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Abstract—This paper discusses transmission strategies for
dealing with the problem of self-interference in multi-hop
wireless networks in which the nodes communicate in a full-
duplex mode. An information theoretic study of the simplest
such multi-hop network: the two-hop source-relay-destination
network, leads to a novel transmission strategy called struc-
tured self-interference cancellation (or just “structured can-
cellation” for short). In the structured cancellation stra tegy
the source restrains from transmitting on certain signal levels,
and the relay structures its transmit signal such that it can
learn the residual self-interference channel, and undo theself-
interference, by observing the portion of its own transmit signal
that appears at the signal levels left empty by the source.
It is shown that in certain nontrivial regimes, the structured
cancellation strategy outperforms not only half-duplex but also
full-duplex schemes in which time-orthogonal training is used
for estimating the residual self-interference channel.

I. I NTRODUCTION

Full-duplex communication can provide a significant spec-
tral efficiency boost in multi-hop networks: relay nodes can
forward packets while simultaneously receiving the next
packets to be forwarded. The challenge, however, for full-
duplex operation isself-interference: a full-duplex relay’s
transmit signal will appear at its own receiver with very high
power, potentially drowning out the signal being received.
The two-hop source-relay-destination network depicted in
Figure 1 is the “unit cell” of any multi-hop network. Trans-
mission strategies for dealing with self-interference in the
two-hop network are likely to be useful for each stage along
a larger multi-hop route. As shown in Figure 1, the relay
operates in full-duplex mode but suffers from the presence
of a self-interference channelhSI.
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Fig. 1: Two-hop source-relay-destination network. The re-
lay operates in full-duplex mode, but suffers from self-
interference channelhSI.

Recent results [1]–[3] have experimentally demonstrated
the feasibility of full-duplex communication by employing
analog and digital self-interference cancellation techniques.
Analog self-interference cancellation is necessary to pre-
vent the high-power self-interference from consuming the
dynamic range of the A/D converter, resulting in debilitat-
ing quantization noise in the much lower power signal-of-
interest.
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Fig. 2: After analog self-interference cancellation is em-
ployed, a residual self-interference channel remains.

After analog cancellation is employed, a residual self-
interference channel remains due to imperfection in the
canceler, as is shown in Figure 2. The gain of the residual
self-interference channel,hres, is unknown to the relay, for
else the residual self-interference would have been subtracted
off by the canceler. Moreover,hres is likely to be changing
with time. The analog echo cancellation technique proposed
in [1] uses a training sequence to form an estimate,ĥSI ,
of the over-the-air self-interference channel, such that the
negative of the self-interference,−ĥSIXR, can be combined
with the received signal. In this case the residual self-
interference channel,hres = hSI − ĥSI, will take on a
new value every time the over-the-air self-interference is
estimated. The analog echo cancellation technique proposed
in [2], uses adaptive interference cancellation, in which
case the residual-self-interference channel will change as the
analog echo canceler adapts.

The results in [4] indicate that, in some cases, due to the
high power of the self-interference, residual self-interference,
and not thermal noise, remains the rate-limiting bottleneck
even after analog cancellation is employed. Therefore further
self-interference cancellation in the digital domain is needed.

In [1], [3] the residual self-interference is suppressed by
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having the source remain silent while the full-duplex relay
sends a training sequence to estimate its own residual self-
interference channel, so that the prediction of the residual
self-interference can be subtracted off. We call this approach
time-orthogonal training. The downside to time-orthogonal
training is the overhead of the training. Moreover time-
orthogonal training requires no special transmission struc-
ture: the residual self-interference channel is estimated, and
any self-interference left after the subtraction is treated as
noise by a standard random coding scheme.

Although the relay does not know the residual self-
interference channel,hres, the relay decoder has a-priori
knowledge of the self-interfering sequenceXR as is depicted
in Figure 3, and can thus exploit this knowledge in signal
design. Therefore the question addressed in this paper is
the following: how can we exploit knowledge of the self-
interfering sequence and do better than treating residual self-
interference as noise even when the residual self-interference
channel is unknown and changing with time. Using the
Avestimehr-Diggavi-Tse (ADT) deterministic channel model
[5], we study how such knowledge of the self-interfering
sequence can indeed be exploited.

SR
Channel

XR

XS YRS
Encoder

R
Decoder

Fig. 3: Model of the source-to-relay link. The relay decoder
has a-priori knowledge of the interfering sequenceXR.

In this paper an information theoretic analysis of the
full-duplex two-hop network suggests a structuring of the
source and relay’s transmit signal which we label structured
self-interference cancellation (“structured cancellation” for
short). In the structured cancellation strategy, the relay’s
signal is structured such that it can learn the residual self-
interference channel by observing what “portion” of its
own data-carrying signal appears at signal levels the source
has left empty for this purpose. Once it has learned the
residual self-interference channel, the relay can undo any
self-interference that occurred on the signal levels carrying
data from the source to the relay. In other words, instead of
learning the residual self-interference channel by observing
a training sequence that is time-orthogonal to the source’s
transmission, structured cancellation allows the relay tolearn
the residual self-interference channel by observing a portion
of the data-carrying sequence that is signal-level-orthogonal
to the source’s signal. There are non-trivial regions in which
structured cancellation achieves a higher rate than a time-
orthogonal approach. In particular, structured cancellation is
well-suited for situations in which the source-to-relay SNR
is higher than the relay-to-destination SNR, and the residual
self-interference channel coherence time is short.

Two “flavors” of structured cancellation are proposed:
conservative structured cancellation (CSC) and aggressive
structured cancellation (ASC). The CSC scheme achieves
a fixed rate for arbitrarily strong residual self-interference
channels, while the ASC scheme achieves a slightly higher
rate, but only when the residual self-interference is ensured
to be less powerful than the signal-of-interest. The end-to-
end rates that both CSC and ASC achieve in the two-hop
network are derived, and performance comparisons to half-
duplex, as well as to time-orthogonal training are presented.

In Section II the deterministic channel model for the full-
duplex two-hop network is presented. Section III provides
a motivating example that illustrates the utility of structured
cancellation and is carried throughout the paper. SectionsIV
and V present the general CSC and ASC schemes, re-
spectively, and derive the rate each scheme achieves. In
Section VI, the performance of the structured cancellation
strategy is compared to half-duplex performance and pre-
existing interference management strategies. In Section VII,
a qualitative discussion on how the structured cancellation
approach for the deterministic channel can be translated into
a practical coding scheme for Gaussian channels. Concluding
remarks are given in Section VIII

II. D ETERMINISTIC TWO-HOP FULL -DUPLEX CHANNEL

MODEL

Experience thus far in full-duplex communication has
indicated that when a terminal operates in full-duplex mode,
self-interference, not receiver noise, is the dominant rate
limiting effect [4]. Such an interference limited regime is
exactly the context in which the ADT deterministic channel
[5] is most useful. One way to think of the ADT determin-
istic channel model is as follows. At high SNR, Shannon’s
theorem tells us that for each3 dB increase in SNR, we get
an extra bit of capacity. Therefore it makes some intuitive
sense to model a channel as a set of parallel “bit pipes”
or signal levels: one bit of information can be transmitted
on each signal level per channel use. Each signal level thus
corresponds to3 dB of above-the-noise-floor signal power.
Similarly each3 dB of above-the-noise interference power
collides with a bit’s worth of the signal-of-interest. Inter-
ference is therefore modeled as an XOR operation between
the bits on each of the each colliding signal levels. A more
precise motivation of the ADT deterministic channel, in
terms of a binary expansion of signals with noise truncating
the expansion, is given in [5].

When we apply the ADT deterministic channel model to
the two-hop full-duplex network of Figure 2, we get the
model depicted in Figure 4(a) wheren1 ↔ log SNRSR, n2 ↔
log SNRRD, andm ↔ log INRRR, whereINRRR = |hres|

2PR

N0

is
the residual self-interference to noise ratio. Recognize that
this model is equivalent to the well-known interference Z-
channel shown in Figure 4(b), where the relay node is split
into separate transmitter and receiver nodes. These models
are equivalent in that anysymmetric rate pair achievable
for the Z-channel will also be an achievable end-to-end
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Fig. 4: Multi-hop full duplex channel(a) and its determinis-
tic Z-channel equivalent(b) when the relay node is thought
to be split into a separate transmitter and receiver.

rate in the full-duplex two-hop network. Figure 5 depicts a
possible instantiation of the deterministic two-hop network
of Figure 4(b).
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Fig. 5: An example of the deterministic full-duplex multi-
hop channel withn1 = 6, n2 = 4, andm = 2

We assume thatn1 and n2 are fixed and known to
all terminals, but that the self-interference channelm is
unknown. We modelm as having a coherence time of
T channel uses. As discussed in the introduction,m is
unknown because it is theresidual self-interference channel
left over after front-end echo cancellation is employed, and
we assignm a finite coherence time, because the residual
self-interference channel will change as the front-end echo
canceler re-estimates the over-the-air self-interference chan-
nel and adapts.

As opposed to the classic Z-channel, we have the fol-
lowing situation: none of the nodes have knowledge of the
cross-channelm, but the relay receiver,RRX , has non-causal
knowledge of the interfering bits that the relay transmitter,
RTX , is transmitting.In other words RRX knows the
interfering bits, but does not know at which signal
levels the interference is occurring.Obviously, if RRX

knew the levels at which the interference were occurring,
then RTX could undo the interference by XOR-ing each
signal level with the known interference, and interference-
free communication would be the result. But can we exploit
knowledge of the interfering bits without knowing which
signal levels are being interfered with? In the sequel, we
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Fig. 6: Deterministic full-duplex multi-hop channel with
n1 = 6, n2 = 4, andm = 2. By observing YR,6 = XR,2,
the relay decoder knows that YR,5 = XR,1 ⊕ XS,4, and that
the other sequences from the source are interference free.

present an example situation in which the answer appears to
be affirmative.

III. M OTIVATING EXAMPLE

Consider an example in whichn1 = 6 andn2 = 4. In this
case the optimal half-duplex strategy would be to have the
source-to-relay link active (all six signal levels) for2/5 of
the time and the relay-to-destination link active for the rest of
the time, which one can check gives a rate ofRHD = 2.4
bits. The ideal full-duplex rate (i.e. if there were no self-
interference:m = 0) is 4 bits. Can we exploit knowledge
of the interfering sequences to outperform the HD rate and
approach the ideal full-duplex rate? If so, how does finite
coherence time ofm affect performance?

Consider the transmission scheme depicted in Figure 6,
which we will call conservative structured cancellation
(CSC). The source has six signal levels (bit pipes) at which it
can transmit data, but only needs to use four levels, since the
bottle-neck is the 4-level relay-to-destination link. As shown
in Figure 6, the source can restrain from transmitting on the
third (middle) and sixth (bottom) levels and still achieve 4
bits per channel use. The relay transmits on all four of its
signal levels, but requires that the sequences on each of the
levels XR,i, i ∈ {1, · · · , 4}, be distinguishable from one
another within a self-interference coherence intervalT . This
distinguishability requirement results in a source-to-relay
rate less than 4 bits–the rate achieved if distinguishability
were not necessary. The rate “hit” due to this requirement
is a function of the coherence time: the shorterT the worse
the hit. The need for distinguishability will become apparent
when the relay’s decoding strategy is described. The rate
limitation due to the distinguishability requirement is derived
in a following section.

In addition to the six signal levels accessible to the source,
the relay receiver (RRX ) also listens to a seventh signal
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Fig. 7: En1 = 6, n2 = 4, andm = 6 By observing YR,3 =
XR,3, the relay decoder knows that YR,1 = XR,1 ⊕ XS,1,
YR,2 = XR,2 ⊕ XS,2, YR,4 = XR,4 ⊕ XS,3 and XS,4 is
interference free.

level: the signal level just above the highest power signal
from the source (we call this the zeroth signal level). To
decode, the relay first looks at YR,0,YR,3, and YR,6, the
sequences received on the signal levels the source has left
empty. From observing these sequences, the relay can infer
what the interference is at each of the four signal levels
being used by the source, thus allowing it to undo (via the
XOR operation) any self-interference that has occurred at
the data-carrying signal levels.

Figure 6 shows what would happen ifm = 2, and Figure 7
shows what would happen ifm = 6. It can be seen that
for both cases (and indeed for any value ofm) the empty
signal levels reveal to the relay decoder what the interference
is everywhere else, as long as the XR,i’s are known to be
distinguishable from each other and a null sequence.

TABLE I: Comparison of achievable rates for the different
schemes in then1 = 6, n2 = 4, example

T = 1 T = 2 T = 3 T = 4 T = ∞

Ideal FD 4.00 4.00 4.00 4.00 4.00

HD 2.40 2.40 2.40 2.40 2.40

CSC 0 1.29 3.23 3.75 4.00

It can be shown (using the the achievable rate analysis for
the general CSC scheme presented in the following section)
that the strategy describes above achieves that rates listed
in the CSC row of Table I. We see that the CSC strategy
achieves a higher rate than half-duplex as long as the self-
interference remains constant for at least three channel uses.
WhenT = 3, CSC achieves 3.23 bits, and forT = 4 CSC
gets 3.75 bits, all of which which are better than the 2.4
bit half-duplex rate. Thus even when the self-interferenceis

changing every few channel uses, CSC still beats half-duplex
and approaches the ideal full-duplex rate asT → ∞.

IV. GENERAL STRUCTUREDCANCELLATION SCHEME

FOR UNKNOWN m: CSC

Let us generalize the transmission and decoding strategy
described in the above example, and derive the rate that CSC
achieves as a function of the the channel strengths and resid-
ual self-interference coherence time:R

(CSC)
FD (n1, n2, T ).

Theorem 1. Consider the deterministic full-duplex multi-
hop channel of Figure 4 wheren1, n2 ∈ Z+ are static and
known, andm ∈ Z+ is unknown, can take onany positive
value, and has a coherence time ofT ∈ Z+ channel uses.
Under these conditions the end-to-end rate

R
(CSC)
FD =

1

T
log

(2T − 1)!

(2T − 1− r)!
, (1)

is achievable, where

r = min((n1 − 2)+, n2, 2T − 1). (2)

After the transmission and decoding strategies of CSC
are described in the following sections, Theorem 1 will be
derived.

A. Transmission

Here we generalize the CSC transmission scheme intro-
duced in the previous example. In order for CSC to work,
there must be two empty levels available in the source-to-
relay link: one in the middle and one at the bottom. If
n1 ≥ n2+2, then we get these empty levels for free, because
even while leaving the 2 levels unused on the source-to-relay
link, the number of signal levels on the relay-to-destination
link is still the bottleneck. However, ifn1 < n2+2, then the
number of signal levels used onboth links must be reduced
to n1 − 2 to make room for the two empty signal levels on
the source-to-relay link that we need for successful decoding.
Thus in general r = min((n1 − 2)+, n2) signal levels will
be used for carrying data.

The general signaling scheme is depicted in Figure 8. The
source transmits on its highest⌈r/2⌉ signal levels, leaves a
signal level open, and transmits on the next⌊r/2⌋ signal
levels. Sincer ≤ n1 − 2, this will leave at least one empty
signal level at the bottom. The relay transmits on its topr
signal levels, but has the requirement that the sequences on
each signal level are distinguishable from one another within
a self-interference coherence intervalT . There are2T such
sequences. The receiver must be able to tell when a signal
level is “empty”. Because in this model receiving “nothing”
is equivalent to receiving a sequence of all zeros, we do not
allow the all-zero sequence as one of the possible sequences
that may be transmitted on any given signal level. Thus there
are2T − 1 possible sequences per coherence timeT , and in
order for the sequences on each of ther signal levels to be
distinguishable from one another, there must be no more than
2T −1 signal levels used. Hence the number of signal levels
that can be used is not just limited tomin((n1 − 2)+, n2)
but r = min((n1 − 2)+, n2, 2

T − 1).
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Fig. 8: General transmission scheme for the deterministic
two-hop full-duplex network with unknown self-interference
channel

B. Decoding

The relay decodes by first looking at the sequences
received at the three empty signal levels: YR,0, the signal
level just above the highest level accessible to the source,
YR,⌈ r

2
⌉, the empty signal level in the middle, and YR,r+2

the signal level just below the lowest signal level that the
source uses. One can check that by observing which of the
interfering sequences (or a null sequence) appear at the three
empty levels, the relay can determine the interference at all
signal levels being used by the source, and can thus undo
(i.e. modulo subtract via XOR) the self-interference. The
destination’s decoding of the relay signals is trivial.

C. Limitation imposed by distinguishability requirement,
and achievable rate derivation

Let XR,i, i ∈ {1, · · · , r}, denote the length-T binary
sequence transmitted by the relay on theith signal level
during a given coherence interval. During a length-T co-
herence interval, there areN = 2T − 1 unique sequences
that can be chosen from. If we did not require the relay
sequences to be distinguishable from one another and the
null-sequnce, there would be(N + 1)r unique messages
per coherence interval, hence the end-to-end rate would be
1/T log((N + 1)r) = 1/T log(2Tr) = r, as expected. But
in order for CSC to work, each of the relay sequences must
be distinguishable from one another and the null-sequence.
More precisely, CSC requires that

XR,i 6= XR,j , XR,i 6= ∅(T ) ∀i 6= j i, j ∈ {1, · · · , r}. (3)

where∅(T ) is a sequence ofT zeros.
The distinguishability requirement reduces the number of

possible messages that can be used. There areN = 2T − 1
choices of different sequences for the first signal level, but
onlyN−1 choices for the second signal level, and so on until
therth signal level, for which there areN− (r+1) choices.
Thus there areN(N − 1) · · · (N − r + 1) = N !/(N − r)!
different possible messages per coherence interval, and the
achievable rate for our scheme is

R
(CSC)
FD =

1

T
log

(

N !

(N − r)!

)

=
1

T
log

(

(2T − 1)!

(2T − 1− r)!

)

as is given in the theorem.

V. GENERAL STRUCTUREDCANCELLATION SCHEME

FORm < n1: ASC

As was discussed in the introduction, practical full-duplex
systems employ front-end analog cancellation prior to de-
coding, after which an unknown residual self-interference
remains. It may be the case that the analog canceler is
known to be good enough to ensure that the residual
self-interference will always be weaker than the signal-of-
interest. For the deterministic model under consideration,
this would mean that the terminals know thatm < n1,
although they do not know the exact value ofm. It turns out
that such bounding of the residual self-interference allows
a simpler version of the structured cancellation strategy
called aggressive structured cancellation (ASC) that achieves
a higher rate than CSC. In ASC the source only needs to
leave one signal level empty, and the relay can undo the self-
interference after observing what portion of self-interference
appears at the one empty signal level. The following theorem
defines the rate that ASC achieves for thism < n1 situation.

Theorem 2. Under the same conditions as those of The-
orem 1, with the exception that all terminals know that
m < n1 (but m is otherwise unknown to all), the rate

R
(ASC)
FD =

1

T
log

(

(2T − 1)!

(2T − 1− r′)!

)

(4)

is achievable, where

r′ = min((n1 − 1)+, n2, 2
T − 1). (5)

The ASC transmission strategy form < n1 is shown in
Figure 9. The source simply transmits on its highestr′ signal
levels. Sincer′ ≤ n1 − 1 this will leave at least one open
signal level at the relay just below the signal levels the source
is using. Similarly, the relay transmits on its highestr′ signal
levels, but requires that the sequences on each signal levelare
distinguishable from one another within a coherence interval.

The relay decodes by first looking at YR,r′+1 the signal
level just below the source’s signal. If YR,r′+1 is empty, then
the relay knows that there is no self-interference:m = 0.
Otherwise YR,r′+1 = XR,m for somem < n1. From this
observation the relay can determinem and undo the self-
interference by decoding according to

X̂S,i = YR,i, 1 ≤ i < r′ −m
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Fig. 9: The ASC scheme for self-interference management
whenm < n1 is ensured.

and

X̂S,i = YR,i ⊕ XR,(m+i)−(r′+1), r′ −m ≤ i ≤ r′.

Figure 10 illustrates why this particular scheme only
works for m < n1. If m = n1 (as is shown in the figure)
then the relay cannot tell by looking at the one empty
signal level whethernone or all of the source’s signal levels
are being interfered with. The CSC scheme addresses this
issue by putting a second empty signal level in the middle
of the source’s signal levels (which reduces the achievable
rate) such that the interference and signal-of-interest never
perfectly overlap as in Figure 10.
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Fig. 10: The above illustrates why the ASC scheme only
works if the relay knowsm < n1: when m = n1 the
relay cannot distinguish between this situation and a zero-
interference situation.

VI. PERFORMANCECHARACTERIZATION

A. Comparison to Half-Duplex for Large Coherence Time

The best half-duplex rate for the deterministic full-duplex
two-hop channel is equivalent to the best symmetric TDMA
rate for a deterministic Z-channel. Thus with a time division
factor ofα, the highest half-duplex rate is

RHD = max
0≤α≤1

min(αn1, (1− α)n2).

The rate is maximized when terms within themin are equal,
i.e.α∗ = n2

n1+n2

. Therefore the best half duplex rate is given
by

R∗
HD =

n1n2

n1 + n2
. (6)

Let us begin by comparing half-duplex (HD) performance
to the performance of the CSC full-duplex scheme, in the
limit of long residual self-interference coherence timeT . The
following lemma gives the rate achieved by the CSC scheme
is this large-T regime.

Lemma 1.

lim
T→∞

R
(CSC)
FD = min((n1 − 2)+, n2) (7)

lim
T→∞

R
(ASC)
FD = min((n1 − 1)+, n2) (8)

Proof: Let r0 = limT→∞ r be the number of signal
levels used in the CSC scheme whenT is large. We first
note that

r0 = lim
T→∞

r = lim
T→∞

min((n1 − 2)+, n2, 2T − 1)

= min((n1 − 2)+, n2).

Starting from Theorem 1 we have

lim
T→∞

R
(CSC)
FD = lim

T→∞

1

T
log

(

(2T − 1)!

(2T − 1− r)!

)

= lim
T→∞

1

T
log

(

(2T − 1)!

(2T − 1− r0)!

)

= lim
T→∞

1

T
log

[

(2T − 1)(2T − 2) · · · (2T − r0)
]

=

r0
∑

k=1

lim
T→∞

log(2T − k)

T

=

r0
∑

k=1

lim
T→∞

log(2T )

T
= r0 lim

T→∞
1 = r0

= min((n1 − 2)+, n2),

which proves the first part of the lemma. The second part of
the lemma easily follows by taking the same steps, but with
r′0 = min((n1 − 1)+, n2).

With the help of the above lemmas, we may now specify
the regime in which full-duplex CSC outperforms half-
duplex (HD) in the limit of largeT .

Theorem 3. For T → ∞ andn1 ≥ 1 +
√
1 + 2n2,

R
(CSC)
FD ≥ RHD.



Conversely, forT → ∞ andn1 < 1 +
√
1 + 2n2,

R
(CSC)
FD ≤ RHD .

Proof: It can be easily shown that1 +
√
2n2 + 1 ≤

n2 + 2 for all n2 ≥ 0, therefore let us split the proof into
two cases: then1 ≥ n2 + 2 case and the1 +

√
2n2 + 1 ≤

n1 < n2 + 2 case.
First consider then1 ≥ n2 + 2 case, for which

limT→∞ R
(CSC)
FD = n2 by Lemma 1. Sincen2 ∈ Z+ we

can write

n2 ≥ 0 ⇒ n1 + n2 ≥ n1 ⇒ 1 ≥ n1

n1 + n2

⇒ n2 ≥ n1n2

n1 + n2
⇒ lim

T→∞
R

(CSC)
FD ≥ RHD.

Next consider the1 +
√
2n2 + 1 ≤ n1 < n2 + 2 case,

for which limT→∞ R
(CSC)
FD = n1 − 2 by Lemma 1. Starting

from the hypothesis we have

n1 ≥ 1 +
√
1 + 2n2 ⇒ (n1 − 1)2 ≥ 1 + 2n2

⇒ n2
1 − 2n1 + 1 ≥ 1 + 2n2 ⇒ n2

1 − 2(n1 + n2) ≥ 0

⇒ n2
1 + n1n2 − 2(n1 + n2) ≥ n1n2

⇒ n1(n1 + n2)− 2(n1 + n2) ≥ n1n2

⇒ (n1 − 2) ≥ n1n2

n1 + n2
⇒ lim

T→∞
R

(CSC)
FD ≥ RHD.

To show the converse, first note that ifn1 ≤ 2, then
R

(CSC)
FD = 0, and the converse holds trivially sinceRHD ≥

0. Otherwise we have2 < n1 < 1+
√
1 + 2n2 which implies

0 < n1 − 2 < n2 hencelimT→∞ R
(CSC)
FD = n1 − 2 by

Lemma 1 and we can write

2 < n1 < 1 +
√
1 + 2n2 ⇒ (n1 − 1)2 ≤ 1 + 2n2

⇒ n2
1 − 2(n1 + n2) ≤ 0

⇒ n2
1 + n1n2 − 2(n1 + n2) ≤ n1n2

⇒ (n1 − 2) ≤ n1n2

n1 + n2
⇒ lim

T→∞
R

(CSC)
FD ≤ RHD.

Theorem 4 below is the counterpart of Theorem 3 for the
ASC scheme.

Theorem 4. If all terminals know thatm < n1, then for
T → ∞ andn1 ≥ 1

2 + 1
2

√
1 + 4n2,

R
(ASC)
FD ≥ RHD.

Conversely, forT → ∞ andn1 < 1
2 + 1

2

√
1 + 4n2,

R
(ASC)
FD ≤ RHD.

Proof: The proof is essentially the same as the proof of
Theorem 3, except the second part of Lemma 1 is invoked,
and the numerical values are modified accordingly.

Theorems 3 and 4 tell us that whenn1, n2, andT are
all large, full-duplex operation via structured cancellation

outperforms half-duplex. However, there is another full-
duplex scheme that could outperform structured cancellation
in the limit of largeT : time-orthogonal training. In time-
orthogonal training, during the first channel use of each self-
interference coherence interval the source transmits a zero
on each signal level, meanwhile the relay transmits a one on
each of its signal levels. The relay learnsm by observing
the highest signal level on which it receives a one instead of
a zero. Knowingm, the relay can undo the self-interference
in the remainingT − 1 channel uses.

The rate achieved by time-orthogonal training (TOT) is

R
(TOT)
FD =

T − 1

T
min(n1, n2). (9)

In the limit of largeT , time-orthogonal training reaches the
ideal full-duplex rate,min(n1, n2), and thus outperforms not
only half-duplex but also CSC and ASC. Forn1 ≥ n2 + 2
CSC, ASC, and time-orthogonal training all achieve the ideal
full-duplex rate in the limit of largeT , but for n1 < n2 +1
time-orthogonal training outperforms both CSC and ASC.
The advantage of the CSC and ASC schemes, however,
comes when the self-interference coherence time is finite.
The CSC and ASC schemes do not require the source
to “turn-off” while the relay learns the self-interference,
and thus for finite coherence times can learn the residual
self-interference channel more efficiently and outperform
orthogonalized training, as will be discussed in the following
section.

B. Comparison of CSC to Time-Orthogonal Training for
Finite Coherence Times

Consider again then1 = 6, n2 = 4 example with which
we started. Table II shows that, in this case,R

(CSC)
FD >

R
(TOT)
FD ∀ T > 1. This example is somewhat favorable

to CSC, in that it is a case in whichn1 − 2 ≥ n2, and
thus the signal levels the source leaves empty in the CSC
scheme comes at no cost, since the relay-to-destination is
the bottleneck for both CSC and time-orthogonal training.
Indeed it seems that whenevern1 > n2 + 2 CSC is almost
always preferred over time-orthogonal training.

Table III compares the performance of half-duplex, time-
orthogonal training, and CSC for an1 = 6, n2 = 5 example.
In this case CSC uses 4 signal levels, while time-orthogonal
training uses 5 signal levels, but sends no data in the first
channel use. For very short self-interference coherence times,
(T = 1, 2), half-duplex outperforms both time-orthogonal
training and CSC. For medium-length coherence times, such
as T = 3 and T = 4, CSC outperforms time-orthogonal
training, because although it uses one less signal level
than time-orthogonal training, CSC learns the residual self-
interference channel in a more efficient way. However in the
limit of large T , time-orthogonal training eventually wins
out as the cost of not transmitting in the first channel use
becomes negligible.



TABLE II: Comparison of achievable rates for the different
schemes in then1 = 6, n2 = 4, example

T = 1 T = 2 T = 3 T = 4 T = ∞

HD 2.40 2.40 2.40 2.40 2.40

Ideal FD 4.00 4.00 4.00 4.00 4.00

TOT 0 2.00 2.67 3.00 4.00

CSC 0 1.29 3.23 3.75 4.00

TABLE III: Comparison of achievable rates for the different
schemes in then1 = 6, n2 = 5, example

T = 1 T = 2 T = 3 T = 4 T = ∞

HD 2.73 2.73 2.73 2.73 2.73

Ideal FD 5.00 5.00 5.00 5.00 5.00

TOT 0 2.50 3.33 3.75 5.00

CSC 0 1.29 3.23 3.75 4.00

VII. F ROM DETERMINISTIC CHANNEL TO GAUSSIAN

CHANNEL

Translating the structured cancellation strategy for a de-
terministic full-duplex two-hop channel to a corresponding
coding scheme for a Gaussian full-duplex two-hop channel
is an area of future work. However below is a qualitative
description of what such a scheme might look like. The
intuition gleaned from the structured cancellation approach
for the deterministic full-duplex two-hop network is that
by strategically leaving some “emptiness” in the source-to-
relay signal (i.e by transmitting at slightly lower rate than
capacity), and by structuring the relay signalXR such that
an observation of what portion ofXR appears in the empty-
space, the relay can determine how the self-interference
is aligned with the source’s signal, and undo the self-
interference.

Let’s first address how the ASC scheme (the one that
works only form < n1) could translate to a scheme for a
Gaussian channel. In the ASC scheme for the deterministic
channel, the source leaves its lowest signal level empty,
and the relay decodes by observing the portion of the self-
interference sequence that appears at this empty lowest signal
level, from which it can infer and undo the interference at the
other higher signal levels. Conventionally, (say in a MAC)
the higher power (low granularity) signal is decoded first
and then subtracted so that the lower power signal (fine
granularity) can then be decoded. But for ASC we need to
do the opposite: the fine granularity signal must be observed
before we can undo the self-interference and decode lower
granularity signal. But how, in a practical Gaussian channel,
do we decode a lower power “portion” of a signal before
decoding the higher power portion?

One possible approach would be for the relay receiver
to first “decode” the higher power source signal together

with any self-interference that may be present, not caring
whether the relay is “decoding” the correct source message
or some superposition of the source signal and higher power
self-interference. This would require that the superposition
of the source codeword and the relay codeword always
be decodable, which suggests a structured code such as a
layered lattice code[6], [7]. After the higher power signal
is decoded to the nearest lattice point, the decoded lattice
point is subtracted, allowing the relay decoder to observe
what portion of the relay’s own signal (i.e. self-interference)
has appeared in the lower power “empty space”. Assuming
that we have structured the relay signal such this observation
reveals what the self-interference was at higher power as
well, we can then go back and undo the self-interference
that conflicted with the source’s signal and decode to the
correct lattice point corresponding to the source message.

VIII. C ONCLUSION

A new transmission strategy for full-duplex multi-hop
terminals, called structured cancellation was proposed. In-
stead of re-estimating the residual self-interference channel
using time-orthogonal training, the structured cancellation
strategy structures the full-duplex relay’s signal such that
it can efficiently learn the residual self-interference channel
usingsignal levels left empty by the source. Nontrivial cases
were given for which full-duplex structured cancellation
outperforms both half-duplex and time-orthogonal training
full-duplex approaches. Although the structured cancellation
strategy was designed in the context of an ADT deterministic
channel model, intuitions were given for how structured
cancellation could be extended to Gaussian channels using
a layered lattice coding strategy. [8]
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