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Computation Alignment: Capacity Approximation
without Noise Accumulation

Urs Niesen, Bobak Nazer, and Phil Whiting

Abstract

Consider several source nodes communicating across a wireless network to a destination node with the help of
several layers of relay nodes. Recent work by Avestimehret al. has approximated the capacity of this network up
to an additive gap. The communication scheme achieving thiscapacity approximation is based on compress-and-
forward, resulting in noise accumulation as the messages traverse the network. As a consequence, the approximation
gap increases linearly with the network depth.

This paper develops acomputation alignmentstrategy that can approach the capacity of a class of layered, time-
varying wireless relay networks up to an approximation gap that is independent of the network depth. This strategy
is based on the compute-and-forward framework, which enables relays to decode deterministic functions of the
transmitted messages. Alone, compute-and-forward is insufficient to approach the capacity as it incurs a penalty for
approximating the wireless channel with complex-valued coefficients by a channel with integer coefficients. Here,
this penalty is circumvented by carefully matching channelrealizations across time slots to create integer-valued
effective channels that are well-suited to compute-and-forward. Unlike prior constant gap results, the approximation
gap obtained in this paper also depends closely on the fadingstatistics, which are assumed to be i.i.d. Rayleigh.

I. INTRODUCTION

Consider a line network, consisting of a single source communicating to a single destination via a
sequence of relays connected by point-to-point channels. The capacity of this simple relay network is
achieved by decode-and-forward and is determined solely bythe weakest of the point-to-point channels.
As a consequence, the performance of the optimal scheme is unaffected by noise accumulation, regardless
of the length of the relay network. This raises the question whether the same holds true in general multi-user
wireless relay networks, i.e., if the capacity depends on the network depth. In this paper, we investigate this
question in the context of multiple sources communicating with a single destination across a multi-layer
wireless relay network.

A. Motivation and Summary of Results

In a multi-layer wireless relay network, each relay observes a noisy linear combination of the signals
transmitted by the relays in the previous layer. In order to avoid noise accumulation, the relays should
perform some type of decoding to eliminate noise at each layer. A natural approach is to use decode-and-
forward, in which each layer of relays decodes the messages sent by the previous layer and retransmits
them, just as in the line network mentioned above. Unfortunately, while the performance of this scheme
is independent of the network depth, it is often interference limited and, as a result, its performance can
diverge significantly from the capacity.

Instead of combating interference, as is done in the decode-and-forward approach, other communica-
tion strategies embrace the signal interactions introduced by the wireless channel. One such strategy is
compress-and-forward, in which each relay transmits a compressed version of its received signal. Such
strategies can offer significant advantages over decode-and-forward. Indeed, recent work by Avestimehr
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et al. [1] has shown that, for a large class of wireless relay networks that includes the layered network
model considered here, compress-and-forward approximately achieves capacity up to a gap independent
of the power constraints at the nodes in the network.

One important feature of this approximation guarantee is that it is uniform in the channel coefficients
and hence the fading statistics. However, since the compress-and-forward scheme does not remove noise
at each relay, noise accumulates from one layer in the network to the next. As a consequence, the
approximation gap in [1] (and related ones such as those based on noisy network coding [2]) increases
linearly with the number of layers in the relay network. Thus, as the depth of the network increases, the
approximation guarantee becomes weaker.

In this paper, we make progress on this issue by deriving a newcapacity approximation result for the
time-varying, multi-layer relay network with an approximation gap that is independent of the depth of the
network. However, unlike the approximation result in [1], our guarantee depends on the fading statistics.
Specifically, we assume that each channel coefficient is drawn independently according to a Rayleigh
distribution.

Our approach is built around the compute-and-forward framework proposed by [3]. In this framework,
each transmitter encodes its message into a codeword drawn from the same lattice codebook. As a result, all
integer combinations of codewords are themselves codewords, enabling relays to decode linear functions
of the transmitted codewords rather than treating interference as noise. If these functions are invertible,
then the destination can use them to infer its desired messages.

While the use of lattice codes seems like a natural fit for thissetting, it alone is insufficient to approach
the network capacity, as was shown recently in [4]. The primary reason is that this scheme approximates
the wireless channel with complex-valued channel gains by achannel with integer-valued channel gains.
The residual signals not captured by this integer approximation are treated as additional noise. It is this
non-integer penalty that ultimately limits the performance of this scheme in the high signal-to-noise ratio
(SNR) regime. This obstacle was overcome in [4] in the high SNR limit by combining compute-and-
forward with the rational alignment scheme due to Motahariet al. [5].

For the time-varying channels considered here, we propose anew scheme, termedcomputation align-
ment, that allows for a much sharper analysis at finite SNRs. Our scheme combines compute-and-forward
with a signal-alignment scheme inspired by ergodic interference alignment [6]. By carefully matching
channel realizations, our approach decomposes the wireless channel with time-varying complex-valued
channel gains into subchannels with constant integer-valued channel gains, over which lattice codes can
be employed efficiently.

B. Related Work

Relay networks have been the subject of considerable interest. For wired networks (i.e., networks of
point-to-point channels), Koetteret al. recently proved that it is capacity-optimal to separate channel and
network coding [7]. It is now well known that routing over theresulting graph of bit pipes is optimal for
unicasting [8], [9] and, as demonstrated by Ahlswedeet al. [10], network coding is required to achieve
the multicast capacity.

For wirelessnetworks, channel-network separation is not always optimal: higher rates can be achieved
using more sophisticated relaying techniques such as decode-and-forward (see, e.g., [11]–[13]) compress-
and-forward (see, e.g., [1], [2], [11], [13], [14]), amplify-and-forward (see, e.g., [12], [15]–[18]), and
compute-and-forward (see, e.g., [3], [4], [19]–[21]). While for certain classes of deterministic networks
the unicast and multicast capacity regions are known [1], [22], [23], in the general, noisy case, these
problems remain open. Recent progress has been made by focusing on finding capacity approximations
[1], [24]–[27].

As mentioned above, our approach combines signal alignmentwith lattice coding techniques. Signal
alignment for interference management has proved useful especially for the Gaussian interference channel
[5], [6], [25], [28]–[30]. In particular, ergodic alignment has been used to show that half the interference-
free rate is achievable at any SNR [6] as well as derive sharper scaling laws for ad-hoc networks [31].
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More recently, several groups have used alignment to make progress on the multiple unicast problem in
wireless networks [32]–[35].

Lattice codes provide an elegant framework for many classical Gaussian multi-terminal problems [36],
[37]. Beyond this role, it has recently been shown that they have a central part to play in approaching the
capacity of networks that include some form of interference[3], [19], [20], [25], [30], [38], [39].

C. Organization

The remainder of this paper is organized as follows. SectionII introduces the problem setting as well
as notation. Section III presents the main results as well asa motivating example that captures the key
features of the computation alignment scheme. Sections IV–VIII provide detailed proofs for our main
results. Section IX concludes the paper.

II. PROBLEM SETTING AND NOTATION

This section formally introduces the problem setting and notation. Although we are interested here in
relay networks with several layers, it will be convenient tofirst discuss networks with a single layer. This
single-layer network model is presented in Section II-B. Wethen apply the insights obtained for networks
with a single layer of relays to networks with more than one layer of relays. This multi-layer network
model is presented in Section II-C. Before we formally describe these two problem settings, we introduce
some notational conventions in Section II-A.

A. Notational Conventions

Throughout this paper,log(·) denotes the logarithm to the base two, and all capacities andrates are hence
expressed in terms of bits. We use bold font lower and upper case, such ash andH, to denote vectors
and matrices, respectively. Whenever the distinction is ofimportance, realizations of random variables
will be denoted by sans-serif font, e.g.,H is a realization of the random matrix variableH.

B. Single-Layer Relay Networks

We start with a model for a wireless relay network with a single layer. This single layer is to be
interpreted as a part of a larger relay network, to be introduced formally in Section II-C. The single-
layer relay network consists ofK transmitters andK receivers as depicted in Fig. 1. We think of theK
transmitters as being located at either the source nodes or at the relay nodes in some layer, sayd, of the
larger relay network. We think of theK receivers as being located at the relay nodes at layerd + 1 of
the larger relay network.

w1 E1

x1[t]

w2 E2

x2[t]

...

wK EK

xK [t]

H[t]

z1[t]

y1[t]

z2[t]

y2[t]

zK [t]

yK [t]

D1 û1

D2 û2

...

DK ûK

Fig. 1. K transmitters communicate an invertible set of functionsuk = fk(w1, w2, . . . , wK) of their messages toK receivers over a
time-varying interference channel.
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Each transmitter, indexed byk ∈ {1, . . . , K}, has access to amessagewk that is generated independently
and uniformly over{1, . . . , 2TRk}, whereRk is the rate of transmitterk. Each receiver, indexed by
m ∈ {1, . . . , K}, aims to recover adeterministic function

um , fm(w1, . . . , wK)

of the K messages(w1, . . . , wK). We impose that the functions(fm)Km=1 computed at the receivers are
invertible. In other words, there must exist a functiong such thatg(u1, u2, . . . , uK) = (w1, w2, . . . , wK).
Since the functions to be computed at the receivers are deterministic, noise is prevented from accumulating
as messages traverse the larger relay network. Moreover, since the functions to be computed are invertible,
no information is lost from one layer to the next in the largerrelay network.

The transmitters communicate with the receivers over a Rayleigh-fading complex Gaussian channel
modeled as follows. Thechannel outputym[t] ∈ C at receiverm ∈ {1, . . . , K} and timet ∈ N is given
by

ym[t] ,
K
∑

k=1

hm,k[t]xk[t] + zm[t], (1)

wherexk[t] ∈ C is the channel inputat transmitterk, hm,k[t] is the channel gainbetween transmitterk
and receiverm, andzm[t] is additive receiver noise, all at timet. The noisezm[t] is circularly-symmetric
complex Gaussian with mean zero and variance one, and independent of the channel inputsxk[t] for
k ∈ {1, . . . , K}, t ∈ N, and independent of all otherzm′ [t′] for (m′, t′) 6= (m, t). Each channel gain
hm,k[t] is assumed to be circularly-symmetric complex Gaussian, with mean zero and variance one, i.e.,
we assume Rayleigh fading. As a function of timet, (hm,k[t])t∈N is a stationary ergodic process for every
m andk. TheK2 processes(hm,k[t])t∈N are mutually independent as a function ofm, k. Denoting by

H [t] , (hm,k[t])m,k

the matrix of channel gains at timet, this implies that the matrix process

H [1],H [2],H [3], . . .

is also stationary and ergodic. The channel gainsH [t] are known at all nodes in the network at timet.
In other words, we assume availability of full instantaneous channel-state information (CSI) throughout
the network.

Each transmitter consists of anencoderEk mapping its messagewk into a sequence ofT channel inputs

(xk[t])
T
t=1 , Ek(wk),

satisfying anaverage power constraint

1

T

T
∑

t=1

|xk[t]|2 ≤ P.

Each receiver consists of adecoderDm mapping its observed channel output into an estimate

ûm , Dm(ym[1], . . . , ym[T ])

of the desired functionum = fm(w1, . . . , wK). The average probability of error across all relays is defined
as

P
(
⋃K

m=1{ûm 6= um}
)

.

Definition. A computation sum rateR(P ) is achievableif, for everyε > 0 and every large enoughT , there
exist encoders with blocklengthT , average power constraintP , and rates satisfying

∑K
k=1Rk ≥ R(P ), and

there exist decoders computing some invertible deterministic function (fm)
K
m=1 with average probability
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of error at mostε. Thecomputation sum capacityC(P ) of the single-layer relay network is the supremum
of all achievable computation sum ratesR(P ).

Observe that the definition of computation sum capacity doesnot prescribe the function of the messages
to be computed at the receivers. The only requirement is thatthese functions are deterministic and
invertible. In other words, the computation sum capacity isthe largest sum rate at whichsome(as opposed
to a specific) function can be reliably computed.

C. Multi-Layer Relay Networks

Having described the single-layer network setting, we now turn to networks with multiple layers of
relays. These networks consist of a concatenation ofD single-layer networks as defined in Section II-B.
The network containsK source nodes at layer zero connected through a Rayleigh-fading channel toK
relay nodes at layer one. Layerd in the network containsK relay nodes connected through a Rayleigh-
fading channel toK relay nodes at layerd+1. The relay nodes at layerD are connected to the destination
node at layerD + 1 through orthogonal bit pipes of infinite capacity. This ensures that the intermediate
relay layers, not the bit pipes, are the bottleneck in the network (see also the remark below). This scenario
is depicted in Fig. 2.

w1 E1

x
(0)
1 [t]

w2 E2

x
(0)
2 [t]

...

wK EK

x
(0)
K

[t]

H
(1)[t]

z
(1)
1 [t]

y
(1)
1 [t]

z
(1)
2 [t]

y
(1)
2 [t]

z
(1)
K

[t]

y
(1)
K

[t]

F
(1)
1

x
(1)
1 [t]

F
(1)
2

x
(1)
2 [t]

...

F
(1)
K

x
(1)
K

[t]

H
(2)[t]

z
(2)
1 [t]

y
(2)
1 [t]

z
(2)
2 [t]

y
(2)
2 [t]

z
(2)
K

[t]

y
(2)
K

[t]

D

ŵ1

ŵ2

...

ŵK

Fig. 2. A multi-layer relay network withD = 2 layers andK relays per layer.

Formally, each transmitter at a source node, indexed byk ∈ {1, . . . , K}, has access to amessagewk of
rateRk that is generated independently and uniformly over{1, . . . , 2TRk}. The receiver at the destination
node aims to recover the transmitted messages(w1, w2, . . . , wK).

The transmitters at layerd ∈ {0, . . . , D − 1} communicate with the receivers at layerd + 1 over
a Rayleigh-fading complex Gaussian channel modeled as in the single-layer case. Thechannel output
y
(d+1)
m [t] ∈ C at the receiver at relaym ∈ {1, . . . , K} in layer d+ 1 and timet ∈ N is given by

y(d+1)
m [t] ,

K
∑

k=1

h
(d+1)
m,k [t]x

(d)
k [t] + z(d+1)

m [t],

wherex(d)
k [t] is the channel inputat the transmitter at relay or sourcek ∈ {1, . . . , K} at layerd. The

channel gainsh(d+1)
m,k [t] and theadditive noisez(d+1)

m satisfy the same statistical assumptions as in the
single-layer network described by (1), and they are assumedto be independent across different layers.

As mentioned earlier, the relay nodes in layerD are connected to the destination node at layerD + 1
throughK orthogonal bit pipes with infinite capacity. Without loss ofgenerality, we can assume that the
relays in layerD simply forward their observed channel outputsy

(D)
m [t] to the destination node.

Remark:The bit pipes from the final relay layer to the destination canbe replaced with another
(symmetric) multiple-access channel model without affecting our main results. We have used a model
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with orthogonal links with infinite capacity in order to focus on the case when the capacity bottleneck
occurs between relay layers, not in the final hop.

Each transmitter at source nodek consists of anencoderEk mapping its messagewk into a sequence
of T channel inputs,

(x
(0)
k [t])Tt=1 , Ek(wk),

satisfying an average power constraint ofP .
The receiver-transmitter pair at relay nodek in layerd ∈ {1, . . . , D−1} consists of arelaying function

F (d)
k mapping the block of observed channel outputs(y

(d)
m [1], . . . , y

(d)
m [T ]) from layer d into a block of

channel inputs
(x

(d)
k [t])Tt=1 , F (d)

k (y(d)m [1], . . . , y(d)m [T ])

for layer d+ 1, satisfying an average power constraint ofP .1

Finally, the receiver at the destination node in layerD+1 consists of adecoderD mapping its observed
channel outputs (forwarded from the relays at layerD) into an estimate

(ŵ1, ŵ2, . . . , ŵK) , D
(

(y
(D)
1 [1], . . . , y

(D)
1 [T ]), . . . , (y

(D)
K [1], . . . , y

(D)
K [T ])

)

of the messages(w1, . . . , wK). The average probability of error is defined as

P
(
⋃K

k=1{ŵk 6= wk}
)

.

Definition. A sum rateR(D)(P ) is achievableif, for every ε > 0 and every large enoughT , there
exist encoders, relaying functions, and a decoder with blocklengthT , average power constraintP , rates
satisfying

∑K
k=1Rk ≥ R(D)(P ), and average probability of error at mostε. The sum capacityC(D)(P )

of the multi-layer relay network is the supremum of all achievable sum ratesR(D)(P ).

III. M AIN RESULTS

We now state our two main results, an approximate characterization of the computation sum capacity
C(P ) of the single-layer relay network (Section III-A) and an approximate characterization of the sum
capacityC(D)(P ) of the D-layer relay network (Section III-C), both under i.i.d. Rayleigh fading. The
proofs will be presented in detail in Sections IV–VIII. In Section III-B, we explore a simple example that
captures the intuition behind our computation-alignment scheme used to prove the main results.

A. Single-Layer Relay Networks

We start with the analysis of the computation sum capacityC(P ) of a single-layer relay network
consisting ofK source nodes andK relay nodes.

Theorem 1. For a single-layer network withK source nodes,K relay nodes, and time-varying i.i.d.
Rayleigh channel coefficients, the computation sum capacity C(P ) is lower and upper bounded as

K log(P )− 7K3 ≤ C(P ) ≤ K log(P ) + 5K log(K)

for every power constraintP ≥ 1.

The proof of the lower bound in Theorem 1 is presented in Sections V (forK = 2) and VI (forK > 2).
The proof of the upper bound in Theorem 1 is presented in Section VII.

Theorem 1 provides an approximate characterization of the computation sum capacityC(P ) of the
single-layer relay network. Comparing the upper and lower bounds shows that the approximation is up

1As may be seen from the definition of the relaying function, wedo not impose causality for the operations at the relay. Thisassumption
is only for ease of notation—since we are dealing with a layered network, all results are also valid for causal relaying functions by coding
over several blocks.
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to an additive gap of7K3 + 5K log(K) bits/s/Hz. In particular, the gap does not depend on the power
constraintP . In other words, Theorem 1 asserts that

C(P ) = K log(P )± O(1).

This is considerably stronger than the best previously known bounds in [4] on the computation sum
capacity of such networks, which only provide the degrees-of-freedom approximation

C(P ) = K log(P )± o(log(P ))

asP → ∞.
The upper bound in Theorem 1 results from the cut-set bound, allowing cooperation among the sources

and among the relays. This transforms the channel into aK ×K multiple-input multiple-output system,
and the upper bound follows from analyzing its capacity. From Theorem 1, we hence see that computation
of a (carefully chosen) invertible function can be performed in a distributed manner with at most aO(1)
loss in rate compared to the centralized scheme in which theK transmitters cooperate and theK receivers
cooperate.

The communication scheme achieving the lower bound in Theorem 1 is based on a combination of a
lattice computation code with a signal-alignment strategy, which we termcomputation alignment. We now
provide a brief description of these two components and how they interact—the details of the argument
can be found in the proof of Theorem 1 in Sections V and VI.

A lattice is a discrete subgroup ofRT , and hence has the property that any integer combination of lattice
points is again a lattice point. Alattice computation codeas defined in [3] uses such a lattice, intersected
with an appropriate bounding region to satisfy the power constraint, as its codebook. This strategy is
designed for the case where the channel coefficients remain constant over the duration of the codeword,
hm,k[t] = hm,k. Assume for the moment that the channel gains are all integers. Then each receiver observe
an integer combination of codewords plus Gaussian noise. Bythe lattice property, this is equal to some
other codeword plus noise. If the lattice is carefully chosen, the receivers can remove the noise, and are
hence left with the integer combination of the codewords which corresponds to a deterministic function
of the messages.

In general, the channel coefficients will not be integer multiples of one another. In this case, each receiver
may aim to decode an integer combination of codewords that best approximate the linear combination
produced by the channel. [3, Theorem 3] states that the receivers can decode integer combinations with
coefficientsam,k ∈ Z+

√
−1Z if the rates (from the transmitters) satisfy

Rk < min
k:am,k 6=0

max
αm∈C

log

(

P

α2
m + P

∑

k|αmhm,k − am,k|2
)

. (2)

From the denominator in (2), we see that the performance of this lattice-coding approach is closely
tied to how well the channel gainshm,k can be approximated by integers. Ifhm,k is not a rational, then
this approximation cannot be done perfectly, resulting in significant rate loss especially for larger values
of powerP as shown in [4]. Using lattices by itself as described above is hence not sufficient to prove a
constant-gap result as in Theorem 1.

Instead, in this paper we combine lattice codes with an alignment scheme inspired by ergodic interfer-
ence alignment [6]. By exploiting the time-varying nature of the channels, we code over several channel
uses to create subchannels with integer coefficients over which lattice codes can then be efficiently used.
We term this combination of alignment and lattice codescomputation alignment. Below, we discuss a
simple example of our scheme that elucidates some of the key features of the general construction.
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B. Motivating Example

The computation-alignment scheme is best illustrated forK = 2 users. Consider a time slott1 and
consider the four channel gainshm,k[t1] at timet1. For simplicity (and without too much loss of generality),
assume that

h1,1[t1] = h1,2[t1] = h2,1[t1] = 1,

h2,2[t1] = h

for someh ∈ C. If we communicate over only time slott1 alone, the channel outputs are

y1[t1] = x1[t1] + x2[t2] + z1[t1],

y2[t1] = x1[t1] + hx2[t2] + z2[t1].

Since the channel gains to receiver one are both integers, lattice codes can be used to efficiently compute
a linear combination of the transmitted codewords. On the other hand, for most values ofh, lattice codes
as described above can not be used for efficient computation at receiver two. As a result, over one time
slot, we can only reliably compute invertible functions ofonedata stream. This yields a computation sum
rate of roughlylog(P ).

We now argue that if we code overt1 and a second, carefully matched, time slott2, we can in fact
reliably compute invertible functions ofthreedata streams. This yields a computation sum rate of roughly
3
2
log(P ). Assume we can find a second time slott2 such that2

h1,1[t2] = h1,2[t2] = 1,

h2,1[t2] = −1,

h2,2[t2] = h.

Over the two time slots,t1 and t2, the channel outputs are

y1 ,

(

y1[t1]
y1[t2]

)

=

(

x1[t1]
x1[t2]

)

+

(

x2[t1]
x2[t2]

)

+

(

z1[t1]
z1[t2]

)

,

y2 ,

(

y1[t1]
y1[t2]

)

=

(

x1[t1]
−x1[t2]

)

+ h

(

x2[t1]
x2[t2]

)

+

(

z2[t1]
z2[t2]

)

.

Over this block channel, transmitter one aims to send symbols s1,1 and s1,2 and transmitter two aims
to send symbols2,1. These symbols are mapped onto the two time slots using transmit vectorsv1,1, v1,2,
andv2,1, i.e.,

(

x1[t1]
x1[t2]

)

= v1,1s1,1 + v1,2s1,2
(

x2[t1]
x2[t2]

)

= v2,1s2,1.

We now describe how to choose these transmit vectors.
We begin with the special case where|h| = 1. We choose the transmit vectors to bev1,1 = (1 1)T,

v1,2 = h(1 − 1)T, andv2,1 = (1 1)T. This leads to the effective channel

y1 =

(

1
1

)

(s1,1 + s2,1) + h

(

1
−1

)

s1,2 + z1,

y2 = h

(

1
1

)

(s1,2 + s2,1) +

(

1
−1

)

s1,1 + z2.

2While we consider only a single pair(t1, t2) of time slots, it can be shown that with high probability almost all time slots can be matched
such that these conditions are (approximately) satisfied.
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Thus, each receiver sees two orthogonal subchannels, each carrying integer combinations of symbols.
Receiver one observes the sums1,1 + s2,1 on one subchannel ands1,2 on the other; receiver two observes
the sums1,2 + s2,1 on one subchannel ands1,1 on the other. We say that the subchannels arealigned for
efficient computation in that they are orthogonal and have integer coefficients. Given the orthogonality
of the subchannels, they can be recovered at both receivers using matched filters. And given that all
subchannels have integer coefficients, lattice codes can beefficiently employed to achieve a computation
sum rate of roughly3

2
log(P ). See Fig. 3 for an illustration.

TX 1

x1[t1] = s1,1 + hs1,2

x1[t2] = s1,1 − hs1,2

TX 2

x2[t1] = s2,1

x2[t2] = s2,1

RX 1

y1[t1] + y1[t2] = 2(s1,1 + s2,1) + z
+
1

y1[t1] − y1[t2] = 2hs1,2 + z
−

1

RX 2

y2[t1] + y2[t2] = 2h(s1,2 + s2,1) + z
+
2

y2[t1] − y2[t2] = 2s1,1 + z
−

2

1 0
0 1

1 0
0 1

1 0
0 −1

h 0
0 h

Fig. 3. Computation alignment scheme for two users over two slots. Transmitter1 sends symbolss1,1 and s1,2 from two independent
lattice codewords while transmitters2,1 sends one symbol from a single lattice codeword. After appropriate scaling, receiver observes the
sum of two symbols in one subchannel and the remaining symbolin the other subchannel. Put together, these integer combinations form a
full rank set of linear equations. In the figure,z+k , zk[t1] + zk[t2] andz−k , zk[t1]− zk[t2].

Next, consider the case|h| < 1 (the case|h| > 1 can be dealt with similarly). In this setting, one can
improve upon the scheme above by steering the effective channel gains of aligned symbols to the nearest
integer, rather than fully equalizing them. Letb be the smallest natural number such that

1 ≤ b|h| < 2,

and set the transmit vectors to bev1,1 = (1 1)T, v1,2 = bh(1 − 1)T, and v2,1 = (1 1)T. The key
observation here is that, sinceb|h| ∈ [1, 2), all transmit vectors have comparable lengths, leading to a
better power allocation across subchannels than the same choice of transmit vectors withb = 1.

With this, the effective channel becomes

y1 =

(

1
1

)

(s1,1 + s2,1) + h

(

1
−1

)

bs1,2 + z1,

y2 = h

(

1
1

)

(bs1,2 + s2,1) +

(

1
−1

)

s1,1 + z2.

Sinceb is an integer, this is again aligned for efficient computation and achieves the same computation
sum rate of roughly3

2
log(P ).

Building on this example, the general scheme developed in Section V encodes2L − 1 data streams
acrossL time slots to reach a computation sum rate of approximately2L−1

L
log(P ). By takingL → ∞,

this strategy can approach the desired computation sum rate2 log(P ) to within a constant gap. As shown
in Section VI, we can establish aligned subchannels forK > 2 users in a similar fashion.
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C. Multi-Layer Relay Networks

Having analyzed the computation sum capacity for single-layer relay networks, we now turn to the
sum capacity of relay networks with multiple layers. Unlikethe single-layer network, there is only one
destination node, which is interested in recovering the original messages (and not merely a function of
them). We are hence interested here in sum capacity in the traditional sense.

Theorem 2. Consider a multi-layer relay network withD ≥ 1 layers,K ≥ 2 source nodes, andK relay
nodes per layer. If the channel coefficients are time-varying and i.i.d. Rayleigh, the sum capacityC(D)(P )
is lower and upper bounded as

K log(P )− 7K3 ≤ C(D)(P ) ≤ K log(P ) + 5K log(K)

for every power constraintP ≥ 1.

The proof of Theorem 2 is presented in Section VIII. The upperbound follows directly from the same
cut-set bound argument as in Theorem 1. The lower bound uses compute-and-forward in each layer as
analyzed in Theorem 1. The destination node gathers all the computed functions and inverts them to
recover the original messages sent by the source nodes.

Theorem 2 provides an approximate characterization of the sum capacity of theD-layer relay network.
The gap between the lower and upper bounds is7K3 + 5K log(K) bits/s/Hz as in Theorem 1. This gap
is again independent of the power constraintP , showing that

C(D)(P ) = K log(P )± O(1).

Moreover, the gap in Theorem 2 is also independent of the network depthD. In other words, the
approximation guarantee is uniform in the network parameter D.

It is interesting to compare this approximation result to other known capacity approximations for general
Gaussian relay networks of the form considered here. For general relay networks, these bounds rely on
a compress-and-forward scheme and achieve an additive approximation gap of1.26(D + 1)K bits/s/Hz
[1], [2]. Unlike the gap in Theorem 2, this gap is not uniform in the network depthD. This is due to
the use of compress-and-forward: In each relay layer, the channel output, consisting of useful signal as
well as additive noise, is quantized and forwarded to the next layer. Thus, with each layer additional
noise accumulates, degrading performance as the network depth increases. The result is an approximation
guarantee that becomes worse with increasing network depth.

Theorem 2 in this paper avoids this difficulty by completely removing channel noise at each layer in
the network. This is achieved by decoding a deterministic (and hence noiseless) function of the messages
at each relay. Thus, noise is prevented from accumulating asthe messages traverse the network. It is this
feature of compute-and-forward that enables the uniform approximation guarantee in Theorem 2.

We remark that the7K3 term in the lower bound of Theorem 2 is due to the constructionensuring that
all received signals are integer multiples of each other. Ifinstead of Rayleigh fading we consider channel
gains with equal magnitude and independent uniform phase fading, the lower bound in Theorem 2 can be
sharpened toK log(P ), resulting in an approximation gap of5K log(K). Deriving capacity approximations
with better dependence onK for general fading processes is an interesting direction for future work.

It is also worth mentioning that, unlike the gap presented here, the approximation gap in [1] is uniform
in the fading statistics. Developing communication schemes that guarantee an approximation gap that is
uniform in both the network depth and the fading statistics is therefore of interest.

Finally, like other signal alignment schemes for time-varying channels such as [29] and [6], the
communication scheme proposed in this paper suffers from long delays. This limits the practicality of these
schemes even for moderate values ofK. Finding ways to achieve signal alignment (be it for interference
management or function computation) with less delay is hence of importance.
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IV. CHANNEL QUANTIZATION

The achievable scheme in Theorem 1 groups together time slots so that an appropriate linear combination
of the channel outputs within each group yields a more desirable effective channel. This grouping of time
slots is performed such that the corresponding channel realizations “match” in a sense to be made precise
later. Since each possible channel realization has measurezero, we cannot hope for channel matrices to
match exactly. Instead, we will look for channel matrices that approximately match. This approximate
matching is described by considering a quantized version ofthe channel gains. In this section, we describe
such a quantization scheme, similar to the one used for ergodic interference alignment in [6].

We divide the complex plane from the origin up to distanceν into concentric rings centered at the
origin and with spacing1/ν for some natural numberν ≥ 2 to be chosen later. Then, we divide each of
theseν2 rings intoν2L segments with identical central angles of size2π/(ν2L) for someL ∈ N also to
be chosen later. These segments serve as quantization cellsfor the channel coefficients. Each segment is
represented by the mid-point on the bisector of the corresponding central angle (see Fig. 4). We add one
additional quantization point at infinity to which we will map all channel gains with magnitude larger
thanν. Note that multiplying a quantization point by anyLth root of unity results again in a quantization
point. We will use this property frequently in the sequel.

ℑ(hm,k)

ℜ(hm,k)

Fig. 4. Quantization scheme for channel coefficients. Coefficients up to magnitudeν are quantized by magnitude and angle. The number
of angular regions is a multiple ofL to ensure that multiplying a quantization point by anyLth root of unity results again in a quantization
point. In the figure,ν = 2 andL = 2

Let ĥm,k[t] denote the quantized version of the channel coefficienthm,k[t] ∈ C. We then have that
ĥm,k[t] = ∞ if |hm,k[t]| > ν, and thatĥm,k[t] is the point in the “middle” of the quantization cell
containinghm,k[t] otherwise (with ties broken arbitrarily). We denote bŷH the collection of all possible
quantized channel values. It will be convenient in the following to denote by

pĤ(Ĥ) , P
(

Ĥ [1] = Ĥ
)

the probability mass function of the quantized channel gains

Ĥ [t] , (ĥm,k[t])m,k.

Note that the number of quantization regions is

|Ĥ| = ν4L+ 1. (3)
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By choosingν large enough, we can ensure that the distance between any point with magnitude less than
ν and its closest quantization point is arbitrarily small. Infact, for anyhm,k[t] with |hm,k[t]| ≤ ν,

|hm,k[t]− ĥm,k[t]| ≤ (π + 1)/ν. (4)

Furthermore, for anyδ > 0,
P
(

|hm,k[t]| ≤ ν ∀m, k
)

≥ 1− δ

for large enoughν, and hence
P
(

|ĥm,k[t]| < ∞ ∀m, k
)

≥ 1− δ. (5)

Therefore (4) holds with probability at least1 − δ for ν large enough. Finally, for anyhm,k[t] such that
|hm,k[t]| ≤ ν,

max
{

|ĥm,k[t]|, |ĥm,k[t]|−1
}

≤ 2max
{

|hm,k[t]|, |hm,k[t]|−1
}

, (6)

since each finite quantization point is the mid-point of the corresponding bisector interval.
Since the matrix process

H [1],H [2],H [3], . . .

is stationary and ergodic, the quantized process

Ĥ [1], Ĥ[2], Ĥ [3], . . .

is also stationary and ergodic (see, e.g., [40, Theorem 6.1.1, Theorem 6.1.3]). Moreover, since each
hm,k[t] is circularly symmetric, and since the quantization procedure preserves this circular symmetry, the
distribution of the quantized channel valuesĥm,k[t] is invariant under multiplication by theLth root of
unity. Furthermore, since theK2 processes(hm,k[t])t∈N are mutually independent as a function ofm, k,
so are theK2 quantized processes(ĥm,k[t])t∈N. For future reference, we summarize these observations in
the following lemma.

Lemma 3. For eachm, k, and t, the quantized channel gain̂hm,k[t] and its rotationexp
(√

−12π
L

)

ĥm,k[t]
have the same distribution. TheK2 quantized processes

ĥm,k[1], ĥm,k[2], ĥm,k[3], . . .

are independent as a function ofm, k. The quantized matrix process

Ĥ [1], Ĥ[2], Ĥ [3], . . .

is stationary and ergodic.

The basic idea behind our scheme is to matchL carefully chosen time slots to create effective integer-
valued channels. The most intuitive version of this strategy is to match channels in a “greedy” fashion.
However, it is simpler to analyze this strategy if we split the block ofT time slots intoL consecutive
subblocks and assume that theℓth time slot within a matched set always comes from theℓth subblock. This
in turn allows us to draw upon the the ergodic theorem to guarantee that each subblock contains roughly
the same number of each possible channel realization, meaning that almost all channel realizations can
be successfully matched. Specifically, consider a block of lengthT of channel gains withT a multiple
of L, and divide this block intoL subblocks each of lengthT/L. Count the number of occurrences of a
particular channel realization̂H ∈ ĤK×K in one of theL subblocks. By the ergodicity of the quantized
matrix process, we expect this number to be close toT/L times the probability of this realization. The
next lemma formalizes this statement.
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Lemma 4. For any L, ν ∈ N and η, ε > 0, there existsT = T (L, ν) ∈ N divisible byL such that, with
probability at least1− ε, we have, for allℓ ∈ {1, . . . , L}, and all Ĥ ∈ ĤK×K ,

ℓT/L
∑

t=(ℓ−1)T/L+1

11{Ĥ[t] = Ĥ} ≥ (1− η)pĤ(Ĥ)T/L.

Proof: By Lemma 3, the quantized matrix process

Ĥ [1], Ĥ[2], Ĥ [3], . . .

is stationary and ergodic. This stochastic process takes values in the finite setĤK×K, and hence, by the
ergodic theorem (see, e.g., [40, Theorem 6.2.1]), its empirical distribution converges to the true distribution
almost surely. For fixedℓ ∈ {1, . . . , L}, this implies that there exists aT such that with probability at
least1− ε/L, we have for allĤ ∈ ĤK×K,

ℓT/L
∑

t=(ℓ−1)T/L+1

11{Ĥ [t] = Ĥ} ≥ (1− η)pĤ(Ĥ)T/L.

Applying the union bound overℓ ∈ {1, . . . , L} proves the result.

V. PROOF OFLOWER BOUND IN THEOREM 1 FOR TWO USERS

In this section, we prove the lower bound in Theorem 1 for the two-user case, i.e.,K = 2. Consider a
block ofT channel gains, and divide this block intoL subblocks each of length ofT/L (which is assumed
to be an integer). The construction of the achievable schemein Theorem 1 consists of three main steps.
First, we carefully matchL time slots, one from each of theL subblocks. This matching is performed
approximatelyT/L many times such that essentially all time slots in the block of length T are matched
(see Section V-A). Second, we argue that anyL time slots matched in this fashion, when considered
jointly, can be transformed into parallel channels with (nearly) integer channel gains using appropriate
linear precoders at the transmitters and matched filters at the receivers (see Section V-B). Third, we show
that over these integer channels we can efficiently and reliably compute functions of the messages (see
Section V-C).

A. Matching of Channel Gains

We start with the matching step. Since the number of possiblechannel realizations is uncountable, only
approximate matching is possible. To this end, we quantize each of the channel gains as described in
Section IV. Denote bŷhm,k[t] the quantized version of the channel gainhm,k[t]. By Lemma 4, for every
ε1 > 0 andη > 0, there existsT large enough such that with probability1− ε1, each of theL subblocks
is “typical”, in the sense that, for every subblockℓ ∈ {1, . . . , L}, and every realization̂H ∈ ĤK×K of the
quantized channel gains,

ℓT/L
∑

t=(ℓ−1)T/L+1

11{Ĥ [t] = Ĥ} ≥ (1− η)pĤ(Ĥ)T/L.

Recall that full CSI is available at all transmitters and receivers. Hence all transmitters and receivers
can determine at the end of the block of lengthT if the realization of quantized channel gains is typical.
Whenever this is not the case, the decoders declare an error.By the argument in the last paragraph, this
happens with probability at mostε1. We assume in the following discussion that the quantized channel
gains are typical.
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We can then assume that every matrix of quantized channel gains Ĥ appears exactly3

(1− η)pĤ(Ĥ)T/L (7)

many times in each of theL blocks, ignoring all the remaining time slots. This resultsin a loss of at most
a factor(1− η) in rate. Furthermore, we may assume without loss of generality that the first(1− η)T/L
quantized channel gains in each subblock satisfy this condition.

We now describe the matching procedure alluded to earlier. Consider the channel gains at timet1 = 1
in the first of theL subblocks and the corresponding matrix of quantized channel gainsĤ [t1]. Let tℓ be
the first time in subblockℓ ∈ {2, · · · , L} such that

ĥ1,1[tℓ] = ĥ1,1[t1], (8a)

ĥ1,2[tℓ] = ĥ1,2[t1], (8b)

ĥ2,2[tℓ] = ĥ2,2[t1], (8c)

ĥ2,1[tℓ] = ωℓ−1
L ĥ2,1[t1], (8d)

where
ωL , exp

(√
−12π

L

)

is theLth root of unity. By construction of the quantization scheme, if ĥ ∈ Ĥ thenωℓ−1
L ĥ ∈ Ĥ, and hence

such a collection of time slotst2, . . . , tL can exist. Sincet1 < t2 < · · · < tL, this matching procedure can
be performed in a causal manner and using only instantaneousCSI. Moreover, by the full CSI assumption,
this matching can be computed at each transmitter and receiver. Note that, as discussed in the motivating
example in Section III-B, the choice of̂h2,1 is used to shift the symbol pairings at the second receiver.
This in turn makes it possible to create orthogonal integer-valued subchannels at both receivers via careful
power allocation.

Having performed the matching fort1 = 1, we proceed witht1 = 2. We again match channel gains in
the same fashion, ensuring that each time slottℓ in subblockℓ ∈ {2, . . . , L} is chosen at most once. In
other words, this matching procedure constructs many nonintersectingL-element subsets{t1, . . . , tL} of
{1, . . . , T}. We now argue that this procedure can be continued successfully up to t1 = (1− η)T/L, i.e.,
(1− η)T/L of these subsets can be found.

Consider a time slott1 in the first subblock and the corresponding channel gainsĤ [t1]. This channel
gain induces matched channel gains

Ĥ [t2], Ĥ [t3], . . . , Ĥ [tL],

within subblocks2, . . . , L. Hence, the distribution of the channel gainsĤ [t1] at some fixedt1 induces a
distribution of the channel gainŝH [tℓ] for ℓ ∈ {2, . . . , L}. It is not cleara priori that Ĥ [tℓ] andĤ [t] for
any fixedt have the same distribution.

The key observation for the analysis of the matching procedure is the following. By (7), the matching
procedure is successful for allt1 ∈ {1, . . . , (1− η)T/L} if the distribution ofĤ [tℓ] for ℓ ∈ {2 . . . , L} is
the same as the distribution of̂H [(ℓ−1)T/L+1] (or any other channel matrix atfixed time t in subblock
ℓ). By stationarity, the distribution of̂H [(ℓ− 1)T/L+ 1] is the same as the distribution of̂H [1]. Hence,
it suffices to argue that̂H [tℓ] has the same distribution aŝH [1], i.e., thatĤ [tℓ] has distributionpĤ . We
now show that this is the case.

By assumption, the distribution of each channel gainhm,k[t] is circularly symmetric. By Lemma 3,
the quantization scheme preserves this circular symmetry,in the sense that all possible quantized channel
gains with the same magnitude have the same probability. Since the components of̂H [t] are independent

3SinceT/L will grow to infinity, we can assume here that (7) is integer and avoid floor operators.
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by Lemma 3, this circular symmetry also holds for their jointdistribution, i.e., if Ĥ and Ĥ
′ satisfy

|ĥm,k| = |ĥ′m,k| for all m, k, then
pĤ(Ĥ′) = pĤ(Ĥ).

Observe now that, for eachm, k, the channel gains

ĥm,k[t1], ĥm,k[t2], . . . , ĥm,k[tL],

all have the same magnitude by the matching condition (8). Moreover, since the distribution of̂H [t1] is
circularly symmetric, and since (8) results in afixed phase shift, the induced distribution of the matched
channel gainsĤ [tℓ] is circularly symmetric as well. Together, these two facts show that the distribution
of the quantized channel gains induced by the matching within the subblocksℓ ∈ {2, . . . , L} is identical
to the distribution of the quantized channel gains within the first subblock. This implies that the time slots
t1 = 1 up to t1 = (1− η)T/L can be matched by the described procedure.

Out of the(1 − η)T/L time slots that are matched in this fashion, at mostδT/L contain a quantized
channel gain equal to infinity by (5) for someδ = δ(ν) (whereν is the parameter governing the number
of quantization points). These time slots are not used. Again by the full CSI assumption, this event can
be observed at each transmitter and receiver. Accounting for the time slots that are not matched, a total
of at least(1− η − δ)T/L time slots in each subblock are used for communication.

To summarize, the channel gains in each of theL subblocks are matched up to satisfy (8). With
probability at least

1− ε1(T ), (9)

at least a fraction
(1− η(T )− δ(ν))

of the time slots in each subblock can be matched in this fashion such that all the corresponding channel
gains have finite magnitudes. Here the parameters can be chosen to satisfy

lim
T→∞

ε1(T ) = 0, (10)

lim
T→∞

η(T ) = 0, (11)

both for fixed values ofL andν, and
lim
ν→∞

δ(ν) = 0. (12)

B. Precoding and Matched Filtering

Consider time slotst1, . . . , tL in subblocks1, . . . , L that are matched as described in the last section.
We now describe a linear precoding transmitter design and matched filtering receiver design that transform
the complex channel over theseL time slots into parallel integer channels.

Construct the diagonal matrix
Dm,k , diag

(

(hm,k[tℓ])
L
ℓ=1

)

,

from theL matched channel gains between transmitterk and receiverm and defineD̂m,k in the same
manner, but with respect tôhm,k[tℓ]. Observe from (8) that

D̂m,k =

{

ĥm,kI, if (m, k) 6= (2, 1)

ĥm,kF , if (m, k) = (2, 1)

by the matching procedure, where
ĥm,k , ĥm,k[t1]

and
F , diag

(

(ωℓ−1
L )Lℓ=1

)

.
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Denote by
xk ,

(

xk[t1] xk[t2] . . . xk[tL]
)T

the vector of channel inputs at time slotst1, . . . , tL at transmitterk ∈ {1, 2}. Similarly, denote by

ym ,
(

ym[t1] ym[t2] . . . ym[tL]
)

T

and
zm ,

(

zm[t1] zm[t2] . . . zm[tL]
)T

the vector of channel outputs and noises at time slotst1, . . . , tL at receiverm ∈ {1, 2}. The relationship
betweenxk andym is given by

ym = Dm,1x1 +Dm,2x2 + zm (13)

for m ∈ {1, 2}.
Each transmitter uses a linear precoder over the block channel (13). Transmitter one has access to

L symbolss1,1, . . . , s1,L and transmitter two has access toL − 1 symbolss2,1, . . . , s2,L−1. We assume
that all these2L− 1 symbols have zero mean and are mutually independent. We willprovide a detailed
description as to how these symbols constitute codewords across matchings of time slots in Section V-C.
Each message symbol is multiplied by a transmit vector inCL. Transmitter one uses a total ofL transmit
vectorsv1,1, . . . , v1,L ∈ CL and transmitter two usesL − 1 transmit vectorsv2,1, . . . , v2,L−1 ∈ CL. The
modulated transmit vectors are summed up by the transmitter, and, at timetℓ, the ℓth component of this
sum of vectors is sent over the channel. The resulting channel input vectorxk at transmitterk ∈ {1, 2}
is given by

x1 =

L
∑

ℓ=1

s1,ℓv1,ℓ (14a)

and

x2 =

L−1
∑

ℓ=1

s2,ℓv2,ℓ. (14b)

Substituting (14) into (13) yields

y1 = (s1,1D1,1v1,1 + s2,1D1,2v2,1) + (s1,2D1,1v1,2 + s2,2D1,2v2,2) + · · ·
+ (s1,L−1D1,1v1,L−1 + s2,L−1D12v2,L−1) + s1,LD1,1v1,L + z1 (15a)

and

y2 = (s1,2D2,1v1,2 + s2,1D2,2v2,1) + (s1,3D2,1v1,3 + s2,2D2,2v2,2) + · · ·
+ (s1,LD2,1v1,L + s2,L−1D2,2v2,L−1) + s1,1D2,1v1,1 + z2. (15b)

Our goal is to createL orthogonal subchannels, indicated by the parentheses in (15), with integer-
valued coefficients at each receiver. We now demonstrate howthis can be achieved through an appropriate
choice of transmit vectors. Consider first the special case where the channel coefficients all have unit
magnitudes, i.e.,|hm,k| = 1 for all m, k. Assume the transmit vectorsvk,ℓ satisfy the following four
computation-alignment conditions:

1) D1,1v1,ℓ = D1,2v2,ℓ, for ℓ ∈ {1, . . . , L− 1};
2) D2,1v1,ℓ = D2,2v2,ℓ−1, for ℓ ∈ {2, 3, . . . , L};
3) {D1,1v1,1, . . . ,D1,1v1,L} are orthogonal to each other;
4) {D2,1v1,1, . . . ,D2,1v1,L} are orthogonal to each other.
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Then, by the first and second alignment conditions, (15) can be rewritten as

y1 = (s1,1 + s2,1)D1,1v1,1 + (s1,2 + s2,2)D1,1v1,2 + · · ·
+ (s1,L−1 + s2,L−1)D1,1v1,L−1 + s1,LD1,1v1,L + z1

y2 = (s1,2 + s2,1)D2,1v1,2 + (s1,3 + s2,2)D2,1v1,3 + · · ·
+ (s1,L + s2,L−1)D2,1v1,L + s1,1D2,1v1,1 + z2.

Note that each subchannel consists of the sum of two symbolssk,ℓ multiplied by some vectorD1,1v1,ℓ

or D2,1v1,ℓ. By the third and fourth alignment conditions, these vectors are orthogonal and can hence
be recovered without any interference using matched filtersat the receiver. Thus, we have transformed
the channel with complex channel coefficients into several orthogonal subchannels with integer channel
coefficients over which lattice codes can be efficiently used.

For arbitrary channel matricesDm,k, satisfying the computation-alignment conditions is not possible.
However, we now argue that due to the special form ofDm,k resulting from the matching procedure
described in Section V-A, this is possible here. Assume for the moment that the channel gainsDm,k are
equal to their quantized version̂Dm,k. Then it can be verified that the following choice of the transmit
vectors satisfies the computation-alignment conditions:

v1,1 = (1 1 . . . 1)T

v1,ℓ = D̂−1
2,1D̂2,2D̂

−1
1,2D̂1,1v1,ℓ−1 =

ĥ2,2ĥ1,1

ĥ2,1ĥ1,2

F−1v1,ℓ−1, ℓ ∈ {2, 3, . . . , L}

v2,ℓ = D̂−1
1,2D̂1,1v1,ℓ =

ĥ1,1

ĥ1,2

v1,ℓ, ℓ ∈ {1, . . . , L}.

Turning to the case with general channel magnitudes|hm,k|, we observe that this recursive construction
leads to transmit vectors with exponentially different norms asL increases, i.e.,

‖v1,L‖ =

( |ĥ2,2||ĥ1,1|
|ĥ2,1||ĥ1,2|

)L−1

‖v1,1‖.

This causes extremely unequal power allocation across the transmit vectors for largeL, resulting in a
significant rate loss and precluding a constant-gap capacity approximation. To circumvent this issue, we
will relax the computation-alignment condition, which in turn will allow us to equalize the vector lengths
using a scaling factor.

Observe that the first and second computation-alignment conditions guarantee that each of the orthogonal
subchannels carries the sum of two signals. This is sufficient for the efficient use of lattice codes, but
not necessary. Indeed a weaker sufficient condition is that each of the orthogonal subchannels carries an
integer linear combination of the signals. We can thus relaxthe second computation-alignment condition
to

2’) D2,1v1,ℓ = bjD2,2v2,ℓ−1, for ℓ ∈ {2, 3, . . . , L}
where the scalarbj is an integer or its inverse.

These relaxed conditions are satisfied by

v1,1 = (1 1 . . . 1)T (16a)

v1,ℓ = bℓD̂
−1
2,1D̂2,2D̂

−1
1,2D̂1,1v1,ℓ−1 = bℓ

ĥ2,2ĥ1,1

ĥ2,1ĥ1,2

F−1v1,ℓ−1, ℓ ∈ {2, 3, . . . , L} (16b)

v2,ℓ = D̂−1
1,2D̂1,1v1,ℓ =

ĥ1,1

ĥ1,2

v1,ℓ, ℓ ∈ {1, . . . , L}. (16c)
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where the scalarbℓ is of the formn or 1/n for the smallest natural numbern ∈ N such that

‖v1,ℓ‖/
√
L ∈ [1, 2). (17)

For convenience of notation, we setb1 , 1. Note that scalarbℓ equalizes all transmit vectors to have
approximately the same norm, as desired.

We now analyze the performance of this choice of transmit vectors in detail. Define

c = c(Ĥ) ,
∏

m,k

max
{

|ĥm,k|, |ĥm,k|−1
}

. (18)

It follows from (16) and (17) that

1/c ≤ |ĥ1,1|
|ĥ1,2|

≤ ‖v2,ℓ‖/
√
L ≤ 2

|ĥ1,1|
|ĥ1,2|

≤ 2c (19)

and that
max{bℓ, b−1

ℓ } ≤ 2c. (20)

We allocate the same amount of power

E
(

|sk,ℓ|2
)

=
P

4Lc2
, P̃ (21)

to each symbolsk,ℓ. Since‖vk,ℓ‖2 ≤ 4Lc2 by (17) and (19), we have using the construction ofxk in (14),

1

L
E
(

‖xk‖2
)

≤ P,

satisfying the overall average power constraint ofP over theL time slotst1, . . . , tL.
The operation of the receivers is implemented by multiplying the vector of channel outputsym by the

matched filter
ṽm,j , vm,j/‖vm,j‖ (22)

for m = 1, j ∈ {1, . . . , L} and form = 2, j ∈ {1, . . . , L− 1}, to form

ṽ
†
m,jym =

L
∑

ℓ=1

s1,ℓṽ
†
m,jDm,1v1,ℓ +

L−1
∑

ℓ=1

s2,ℓṽ
†
m,jDm,2v2,ℓ + ṽ

†
m,jzm.

In general, the channel gains are not equal to their quantized versions, i.e.,Dm,k 6= D̂m,k. However,
since we only communicate during time slots satisfying|hm,k[t]| ≤ ν, the quantization error is upper
bounded by (4) as

|hm,k[tℓ]− ĥm,k[tℓ]| ≤ (π + 1)/ν,

so the matricesDm,k and D̂m,k are quite close for quantization parameterν large enough. We will use
the same transmitter and receiver structures as for the perfectly matched case, i.e., (16) and (22). The
computation-alignment conditions are then only approximately satisfied. To determine performance, we
will bound the additional interference that is caused by imperfect alignment (received vectors do not line
up) and imperfect zero forcing of interference (received vectors are not orthogonal).

Define
Υm,k , Dm,k − D̂m,k

as the (diagonal) matrix of channel quantization errors. Wecan then rewrite the output of the matched
filter at receiver one as

ṽ
†
1,jy1 =

(

s1,jṽ
†
1,jD̂1,1v1,j + s2,jṽ

†
1,jD̂1,2v2,j

)

+
(

s1,jṽ
†
1,jΥ1,1v1,j + s2,jṽ

†
1,jΥ1,2v2,j +

∑

ℓ 6=js1,ℓṽ
†
1,jD1,1v1,ℓ +

∑

ℓ 6=js2,ℓṽ
†
1,jD1,2v2,ℓ

)

+ ṽ
†
1,jz1 (23a)



19

for j ∈ {1, . . . , L− 1} and as

ṽ
†
1,Ly1 = s1,Lṽ

†
1,LD̂1,1v1,L

+
(

s1,Lṽ
†
1,LΥ1,1v1,L +

∑L−1
ℓ=1 s1,ℓṽ

†
1,LD1,1v1,ℓ +

∑L−1
ℓ=1 s2,ℓṽ

†
1,LD1,2v2,ℓ

)

+ ṽ
†
1,Lz1 (23b)

for j = L. Similarly, we can rewrite the output of the matched filter atreceiver two as

ṽ
†
2,jy2 =

(

s1,j+1ṽ
†
2,jD̂2,1v1,j+1 + s2,jṽ

†
2,jD̂2,2v2,j

)

+
(

s1,j+1ṽ
†
2,jΥ2,1v1,j+1 + s2,jṽ

†
2,jΥ2,2v2,j +

∑

ℓ 6=j+1s1,ℓṽ
†
2,jD2,1v1,ℓ +

∑

ℓ 6=js2,ℓṽ
†
2,jD2,2v2,ℓ

)

+ ṽ
†
2,jz2 (23c)

for j ∈ {1, . . . , L − 1}. From (23), we see that the matched filter output consists of three parts: desired
signal, mismatch terms due to imperfect alignment and imperfect zero forcing of interference, and receiver
noise.

We start with the analysis of the desired signals in (23). Thedesired signal at receiver one is

s1,jṽ
†
1,jD̂1,1v1,j + s2,jṽ

†
1,jD̂1,2v2,j = ĥ1,1‖v1,j‖(s1,j + s2,j) (24a)

for j ∈ {1, . . . , L− 1} and
s1,Lṽ

†
1,LD̂1,1v1,L = ĥ1,1‖v1,L‖s1,L (24b)

for j = L, where we have used (16) and (22). Similarly, the desired signal at receiver two is

s1,j+1ṽ
†
2,jD̂2,1v1,j+1 + s2,jṽ

†
2,jD̂2,2v2,j = ĥ2,2‖v2,j‖(bj+1s1,j+1 + s2,j) (24c)

for j ∈ {1, . . . , L− 1}. The received signal power (for each symbol) satisfies

|ĥ1,1|2‖v1,j‖2E
(

|sk,j|2
)

(a)

≥ |ĥ1,1|2LP̃
(b)

≥ LP̃

c2
(25a)

at receiver one, where we have used (17) and (21) in(a) and (18) in(b). Similarly, using (19) instead
of (17),

|ĥ2,2|2‖v2,j‖2E
(

|sk,j|2
)

≥ |ĥ2,2|2|ĥ1,1|2

|ĥ1,2|2
LP̃ ≥ LP̃

c2
(25b)

at receiver two (not accounting for the normalization factor bj+1).
Before we continue with the analysis of the mismatch terms in(23), we argue that|ṽ†

m,jΥm,kvk,ℓ|2 is
small. By the Cauchy-Schwarz inequality,

|ṽ†
m,jΥm,kvk,ℓ|2 ≤ ‖ṽm,j‖2‖Υm,k‖2‖vk,ℓ‖2, (26)

where‖Υm,k‖2 denotes the sum of squared diagonal entries ofΥm,k. By construction,‖ṽk,j‖2 = 1. From
(4), ‖Υm,k‖2 satisfies

‖Υm,k‖2 ≤ L(π + 1)2/ν2.

By (17) and (19),
‖vk,j‖2 ≤ 4Lc2

for k ∈ {1, 2}, where we have used thatc ≥ 1 by (18). Combining this with (26) yields the desired upper
bound

|ṽ†
m,jΥm,kvk,ℓ|2 ≤

4L2(π + 1)2c2

ν2
, γ2. (27)
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The mismatch term in (23) due to imperfect alignment is

s1,jṽ
†
1,jΥ1,1v1,j + s2,jṽ

†
1,jΥ1,2v2,j , e1,1,js1,j + e1,2,js2,j (28a)

at receiver one, and

s1,j+1ṽ
†
2,jΥ2,1v1,j+1 + s2,jṽ

†
2,jΥ2,2v2,j , e2,1,js1,j+1 + e2,2,js2,j (28b)

at receiver two. Each termem,k,j can be interpreted as the residual channel fluctuation afterthe quantized
matching, and satisfies

|em,k,j|2 ≤ γ2 (29)

by (27).
The mismatch term in (23) due to imperfect zero forcing is

θ1,j ,
∑

ℓ 6=j

s1,ℓṽ
†
1,jD1,1v1,ℓ +

∑

ℓ 6=j

s2,ℓṽ
†
1,jD1,2v2,ℓ

=
∑

ℓ 6=j

s1,ℓṽ
†
1,jΥ1,1v1,ℓ +

∑

ℓ 6=j

s2,ℓṽ
†
1,jΥ1,2v2,ℓ (30a)

at receiver one, where we have used the orthogonality of the received vectors under channel gainsD̂m,k.
Similarly,

θ2,j ,
∑

ℓ 6=j+1

s1,ℓṽ
†
2,jD2,1v2,ℓ +

∑

ℓ 6=j

s2,ℓṽ
†
2,jD2,2v2,ℓ

=
∑

ℓ 6=j+1

s1,ℓṽ
†
2,jΥ2,1v2,ℓ +

∑

ℓ 6=j

s2,ℓṽ
†
2,jΥ2,2v2,ℓ (30b)

at receiver two. Using (21) and (27) together with the independence of the signalssk,ℓ, the total zero-
forcing leakage power

σ2 , max
m,j

E
(

|θm,j|2
)

(31)

is upper bounded by
σ2 ≤ 2(L− 1)γ2P̃ (32)

at each receiver.
Finally, the additive noise term

z̃m,j , ṽ
†
m,jzm (33)

in (23) is circularly-symmetric complex Gaussian with meanzero and variance one, since‖ṽm,j‖2 = 1.
Substituting (24), (28), (30), and (33) into (23), yields that the output of thejth matched filter at receiver

one is

ṽ
†
1,jy1 =

{

ĥ1,1‖v1,j‖(s1,j + s2,j) + µ1,j, if j 6= L

ĥ1,1‖v1,L‖s1,L + µ1,L, if j = L
(34)

where

µ1,j ,

{

e1,1,js1,j + e1,2,js2,j + θ1,j + z̃1,j, if j 6= L

e1,1,js1,j + θ1,j + z̃1,j, if j = L
(35)
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is the sum of the imperfect alignment, imperfect zero forcing, and noise terms.4 The signal-to-interference-
and-noise ratio (SINR) for each subchannel at receiver one is thus lower bounded by

SINR1

(a)

≥ LP̃/c2

1 + σ2 + 2γ2P̃
(b)

≥ LP̃/c2

1 + 2Lγ2P̃

(c)
=

P/(4c4)

1 + 2L2(π + 1)2P/ν2
, (36)

where(a) follows from (25), (29), (31), and (33);(b) follows from (32); and(c) follows from (21) and
(27). Similarly, at receiver two, we have

ṽ
†
2,jy2 = ĥ2,2‖v2,j‖(bj+1s1,j+1 + s2,j) + µ2,j (37)

for j ∈ {1, . . . , L− 1} and with

µ2,j , e2,1,js1,j+1 + e2,2,js2,j + θ2,j + z̃2,j . (38)

Recall thatbj+1 is of the formn or 1/n for some natural numbern ∈ N with n ≤ 2c by (20). If bj+1 = n,
then both channels have integer coefficients. Ifbj+1 = 1/n, then we can multiply the channel output by
n to obtain a channel with integer coefficients. This decreases the effective SINR by at most a factor4c2.
Following the same steps as before, the signal-to-interference-and-noise ratio is lower bounded by

SINR2 ≥
P/(16c6)

1 + 2L2(π + 1)2P/ν2
. (39)

As we had seen earlier, thebj factor serves as a normalizing term to ensure that all the transmit vectors
vk,ℓ have approximately magnitude

√
L. From (37), it is now clear whybj has to be chosen as a small

integer or its inverse. Indeed, it is precisely this property that ensures that the subchannels induced by the
matching of channel gains and the precoder/matched filter have essentially integer channel gains. As we
will see, having integer channel gains significantly simplifies the task of efficient reliable computation. This
transformation of the original channel with complex coefficients into subchannels with integer coefficients
is at the heart of the proposed communication scheme.

C. Computation of Functions

In the last section, we constructed and analyzed the subchannels induced by the precoder and matched
filter. We now show how to reliably compute functions over these subchannels from the precoder input
to the matched filter output.

Consider all time slots in the first subblock with quantized channel realization̂H ∈ ĤK×K. By Lemma 4,
with probability at least1− ε1(T ) there are at least

T (Ĥ) , (1− η(T ))pĤ(Ĥ)T/L (40)

time slots in the first subblock that have this quantized channel realization. By the matching construction
in Section V-A, the firstT (Ĥ) such time slots can be successfully matched with time slots in subblocks
ℓ ∈ {2, . . . , L} with quantized channel realizations chosen according to (8).

By (34) and (37), the precoding and matched filtering scheme from Section V-B transforms each group
of L time slots intoL− 1 subchannels of the form

r
(Ĥ)
1,j [t] = β

(Ĥ)
1,j

(

s
(Ĥ)
1,j [t] + s

(Ĥ)
2,j [t]

)

+ µ
(Ĥ)
1,j [t] (41a)

r
(Ĥ)
2,j [t] = β

(Ĥ)
2,j

(

a
(Ĥ)
1,j+1s

(Ĥ)
1,j+1[t] + a

(Ĥ)
2,j s

(Ĥ)
2,j [t]

)

+ µ
(Ĥ)
2,j [t] (41b)

4The noise termµ1,j depends on the signalsk,ℓ and is, therefore, not additive. We will handle this difficulty later.
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for j ∈ {1, . . . , L− 1}, and wheres(Ĥ)
k,j are the channel inputs,a(Ĥ)

1,j+1 anda(Ĥ)
2,j are nonzero integers,β(Ĥ)

m,j

are positive scaling factors, andµ(Ĥ)
1,j [t] andµ(Ĥ)

2,j [t] are interference and noise as in (35) and (38). Receiver
one observes one additional subchannel of the form

r
(Ĥ)
1,L [t] = β

(Ĥ)
1,L s

(Ĥ)
1,L[t] + µ

(Ĥ)
1,L[t]. (41c)

From (36) and (39), theSINR to all of these subchannels is lower bounded by

SINR(Ĥ) , min
m

SINRm(Ĥ)

≥ P/(16c6(Ĥ))

1 + 2L2(π + 1)2P/ν2
. (42)

where we have explicitly written out the dependence ofc andSINR on Ĥ.
Each transmitterk splits its messagewk into non-overlapping submessageswĤ

k,j, one for each subchannel
j of quantized channel realization̂H. Each such submessage is a vector with components in{0, 1, . . . , q−
1}. Receiver one attempts to recover the functions

u
(Ĥ)
1,j ,

{

w
(Ĥ)
1,j +w

(Ĥ)
2,j (mod q), if j 6= L

w
(Ĥ)
1,L , if j = L

over subchannelj ∈ {1, . . . , L}. Receiver two attempts to recover the functions

u
(Ĥ)
2,j , a

(Ĥ)
1,j+1w

(Ĥ)
1,j+1 + a

(Ĥ)
2,j w

(Ĥ)
2,j (mod q)

over subchannelj ∈ {1, . . . , L− 1}.

These equations are clearly invertible. Indeed, receiver one decodesw(Ĥ)
1,L alone. Receiver two computes

a linear combination with nonzero coefficients ofw
(Ĥ)
2,L−1 andw(Ĥ)

1,L . Knowing w
(Ĥ)
1,L , we can thus recover

w
(Ĥ)
2,L−1. Continuing in the same manner, alternating between the receivers in each step, we can successively

recover all transmitted messages. This shows that the mapping between the messages at the transmitters
and the decoded functions at the receivers is invertible.

Fix a quantized channel realization̂H. Applying L times5 [3, Theorem 1] (summarized in the notation
of this paper as Lemma 5 in Appendix A) guarantees that over the subchannel (41), a computation sum
rate (normalized by the numberT (Ĥ) of time slots in the subchannel) arbitrarily close to

(2L− 1) log
(

SINR(Ĥ)
)

is achievable with average probability of error at mostε
(Ĥ)
2 (T (Ĥ)) → 0 as T (Ĥ) → ∞. In terms of the

original blocklengthT , this translates to a computation sum rate of

(2L− 1)
T (Ĥ)

T
log

(

SINR(Ĥ)
)

.

Moreover, sinceT (Ĥ) → ∞ asT → ∞, and since, for fixedL and quantization parameterν there are
only finitely many values of̂H, we also have

ε2(T ) , max
Ĥ

ε
(Ĥ)
2 (T (Ĥ)) → 0

asT → ∞.

5Since the input symbols at the two receivers for different values ofj ∈ {1, . . . , L} are coupled, we need to make use of the universality
of the channel encoders mentioned after the statement of Lemma 5.
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We repeat the coding procedure above for all quantized channel realizationsĤ with finite magnitudes,
i.e., satisfying‖Ĥ‖∞ < ∞. If our construction is successful (see the analysis of error in the following
paragraph), then the overall computation sum rate can be lower bounded as

(2L− 1)
∑

Ĥ:‖Ĥ‖∞<∞

T (Ĥ)

T
log

(

SINR(Ĥ)
)

(a)

≥ 2L− 1

L
(1− η(T ))

∑

Ĥ:‖Ĥ‖∞<∞

pĤ(Ĥ) log
(

SINR(Ĥ)
)

(b)

≥ 2L− 1

L
(1− η(T ))

∑

Ĥ:‖Ĥ‖∞<∞

pĤ(Ĥ)

(

log
( P/16

1 + 2L2(π + 1)2P/ν2

)

− 6 log(c(Ĥ))

)

(c)

≥ 2L− 1

L
(1− η(T ))

(

(1− δ(ν)) log
( P/16

1 + 2L2(π + 1)2P/ν2

)

− 6E
(

log(c(Ĥ)); ‖Ĥ‖∞ < ∞
)

)

,

where(a) follows from (40),(b) follows from (42), and(c) follows from (5). Here, the(1− η(T )) factor
accounts for the loss in matching the channel gains at timest1, . . . , tL, and the factor(1− δ(ν)) accounts
for channel realizations that are quantized to∞, see Section V-A. Bothη(T ) → 0 as the blocklength
T → ∞ by (11) andδ(ν) → 0 as the quantization parameterν → ∞ by (12).

There are two sources of error in this communication scheme:atypicality of the channel gains and
atypicality of the noise terms. The channel gains are handled by the matching construction described in
Section V-A. We declare an error whenever the channel gains are atypical, which happens with probability
at mostε1(T ) with ε1(T ) → 0 asT → ∞ for fixed L andν by (9) and (10). The noise is handled by the
computation code over the integer channel. As we have seen above, an error occurs with probability at
mostε2(T ) with ε2(T ) → 0 asT → ∞ for fixed L andν. Since the number of finite quantized channel
gains is at mostν4L by (3), and since the number of decoders is2L− 1 ≤ 2L for each such realization
of the quantized channel, with probability at least

1− ε1(T )− 2ν4L2ε2(T )

all decoders are successful. For a fixed number of subblocksL and fixed quantization parameterν, this
quantity converges to one asT → ∞, yielding an achievable computation sum rate of

R(P, L, ν) ,
2L− 1

L

(

(1− δ(ν)) log

(

P/16

1 + 2L2(π + 1)2P/ν

)

− 6E
(

log(c(Ĥ)); ‖Ĥ‖∞ < ∞
)

)

.

Hence the computation capacityC(P ) is lower bounded as

C(P ) ≥ R(P, L, ν).

Since this is true for all values ofν, we may take the limit asν → ∞ to obtain

C(P ) ≥ lim
ν→∞

R(P, L, ν)

=
2L− 1

L

(

log(P/16)− 6 lim
ν→∞

E
(

log(c(Ĥ)); ‖Ĥ‖∞ < ∞
)

)

.

In Appendix B, we show that

lim
ν→∞

E
(

log(c(Ĥ)); ‖Ĥ‖∞ < ∞
)

≤ 3.

Thus, the computation capacity is lower bounded by

C(P ) ≥ lim
ν→∞

R(P, L, ν)

=
2L− 1

L

(

log(P )− 22
)

.
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Finally, we may take a limit asL → ∞, yielding a computation rate of

C(P ) ≥ lim
L→∞

lim
ν→∞

R(P, L, ν)

= 2 log(P )− 44

≥ K log(P )− 7K3,

concluding the proof of the lower bound in Theorem 1 forK = 2.

VI. PROOF OFLOWER BOUND IN THEOREM 1 FORK > 2 USERS

As in the two-user case in Section V, the proof forK > 2 proceeds in three steps: matching of channel
gains (see Section VI-A), linear precoding and matched filtering (see Section VI-B), and computation of
functions of the messages over the resulting channel from the precoder input to the matched filter output
(see Section VI-C). We again quantize all channel gains as described in Section IV and consider large
blocklengthsT such that this quantization can be performed for arbitrarily large quantization parameterν
and such that the resulting observed sequence of quantized channel gains isη-typical with high probability.
Since the effects of quantization and atypicality are essentially identical to the two-user case, we will not
repeat this analysis here and instead assume directly thatν ≈ ∞, which implies that̂hm,k[t] ≈ hm,k[t].
The quantization and typicality arguments forK = 2 carry over forK > 2.

A. Matching of Channel Gains

Fix a large blocklengthT and a natural numberI. Define

L , (I + 1)K
2

,

and divide the block ofT channel realizations intoL subblocks of lengthT/L (assumed to be integer).
Consider the channel gains at timet1 = 1 in the first of these blocks and the corresponding channel gains
H [t1]. Let tℓ be the first time in blockℓ such that6

hm,k[tℓ] = ω
(ℓ−1)dm,k

L hm,k[t1]

for all k,m ∈ {1, . . . , K}, whereωL is theLth root of unity as before, and where

dm,k , (I + 1)(k−1)K+m−1.

Repeat this construction witht1 = 2 and so on, ensuring that no time slot is matched more than once.
By the assumptions of circular symmetry and ergodicity of the fading gains, essentially all but ao(1)

fraction of the channel gains can be matched in this fashion as T → ∞ (see Lemmas 3 and 4), and we
will assume in the following thatT is large enough to ignore theo(1) term (see Section V-A for a detailed
analysis).

B. Precoding and Matched Filtering

Consider now one such sequence of matched time slotst1, . . . , tL. As in the two-user case, we use
linear precoders and matched filters over the vector channelinduced by theseL time slots. Define the
diagonal matrix

Dm,k , diag
(

(hm,k[tℓ])
L
ℓ=1

)

corresponding to the vector channel of lengthL between transmitterk and receiverm at time slots
t1, . . . , tL. By construction,

Dm,k = hm,kF
dm,k ,

6The probability of this event happening is, of course, zero.The statement is to be understood in terms of the quantized channel gains
ĥm,k[t] and sufficiently largeν so thatĥm,k[t] ≈ hm,k[t].
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where
hm,k , hm,k[t1]

and
F , diag

(

(ωℓ−1
L )Lℓ=1

)

.

Each transmitter uses again a linear precoder with transmitvectorsv ∈ V ⊂ CL. The setV is constructed
as7

V ,

{(

∏

m,k

(

αm,k
∏

α=1

b
(α)
m,k

)

D
αm,k

m,k

)

1 : αm,k ∈ {0, . . . , I − 1}
}

.

Since all channel matricesDm,k are diagonal by construction, the productDm,kDm̃,k̃ commutes, and

hence it is immaterial in which order the product in the definition of V is taken. The scalarsb(α)m,k are

constructed recursively, starting fromb(1)m,k. Each b(α)m,k is of the formn or 1/n for the smallest natural
numbern ∈ N such that

(

αm,k
∏

α=1

b
(α)
m,k

)

|hm,k|αm,k ∈ [1, 2).

As in the two-user case, the role of theb(α)m,k is to ensure that the transmit vectors all have approximately
the same norm. In particular, √

L ≤ ‖v‖ ≤ 2K
2
√
L (43)

for everyv ∈ V. Moreover, by the recursive construction,
(

2max
{

|hm,k|, |hm,k|−1
})−1 ≤ min

{

b
(α)
m,k, 1/b

(α)
m,k

}

≤ max
{

b
(α)
m,k, 1/b

(α)
m,k

}

≤ 2max
{

|hm,k|, |hm,k|−1
}

,
(44)

and hence
(

2K
2

c
)−1 ≤

∏

m,k

min
{

b
(αm,k)

m,k , 1/b
(αm,k)

m,k

}

≤
∏

m,k

max
{

b
(αm,k)

m,k , 1/b
(αm,k)

m,k

}

≤ 2K
2

c (45)

for all αm,k ∈ {0, . . . , I − 1}, and where

c = c(H) ,
∏

m,k

max
{

|hm,k|, |hm,k|−1
}

. (46)

Observe that, as in the two-user case, each transmit vectorv ∈ V is of the form

v = ρF α
1

for some scalarsρ ∈ C andα ∈ N. By the properties of the “Fourier” matrixF , this implies that any
two transmit vectors inV are either collinear or orthogonal. As we will see next, all vectors inV are, in
fact, orthogonal.

Eachv ∈ V is a complex-valued vector of lengthL defined by a monomial up to powerI − 1 in the
channel matricesDm,k. By definition, every collection of powersαm,k ∈ {0, . . . , I−1}, m, k ∈ {1, . . . , K}
corresponds to an elementv ∈ V. We now argue that this correspondence is one-to-one, implying that

|V| = IK
2

.

Moreover, together with the argument in the last paragraph,this will also ensure that all vectors inV are
orthogonal.

7This construction ofV is reminiscent of the one in [29, Appendix III] for theK-user interference channel with more than three users.
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To this end, considerv ∈ V and write it as

v = ρ
(

∏

m,k

F dm,kαm,k

)

1

for someαm,k ∈ {0, . . . , I − 1} and some scalarρ. The first component ofv is equal toρ. The second
component ofv is equal toρωα

L with

α ,
∑

m,k

αm,kdm,k (mod L)

=
∑

m,k

αm,k(I + 1)(k−1)K+m−1 (mod L).

Since eachαm,k ∈ {0, . . . , I − 1}, this last sum is less than(I + 1)K
2

= L, and so the moduloL
operation can be dropped. Thus, the coefficientsαm,k of α can be determined uniquely by computing
the (I + 1)-ary expansion ofα. Moreover, knowingρ from the first component ofv, α can be uniquely
determined from the second component ofv. Together, this shows that there is a unique collection of
powersαm,k ∈ {0, . . . , I − 1} for all m, k ∈ {1, . . . , K} that generatesv. We refer to this as theunique
factorizationproperty ofV. Since each exponentα corresponds to a uniquev ∈ V, this also shows the
orthogonality of the vectors inV.

Each transmitter modulatesIK
2

zero mean and mutually independent message symbols over itstransmit
vectors. Letsk,v be the message symbol at transmitterk sent along transmit vectorv ∈ V. The channel
input

xk ,
(

xk[t1] xk[t2] . . . xk[tL]
)T

at transmitterk has then the form
xk =

∑

v∈V

sk,vv.

We allocate the same power

E
(

|sk,v|2
)

=
P

4K2L
, P̃ (47)

to eachsk,v. Since each transmit vectorv has squared norm at most4K
2

L by (43), we have

1

L
E
(

‖xk‖2
)

≤ |V|
L

· P

4K2L
· 4K2

L ≤ P,

satisfying the average power constraint over theL time slotst1, . . . , tL. Since each of theK transmitters
has IK

2

transmit vectors, we transmit a total ofKIK
2

independent data streams overL = (I + 1)K
2

channel uses.
The corresponding vector of channel outputs

ym ,
(

ym[t1] ym[t2] . . . ym[tL]
)T

at receiverm is then

ym =

K
∑

k=1

Dm,kxk + zm

=

K
∑

k=1

∑

v∈V

sk,vDm,kv + zm, (48)

where
zm ,

(

zm[t1] zm[t2] . . . zm[tL]
)T
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is the additive noise at receiverm.
From (48), transmit vectorv ∈ V is observed at receiverm asDm,kv. Each receiverm usesL the

receive vectors
Ṽm ,

{

ṽ = Dm,kv/‖Dm,kv‖ : k ∈ {1, . . . , K}, v ∈ V
}

as matched filters, computing̃v†ym for eachṽ ∈ Ṽm. The number of matched filters is at most

|Ṽm| ≤ (I + 1)K
2

.

By the same argument as forV, it can be shown that̃Vm also has the unique factorization property.
In other words, to everỹv ∈ Ṽm corresponds a unique collection of powersαm,k ∈ {0, . . . , I} for all
m, k ∈ {1, . . . , K} such that

ṽ =
1√
L

(

∏

m,k

F αm,kdm,k

)

1.

As for V, this implies that the vectors iñVm are orthogonal by the properties of the “Fourier” matrixF .
The equivalent channel, consisting of the linear precoder,the wireless channel, and the matched filters,

hasIK
2

channel inputs at each transmitter and at most(I + 1)K
2

channel outputs at each receiver. Since
the matched filters are normalized to have unit norm, each such subchannel at the receiver is an additive
Gaussian noise channel with unit noise power. We now argue that we have again signal alignment as in
the two-user case.

As pointed out above, the transmit vectorv ∈ V at transmitterk is observed at receiverm asDm,kv.
By construction of the set of matched filter vectorsṼm at receiverm, Dm,kv is a scalar multiple of a
vectorṽ ∈ Ṽm. Since all the vectors iñVm are orthogonal, this implies that the matched filtering operation
ṽ†ym removes all but those transmit signals which are aligned with ṽ.

We now analyze the magnitudes of the signals that are observed along one receive vector̃v ∈ Ṽm at
receiverm. By unique factorization, there exists a unique collectionof exponentsαm̃,k̃ ∈ {0, . . . , I} such
that

ṽ = ρ
(

∏

m̃,k̃

D
α
m̃,k̃

m̃,k̃

)

1

for some scalarρ. Assume a signal modulated over transmit vectorvk at transmitterk is observed along
vector ṽ at receiverm. Note that this is only possible ifαm,k ∈ {1, . . . , I} andαm̃,k̃ ∈ {0, . . . , I − 1} for
all (m̃, k̃) 6= (m, k). The transmit vectorvk is proportional toD−1

m,kṽ, and hence is equal to

vk =
(

αm,k−1
∏

α=1

b
(α)
m,k

)

D
αm,k−1

m,k

(

∏

(m̃,k̃)6=(m,k)

(

α
m̃,k̃
∏

α=1

b
(α)

m̃,k̃

)

D
α
m̃,k̃

m̃,k̃

)

1.

Defining

b ,

∏

m̃,k̃

∏α
m̃,k̃

α=1 b
(α)

m̃,k̃

∏

k̃ b
(α

m,k̃
)

m,k̃

,

and

bk ,
∏

k̃ 6=k

b
(α

m,k̃
)

m,k̃
, (49)

this allows to writevk in terms ofṽ as

vk =
b

ρ
bkD

−1
m,kṽ ∈ V. (50)
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Since the collection of exponentsαm̃,k̃ corresponding tõv is unique, and by orthogonality ofV, this
implies that there are at mostK signals that are aligned along the same vectorṽ at receiverm, and they
are all observed with the same common channel gain times a factor bk depending on the transmitterk.
Using the orthogonality of the matched filters and (50), the output of the matched filter applied to the
channel output (48) can then be written as

ṽ†ym =
K
∑

k=1

∑

v∈V

sk,vṽ
†Dm,kv + ṽ†zm

=
K
∑

k=1

sk,vk
ṽ†Dm,kvk + z̃m,ṽ

=
b

ρ

K
∑

k=1

bksk,vk
+ z̃m,ṽ, (51)

where
z̃m,ṽ , ṽ†zm

is additive circularly-symmetric complex Gaussian noise with mean zero and variance one, and wherevk

depends on both the matched filterṽ and the receiverm (see (50)). We can interpret (51) as a subchannel
between the inputs to the precodervk at each transmitterk and the output of matched filter̃v at receiver
m.

We point out that, similar to the two-user case, not allK transmitters contribute to all matched filter
outputs ṽ†ym. Indeed, if αm,k = 0 in the unique factorization of̃v at receiverm, then there is no
corresponding transmit vectorvk at transmitterk. For ease of notation, we assume thatsk,vk

= 0 in this
case, so that (51) is still valid.

We now bound the channel gains in the matched filter output (51). From (50), we have

|b/ρ| = ‖vk‖
bk‖D−1

m,kṽ‖
=

|hm,k|‖vk‖
bk

.

Now,

|hm,k|−1bk
(a)
= |hm,k|−1

∏

k̃ 6=k

b
(α

m,k̃
)

m,k̃

(b)

≤ 2Kc,

where(a) follows from (49), and(b) follows from (44) and (46). Together with (43), this shows that

|b/ρ| ≥
√
L

2Kc
(52)

Moreover, eachbk is a product of at mostK scalars, each being either a natural number or its inverse.
We want to multiply the output of the subchannel (51) by a positive scalarρ̃ such thatρ̃bk ∈ N for all

k. By the definition ofbk in (49), we can choose

ρ̃ ,

K
∏

k̃=1

max
{

1, 1/b
(α

m,k̃
)

m,k̃

}

.

Using (44) and (45), we thus have
ρ̃ ≤ 2Kc, (53)

resulting in a decrease of effective signal power by at most afactor 4Kc2.
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To summarize, the channel (51) between the inputsk,vk
to the matched filter at transmitterk and the

scaled output of the matched filterṽ ∈ Ṽ at receiverm is of the form

rm,ṽ = βm,ṽ

K
∑

k=1

aksk,vk
+ µm,ṽ, (54)

for nonzero integer channel gainsak, scaled Gaussian noiseµm,ṽ, and positive scaling factorsβm,ṽ.
Ignoring the integer gainsak, the signal-to-noise ratio

SNR , min
k,m,ṽ

E|βm,ṽsk,vk
|2

E|µm,ṽ|2
of each component in this subchannel is then lower bounded by

SNR
(a)

≥ P̃ |b/ρ|2
ρ̃2

(b)

≥ P/(4K
2

L) · L/(4Kc2)
4Kc2

=
P

24K+2K2c4
, (55)

where(a) follows from (47), and(b) follows from (52) and (53).

C. Computation of Functions

We use a computation code over the channel from the precoder input to the matched filter output
constructed in the last section. This will allow us to reliably decode functions of the transmitted messages
over this channel.

As in the proof of the two-user case, we code over several channel uses, each with the same channel
realizationH. For each suchH, we are hence dealing with a channel that is constant across time.
Each transmitterk splits its messagewk into non-overlapping submessages, one for each subchannel
(54) between precoder input and matched filter output, and for each channel realizationH. Each such
submessage is again a vector over{0, . . . , q − 1} for someq. The decoder aims to compute a modulo-q
integer linear equation of these messages with coefficientsak as appearing in (54).

Using the unique factorization property ofṼ and the fact that all coefficientsak are nonzero, it follows
from [4, Lemma 8] that the functions to be decoded by the receivers can be inverted. Hence, knowledge
of all correctly decoded functions at the receivers allows recovery of all the messages.

Applying L times8 Lemma 5 in Appendix A shows then that each of the receivers canreliably compute
its desired functions over the channel given by (54) at a sum rate at least

KIK
2

log
(

SNR(H)
)

≥ KIK
2(

log(P )− 4K − 2K2 − 4 log(c(H))
)

for a particular realizationH of the channel gains, and where we have used (55), that the number of
messages sent from each transmitter is|V| = IK

2

, and that there areK receivers. Normalizing by the
number(I + 1)K

2

of channel uses, we can hence achieve a sum rate of at least

R(P, I) ,
KIK

2

(I + 1)K2

(

log(P )− 4K − 2K2 − 4E
(

log(c(H))
)

)

when averaged over all channel realizations.
The computation sum capacity is then lower bounded as

C(P ) ≥ R(P, I).

8As in the two-user case, the input symbols at theK receivers are coupled. We make again use of the universalityof the channel encoders
mentioned after the statement of Lemma 5.
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Since this holds for all values ofI, and since the constantc does not depend onI, we may take the limit
as I → ∞ to obtain a computation rate of at least

C(P ) ≥ lim
I→∞

R(P, I)

= K log(P )− 4K2 − 2K3 − 4KE
(

log(c(H))
)

≥ K log(P )− 7K3,

where we have used the upper bound3K2/4 on the expected value oflog(c(H)) in Appendix B. This
concludes the proof of the lower bound in Theorem 1 for arbitrary K ≥ 2.

VII. PROOF OFUPPERBOUND IN THEOREM 1

The proof adapts an argument from [31, Theorem 4]. Since the receivers compute an invertible function
of the messages, the cut-set bound [41, Theorem 14.10.1] applies, showing that

C(P ) ≤ sup
Q(H)

E
(

log det(I +HQ(H)H†)
)

,

where the maximization is over all positive semidefinite matricesQ(H) such that

E
(

tr(Q(H))
)

≤ KP.

Using Hadamard’s inequality, this can be upper bounded as

sup
Q(H)

E
(

log det(I +HQ(H)H†)
)

≤
K
∑

m=1

sup
Q(H)

E
(

log(1 + hmQ(H)h†
m)

)

≤ K sup
P (r)

E
(

log(1 + rP (r))
)

,

wherehm denotes themth row of H, where

r , ‖h1‖2,
and where the last maximization is over all nonnegativeP (r) satisfying

E(P (r)) ≤ KP.

This upper bound onC(P ) is maximized by water-filling [42], yielding

C(P ) ≤ KE
(

log(1 + rP ⋆(r))
)

with
P ⋆(r) ,

(1

µ
− 1

r

)+

andµ such that
E(P ⋆(r)) = KP. (56)

Since
P ⋆(r) ≤ 1

µ
,

we can further upper bound

C(P ) ≤ KE(log(1 + r/µ))

≤ K log(1 + E(r)/µ), (57)

where we have used Jensen’s inequality.
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It remains to lower boundµ. By (56), we have

KP = E(P ⋆(r))

=

∫ ∞

r=µ

(1

µ
− 1

r

)

fr(r)dr

≥
∫ ∞

r=2µ

(1

µ
− 1

r

)

fr(r)dr

≥ 1

2µ
P(r ≥ 2µ).

The random variabler has Erlang distribution with parameterK and rate one, and hence

KP ≥ 1

2µ
P(r ≥ 2µ)

=
1

2µ

K−1
∑

k=0

exp(−2µ)
(2µ)k

k!

≥ 1

2µ
exp(−2µ).

If µ ≤ 1/(4KP ), then we obtain the contradiction

KP ≥ 1

2µ
exp(−2µ)

≥ 2KP exp(−1/(2KP ))

> KP

for K ≥ 2, P ≥ 1. Henceµ > 1/(4KP ).
Substituting this into (57) yields

C(P ) ≤ K log(1 + 4KPE(r))

= K log(1 + 4K2P )

≤ K log(P ) + 5K log(K),

where we have usedP ≥ 1 andK ≥ 2. This concludes the proof of the upper bound in Theorem 1.

VIII. PROOF OFTHEOREM 2

This section provides the proof for the approximation result of the sum capacityC(D)(P ) of theD-layer
relay network. The proof builds on the approximation resultfor the computation sum rate in Theorem 1.
Since the upper bound in Theorem 2 follows directly from the same cut-set bound argument as Theorem 1,
we focus here on the lower bound.

Each of theD network layers operates using compute-and-forward. We usethe same codebook rate
Rk = R at each source nodek ∈ {1, . . . , K}. Using Theorem 1, the relay nodes at layer one can then
reliably decode a deterministic invertible function of themessages at sum rate at least

K log(P )− 7K3.

Since the blocklength used is arbitrarily long, the probability of decoding error at the relays can be made
smaller thanε/D for any ε > 0.

The relays in layer one treat these computed functions as their messages for the destination node, and
re-encode them using again a computation code. In order to make this argument inductively, we will
apply Theorem 1 for each layer. Two difficulties arise. First, the statement in Theorem 1 is only for the
computationsum rateand it is not clear how much each individual transmitter and receiver contributes
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to this sum. For the induction argument, we need to argue thatwe can choose the message rates at the
transmitters to be symmetric, and that we can choose the rates of the decoded functions at the receivers to
be symmetric. Second, the definition of computation capacity stipulates only that the receivers decode an
invertible deterministic function of the messages. In particular, the sum rate of the decoded functions at any
receiver could be larger than the sum rate of the transmittedmessages. For example, if a receiver decodes
a sum overZ of two messages, then the entropy of this decoded function islarger than the entropy of
either of the messages. For the induction argument, we need to argue that the we can choose the functions
to be computed at the receivers to be over the same alphabet asthe messages at the transmitters, thus
avoiding growth of the messages as they traverse the network.

From the proof of Theorem 1, we see that the rates of the messages at the transmitters as well as the
rates of the computed functions at the receivers are indeed symmetric as the time expansion parameter
L → ∞ (see Sections V-C and VI-C). Moreover, the messages at the transmitters as well as the computed
functions at the receivers are all over the same finite field ofsize q (see again Sections V-C and VI-C).
Thus, the message sizes do not increase as they traverse the network.

We can therefore inductively apply Theorem 1 to conclude that the relays at layerd in the network can
decode a deterministic invertible function of the messagesat layerd − 1 for all d ∈ {1, . . . , D} at sum
rate at least

K log(P )− 7K3.

Since the composition of invertible functions is invertible, this implies that the relay nodes in layerD
compute a deterministic invertible function of the messages at the source at this sum rate.

Since the relay nodes in the last layer are connected to the destination node by orthogonal bit pipes
of infinite capacity, they can forward their computed message to the destination. The destination node, in
turn, can then invert theseK functions to recover the original messages. Since the probability of decoding
error is at mostε/D in each layer, this implies that the destination node decodes in error with probability
at mostε by the union bound. Sinceε > 0 is arbitrary, this proves the lower bound in Theorem 2.

IX. CONCLUSIONS

We have considered time-varying Gaussian relay networks consisting ofK source nodes communicating
to a destination node with the help ofD layers of K relay nodes. We have presented a capacity
approximation for this type of communication network. The gap in this approximation depends only
on the number of source nodesK and the fading statistics, but is independent of the depthD of the
network and the transmit powerP . This contrasts with previously known approximation results, which
have a gap that increases linearly with the depthD of the network.

At the heart of our achievable scheme is the concept of computation alignment, combining computation
codes with signal alignment. The use of computation codes allows the relay nodes to remove receiver
noise, thus preventing noise from accumulating as messagestraverse the network. The use of signal
alignment allows the transformation of the wireless channel with time-varying complex-valued channel
gains into subchannels with constant integer-valued channel gains, over which these computation codes
can be used efficiently.

APPENDIX A
COMPUTATION OVER INTEGER CHANNELS

The channel matching and precoding/matched filtering stepsin Sections V and VI transform the time-
varying linear channel with arbitrary complex channel gains into several constant linear subchannels with
integer channel gains. In this section, we analyze how to reliably compute functions over these subchannels.
We will employ the compute-and-forward scheme from [3], being well-suited for such constant linear
channels with integer channel gains.
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Throughout this section, we consider the subchannels (41) and (54). Specifically, relaym observes

rm[t] , β
K
∑

k=1

am,ksk[t] + µm[t] (58)

whereβ > 0 is a positive real scaling factor,am,k ∈ Z are integer channel coefficients,sk[t] ∈ C are the
symbols sent by transmitterk, and

µm[t] ,

K
∑

k=1

em,k[t]sk[t] + θm[t] + zm[t] ∈ C

is the sum of interference and noise terms. Part of the interference is due to residual channel fluctuations
em,k[t] and the remainder is due to leakage from other subchannels written asθm[t]. We assume that

|em,k[t]| ≤ γ2

for all m, k, and for some finite constantγ2 not depending onm, k, t. Finally, zm[t] is i.i.d. circularly-
symmetric Gaussian noise with mean zero and variance one. Each leakage termθm[t] has expected power

E
(

|θm[t]|2
)

≤ σ2

and is independent of the symbolssk[t] for all m, k, and t. Over a block of lengthT , we impose an
average power constraint of

1

T

T
∑

t=1

|sk[t]|2 ≤ P.

It will be convenient to express the messages at the transmitters as well as the functions computed at
the receivers in some finite field.9 To this end, we write the messagewk at transmitterk as a vectorwk

of lengthκ with components in{0, . . . , q− 1} for some prime numberq. Receiverm aims to recover the
function

um ,

K
∑

k=1

am,kwk (mod q)

where am,k are the same integer-valued coefficients that appear in (58). We will assume that these
coefficients are chosen so that the resulting functions are invertible. Since we transmitK messages with
alphabet sizeqκ overT channel uses, the computation sum rate (in bits per channel use) is

K
κ

T
log(q).

The following result, which is a special case of [3, Theorem 1], lower bounds the computation sum
capacity of the channel (58).

Lemma 5. The computation sum capacity of the channel(58) is lower bounded by

K log(SINR)

with

SINR ,
β2P

1 + σ2 +Kγ2P
.

We point out that the codebooks at theK transmitters in Lemma 5 are chosen independently of the
coefficientsam,k. In other words, the encoders are universal with respect to the channel and equation
coefficientsam,k.

9This property will be quite useful in the analysis ofD-layer relay networks as it ensures that the rates of the recovered functions are the
same as the transmitted messages.
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APPENDIX B
UPPERBOUND ON THE EXPECTED VALUE OF log(c(Ĥ))

In this section, we derive the upper bound

lim
ν→∞

E
(

log(c(Ĥ)); ‖Ĥ‖∞ < ∞
)

≤ 3K2

4

as the quantization parameterν → ∞.
The termc depends on the quantized channel gainsĤ, and hence, implicitly, on the channel gainsH

and the quantization parameterν. With slight abuse of notation, we write

c(Ĥ) = c(H , ν).

We then have

E
(

log(c(Ĥ)); ‖Ĥ‖∞ < ∞
)

=
∑

Ĥ:‖Ĥ‖∞<∞

log(c(Ĥ))pĤ(Ĥ)

=
∑

Ĥ:‖Ĥ‖∞<∞

log(c(Ĥ))

∫

H∈Q−1(Ĥ)

fH(H)dH

=

∫

H:‖H‖∞≤ν

log(c(H, ν))fH(H)dH

= E
(

log(c(H , ν)); ‖H‖∞ ≤ ν
)

by Fubini’s theorem, and wherefH denotes the density ofH andQ the operation of the quantizer.
From the definition ofc, and using (6),

c(H , ν) =
∏

m,k

max
{

|ĥm,k|, |ĥm,k|−1
}

≤ 2K
2
∏

m,k

max
{

|hm,k|, |hm,k|−1
}

for H such that‖H‖∞ ≤ ν. Hence,

log(c(H , ν))11{‖H‖∞ ≤ ν} ≤ K2 +
∑

m,k

log
(

max
{

|hm,k|, |hm,k|−1
})

.

Since
E
(

log
(

max
{

|hm,k|, |hm,k|−1
}))

< ∞
by assumption on the fading process, this implies that

lim
ν→∞

E
(

log(c(H , ν)); ‖H‖∞ ≤ ν
)

= E
(

lim
ν→∞

log(c(H , ν))
)

by dominated convergence. SincêH converges toH almost surely asν → ∞ by the construction of the
quantizer, this yields

lim
ν→∞

E
(

log(c(H , ν)); ‖H‖∞ ≤ ν
)

=
∑

m,k

E
(

log
(

max
{

|hm,k|, |hm,k|−1
}))

=
K2

2
E
(

log
(

max
{

|h1,1|2, |h1,1|−2
}))

. (59)
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It remains to upper bound the expectation overh1,1. Since|h1,1|2 has exponential distribution, we have

E
(

log
(

max
{

|h1,1|2, |h1,1|−2
}))

= −
∫ 1

s=0

exp(−s) log(s)ds+

∫ ∞

s=1

exp(−s) log(s)ds

= (γ − 2 Ei(−1)) log(e)

≤ 1.5,

whereγ is the Euler-Mascheroni constant. Combining this with (59)shows that

lim
ν→∞

E
(

log(c(Ĥ)); ‖Ĥ‖∞ < ∞
)

= E
(

lim
ν→∞

log(c(H , ν))
)

≤ 3K2

4
.
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