vm, k) >1—0. (5)

Therefore [(4) holds with probability at least— ¢ for v large enough. Finally, for ang,, .[t] such that
| k[t]] < v, A A
max {|hm7k[t]|, |hm7k[t]|‘1} < 2max {|hm7k[t]|, |hm7k[t]|‘1}, (6)

since each finite quantization point is the mid-point of tleeresponding bisector interval.
Since the matrix process
HI,H[2] H[3),...

is stationary and ergodic, the quantized process
H[1], H[2], H[3], ...

is also stationary and ergodic (see, e.Q.,| [40, Theoreni,6Tlheorem 6.1.3]). Moreover, since each
hm.k[t] is circularly symmetric, and since the quantization pracedoreserves this circular symmetry, the
distribution of the quantized channel valuks ;[t] is invariant under multiplication by thé&th root of
unity. Furthermore, since th&> processesh,, x[t])«en are mutually independent as a functionsofk,

so are thek? quantized processeéém,k[t])teN. For future reference, we summarize these observations in
the following lemma.

Lemma 3. For eachm, k, andt, the quantized channel gain, ;[t] and its rotationexp (v/—12%) /o, x1]
have the same distribution. TH€? quantized processes

~

P ge 1], P 1o [2], P (3], - -

are independent as a function of, k. The quantized matrix process
HIl|,H[2],H[3],...

is stationary and ergodic.

The basic idea behind our scheme is to matctarefully chosen time slots to create effective integer-
valued channels. The most intuitive version of this stratisgto match channels in a “greedy” fashion.
However, it is simpler to analyze this strategy if we splié thlock of 7" time slots intoL consecutive
subblocks and assume that thle time slot within a matched set always comes fromdhesubblock. This
in turn allows us to draw upon the the ergodic theorem to guaeathat each subblock contains roughly
the same number of each possible channel realization, mgedhat almost all channel realizations can
be successfully matched. Specifically, consider a blockength7" of channel gains witid™ a multiple
of L, and divide this block intd. subblocks each of lengthi/L. Count the number of occurrences of a
particular channel realizatioH € #%*¥ in one of theL subblocks. By the ergodicity of the quantized
matrix process, we expect this number to be clos& td times the probability of this realization. The
next lemma formalizes this statement.
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Lemma 4. For any L,v € N andn,e > 0, there existsI’ = T(L,v) € N divisible by L such that, with
probability at leastl — ¢, we have, for alll € {1,..., L}, and allH € HE*E,

(T/L

> U{HI=H}> (1 -npg(H)T/L.

t=(¢—1)T/L+1
Proof: By Lemmal3, the quantized matrix process
H(1], H[2], H[3]....

is stationary and ergodic. This stochastic process takeswan the finite se#{**%, and hence, by the
ergodic theorem (see, e.d., [40, Theorem 6.2.1]), its @ogbidistribution converges to the true distribution
almost surely. For fixed € {1,..., L}, this implies that there exists A such that with probability at
least] — /L, we have for allH € HX*K,

(T/L
> {H[] =H}>(1-n)py(H)T/L.
t=({—1)T/L+1
Applying the union bound ovef € {1, ..., L} proves the result. [ |

V. PROOF OFLOWER BOUND IN THEOREM[I] FOR TwO USERS

In this section, we prove the lower bound in Theofém 1 for the-tiser case, i.el = 2. Consider a
block of T" channel gains, and divide this block inftosubblocks each of length @f/ L (which is assumed
to be an integer). The construction of the achievable schiamdeoren( ]l consists of three main steps.
First, we carefully match. time slots, one from each of the subblocks. This matching is performed
approximately?’/ L. many times such that essentially all time slots in the blotclength 7" are matched
(see Sectiom _V-A). Second, we argue that dnyime slots matched in this fashion, when considered
jointly, can be transformed into parallel channels withaiig integer channel gains using appropriate
linear precoders at the transmitters and matched filtedseatetceivers (see Sectibn V-B). Third, we show
that over these integer channels we can efficiently andbiglieompute functions of the messages (see
Section V-C).

A. Matching of Channel Gains

We start with the matching step. Since the number of possi@nel realizations is uncountable, only
approximate matching is possible. To this end, we quantah ef the channel gains as described in
Section1\. Denote by:,, . [t] the quantized version of the channel gain[t]. By Lemmal4, for every
g1 > 0 andn > 0, there existd’ large enough such that with probability- €, each of thel. subblocks
is “typical”, in the sense that, for every subblotk {1,...,L}, and every realizatioM € H**X of the
guantized channel gains,

(T/L

> I{H[] =H}>(1-n)pgy(H)T/L.

t=(—1)T/L+1

Recall that full CSI is available at all transmitters andeigers. Hence all transmitters and receivers
can determine at the end of the block of len@thf the realization of quantized channel gains is typical.
Whenever this is not the case, the decoders declare an Byrahe argument in the last paragraph, this
happens with probability at most. We assume in the following discussion that the quantizexhcél
gains are typical.
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We can then assume that every matrix of quantized channes aappears exacﬁy

(1—npg(HWT/L (7)

many times in each of thé blocks, ignoring all the remaining time slots. This resutts loss of at most
a factor(1 —n) in rate. Furthermore, we may assume without loss of gemetthiat the first(1 —n)7"/L
guantized channel gains in each subblock satisfy this tondi

We now describe the matching procedure alluded to earliensider the channel gains at time= 1
in the first of theL subblocks and the corresponding matrix of quantized cHagaias H[t,]. Let ¢, be
the first time in subblock € {2,--- | L} such that

hialte] = ;Ll,l[tl]a (8a)
ih,z[tz] = ill,2[t1]> (8b)
hzz[ﬁ] = 52,2[751], (8c)
il2,1[tz] = Wi_lilzl[h], (8d)

where

wy, = exp (\/—12%)

is the Lth root of unity. By construction of the quantization schefifie, € 7 thenwﬁ‘lfz € #, and hence
such a collection of time slots, ..., ¢; can exist. Sincé; < t, < --- < tr, this matching procedure can
be performed in a causal manner and using only instantar@sudMoreover, by the full CSI assumption,
this matching can be computed at each transmitter and excélote that, as discussed in the motivating
example in Section IlI-B, the choice @f,; is used to shift the symbol pairings at the second receiver.
This in turn makes it possible to create orthogonal integdéued subchannels at both receivers via careful
power allocation.

Having performed the matching for = 1, we proceed witht; = 2. We again match channel gains in
the same fashion, ensuring that each time &lah subblock? € {2,..., L} is chosen at most once. In
other words, this matching procedure constructs many mersiectingl.-element subset§ty, ... ¢} of
{1,...,T}. We now argue that this procedure can be continued sucdlgssfuto ¢, = (1 —n)7T'/L, i.e.,

(1 —n)T/L of these subsets can be found. R

Consider a time slot; in the first subblock and the corresponding channel gédts |. This channel

gain induces matched channel gains

~ ~ ~

Hit,|, H|t;],..., H[tL],

within subblocks2, ..., L. Hence, the distribution of the channel gaiﬁf{tl] at some fixed; inguces a
distribution of the channel gainH [t,] for ¢ € {2,..., L}. Itis not cleara priori that H[t,] and H [t] for
any fixedt have the same distribution.

The key observation for the analysis of the matching proeeduthe following. By [(¥), the matching
procedure is successful for all € {1,...,(1 —n)T/L} if the distribution of H|[t,] for { € {2...,L} is
the same as the distribution &1 [(¢ — 1)T/L+1] (or any other channel matrix &ikedtime ¢ in subblock
(). By stationarity, the distribution off [(¢ — 1)7'/L + 1] is the same as the distribution & [1]. Hence,
it suffices to argue thaH [t,] has the same distribution &4 [1], i.e., thatH [t,] has distributiorp . We
now show that this is the case.

By assumption, the distribution of each channel gaijn,[t] is circularly symmetric. By Lemmal 3,
the quantization scheme preserves this circular symmiattire sense that all possible quantized channel
gains with the same magnitude have the same probabilitgeShe components dif [t] are independent

3SinceT’/L will grow to infinity, we can assume here thi (7) is integed avoid floor operators.
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by Lemmal3, this circular symmetry also holds for their jodistribution, i.e., if H and H’ satisfy
bk = |hy, x| for all m, k, then

pa(H) =pg(H).
Observe now that, for each, k, the channel gains

A~ A~

]Alm,k[tIL Pomilta], - - s Pt

all have the same magnitude by the matching condifibn (8)eleer, since the distribution df [t,] is
circularly symmetric, and sincél(8) results irfiged phase shift, the induced distribution of the matched
channel gaind [t,] is circularly symmetric as well. Together, these two fadteve that the distribution
of the quantized channel gains induced by the matching mvitie subblockg € {2,..., L} is identical

to the distribution of the quantized channel gains withia finst subblock. This implies that the time slots
ty=1uptot; = (1 —n)T/L can be matched by the described procedure.

Out of the(1 — n)T'/L time slots that are matched in this fashion, at m@StL contain a quantized
channel gain equal to infinity byl(5) for sonde= 6(v) (wherev is the parameter governing the number
of quantization points). These time slots are not used. Mg the full CSI assumption, this event can
be observed at each transmitter and receiver. Accountinthétime slots that are not matched, a total
of at least(1 —n — 0)7'/L time slots in each subblock are used for communication.

To summarize, the channel gains in each of fhesubblocks are matched up to satisfy (8). With
probability at least

1- 51(T)7 (9)

at least a fraction
(1 =n(T) = d(v))

of the time slots in each subblock can be matched in this daskiich that all the corresponding channel
gains have finite magnitudes. Here the parameters can berchosatisfy

lim &,(T) = 0, (10)
T—o0
lim n(7T) =0, (11
T—o0
both for fixed values of. andv, and
lim 6(v) = 0. (12)

V—r00

B. Precoding and Matched Filtering

Consider time slot$,, ..., ¢, in subblocksl, ..., L that are matched as described in the last section.
We now describe a linear precoding transmitter design artdhed filtering receiver design that transform
the complex channel over thedetime slots into parallel integer channels.

Construct the diagonal matrix

Dy, £ diag ((hmxte)is),

from the L matched chanrlel gains between transmiktemnd receivern and definef)mvk in the same
manner, but with respect t,, «[t/]. Observe from[(8) that

Doy — {hmkI, if (m, k) # (2,1)

A~

hon ' if (m, k) = (2,1)

by the matching procedure, where

and
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Denote by -
L é (l’k[tl] {L'k[tg] Ce {L'k[tL])

the vector of channel inputs at time slats. .., ¢, at transmitterk € {1, 2}. Similarly, denote by

Y 2 (ymltt] ymlts) - ymlts])

and .
Zn E (zmlty] zmlta] - zm(tr))

the vector of channel outputs and noises at time glots ., ¢, at receiverm € {1,2}. The relationship
betweenx; andy,, is given by

Ym = Dm,lml + Dm,2m2 + Zm (13)
for m € {1, 2}.
Each transmitter uses a linear precoder over the block ehgdd). Transmitter one has access to
L symbolssy q,...,s;,, and transmitter two has access fo— 1 symbolss, i, ..., s, 1. We assume

that all these2L — 1 symbols have zero mean and are mutually independent. WepreMide a detailed
description as to how these symbols constitute codewonassnatchings of time slots in Section V-C.
Each message symbol is multiplied by a transmit vectdtin Transmitter one uses a total Hftransmit
vectorsv, 1, ...,v, € CF and transmitter two uses — 1 transmit vectorsv, q,...,vo1-1 € CE. The
modulated transmit vectors are summed up by the transrattel; at timef,, the /th component of this
sum of vectors is sent over the channel. The resulting chanpet vectorz; at transmitterk € {1, 2}

is given by

L
xr = Z 81,0010 (14a)
=1
and
L—1
Lo = Z 8275’0275. (l4b)
=1

Substituting [(1¥) into[(13) yields

Y1 = (s11D11v11 + S21 D102 1) + (512D1101 2 + S22D1 2092) + - -
+ (s1,0-1D11v1,0-1 + So,0-1D12v2 1) + 51,0 D1avi L + 21 (15a)
and
Yo = (512021012 + 521D22021) + (513D2 1013 + S22D22V22) + - -
+ (s1..D21v1 L + So.p—1D22Vs 1) + 511D 1011 + 2o. (15b)

Our goal is to creatd. orthogonal subchannels, indicated by the parenthesdsSn ith integer-
valued coefficients at each receiver. We now demonstratethigvcan be achieved through an appropriate
choice of transmit vectors. Consider first the special cabera the channel coefficients all have unit
magnitudes, i.e.|h,, x| =1 for all m,k. Assume the transmit vectors,, satisfy the following four
computation-alignment conditions

1) D171’0175 = D1721)27g, for ¢ € {1, e L — ]_},

2) D271’0175 = D2721)27g_1, for ¢ € {2, 3,..., L},

3) {D; v11,...,Dy v, 1} are orthogonal to each other;

4) {Dy vy ,...,D v, 1} are orthogonal to each other.
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Then, by the first and second alignment conditiohs] (15) earelwritten as

Y1 = (s11+ 521)Dy1v11 + (S12 + S22) Dy v10+ - -
+ (s1,0-1 + S2.0-1) D111, -1 + s1..D1av1 L + 2

Yo = (S12 + 521) D211 2+ (51,3 + S22) Do 113+ -
+ (s1.L + S2.p-1)Da1vi L + s1.1Da 1011 + 2o

Note that each subchannel consists of the sum of two symolsnultiplied by some vectoD; ;v ¢
or D,;v;,. By the third and fourth alignment conditions, these vextare orthogonal and can hence
be recovered without any interference using matched fikerhe receiver. Thus, we have transformed
the channel with complex channel coefficients into severlogonal subchannels with integer channel
coefficients over which lattice codes can be efficiently used

For arbitrary channel matriceB,, , satisfying the computation-alignment conditions is nosgible.
However, we now argue that due to the special formI®f ;. resulting from the matching procedure
described in Section VAA, this is possible here. Assume liermoment that the channel gaibs, , are
equal to their quantized versioﬁm,k. Then it can be verified that the following choice of the traits
vectors satisfies the computation-alignment conditions:

V1,1 :(1 1 ... 1)T
iL2,2iL1,1

~N—1 1 ~N—1 1 -1
1)174 = D271D272D1’2D171’017@_1 = = iL F 1)174_1, g - {2, 3, ey L}
2,1161,2

~

Ao h
-1 1,1
Vo = D172D1711)17g = iL V1,0, IS {1, RN L}
1,2

Turning to the case with general channel magnitydgs.|, we observe that this recursive construction
leads to transmit vectors with exponentially differentmerasL increases, i.e.,

lows]l = (—‘;’2’2"E1’1‘)L_1||v11||.
= a 7

This causes extremely unequal power allocation acrossrémsrit vectors for largd., resulting in a
significant rate loss and precluding a constant-gap cgpapiproximation. To circumvent this issue, we
will relax the computation-alignment condition, which ur will allow us to equalize the vector lengths
using a scaling factor.

Observe that the first and second computation-alignmemitons guarantee that each of the orthogonal
subchannels carries the sum of two signals. This is suftid@nthe efficient use of lattice codes, but
not necessary. Indeed a weaker sufficient condition is theh ®f the orthogonal subchannels carries an
integer linear combination of the signals. We can thus rét@xsecond computation-alignment condition
to

2’) D271’0175 = bjD2721)27g_1, for ¢ € {2, 3,..., L}
where the scalab; is an integer or its inverse.

These relaxed conditions are satisfied by

V1,1 = (1 1 ... 1)T (163.)

P hooh
’Ul’g = bgDiiDg’QDl_éDLl’vl’g_l = bg A2’2A1’1 F_l’vl’g_l, £ c {2, 3, ey L} (16b)

2,171 2

~

A h
Voy = Dl_,%Dl,lvll = fLLl V1,0, l e {1, RN L} (16C)
1,2
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where the scalab, is of the formn or 1/n for the smallest natural numbere N such that
lvrell/VL € [1,2). (17)

For convenience of notation, we sigt = 1. Note that scalab, equalizes all transmit vectors to have
approximately the same norm, as desired.
We now analyze the performance of this choice of transmitoredn detail. Define

c=c(H) = [[max {|fumpl, [homil '} (18)
m,k
It follows from (I8) and [(1l7) that
h h
1/c < LRl < ||v2,g||/\/Z§2‘f’1‘ < 2 (19)
P12 |21 2]
and that
max{b, b, '} < 2e. (20)
We allocate the same amount of power
P N
E(|sk.*) = I =P (21)
to each symbos,. ;. Since||lv,||* < 4Lc* by (I7) and[(IB), we have using the constructiorgfin (14),
1
ZE(|la]?) < P,

satisfying the overall average power constraintFobver thel time slotsty, ..., .
The operation of the receivers is implemented by multigyiine vector of channel outpuig, by the
matched filter

Onj = Vi /|| Um] (22)
form=1,7€{1,...,L} and form =2, € {1,...,L — 1}, to form
L L-1
), Ym = Z $160), D 1v1e + Z $2,00), ;Di 2o + 0, 2.
/=1 /=1

In general, the channel gains are not equal to their quahtieesions, i.e..D,, ; # bm,k- However,
since we only communicate during time slots satisfyjhg, .[t]] < v, the quantization error is upper
bounded by[(4) as R

| ge[te] = hmilte| < (m+1)/v,

so the matriced,, , and ﬁm,k are quite close for quantization parametelarge enough. We will use
the same transmitter and receiver structures as for thegigrfmatched case, i.e[,_(16) aid(22). The
computation-alignment conditions are then only approxétyasatisfied. To determine performance, we
will bound the additional interference that is caused byeanfgct alignment (received vectors do not line
up) and imperfect zero forcing of interference (receivedt@es are not orthogonal).

Define R

Tm,k £ m,k Dm,k

as the (diagonal) matrix of channel quantization errors. dAle then rewrite the output of the matched
filter at receiver one as

St t t F
01 Y1 = (51,01 ;D11v1 + 82,507 ;D1 pvs )
. . —t .
+ (Sl,j’vl,j'rl,l’vl,j + 82,07 ;Y1209 + 24#51,@’01,le,le4 + Ze;ﬁjsléval,Z”M
+9] 2 (23a)
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for j€{1,...,L—1} and as
] py1 = s1.00)  Dijv g
_t L-1_ =t L-1_ ~f
+ (81,001 L X 10v1n + D0 81001 p Diavie + 30,0, S2,00 1 Diavay
+9] 2 (23Db)
for j = L. Similarly, we can rewrite the output of the matched filteredeiver two as
] Y> = (5154104, D2101 141 + 52,08 ;D2 505 ;)
+ (51,j+117§,jT2,1vl,j+1 + 52,408 o002 + Ze¢j+131ﬂ7;j1)2,101,z + Zé;éjSZ,fﬁ;,le?v?,f)
+ 0] 2 (23c)

for j € {1,...,L —1}. From [23), we see that the matched filter output consisthrefet parts: desired
signal, mismatch terms due to imperfect alignment and ifepeeero forcing of interference, and receiver
noise.

We start with the analysis of the desired signalsid (23). désired signal at receiver one is

817j1~11[’jﬁ171’1]1,j + sz,jﬂ’jﬁmvw = }All’lH’ULjH(SLj + Sg,j) (243.)

forje{1,...,L —1} and A A
Sl,L’ﬁI,LDl,l’Ul,L = h1,1||’01,L||51,L (24Db)

for j = L, where we have used (16) and(22). Similarly, the desiredasigt receiver two is
$1j4+108 ;Do 101 ji1 + 52,03 Dovaj = haol|va ]| (bj1151,41 + 525) (24c)
for j € {1,..., L — 1}. The received signal power (for each symbol) satisfies

. (@) . .0 LP
\hi PPl I1PE(Isks]?) = |hiaPLP > = (25a)

at receiver one, where we have uskd (17) (21pjrand [18) in(b). Similarly, using [(19) instead
of (17),

S g
P22 |* |2 B (|sk,7) = —————-LP > — (25h)

at receiver two (not accounting for the normalization fadtq ).
Before we continue with the analysis of the mismatch term@8), we argue thaﬁﬁ;,j‘rmkvuﬁ is
small. By the Cauchy-Schwarz inequality,

o o o [ 1 P (26)

where|| Y, ;||* denotes the sum of squared diagonal entrie¥ gf,. By construction]|v; ;||> = 1. From
@), ||, |* satisfies
I mkll? < Lim +1)%/0%

By (I7) and [(19),

lor4* < 4Lc?

for k € {1,2}, where we have used that> 1 by (18). Combining this with[(26) yields the desired upper

bound
4L2(7r+1)202A )

|13Jn7j'fm,kvk,g|2 < 5 v (27)

14
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The mismatch term in_(23) due to imperfect alignment is
s1;01 Y1101 + 5250 ;L1202 = €115515 + €122 (28a)
at receiver one, and
817j+1’1~J;j’r271Ul,j+1 + 52,j{];jr2,2'v2,j = €2,1,j51,j+1 T €2,2,752,; (28b)

at receiver two. Each term,, , ; can be interpreted as the residual channel fluctuation tftequantized
matching, and satisfies
‘em,k,jP < (29)

by (27).

The mismatch term in_(23) due to imperfect zero forcing is

. ~ 1 ~ 1
01, = E SI,ZUL]'DI,I’UI,Z_'_ E 82,@’0173'D1,2’U2,e

04§ e
= Z s100] ;Y1101 + Z S2,00] ;Y120 (30a)
[ [

at receiver one, where we have used the orthogonality ofd@beived vectors under channel gaDsnk
Similarly,

s _ .
0y = E 51,5’02,]-1)2,1’02,54-5 52,009 ;Do 202

511 5
= Y sl Yoavag+ > 52005 Lo ovay (30Db)
#£j+1 L#£j

at receiver two. Using(21) and_(27) together with the indelemce of the signals; ., the total zero-
forcing leakage power

0® £ maxE(|6,,;]%) (32)
m,j
is upper bounded by .
0? <2(L —1)y*P (32)
at each receiver.
Finally, the additive noise term
Zm,j = ’6;sz (33)

in 23) is circularly-symmetric complex Gaussian with mezmo and variance one, singe,, ;|| = 1.
Substituting[(24),[(28)[(30), and (33) info {23), yieldattkthe output of thgth matched filter at receiver
one is

5y = {@171”’01,]'”(8173' +s25) F gy G AL (34)
’ hiqllvycllsie + e if j=1L
where
ny A {6171,j817j + €1,2,552,5 + 917j + 21,]', if ] 7§ L (35)
" 6171’j817j + 91,]- + 2173', |f j =L
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is the sum of the imperfect alignment, imperfect zero faycend noise terntéThe signal-to-interference-
and-noise ratio (SINR) for each subchannel at receiver sribus lower bounded by
@  LP/c
SINR; > /e
1402+ 2+2P
) LP/c?
1+ 2L~2P
c P/(4ct
(0) /(4c?) ’ (36)
1+ 2L2%(m + 1)2P/v?

where (a) follows from (28), (29), [(311), and (33)p) follows from (32); and(c) follows from (21) and
(217). Similarly, at receiver two, we have

V=

—~
~

’ﬁgd-yz = ]AZ2,2H'U2,jH<bj+151,j+1 + S9.;) + o (37)
for j € {1,...,L — 1} and with
M2, 5 = €2,1,jS1,j+1 T €2.2.jS2.; + 927]' -+ ngj. (38)

Recall thath;,, is of the formn or 1/n for some natural number € N with n < 2¢ by (20). If ;11 = n
then both channels have integer coefficients;lfi = 1/n, then we can multiply the channel output by
n to obtain a channel with integer coefficients. This decredise effective SINR by at most a factée?.
Following the same steps as before, the signal-to-intenta-and-noise ratio is lower bounded by

P/(16c°)

L2(m +1)2P/v?
As we had seen earlier, tibe factor serves as a normalizing term to ensure that all thestné vectors

vy, have approximately magnitudéZ. From [37), it is now clear why; has to be chosen as a small

integer or its inverse. Indeed, it is precisely this propéhnat ensures that the subchannels induced by the

matching of channel gains and the precoder/matched filtez kasentially integer channel gains. As we

will see, having integer channel gains significantly siriiggdi the task of efficient reliable computation. This

transformation of the original channel with complex coedints into subchannels with integer coefficients

is at the heart of the proposed communication scheme.

SINR, > ——— (39)

C. Computation of Functions

In the last section, we constructed and analyzed the subelmduced by the precoder and matched
filter. We now show how to reliably compute functions oversiesubchannels from the precoder input
to the matched filter output. R )

Consider all time slots in the first subblock with quantizedmnel realizatio € H%*X, By Lemmd4,
with probability at leasti — ¢,(7") there are at least

T 2 (1 —(T))pu(H)T/L (40)

time slots in the first subblock that have this quantized okarealization. By the matching construction
in Section[V=A, the firstT™ such time slots can be successfully matched with time stosubblocks
¢ e {2,..., L} with quantized channel realizations chosen accordinlto (8

By (34) and [(3V), the precoding and matched filtering schewma Sectiori V-B transforms each group
of L time slots intoL — 1 subchannels of the form

0= 815 (510 + S510) + i 10 (41a)

H H H
ré,} 1] = B (@), s 1 + o s ) + 11 (41b)

“The noise termu,; ; depends on the signal , and is, therefore, not additive. We will handle this diffigulater.
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forje{l,...,L -1}, and wheres,g'}) are the channel inputa,gf;ﬁrl and ag';? are nonzero integerﬁfgfj).

are positive scaling factors, amdf;-) [t] and ug'j.) t] are interference and noise as[inl(35) dnd (38). Receiver
one observes one additional subchannel of the form

rL 1 = AL syl + 2l (41¢)
From [36) and[(39), th&INR to all of these subchannels is lower bounded by
SINR(H) £ min SINR,,(H)
P/(16¢5(H))
T 142037+ 1)2P/v?

(42)

where we have explicitly written out the dependence: ahd SINR on H. )
Each transmittek splits its message;, into non-overlapping submessagﬂgj, one for each subchannel

j of quantized channel realizatidt. Each such submessage is a vector with componeds in...,q—
1}. Receiver one attempts to recover the functions

A H L

'u,(l:'.) £ wgvj) + wé,j) (mod q), if j#L
Y el if =1L

over subchannel € {1,..., L}. Receiver two attempts to recover the functions

A A A A (A
“;,J‘) = a§7j)-i-1w§,j)—k1 + a;,j)wé,j) (mod q)

over subchannel € {1,..., L — 1}. )
These equations are clearly invertible. Indeed, receimerdncodemﬂ) alone. Receiver two computes

a linear combination with nonzero coefficientswﬁ’HL)_1 and w%HL) Knowing w&HL) we can thus recover
ngL)_l. Continuing in the same manner, alternating between thevexs in each step, we can successively
recover all transmitted messages. This shows that the mgy@tween the messages at the transmitters
and the decoded functions at the receivers is invertible.

Fix a quantized channel realizatidh Applying L timed [3, Theorem 1] (summarized in the notation
of this paper as Lemmid 5 in AppendiX A) guarantees that oweistibchannel(41), a computation sum

rate (normalized by the numb&t™ of time slots in the subchannel) arbitrarily close to
(2L — 1) log (SINR(H))

is achievable with average probability of error at megit)(T(“)) 5 0asT™ — ~o. In terms of the
original blocklengtht, this translates to a computation sum rate of
T(H) .
(2L — 1)~ log (SINR(H)).

Moreover, sincel'™ — oo asT — oo, and since, for fixed, and quantization parameterthere are
only finitely many values oH, we also have

g2(T) £ max egH)(T(':')) —0
H

asT — oo.

®Since the input symbols at the two receivers for differeiiem of j € {1,..., L} are coupled, we need to make use of the universality
of the channel encoders mentioned after the statement ofriadn
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We repeat the coding procedure above for all quantized ehaenlizationsH with finite magnitudes,
i.e., satisfying||H||., < oo. If our construction is successful (see the analysis ofrarrdhe following
paragraph), then the overall computation sum rate can berlbaunded as

2L-1) > %mlog(SINR(I:I))

H:|H]| oo <00
SN0 @) Y () lox (SINR(F))
H:|H]| oo <00
> QLL_ (=) mﬂ% pil <log <1 - 2L2(er/—1%61)2P/V2) . 610g(c(m))

2 2LL— (1= n() <(1 ~3v))log (1 + 2L2(]7Dr/i61)2P/u2> ~ GE(log(c(H)); Ml < Oo))’

where(a) follows from (40),(b) follows from (42), and(c) follows from (8). Here, thé1 — (7)) factor

accounts for the loss in matching the channel gains at times. , ¢;,, and the facto(1 — §(v)) accounts
for channel realizations that are quantizedotg see Sectiof V-A. Bothy(7) — 0 as the blocklength
T — oo by (11) andd(v) — 0 as the quantization parameter— oo by (12).

There are two sources of error in this communication scheatygicality of the channel gains and
atypicality of the noise terms. The channel gains are hanidjethe matching construction described in
Sectio V-A. We declare an error whenever the channel gasatgpical, which happens with probability
at mosts, (T') with £, (7') — 0 asT — oo for fixed L andv by (@) and [(10). The noise is handled by the
computation code over the integer channel. As we have seareabn error occurs with probability at
mostey(T") with 5(T) — 0 asT — oo for fixed L andv. Since the number of finite quantized channel
gains is at most*L by (3), and since the number of decodergis— 1 < 2L for each such realization
of the quantized channel, with probability at least

1— &1 (T) — 20 L?&y(T)

all decoders are successful. For a fixed number of subblbc&rd fixed quantization parametey this
guantity converges to one ds— oo, yielding an achievable computation sum rate of

R(P.Lv)2 L1 ((1 — () log (1 - 2L2](37{1+61)2P/V) 6B (log(c(H)); | H | < oo)).

Hence the computation capacify( P) is lower bounded as
C(P)> R(P,L,v).
Since this is true for all values of, we may take the limit ag — oo to obtain
C(P) > uh—>Holo R(P,L,v)
201

<log(P/16) -6 1i_>m E(log(c(f[)); 1 H ||o < oo))
In Appendix[B, we show that
VlLrg@E(log(c(H)); | H||o < 00) < 3.
Thus, the computation capacity is lower bounded by
C(P)> lim R(P,L,v)

201
L

(log(P) — 22).
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Finally, we may take a limit ad — oo, yielding a computation rate of
C(P) > Llim lim R(P, L,v)

— 00 V—00
= 2log(P) — 44
> K log(P) — TK?,

concluding the proof of the lower bound in Theoreim 1 fér= 2. [ |

VI. PROOF OFLOWER BOUND IN THEOREM[IFOR K > 2 USERS

As in the two-user case in Sectibn V, the proof for> 2 proceeds in three steps: matching of channel
gains (see Sectidn VI1A), linear precoding and matchedrifige(see Sectioh VI-B), and computation of
functions of the messages over the resulting channel frarptacoder input to the matched filter output
(see Sectioh VI-C). We again quantize all channel gains asritieed in Sectiofi IV and consider large
blocklengthsl” such that this quantization can be performed for arbiyrdaitge quantization parameter
and such that the resulting observed sequence of quantizeuhel gains ig-typical with high probability.
Since the effects of quantization and atypicality are esagnidentical to the two-user case, we will not
repeat this analysis here and instead assume directlythato, which implies thath,, x[t] ~ A,k [t].
The quantization and typicality arguments far= 2 carry over fork > 2.

A. Matching of Channel Gains
Fix a large blocklengtii” and a natural numbef. Define

L2 (I+1)%,

and divide the block of" channel realizations inté subblocks of lengtli’/L (assumed to be integer).
Consider the channel gains at time= 1 in the first of these blocks and the corresponding channekgai
H]t,|. Lett, be the first time in block such thdi

0—1)dpm
o i[te] = w0l b ]

for all k,m € {1,..., K}, wherew, is the Lth root of unity as before, and where
dmk A (I+ 1)(k—1)K+m—1.

Repeat this construction with = 2 and so on, ensuring that no time slot is matched more than once
By the assumptions of circular symmetry and ergodicity @ thding gains, essentially all butcgl)
fraction of the channel gains can be matched in this fashsdfi & oo (see Lemmag]3 arid 4), and we
will assume in the following thdf” is large enough to ignore the&1) term (see Sectidn VJA for a detailed

analysis).

B. Precoding and Matched Filtering

Consider now one such sequence of matched time sjots.,¢;. As in the two-user case, we use
linear precoders and matched filters over the vector chandekced by thesd. time slots. Define the
diagonal matrix

D, £ diag ((hmxte)i)

corresponding to the vector channel of lendgthbetween transmittek and receiverm at time slots
t1,...,t;. By construction,
Dm,kz = hm,kdem’kv

. 5The probability of this event happening is, of course, zdiee statement is to be understood in terms of the quantizedneth gains
hm,x[t] and sufficiently larges so thath., i [t] = R,k [t].
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where
hmkz = hm,kz[tl]

)

and
F £ diag (wy )y)-
Each transmitter uses again a linear precoder with trangroforsv € V c C*. The set is constructed

ad] .
Vé{<H<Hb§j}k> “mk)1 i € {0, . _1}}.

mk  a=1
Since all channel matrice®,,, are diagonal by construction, the produdt, D, ; commutes, and
hence it is immaterial in which order the product in the dé&fm of V' is taken. The scalars(  are

constructed recursively, starting frob&?k. Each bfj)k is of the formn or 1/n for the smallest natural
numbern € N such that

QAm,k

< H bﬁr?k) |hm,k
a=1
As in the two-user case, the role of tbfﬁ)k is to ensure that the transmit vectors all have approximatel

the same norm. In particular, .
VL < |lv]| <28°VL (43)

for everywv € V. Moreover, by the recursive construction,

(2max{|hm,k|,|hm7k|_1}) <m1n{bmk,1/b }<max{bmk,1/b k} <2max{|hmk| | P ge| ™ 1}

amk g [1,2).

(44)
and hence
2K2 B < Hmm{b(a’”k 1/bamk } < Hmax{bamk 1/b(a’”k } < 2K (45)
for all a,,,, € {0,..., 1 — 1}, and where
C:C(H) éHmaX{|hm,k|>|hm,kz|_l}- (46)
m,k

Observe that, as in the two-user case, each transmit vectoy is of the form
v=pF°1

for some scalarp € C anda € N. By the properties of the “Fourier” matri¥’, this implies that any
two transmit vectors i are either collinear or orthogonal. As we will see next, &ttors inV are, in
fact, orthogonal.

Eachwv € V is a complex-valued vector of lengih defined by a monomial up to powér— 1 in the
channel matrice®,, .. By definition, every collection of powers,, ,, € {0,...,I—1}, m,k e {1,..., K}
corresponds to an elemeate V. We now argue that this correspondence is one-to-one, ingpiat

V| = 1%°

Moreover, together with the argument in the last paragréph,will also ensure that all vectors i are
orthogonal.

"This construction ofy is reminiscent of the one i [29, Appendix Il] for thE-user interference channel with more than three users.
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To this end, consider € V and write it as
v = p< H Fd'm,karn,k) 1
m,k

for somea,,, € {0,...,I — 1} and some scalas. The first component ob is equal top. The second
component ofv is equal topw? with

a2 appdps  (mod L)
m,k

S I+ DI (o 1)

m,k

Since eachn,,; € {0,...,1 — 1}, this last sum is less thafi + 1)*° = L, and so the moduld.
operation can be dropped. Thus, the coefficients, of o can be determined uniquely by computing
the (I + 1)-ary expansion ofv. Moreover, knowingp from the first component ob, o« can be uniquely
determined from the second componentwofTogether, this shows that there is a unique collection of
powersa,, , € {0,...,I — 1} for all m,k € {1,..., K} that generates. We refer to this as thenique
factorizationproperty ofV. Since each exponent corresponds to a unique € V, this also shows the
orthogonality of the vectors iw.

Each transmitter modulaté&™ zero mean and mutually independent message symbols overisnit
vectors. Lets,, be the message symbol at transmittesent along transmit vectar € V. The channel
input

-
L é (l’k[tl] l’k[tg] e .Tk[tL])
at transmitterk has then the form
L — Z Sk, .
veV
We allocate the same power p
E(|Sk7v|2> = 4K2], £ p (47)

to eachsy ,. Since each transmit vecter has squared norm at most”L by (@3), we have

1 4 2

—E )< L. AL < P
satisfying the average power constraint over theme slotst, ..., ¢;. Since each of thé( transmitters

has IX* transmit vectors, we transmit a total & /*° independent data streams over= (I + 1)X”
channel uses.
The corresponding vector of channel outputs

-
Ym = (Ymltr] ymlto] . ymltr])
at receiverm is then

K
Yn = Z Dm,kwk + zZm

k=1

K
= Z Z Sk,va,kv —+ Zm, (48)

k=1 vey

where .
Zm £ (Zmltl] zmlta] .. Zm[tL])
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is the additive noise at receives.
From (48), transmit vectov € V is observed at receiven as D,, ,v. Each receivern usesL the
receive vectors 3
Vi £ {0 = Dy yv/|| Dyl 1 k€ {1,... . K},v € V}

as matched filters, computing y,, for each® € V,,. The number of matched filters is at most
V| < (I + 1),

By the same argument as fot, it can be shown thal,, also has the unique factorization property.
In other words, to everyy € V,, corresponds a unique collection of powers , € {0,...,/} for all

m,k € {1,..., K} such that
b= %(HF%»MW’C)I.

m,k

As for V, this implies that the vectors i, are orthogonal by the properties of the “Fourier” matfix

The equivalent channel, consisting of the linear precatierwireless channel, and the matched filters,
hasI™* channel inputs at each transmitter and at nidst 1)%” channel outputs at each receiver. Since
the matched filters are normalized to have unit norm, each subchannel at the receiver is an additive
Gaussian noise channel with unit noise power. We now argaewk have again signal alignment as in
the two-user case.

As pointed out above, the transmit vectoie V' at transmitterk is observed at receiven as D, yv.
By construction of the set of matched filter vectdis at receiverm, D,, ;v is a scalar multiple of a
vectord € V,,. Since all the vectors i, are orthogonal, this implies that the matched filtering apen
v'y,, removes all but those transmit signals which are aligneti wit 3

We now analyze the magnitudes of the signals that are olibee®g one receive vectar € V,, at
receiverm. By unique factorization, there exists a unique collecbexponentsy,, ; € {0,..., 7} such

that )
b= p(HD;ff;)l
.k
for some scalap. Assume a signal modulated over transmit veatpiat transmittert: is observed along
vectorv at receiverm. Note that this is only possible i, € {1,..., I} anda, ; € {0,...,1 -1} for
all (1, k) # (m, k). The transmit vectow;, is proportional toD;%lkﬁ, and hence is equal to

] ik
SOEEER ¥ I
ot (R Amk) | a=1
Defining
sk (@)
b A Hm,l; Ha:lk bm’];
N (am:) )
ITx "y '
and
(anb.~)
k#£k

this allows to writev,, in terms ofv as
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Since the collection of exponents;, ; corresponding ta is unique, and by orthogonality d#, this
implies that there are at mos&f signals that are aligned along the same veétait receiverm, and they
are all observed with the same common channel gain timestar facdepending on the transmittér
Using the orthogonality of the matched filters afd] (50), thépot of the matched filter applied to the
channel output (48) can then be written as

K

Oy = Y spo® Do + 012,
k=1 veV

K
= E S0y Dy 10k + Zns

k=1
b K
= - Z brSk,v T Zm,o) (51)
p k=1
where
s =02,

is additive circularly-symmetric complex Gaussian noisghwnean zero and variance one, and wheye
depends on both the matched filteand the receivem (see [(50)). We can interprét (51) as a subchannel
between the inputs to the precodsgrat each transmittek and the output of matched filter at receiver
m.
We point out that, similar to the two-user case, not/dltransmitters contribute to all matched filter
outputs o'y,,. Indeed, if o, = 0 In the unique factorization ob at receiverm, then there is no
corresponding transmit vectas, at transmitterk. For ease of notation, we assume that, = 0 in this
case, so thaf (51) is still valid.

We now bound the channel gains in the matched filter oufpdt &bm [50), we have

vk | i || v
b — — )
VLD T b
Now,
a a ) )
D A U |
’ ’ m,k
k+#k
where(a) follows from (49), and(d) follows from (44) and[(46). Together with_(43), this showatth
VL
b/l 2 5%, (52)

Moreover, eaclb, is a product of at mosk’ scalars, each being either a natural number or its inverse.
We want to multiply the output of the subchanrell(51) by a fpasiscalarp such thatpb, € N for all
k. By the definition ofb, in (49), we can choose

K
p= Hmax{l, 1/b£:’£"5)}.
k=1

Using (44) and[(45), we thus have
p < 28¢, (53)

resulting in a decrease of effective signal power by at mdaictor 4% ¢2.
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To summarize, the channél (51) between the input to the matched filter at transmittérand the
scaled output of the matched filtére V at receiverm is of the form

K
5= Bms D WSk, + lim.s, (54)
k=1

for nonzero integer channel gaing, scaled Gaussian noise, 3, and positive scaling factors,,, ;.
Ignoring the integer gaing,, the signal-to-noise ratio

|ﬁm,’f}5k7’vk |2
SRS B Elnol?
of each component in this subchannel is then lower bounded by
) P|b/p|?
D2
® PJ(AX"L) - L/ (4K )
>
- 4K 2
P

T iKt2KZ A’ (55)

where (a) follows from (47), and(b) follows from (52) and[(583).

SNR >

C. Computation of Functions

We use a computation code over the channel from the precoget to the matched filter output
constructed in the last section. This will allow us to reljatlecode functions of the transmitted messages
over this channel.

As in the proof of the two-user case, we code over severalreiarses, each with the same channel
realization H. For each suctH, we are hence dealing with a channel that is constant acnoss t
Each transmitter: splits its messagev, into non-overlapping submessages, one for each subchannel
(B4) between precoder input and matched filter output, andedah channel realizatioH. Each such
submessage is again a vector oyer...,q — 1} for someq. The decoder aims to compute a modylo-
integer linear equation of these messages with coefficignts appearing i (54).

Using the unique factorization property bfand the fact that all coefficients, are nonzero, it follows
from [4, Lemma 8] that the functions to be decoded by the wecsican be inverted. Hence, knowledge
of all correctly decoded functions at the receivers alloasowery of all the messages.

Applying L timed Lemma5 in AppendiX’A shows then that each of the receivergei@bly compute
its desired functions over the channel given byl (54) at a saten at least

KT 1og(SNR(H)) > KT%" (log(P) — 4K — 2K?* — 4log(c(H)))

for a particular realizatiorH of the channel gains, and where we have used (55), that thderuaf
messages sent from each transmittef)is = I%*, and that there aré&’ receivers. Normalizing by the
number(7 + 1)%* of channel uses, we can hence achieve a sum rate of at least

KI%*
(I +1)K?
when averaged over all channel realizations.

The computation sum capacity is then lower bounded as

C(P) > R(P,I).

R(P.I) 2 <log(P) — 4K — 2K? — 4E( log(c(H))))

8As in the two-user case, the input symbols at Higeceivers are coupled. We make again use of the universilitye channel encoders
mentioned after the statement of Lemija 5.
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Since this holds for all values df, and since the constantdoes not depend oh we may take the limit
asI — oo to obtain a computation rate of at least

C(P) > lim R(P,I)
= Klog(P) — 4K* — 2K® — AKE(log(c(H)))
> K log(P) — TK?,
where we have used the upper boutid?/4 on the expected value dbg(c(H)) in Appendix[B. This
concludes the proof of the lower bound in Theoriegm 1 for aambjti< > 2. [ |

VIl. PROOF OFUPPERBOUND IN THEOREM[]

The proof adapts an argument from[[31, Theorem 4]. Sincedbeivers compute an invertible function
of the messages, the cut-set bound [41, Theorem 14.10.1igspphowing that

C(P) < sup E(logdet(I + HQ(H)H?)),
Q(H)

where the maximization is over all positive semidefinite meas Q(H ) such that
E(tr(Q(H))) < KP.

Using Hadamard'’s inequality, this can be upper bounded as

sup E(logdet(I + HQ(H Z sup E(log(1 + h,Q(H)h ))
QUH) = Q)
< Ksup E(log(1+ rP(r))),
P(r)

whereh,, denotes thenth row of H, where
r 2 [[hf?,
and where the last maximization is over all nonnegafi(e) satisfying
E(P(r)) < KP.
This upper bound o’(P) is maximized by water-filling[[42], yielding
C(P) < KE(log(1+ rP*(r)))
Pr(r) & (l _ 1>+

woor

with

and x such that
E(P*(r)) = KP. (56)

Since
P(r) <

Y

==

we can further upper bound

C(P) < KE(log(1+r/u))
< Klog(1+E(r)/p), (57)

where we have used Jensen’s inequality.
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It remains to lower boung.. By (56), we have
KP =E(P*(r))

[ G- )pwa

r=p

1
KP>—P(r>2
2 (r > 2p)
K-1
1 2p)F
= eXp(—2u)( )
2 k!
k=0
> — exp(—2u)

If © <1/(4KP), then we obtain the contradiction
1
KP > —exp(—2p)
2p

> 2K Pexp(—1/(2KP))
> KP

for K > 2, P > 1. Hencey > 1/(4KP).
Substituting this into[(37) yields

C(P) < Klog(1+4KPE(r))
= Klog(1+ 4K*P)
< K'log(P) + 5K log(K),

where we have usef® > 1 and K > 2. This concludes the proof of the upper bound in TheorémmtL.

VIIl. PROOF OFTHEOREM[Z

This section provides the proof for the approximation resfithe sum capacity’(”) (P) of the D-layer
relay network. The proof builds on the approximation re$mitthe computation sum rate in Theorém 1.
Since the upper bound in Theorém 2 follows directly from thme cut-set bound argument as Theorém 1,
we focus here on the lower bound.

Each of theD network layers operates using compute-and-forward. Wethsesame codebook rate
R, = R at each source node € {1,..., K}. Using Theoreni |1, the relay nodes at layer one can then
reliably decode a deterministic invertible function of timessages at sum rate at least

Klog(P) — TK?.

Since the blocklength used is arbitrarily long, the probigbof decoding error at the relays can be made
smaller thare/D for any e > 0.

The relays in layer one treat these computed functions asrttessages for the destination node, and
re-encode them using again a computation code. In order tee rttas argument inductively, we will
apply Theoreni |1 for each layer. Two difficulties arise. Fithe statement in Theorelmh 1 is only for the
computationsum rateand it is not clear how much each individual transmitter aeckiver contributes
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to this sum. For the induction argument, we need to arguewkeatan choose the message rates at the
transmitters to be symmetric, and that we can choose the oathe decoded functions at the receivers to
be symmetric. Second, the definition of computation capastipulates only that the receivers decode an
invertible deterministic function of the messages. Inipatar, the sum rate of the decoded functions at any
receiver could be larger than the sum rate of the transnmittessages. For example, if a receiver decodes
a sum overZ of two messages, then the entropy of this decoded functidarger than the entropy of
either of the messages. For the induction argument, we eadjtie that the we can choose the functions
to be computed at the receivers to be over the same alphalike asessages at the transmitters, thus
avoiding growth of the messages as they traverse the network

From the proof of Theorein] 1, we see that the rates of the messetghe transmitters as well as the
rates of the computed functions at the receivers are indgeanstric as the time expansion parameter
L — oo (see Sections VAC arid VI}C). Moreover, the messages atdhertritters as well as the computed
functions at the receivers are all over the same finite fieldizd ¢ (see again Sectiois V-C ahd VI-C).
Thus, the message sizes do not increase as they traversettain

We can therefore inductively apply Theoréim 1 to concludé ttmearelays at layed in the network can
decode a deterministic invertible function of the messagdayerd — 1 for all d € {1,..., D} at sum
rate at least

Klog(P) — TK?>.

Since the composition of invertible functions is inver@ipthis implies that the relay nodes in layBr
compute a deterministic invertible function of the messagethe source at this sum rate.

Since the relay nodes in the last layer are connected to thigndBon node by orthogonal bit pipes
of infinite capacity, they can forward their computed messtagthe destination. The destination node, in
turn, can then invert thesE functions to recover the original messages. Since the pilitysof decoding
error is at most /D in each layer, this implies that the destination node desaderror with probability
at moste by the union bound. Since > 0 is arbitrary, this proves the lower bound in Theorem 2.m

IX. CONCLUSIONS

We have considered time-varying Gaussian relay networksisting of ' source nodes communicating
to a destination node with the help db layers of K relay nodes. We have presented a capacity
approximation for this type of communication network. Thapgn this approximation depends only
on the number of source nodés and the fading statistics, but is independent of the deptbf the
network and the transmit powe?. This contrasts with previously known approximation résuvhich
have a gap that increases linearly with the deptlof the network.

At the heart of our achievable scheme is the concept of caatipatalignment, combining computation
codes with signal alignment. The use of computation codesvalthe relay nodes to remove receiver
noise, thus preventing noise from accumulating as messagesrse the network. The use of signal
alignment allows the transformation of the wireless chanvith time-varying complex-valued channel
gains into subchannels with constant integer-valued alagains, over which these computation codes
can be used efficiently.

APPENDIX A
COMPUTATION OVER INTEGER CHANNELS

The channel matching and precoding/matched filtering stef@ections V an@ VI transform the time-
varying linear channel with arbitrary complex channel gaimo several constant linear subchannels with
integer channel gains. In this section, we analyze how tabigl compute functions over these subchannels.
We will employ the compute-and-forward scheme fram [3],nigeivell-suited for such constant linear
channels with integer channel gains.
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Throughout this section, we consider the subchannels @d)%4). Specifically, relayn observes

K
rlt] £ B Z 1 Sk[t] + tm[t] (58)
k=1

where5 > 0 is a positive real scaling factod,,, , € Z are integer channel coefficients,[t] € C are the
symbols sent by transmittér, and

pn[t] 2 emilt]silt] + Om[t] + 2n[t] € C

is the sum of interference and noise terms. Part of the eremte is due to residual channel fluctuations
em.k[t] @and the remainder is due to leakage from other subchannétewasé,,[t]. We assume that

lemilt]] < 7°

for all m, k, and for some finite constant not depending omn, k, t. Finally, z,,[t] is i.i.d. circularly-
symmetric Gaussian noise with mean zero and variance owé. |[Eakage term,, [t] has expected power

E(|0m[t]]*) < o®

and is independent of the symbalg[t] for all m,k, andt. Over a block of lengtH’, we impose an
average power constraint of

1 T
= Il < P
t=1

It will be convenient to express the messages at the tratessis well as the functions computed at
the receivers in some finite fidfdTo this end, we write the message at transmitterk as a vectonwy,
of lengthx with components i{0,...,q— 1} for some prime numbey. Receiverm aims to recover the

function
K

Um S Z A, W (I'IlOd q)

k=1

where a,,, are the same integer-valued coefficients that appeal_ih {8) will assume that these
coefficients are chosen so that the resulting functionsrasertible. Since we transmi’ messages with
alphabet size/” overT' channel uses, the computation sum rate (in bits per charseglis

K % log(q).
The following result, which is a special case of [3, Theorefnldwer bounds the computation sum
capacity of the channel (58).
Lemma 5. The computation sum capacity of the chanf) is lower bounded by
K log(SINR)
with
p*p
1+ 02+ Ky2P°
We point out that the codebooks at tié transmitters in Lemmal5 are chosen independently of the

coefficientsa,, ;. In other words, the encoders are universal with respechéochannel and equation
coefficientsa,, .

SINR £

This property will be quite useful in the analysis Btlayer relay networks as it ensures that the rates of theveged functions are the
same as the transmitted messages.
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APPENDIX B R
UPPERBOUND ON THE EXPECTED VALUE OF log(c(H))

In this section, we derive the upper bound

: - - 3K?
lim E(log(c(H)); | H |l < 00) < 2
V—r00 4
as the quantization parameter— oo. )

The termc depends on the quantized channel gaihisand hence, implicitly, on the channel gaiRE

and the quantization parameter With slight abuse of notation, we write
¢(H) = c¢(H,v).
We then have
E(log(c(H)); [[H|lw <o00) = > log(c(H))pg(H)

H:[[H]|oo <oo
= Y o) [ fulH)
NI HeQT

N /H'lHl < togle(H, v))far (H)aH
= E(log(c(H,v)); | Hl|o < v)

by Fubini's theorem, and wherg; denotes the density dif and @ the operation of the quantizer.
From the definition of, and using[(b),

C(H> V) = Hmax{|ﬁm,k|> |ﬁm,k|_1}
m,k

< 2K2 Hmax{|hm,k|> |hm,k|_1}

m,k

for H such that|H ||, < v. Hence,

log(c(H,v)1{|H|s < v} < K>+ Zlog (max {| k|, [ml 7 })-

m,k

Since
E(log (max {|hum |, [l ' })) < 00

by assumption on the fading process, this implies that
lim E(log(c(H,v)); [[H||w < v) = E( lim log(c(H,v)))

by dominated convergence. Sinée converges taH almost surely as — oo by the construction of the
guantizer, this yields

lim E(log(c(H,v)); | Hllo < v) =Y E(log (max {|Amkl, [hmil ™' }))

V—r00

K2
= < E(log (max {[h1[*, [h1a[7})). (59)
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It remains to upper bound the expectation oker. Since|h, 1|? has exponential distribution, we have

E(log (max {|h11|* [hi1|7?})) = —/ Oexp(—s) log(s)ds + /: exp(—s) log(s)ds
(v — 2Ei(-1)) log(e)

< 1.5,
where~ is the Euler-Mascheroni constant. Combining this withl (88pws that
. . 3K*2
lim E(log(c(H)); || H||w < 00) = E( lim log(c(H,v))) < —.
V—00 V—r00 4
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