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Abstract—In a multi-user channel, completion time refers by each user. However due to the casuality constraint, after
to the number of channel uses required for users, each with the completion of the current transmission, new data witl no

some given fixed bit pool, to complete the transmission of all e jnmediately available until the next period. We model
their data bits. This paper extends the information theoretc thi the foll . i — 1.9 h bit ith
formulation of multi-access completion time to broadcast bannel IS as the Tollows. uset, + = 1,2, hasmr; DIS, With 7;
and interference channel, enabling us to obtain the so-caitl com-  corresponding to the compression rate anccorresponding

pletion time region (CTR), which, analogous to capacity regpn, to the number of source samples, to be transmitted in at most
characterizes all possible trade-offs between users’ cortgdion  channel uses, whereis assumed to be large enough to allow
times. Specifically, for Gaussian broadcast channel (GBC)ral both transmissions to complete. Liet< n be the actual num-

Gaussian interference channel (GIC) in the strong/very siong b fch | that usi d icati Th
regime, the exact CTR is obtained. For GIC in the weak/mixed €r of channel Uses that usespends on communicauon. 1he

regime, an achievable CTR based on the Etkin-Tse-Wang schem Performance metric isiormalized completion timéreferred

and an outer-bound are obtained. as completion time hereafter) within a single channel block
which is defined as;/m in the limit of largen; andm. Note
|. INTRODUCTION that in the streaming example; corresponds to the number

The information theoretic way of approaching a commff source samples, which i_s assumed to be the same for both
nication network design is usually guided by the assumptidf$ers: In general we can view as a scaling factor to ensure
that users’ data buffers are always full. This assumptieaty nformation theoretic arguments with large block lengtas ¢
simplifies the problem and hence enables a rigorous system&€ Nvoked. The exact value of is not important since it will
way to study networks. However, this assumption ignores t@t @Ppear in the characterization of completion time.
bursty nature of real sources and delay consideratiordifiga 11 main contributions of this paper are the extension

to the so-called unconsummated union between informatigh e information theoretic formulation of completion &mn
theory and communication networks [1]. originally proposed in[2] for MAC, to BC and IC and, for the

In [2] for multi-access channel (MAC), we considered gaussian case, the explicit characterization of the catople

periodic source arrival model, where a new block of datime region or inper and outer bqunds. Specifically, for GiC_i
of fixed size arrives every. channel uses. Therefore, during€ Very strong interference regime, the CTR can be derived
each channel block, user's data buffer is not to be repledistir€Ctly since GIC reduces into two point-to-point linksorF
by an infinite data reservoir and hence the usual full-buff&'C In the strong interference regime, because the capacity
assumption is no longer valid. The actual number of chang@ion is in the form of Gaussian MAC (GMAC), the deriva-
uses that each user takes to finish its transmission is terrﬁ'@,&‘ of Fhe CTR paralle!s that in [2]. For GIC in the weak and
as completion time An information theoretic framework of Mixed interference regimes, an achievable CTR based on the

studying completion time was proposediih [2] for MAC. In thi€EtKin-Tse-Wang schemel[3] and an outer-bound are obtained.

paper, we extend the framework to incorporate two importahward this end, we adopt the approach usedlin [2], but

classes of multi-user channels, the broadcast channelgge) 9eneralize the techniques for an arbitrary convex rateoregi
interference channel (IC) and study the completion time. whose boundaries are given by piece-wise linear functions.

Consider the following live video streaming communicatiofts for GBC, we adopt a different approach to establish the

scenario as a motivating example. In a multi-user chann&pnverse, where the CTR outer-bound is directly obtained by

suppose each user wants to either transmit or receive a vi(ﬁi&g'nmg a mapping between rate pairs and completlon_ time
stream that is compressed at fixed, but possibly differae, r PI'S- We then proceed further to prove the non-convexity of

Specifically, in the BC setup a common transmitter strearf2e € TR of GBC by making use of the solution of the weighted

two video sequences to their respective users. In the I sett!™ completion time minimization problem.

two users stream videos to their respective receivers. ake d Ntﬁte t?at in [4], the sum c_ongsp’\l/le:gn time md'.n'g"zc":it'on
arrives periodically. In the beginning of each period, éheill problem for ak-user symme_tnc was studied. om-
ared to [[4], our result provides a more general formulation

be a certain number of bits to be received at or transmittg ; ) )
or the two-user case, allowing us to consider a variety of

This work was partially supported by NSF grant No. 0635177. utility functions over the CTR, e.g. weighted sum completio
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time. For GIC, the authors in_|[5] studied the problem afienoted byR., is the set of achievableconstrained rate pairs
minimizing some convex cost function over the CTR obtaingdr a given coding scheme. Tleeconstrained capacity region
by treating interference as noise, whereas in this paper @gis the closure of all suctk..
adopt an information theoretic approach without restigiti Remark 1:We use the term¢-constrained rate (capacity)
decoding strategies to treating interference as noise. region” to emphasize the fact that usér effective codeword

This paper is organized as the follows. In Section I, wkength is constrained by,; channel uses over whicRk; is
define constrained rates for discrete memoryless BC and d€fined and the rate (capacity) region is hence a function
respectively, based on which an information theoretic idem of ¢ = ny/ns. Also note thatR, (C;) is the standard rate
tion of completion time is then given. In Section Ill, we deri (capacity) region, where; = no. For the rest of this paper, the
the CTR for GBC. In Section IV, we discuss the CTR for GIGerm “rate (capacity) region” refers to standard rate (cipn
case by case. The paper is concluded in Section V. region.

Notation Denote~(z) = 3log,(1 + z). Also X}, =
(Xhiis - Xp) for i < j and X = X} . X], does not _ _ _
appear ifi > j. [X]T = max{X,0}. We use bold font for  Consider a two-user discrete memoryless interference-chan

B. Constrained Rate for Interference Channel

vectors and calligraphic font for regions. nel (DMIC) (X1 x X2, p(y1, y2|21, 72), V1 X V2), wheredy,
are the input alphabet¥;, )» are the channel output alphabets
Il. PROBLEM FORMULATION and p(y1,ya|z1, x2) is the channel transition probability. For

In this section, we first extend the definition of constrained= 1,2, leti = {1,2} \ i and define
rates proposed iri_[2] to include broadcast channel and-inter
ference channel in Section II.A and II.B respectively. Werth
define completion time in Section I1.C, which is common for
both channels.

RE = max I(X;:Yi|X; = 7). i=12,
pPx;

whereg; = arg maxse x, max,, I(X;;Yi|X; = ¢). One can
view ¢; as the symbol that * opens“ up the channel from from
A. Constrained Rate for Broadcast Channel transmitteri to receiver; the most.
Consider a two-user discrete memoryless broadcast channdpefinition 3: A (M, M, n,c) code consists of message
(DMBC) (X, p(y1,y2]2), V1 x Vo) with individual message sets:W; = {1, ..., M}, two encoding functions,
sets, where is the input alphabef/; and), are the channel ni m .
' . " X oW — (X, o fori=1,2
output alphabets ang(y;,y2|x) is the channel transition (X Gini1) ‘
probability. Letn;, ¢ = 1,2, be the number of channel usesand two decoding functions,
useri's codebook spans. Denote = max{ni,na2}, m =

arg;_; o min{n;}, ma = arg,_; o max{n;}, andc = ny/ny. gi: Vit = Wi fori=1,2.

We will let n; andn, vary with ¢ fixed. Note that usei will send ¢; during then — n; symbols at the
Definition 1: A (M, M3, n,c) code consists of messageand of its codeword.
sets:W; = {1, ..., M;}, an encoding function, The remaining definitions for the error probability and
X : (W) x Wy) — X™m constrained rates follow Il.A exactly.
We, = X3 11 C. The Notion of Completion Time
and two decoding functiong; : V' — W, i = 1,2. Consider either a DMBC or DMIC, where there afer;,

Note that the codeword can be viewed as consisting of twa= 1, 2, bits to be received at or transmitted by each user.
parts. The first parit™~: is determined by the messages of Def|n|t|on 4: We define thenormalized completion timas
both users while the second patf; _,, is solely determined di = n;/m, wheren; is the actual number of channel uses
by usermy’s message. that user; spends on transmittingur; bits.

The sender independently chooses an intigxuniformly ~ Because of the relatiotog, (M;) = niRi = m; in (D),
from W, and sends the corresponding codeword. The averatjéere R; is the c-constrained rate, we hawé, = 7;/R;.

error probability for the( My, Ms, n, ¢) code is Completion time pair(d;,ds) is said to beachievableif
- o (11/d1,m2/d2) is an achievable=-constrained rate pair, i.e.
Pe = Pr(gl(}/l )#Wl or 92(}/2 )#WQ) (Tl/dl,TQ/dQ) S RC where ¢ = nl/ng = dl/d2. The

achievable completion time region for a given coding scheme
Definition 2: The c-constrained ratesof (M, Ma,n,¢) 18 D = {(d1,d2)[(11/d1,72/d2) € Ra,;4,}. Analogous to

code are, for = 1,2, capacity region, we can also define the overall completion
log, (M) time regionD* as the union of all achievable completion
(o) f ) . . . %
R, = 082\ bits per channel use (1) time regions, or equivalentt* = {(d1,dz)|(71/d1,m2/d2) €
i Ca, /4, }- Notice that the definition oD* does not involve the

Thec-constrained rate paii?;, R) is said to beachievable convex hull operation as opposed to the capacity regiors Thi
if there exits a sequence i, Ms, n, c) codes withP, — 0 is becauséD* may not be convex, as shown inl [2] and later
asni,ngy — oo with ¢ fixed. Thec-constrained rate regign in this paper Proposition 3.



I1l. COMPLETION TIME REGION FORGAUSSIAN Next let us consider a two-user GBC:
BROADCAST CHANNEL
Yi=mX+ 7,

In this section, we first consider a general discrete memory- Yy = hoX + 7
less degraded broadcast channel and derive-ttenstrained 2= >
capacity region in Section Ill.A. We then establish the ctenp whereZ; ~ N (0,1), i = 1,2, is the i.i.d. Gaussian noise pro-
tion time region for GBC in Section IlI.B. In IlIl.C, we solve cess and inputs are subject to a per symbol power constraint:
the weighted sum completion time minimization problem ang[X?2] < P. Without loss of generality, we assumeg > h,.
prove the non-convexity of the CTR for GBC. HenceY; is stochastically degraded w.r¥;.

Corollary 1: The c-constrained capacity region of two-user
GBC is the set of non-negative rate paif?;, R2) satisfying:
Since stochastic degradedness and physical degradedne 1 1 L1+ a.
are interchangeable for broadcast chanhel [6], the term “de et (Ru [3Re = (2 - DR ) €
graded” used in this paper implicitly refers to physically 2) ¢>1, ([cR; — (c — 1)R;]" ,Rg) €C¢,
degraded, otherwise stated. We first presentcthenstrained
capacity region of degraded BC and then specialize it to t
Gaussian case, which belongs to the class of stochastically
degraded BC. Lemnid 1 and TheorEm 1, which will be stated ri <y(h3P)), 1o <~ (h3P)—~(h3P)),
next, reveal the connection between theonstrained rate
(capacity) region and the standard one.

Lemma 1:The c-constrained rate paifR;, Rs) is achiev- B, Completion Time Region
able, for some, if:

A. Constrained Capacity Region for Degraded BC

where Ry = v(h2P) andC{, the capacity region of GBC, is
set of non-negative rate pairs satisfying

where0 < P, < P.

An achievable completion time pair = (d;, d2) is defined

1) ¢ <1, Ry can be decomposed intl, and 23 R2 = in terms of c-constrained rate pair, which in return depends
Ry + (1 — )Ry, such that(Ry, R}) € C1, Ry < B3, on d throughe = dy/d». Hence it is easy to check for a
2) ¢ > 1, Ry can be decomposed intl; and R{: R1 = gjvend whether or not it is achievable, but difficult to directly
tRi+ (1 £)RY{, such thaf Ry, Ro) € C1, RY < R{®,  compute all pairs ofl € D* using the definition, because of
where REC is defined as this recursive dependence. Another difficulty in determni
BC _ D~ is that it is not convex for GBC, as we shall show later
R~ = H;§XI(X; Y), i=12 @ in Propositiof B. Therefore we take a different approach. We

characterize two sub-regions &f* seperately and the union

Proof: The progf parallels that ot 2, Lemma.1]. of the two will give us toD*. In the following, we first show
To avoid confusion, hereafter we use lower-casend :
that the sub-regions are always convex.

upper-caseR to refer to the standard and constrained rates Proposition 1: D* contains two convex sub-region®;

respectively. andD* where
Theorem 1:The c-constrained capacity regiod. for a 2
degraded broadcast channel, whéteis degraded w.r.tY;, D; = D* ﬂ{(dl,d2)|d1 <ds},

is the set of rate pair6R;, R2) satisfying

nchf@E&—@—n@ﬂﬂeq;
o BoT+ Proof: See the proofl[2, Proposition.1]. ]
2) ez 1, ([eRy = (c— 1)REC] ’RQ_) € Cl’_ _ Essentially in the proof of Propositién 1, we show that for
where(,, the degraded DMBC capacity region, is the set ¢fny two given achievable completion time pairsndd’, if d
all (r1,72) pairs satisfying andd’ lie on the same side with respect to the lihe= d»,
then we can always construct a coding scheme such that the
<I(X;1h|\U - -
r < XU, new scheme achieves the convex combinatiod aindd’.
r2 < I(U;Ya), Theorem[lL together with Lemnid 1 suggests that any

for some joint distributionp(u)p(z|u)(ys,ys|z), with the Cconstrained rate paifR;, R.) can be expressed in terms of

auxiliary random variabld/ cardinality bounded byy/| < Standard rate pair. Whea = di/dy < 1, Ry = r and
min{[ X[, | V1, [V2]}. Ry = cra + (1 — ¢)Ry, where(ry,72) € C; and Ry < R5C.

D; = D*({(d1, da)|dr > da}.

Proof: The proof is relegated to AppendiX A. m SubstitutingR; = 7;/d; andc = d, /dy, we have the following
Remark 2: The constrained capacity achieving scheme c&Rlations:
be viewed as consisting of two phases. In the first phase di=1 dy= é_z/ + (Rg}’i/rrzl)n’ 3)

when the codeword carries both users’ messages, the BC
capacity-achieving scheme is employed. In the second phagdeered; < d» reduces to the conditiof* < 2. Similarly
when the codeword carries only usef's message, the codingfor ¢ > 1, we have

scheme that achieves the point-to-point capacity for uses 4=y (R —r1)rs dy— o2 @
employed. RY T R, P



where R} < RBC andd, > d, reduces tor2 > 2. One can mapping from curveBC' in the achievable rate region. Second
think of equatlons[(]3) and{4) as funcuons that map a rate pany point on the rayBH is achievable. This is because we
to a completion time pair depending on whetligr< d, or can use the same codebooks designed for achieiingut

dy > do. Hence we usel;(r) to denote the completion time decrease the rate of user 2 by only using part of the codewords
paird = (di, d2) mapped fromr = (ry,72) using [3) ifi =1 resulting in the samé; but a largerds. For the same reason,
andr € C{';, and [@) ifi = 2 andr € C{’,, where we define any point on the ray”F' is also achievable (here we keep the

C{, andCy, as same codebooks but decrease the rates for both users by the
. . same amount). At last, any inner point can be expressed as the
ety =cf ({(r )22 < 2}, convex combination of two points on the boundary and hence
is also achievable due to Propositidn 1.
CG _ CG T2 > T2 IS al :
o= rer)li2 2 2 Using the same argument, we can prove . Overall
Referring to Fig.[L(a), letC denote the intersection of D* = Dj |JDs. [ |

the line 2 = = and the capacity region boundary. This i - . . i
obtamed by subsututmgl ~ (h2Py) andry — ~(h2P) — T. Minimum Weighted Sum Completion Time

~(h2Py) into the line equation resulting i, = P! € [0, P]. Netvvc_)rk dg_sign ofte_n incorporates the goal of optimizing
a certain utility function, which, for example, can be a
function of users’ rates. The completion time region, which
characterizes all possible trade-offs between users’ tatiop
times, allows one to compute utilities that are functions of
users’ completion times. In this subsection, we intend teeso
the following weighted sum completion time minimization

problem:
4 minimize dy; = wd; + wds (5)
A=d,(4) B =d,(B) C = dy(C) = d,(C) subject to (dq,ds) € D*
(a) (b) wherew = 1—w andw € [0, 1]. As Fig.[1(b) showsD* is not

convex, which we shall prove later in Propositidn 3. Henise it
Fig. 1. Gaussian broadcast channel: (a) capacity regigrofapletion ime - more convenient to consider problef (6), where the feasible
region. sets are convex. Clearly for any given weight, the solutibn o

Theorem 2:The completion time region of two-user GBC (8) is immediately induced by the minimum of those for (6).

depicted in Fig[L(b), is given bp* = D; |J D;, where minimize d, = wd; + wds (6)
(dl,dQ)ERii for Ple[Pl/,P] SUbjECtto (dlde)GD;ca i=1,2
pr={ 4z Smapy: d2 2 di, : Note thatD; given by Theoreni]2 is expressed in terms of
P . Y(h2P)T power variableP;. In principle we could first eliminateP;
2 2 v(h3P) + v(h3P)y(hTPy) and alternatively writeds as a function ofd;, then use the
and convexity of D} to solve [6) by taking the derivative. However

5 , in the following, we take a different approach and focus on
(di,d2) € Ry : for Py € [0, P] C¢ instead ofD;. By using a line rotation argument, we show
Dy ={ di = =fhp + 7(}[17%%?[5()}:%713()’155&]5;1)]7 _ that every boundary point af uniquely minimizesd, for a
T2 weight that is related to the tangent line &f at that point.
dy 2 v(h3P)—~(h3P1)’ dy = dy, The reason of taking this indirect approach is that the same
Proof: We first considerD;. For the converse, we con- geometric argument will also be used to obtain achievable
sider the mapping defined if1(3). Notice thdi can be CTR of GIC in the weak and mixed interference regime in

alternatively expressed af = T4i-772 4 IL, which is a Section IV.C.

decreasing function oRY, since2 R<T72 To obtam alower- Letus flrst trapsfor_m[]6) into an gquivalent problem using
the mapping defined if13),J(4). Define

bound, we sef?) = v(h3P). Referrmg to Fig[lL(a), any point
in C{7, is upper-bounded by some point on the cué€'. Dy =0 + % Dy = wit
The curve BC in Fig. d(b) is obtained by mapping every 2
rate point onBC to a completion time point through](3)WhereD;(r) denotesD; evaluated at = (r1,72).

T2 (R} —wr
2o el - (7)

with RY = ~(h3P). It's clear that the curveBC is a lower- Proposition 2: The following optimization problem is
bound becausé , d» in (@) are decreasing functions of, 7. €quivalent to[(b):
Together withd; < ds, Dj is a lower-bound. minimize  D;(r) ®)

We now prove the achievability oD;. First, any point

_ T L H G s
on curve BC is achievable, since curvBC is obtained by subjectto rcCy, i =1,2



Proof: Let's first consider[{(6) withi = 1, i.e. d; < dy. some inner point. Hencer, cannot be the solution for any
Without loss of generality, considel](3) witRy = R3, i.e. weightw € [0, wa(r2)).
letting user 2 transmit at the maximum point to point rate in Now let us consided. For the same reason, we can show
the second phase to minimize its delay. A rate pa@@an be that A cannot be the solution for any weighte (w2 (A), 1].
mapped to a completion time pair vial (3) resultingdn = The difference betweem and r, is that sinceA is the
Dy(r) for r € C{,. Similarly for i = 2, i.e.d; > da, r can left-most boundary point, if we counter-clockwise rotafe t
be mapped to a completion time pair vid (4) wil{ = R; tangent line atd, A would still be the only feasible point on

andd, = Ds(r) forr € CEQ. B the line. Similarly, we can show th&t cannot be the solution
Lemma 2:Denote the tangent line o at a boundary for any weightw € [0, wo(C)).

pointr = (r1,72) by ary + bry = 1. Then we have To summarize, we have shown that r, and C' may
g 1 be the solution only ifw € [0,w2(A)], w = we(rz) and

a=—" b=—-—, w € [wa(C), 1] respectively. From the proof of Lemmia 2, it's

ro + g ro + gri .

clear thatwy(A), we(rz2) andwz(C) are all unique because
wherer; = y(hiPy), ro = y(h3P) — v(h3P1) and a is strictly (except the degenerate cdse= h,, for which

1/h2 + P, TheoreniB still holds) ipcreasing \{v._rlt?l . HenceA, ry and _

g= m C are all associated with some disjoint sets of weights with

which they may be the solution. Together with the fact thit (8

Definew; (r) =1 —bR3, wa(r) = aR7. Thenw;(r) € [0,1) is solved at some boundary point for a given wei@ht [2, Lemma

andws(r) € (0,1]. 3], we conclude that4, r, andC are indeed the solution for

Proof: The proof is relegated to AppendiX B. B the weight(s) in their associated sets. [

Theorem 3:The solution to the optimization problei (6) is  Corollary 2: The minimum weighted sum completion time

summarized in Tablgl I, where, (r»), referring to Fig[ll(a), @) for a weightw is given byd* = min{D;(r}), Dy(r})},

is an arbitrary boundary point @ that lies betweerB (C) wherew; (r}) = w.

andC' (4). Referring to Fig[IL(b), suppose the tangent line to cub@

(CA) at pointC has the slope of; (s2). Since alld € Dy,

TABLE | h N i
d # C, are above the corresponding tangent licejs the
W e WO T w=wic) | we [wi(B)1] solution to the weighted sum completion time minimization
i=1 d(C) di(r1) di(B) problem overD; with the weightw = st =1,2. We
i—o | WEDwy(A) [ w=ws(rz) | we wy(C),1] now use this geometric interpretation to prove thetis not
d2(A) da(r2) d2(C)

convex.

. Proposition 3: The completion time regiorD* for Gaus-
Proof: Due to the equivalency of the two problems, Qian broadcast channel is not convex

solve [6), we considef]8). Let us consider= 2. The case
1 = 1 follows similarly. Due to [[2, Lemma 3], we need only
consider the boundary points, i.d, r, andC.

Proof: Referring to Fig[L(a), suppose the tangent line
across pointC' is given byar; + bry = 1. Since (R}, R3),
o . where R} = ~(h?P) for i = 1,2, is above the line, we have
We now prove that point, = (r1,72) cannot be the optimal aR* +bR > 1, or equivalentlyw, (C) < ws(C). The tangent

solution if w # wa(rs). Suppose we draw a line across I = o USSR
o . o ine to curveBC or C A at pointC in Fig.[d(b) has the slope
ary +bro =1 (a,b # 0). EvaluatingD, () along this line by 5 = w0 9 respectively. Therefore; > s5 and

substitutingr; = =2, we have DZ*_ls Iﬁf(()tcizz)lr;vex. -
Dy — 5l To(aR} —w)  bwm
2= wR—,f + aRjry aR; " IV. COMPLETION TIME REGION FORGAUSSIAN
INTERFERENCECHANNEL

If a = R%, D, becomes a constant that is independentyof

This means that associated with any weight, there existgea li Since this section mostly parallels Section 1ll, for natati
such that all feasible points on this line result in the sdde economy we may use the same notations introduced in Section
Now let us make this line tangent &f: a;r + b2 = 1. By  lIl. Further, if not stated otherwise, the proofs of theosem
Lemmal2,ws(rs) = a: R} € (0,1). Note thatP; < P, hence are omitted and they follow their counterparts in Sectidn Il
wa(rz) < 1. For any weightw € (wz(r2),1], i.e.a = R% > Due to the fact that the capacity region of GIC is known
a, the associated line can be obtained by rotating the tangenty for certain ranges of channel parameters, we divide thi
line clockwise and hence it interseaf$’,. Referring to the section into three parts. In Section IV.A and IV.B, we coesid
Fig.[(a), we haveDs(ry) = Da(r}), whérer’2 € C¢ is some the very strong and strong interference regimes respégtive
point on the line that is different from,. Sincer}, is an inner and establish the exact completion time region accordirgly
point, it cannot be the optimal solution, soris. Similarly, if Section IV.C, we consider the weak and mixed interference
we consider any weighty € [0, wz(r2)), the associated line regimes where achievable completion time region as well as
can be obtained by counter-clockwise rotating the tandeat | outer-bound will be derived.

and it intersect{’,. Then we haveD(r;) = Ds(ry) for A general two-user GIC can be written equivalently in the



following standard form: 1) For2 < %P(P])

v(P1)

Y1 =X, +0Xo + 7y, Y(P1)dy > 11, y(P2)d2 > T2,

Yy =aX) + Xy + 2o, Y(Pr)dy + [rs —y(P1)ld2 = 71 + 72
where Z; ~ N(0,1), i = 1,2, is the i.i.d. Gaussian noise 2) For"j(”%ﬁl) <2< TSZ(WP(QIZZ)
process and inputs are subject to per symbol power contstrain
E[X?] < P,. a,b are some non-negative constants. Interfer- V(Pr)dy 2 71, y(P)dy > 7,
ence is said to berery strongif a > 1+ P, andb > [rs — v(P2)]d1 + v(P2)da > 11 + T2,
V1 + P;. Interference is said to t&trongif 1 < a < /1+ P, v(P1)dy + [rs — y(Py)]da > 71 + 7.
andl < b < /1 + P;. Interference is said to heeakif a < 1
andb < 1. Finally if one interference link is strong and the 3) For 22 > TSV_(WP(%)
other is weak, then interference is said torbixed

Y(Pr)dy > 11, y(P2)d2 > T2,

A. Completion Time Region for GIC in the Very Strong Inter- [rs — v(P2)]d1 + y(P2)d2 > 11 + 2.

ference Regime
gl C. Completion Time Region for GIC in the Weak and Mixed

Theorem 4:For a two-user GIC in the very strong interfer{nterference Regimes
ence regime, the-constrained capacity region is the same as
the standard capacity region and is given {fy?;, R2)[0 <
Ri <~(P),i=1,2}.

Even though the exact capacity region of GIC in the weak
and mixed interference regimes is still unknown, Etkin, Tse
. . and Wang|[3] derive a rate region that is at most one bit away
The fact that interference is very strong enables each USRI the outer-bound and hence establishes the capacityreg

to decode the interference by treating its own signal asenols\ ithin one bit. Based on Etkin-Tse-Wang rate region, we
and hence completely eliminate interference. As a redut, t '

) : . ) ~= " derive the following achievable-constrained rate region.
interference channel is decoupled into two point-to-phbirks g 9

d the fact that h bol 's codebook Theorem 8:The set of non-negative rate paii®;, Rs) sat-
and the fact that how many SymboIs one users codeboo Sp?s!?)sl‘ing the following constraints is an achievableonstrained
does not really affect the coding scheme of the other.

e , rate region of two-user GIC in the weak interference regime.
Theorem 5:The completion time region of a two-user GIC

+ .
in the very strong interference regime® = {(di, d2)|d; > 1) c<1 (B [¢Re — (3 — D (P2)] ) < REW’
Ti/v(F),i = 1,2} 2) ¢>1, ([cRy — (¢ — Dy(P)]" ,RQ) € Ry

B. Completion Time Region for GIC in the Strong Interferenddér® Rty is the Etkin-Tse-Wang rate region for the weak
Regime interference regime and is given by [3, Corollary.1].

] ] ) Remark 3:In the following, we focus on the weak inter-
Theorem 6:The c-constrained capacity region of two-Useference regime. The obtained results are equally appécabl
GICin t_he strong mter_fer(_ance regime is the set of non-negaty the mixed interference regime simply by replaciR§,,
rate pairs(Ry, Ry) satisfying: with R, the Etkin-Tse-Wang rate region for the mixed
1) c<1, (R, [%Rg — (% — 1)7(p2)}+) e C¢: interference regime given by LS, Corollary.2].
Generally, the rate regio® is a polygon in the first
2) e> 1, ([eRy = (e = D)y(P)]” ’RQ) € cr, quadrant with the dominant face consisting of line segments
WhereCIG is the set of non-negative rate pairs satisfying  determined by the inequality constraints. To derive the giem
tion time region, we follow the approach used|in [2] for MAC,
r1 <y(P1), roe <vy(Pa), where we first find the rate points that minimize the weighted
r1+ 7o < min{y(P, + b2P,),v(a®P; + Py)}. sum completion time fob; andD. respectively and then their
corresponding completion time pairs are the extreme points
In the strong interference regime, since the capacity &€hidy connecting which we can trace the boundargfand D
ing scheme requires each receiver to decode both the desiled to the convexity. Finally the achievable completionetim
signal and the interference, the capacity region is equal region is given by the union db; andDs.
that of the compound MAC formed at the two receivers and In [8], the authors argue that all inequalities defining a Han
resembles that of a GMAC except for the sum rate expressi®mbayashi rate region for a given power splitting withoutdi
The completion time region of GMAC was establishedlin [2§haring, of which the Etkin-Tse-Wang rate region is a specia
and can be directly transferred to the case of GIC in the gtrovase, are active. As observed in [7], under some channel
interference regime by replacing the sum rate te(f, + P;) conditions, certain inequalities are made redundant byatie
by rs = min{y(Py + b*P,),v(a*P; + P»)}. of rates being positive, which is neglected(in [8]. Consexlye
Theorem 7:The completion time regio®* of a two-user rate regiorfRfW has a varying number of extreme points on
GIC in the strong interference regime is the set of paithke dominant face depending on the channel condition. We
(d1, ds) satisfying the following: next consider a generic convex rate regiofn, depicted in Fig.



[2(a), whose boundaries are given by line segmehtd, ,,
jed{l,...,J—1}.
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Fig. 2.

Let C denote the point where ling/r; = 72 /71 intersects
the boundary ofR§ and let

Jt=argjcq, g-13{C € AjAj}.

Denote line segmentl;A; 1 by a;r1 + bjr2 = 1. Define
w} £ 1—7(P)b;, w3 £ a;y(Py). It can be shown that, =
0<as <..<ay_iandby > by > ... > bj_1 = 0. Hence
wi <wy<..<wh ;=landw! =0<wj<.. <wi_ .
Denote

KA st

Define two partitions for the unit intervad, 1]:

I, = [0, wllc;‘]v (wllc;‘ ) wllq-i-l]v e (w§—27 wﬁll—l]v

H2 = [w%a wg]v a3} (wiz—la wl%;]v (wi’2*7 1]
Note thatw’_, = 1 andw? = 0. Let II;(j) denote thejth
interval of partitionIl;.

feasible points on this line result in the samyg. If
w ¢ [w?_,,w?], the line intersectR{, and henceA;
cannot be the minimizer. Equivalently, we say, j €
{2,...,57}, may be the solution only ifv € [w?_,,w?].
For the same reason, we can argue thatmay be
the solution only ifw > wf Similar to the proof of
Theorem[B, we can argue that;, j € {2,...,j*}, is
indeed the solution ifw € (w? ;,w?) and C' is the
solution if w > w?.. Whenw = w}, both A; and
Ajyq forje {2,...,5* =1} or A; andC for j = j*
are solutions and without loss of generality we pick the
former.

k3 < j*

Since the weightv < 1, we havew ¢ [w} ;,w?] for

k3 +1 < j < j*+1. Hence we need only considdr;,

jef2, ..k}

2)

wa is some convex rate region with boundaries given by
piece-wise linear functions and there are at most six exrem
points, i.e.J < 6. Hence we specialize Lemnid 3 to solve
the optimization problen{8) defined omfw. Denote the
solutions forD; by {A;};, i = 1,2, j € {1,...,J}, where
the elements are sorted in ascending order of the subscript.
Each element; is associated with some set of weights with
which A; minimizes D;. Further Iet{[lj}i denote the set of
completion time points mapped from rate poititd; }; using
the mapping defined i {3) foi = 1 and [4) fori = 2
with R = ~(P;). Let C be the point mapped frord, the
intersection ofRﬁW and the linery/ry = 72/71, using either
(3) or (@) (the two mappings are equivalent for any rate point
on the linery/r = 72 /71).

ConstructD; using {4,}; and C: D; is a convex set of
d € R3 whose boundaries consist of two rays and some line
segments. The line segments are obtained by connecting the
adjacent points i{C, {A;}1} for Dy and{{4;}2,C} for Ds.

Lemma 3:Consider the optimization problerl(8), whergyne of the two rays is the vertical (horizontal) ray emaratin

the feasible sets are replaced Rf’;, where
REL = RE (1, o) 22 < 23,

Ry = RE({(rra)| 22 > 21,
For any weightw € [0, 1], let

Y

TS 7))
I3 =argjcp, . kpy{w € M2(j)}

Then D, is minimized atA;: g1 if I # j* + 1 — kI
or Cif If = j* + 1 —k{. Also Dy is minimized atA;; ,; if
I5#5%orCif 15 = 5%

Proof: Let us considerD,. The case forD; follows

from A;_; for D, (A for Dy). D; andD, share a common
45 degree ray emanating frodi.

Theorem 9:D = D;|JD; is an achievable completion
time region for two-user GIC in the weak interference regime
when Etkin-Tse-Wang coding scheme is used.

Proof: The proof is analogous to that ofl [2, Theorem.3].
Here we provide a sketch. We first argue that any point on
the boundary ofD;, i = 1,2, is achievable when Etkin-Tse-
Wang scheme is used. By the convexity Bf, any inner
point is also achievable. Next we argue by contradiction tha
no rate pointr € Rﬁw can achieved ¢ D. Suppose there
existsd’ ¢ D, then we could find a weight for which d’
minimizes weighted sum completion time. But this contréslic

similarly. By [2, Lemma.3], we need only consider extremwith Lemmal[3, which suggests that the solutions are the

points on the dominant face GlfQ, ie. Ag,...,A;+,C.
1) ks =g iewi <1

extreme points oD;. [ |
ReplacingRﬁW by the capacity region outer-bound given

For weightw andj € {2,...,5*}, we can determine a by [3, Theorem.3], and following the above steps, we can

line that passesi;: ary + bry = 1 with a = 5.

obtain an outer-bound that includes the completion timeéreg

From the proof of Theorerh] 3, we know that all theof GIC in the weak and mixed interference regimes.



Example:Let P, = 10, P, = 15, a = 0.8, b = 0.6 [8] A.S. Motahari and A.K. Khandani, “Capacity Bounds foetiGaussian
and, = » = 1. The Etkin-Tse-Wang rate region and [Interference Channel]EEE Trans. Inf. Theoryvol. 55, no. 2, pp. 620-
. . 643, Feb. 2009.
the outer-bound are depicted in Fld. 3(a). Let us compute

Jj¥ =4, kf = 4, k5 = 3, II; = [0,0.36],(0.36,1] APPENDIXA
andII; = [0,0.51],(0.51,0.81],(0.81,1]. By Lemmal3, the PROOF OFTHEOREMI
solutions set is{C, A5} for Dy and {Asz, A3, A4} for Ds. Proof: We prove forc < 1, i.e.n; < n,. The case: > 1

Therefore{C, A5}, {42, 43, A4, C} are the extreme points follows similarly. The achievablility follows from Lemrr@l
of D; and D, respectively. Fig[13(b) plots the achievablespecifically for R, < (1 — ¢)REC, set R, = 0 and R}
completion time region and the outer-bound. . For Ry > (1 — ¢)REC, setR), = %Rg - (% - 1)3'2/

and RY = REC.

2 o B The converse is as the following. L&t denote a uniformly
o | N distributed r.v. on{1, ..., n1}. For an arbitrarily smalk,
12 < AA .. " < niR1 —nie
208 ¢ d, 09 ‘ A D, <I (Wl; Ylm) (9)
B " . " N < I(Wy; Y™ W) (10)
oo : osl, R <mI(Xo:Y1.0lUg, Q) (11)

' ' where [9) follows Fano’s inequality, (ILO) is due to the fawtt
Wy andW, are independent and conditioning reduces entropy.

Fig. 3. (a) The Etkin-Tse-Wang rate region (solid) and cbtmund (dashed); (1) follows standard steps for degraded broadcast chéfjnel

(b) achievable completion time region (solid) and outemizb (dashed) We proceed to boungs.
n2R2 — No€
V. CONCLUSIONS < I(Wy Y3™) (12)
In this paper, we extend the information theoretic formula- = I(Was Yo't ) + T(Wo; Yy'2 1 [Y5™)
tion of completion time, originally proposed inl[2] for mult < I(Wai Y3) + I(Was YI2 ) (13)

access channel, to broadcast channel and interferencaalhan

This formulation allows us to define the so-called comptetiovhere [I2) follows Fano's inequality, (1L3) is becads; .,
time region Wh|Ch ana'ogous to Capacity region Charmﬁe iS independent Of Others Conditioned m and Conditioning
all possible trade-offs between users’ completion timese Treduces entropy. Following standard steps for degradeatiro

completion time region is established for Gaussian brostdc&ast channel, we can shalyis; Y") < %EI(Unyz QlQ).
channel and is then proven to be non-convex by solvifyso we havel (Ws; Y5 ) < (”2—n1)R Thus we have
the weighted sum completion time minimization problem. le . (l _ 1)RBC _ EE < I(Ug; Y2.0|Q)

For Gaussian interference channel, the exact completioa ti _
region is obtained for the very strong and strong interfeeenAfter redefining the r.vl £ (Ug, Q), the proof is complete.

regimes. For the weak and mixed interference regimes, an u

achievable completion time region based on the Etkin-Tse- APPENDIXB

Wang scheme and an outer-bound are obtained. PROOF OFLEMMA 2]
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