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Abstract

We determine the rate region of the vector Gaussian one-helper source-coding problem under a covariance matrix distor-
tion constraint. The rate region is achieved by a simple scheme that separates the lossy vector quantization from the lossless
spatial compression. The converse is established by extending and combining three analysis techniques that have been em-
ployed in the past to obtain partial results for the problem.

Keywords: multiterminal source coding, one-helper problem, covariance matrix distortion constraint, vector Gaussian
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1 Introduction

We study the vector Gaussian one-helper source-coding problem1, depicted in Fig. 1. Here X and Y are two jointly vector
Gaussian sources. Encoders 1 and 2 observe two i.i.d. strings distributed according to X and Y, respectively, and separately
send messages to the decoder at rates R1 and R2 bits per observation, respectively, using noiseless channels. The decoder
uses both messages to estimate X such that a given distortion constraint on the average error covariance matrix is satisfied.
The goal is to determine the rate region of the problem, which is the set of all rate pairs (R1, R2) that allow us to satisfy the
distortion constraint for some design of the encoders and the decoder.

Figure 1: Vector Gaussian one-helper source-coding problem.

Oohama [1] gave a complete characterization of the rate region for the case in which both sources are scalar. His achiev-
ability proof is a Gaussian scheme that is described in more detail below. The converse argument uses the entropy-maximizing
property of the Gaussian distribution and the entropy power inequality (EPI), and it bears a certain resemblance to Bergmans’
earlier converse for the scalar Gaussian broadcast channel [2]. As such, one might hope that the channel enhancement tech-
nique introduced by Weingarten et al. [3] to solve the MIMO Gaussian broadcast channel would be sufficient to solve the
problem considered here. This turns out not to be the case, however. Among other contributions, Liu and Viswanath [4]
showed that channel enhancement yields an outer bound for the vector one-helper problem that is not tight in general. This
was later improved slightly by the present authors to show that the Gaussian scheme achieves a portion of the boundary of the
rate region [5]. Liu and Viswanath’s approach was later subsumed by Zhang [6], who applied enhacement in a different way
and called it source enhancement, but this also yielded an outer bound that is not always tight.

∗Both authors are with the School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853 USA. (Email: mr534@cornell.edu,
wagner@ece.cornell.edu.)

1The material in this paper was presented in part at the 49th Annual Allerton Conference on Communications, Control, and Computing, University of
Illinois, Urbana-Champaign, Sept. 2011.
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Figure 2: A Gaussian achievable scheme.

The case in which Y is a scalar and X is a vector was recently solved by the authors [7]. The proof did not use enhance-
ment, but it did require a novel technique that we call distortion projection. Here we shall show that distortion projection,
source enhancement, and Oohama’s converse technique together are sufficient to solve the general problem in which both X

and Y are vectors. In particular, we shall determine the rate region exactly and show that a vector extension of the Gaussian
scheme used by Oohama is optimal. In this scheme, as depicted in Fig. 2, encoder 1 vector quantizes (VQ) its observations
using a Gaussian test channel as in point-to-point rate-distortion theory. It then compresses the quantized values using Slepian-
Wolf (SW) encoding [8]. Encoder 2 just vector quantizes its observations using another Gaussian test channel. The decoder
decodes the quantized values and estimates the observations of encoder 1 using a minimum mean-squared error (MMSE)
estimator.

The rest of the paper is organized as follows. Section 2 explains the notation used in the paper. In Section 3, we present
the mathematical formulation of the problem, a description of the scheme, and the statement of our main result. Section 4
gives an outline of the converse argument. Since the proof of the converse is somewhat involved, it is divided into Sections 5
through 8.

2 Notation

We use uppercase to denote random variables and vectors. Boldface is used to distinguish vectors from scalars. Arbitrary
realizations of random variables and vectors are denoted in lowercase. For a random vector X, Xn denotes an i.i.d. vector of
length n, Xn(i) denotes its ith component, and Xn(i : j) denotes the ith through jth components. The superscript T denotes
matrix transpose. The covariance matrix of X is denoted by KX. The conditional covariance matrix of X given Y is denoted
by KX|Y and is defined as

KX|Y , E
[
(X− E(X|Y)) (X− E(X|Y))

T
]
.

All vectors are column vectors and are m-dimensional, unless otherwise stated. We use Im to denote an m × m identity
matrix. With a little abuse of notation, 0 is used to denote both zero vectors and zero matrices of appropriate dimensions. We
use Diag(d1, d2, . . . , dp) to denote a diagonal matrix with diagonal entries d1, d2, . . . , dp. The trace of a matrix A is denoted
by Tr(A). For two real symmetric matrices A and B, A < B (A � B) means that A−B is positive semidefinite (definite).
Similarly, A 4 B (A ≺ B) means that B−A is positive semidefinite (definite). All logarithms in this paper are to the base
2. The determinant of a matrix K is denoted by |K|. The notation X ↔ Y ↔ Z means that X,Y, and Z form a Markov
chain in this order. We use span{ci}li=1 to denote the subspace spanned by {ci}li=1.

3 Problem Formulation and Main Results

Let X and Y be two generic zero-mean jointly Gaussian random vectors with covariance matrices KX and KY, respectively.
Initially, we shall assume that X is m-dimensional and Y is k-dimensional. Let {(Xn(i),Yn(i))}ni=1 be a sequence of i.i.d.
random vectors with the distribution at a single stage being the same as that of the generic pair (X,Y). As depicted in Fig. 1,
encoder 1 observes Xn and sends a message to the decoder using an encoding function

f
(n)
1 : Rmn 7→

{
1, . . . ,M

(n)
1

}
.
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Analogously, encoder 2 observes Yn and sends a message to the decoder using another encoding function

f
(n)
2 : Rkn 7→

{
1, . . . ,M

(n)
2

}
.

The decoder uses both received messages to estimate Xn using a decoding function

g(n) :
{

1, . . . ,M
(n)
1

}
×
{

1, . . . ,M
(n)
2

}
7→ Rmn.

Definition 1. A rate-distortion vector (R1, R2,D) is achievable for the vector Gaussian one-helper source-coding problem
if there exist a block length n, encoding functions f (n)

1 and f (n)
2 , and a decoding function g(n) such that

Ri ≥
1

n
logM

(n)
i for all i ∈ {1, 2}, and

D <
1

n

n∑
i=1

E

[(
Xn(i)− X̂n(i)

)(
Xn(i)− X̂n(i)

)T]
,

where

X̂n , g(n)
(
f

(n)
1 (Xn) , f

(n)
2 (Yn)

)
.

LetRD be the set of all achievable rate-distortion vectors andRD be its closure. Define

R (D) ,
{

(R1, R2) : (R1, R2,D) ∈ RD
}
.

We callR(D) the rate region for the vector Gaussian one-helper source-coding problem.

Our goal is to characterize the rate region R(D). Note that the matrix distortion constraint is more general in the sense
that it subsumes other natural distortion constraints such as a finite number of upper bounds on the mean square error of
reproductions of linear functions of the source. In particular, it subsumes the case in which the distortion constraint is on the
mean square error of reproductions of the components of X.

Since we are interested in a quadratic distortion constraint, without loss of generality we can restrict the decoding function
to be the MMSE estimate of Xn based on the received messages. Therefore, X̂n can be written as

X̂n = E
[
Xn
∣∣f (n)

1 (Xn) , f
(n)
2 (Yn)

]
.

We can assume without loss of generality2 that

X = Y + N,

where N is a zero-mean Gaussian random vector with the covariance matrix KN and is independent of Y. The case in which
KX 4 D has a trivial solution. In this case, the rate region is the entire nonnegative quadrant. So, we assume that KX 4 D

does not hold in the rest of the paper. This means that there exists a direction z 6= 0 such that

zTKXz > zTDz. (1)

For now, we assume that KX,KY, and D are positive definite. The general case of the problem will be addressed in Section
8.

2Since X and Y are jointly Gaussian, we can write
X = AY +N,

where A is an m× k matrix and N is an m-dimensional zero-mean Gaussian random vector that is independent of Y. Since there is no distortion constraint
on Y, and AY is a sufficient statistic for X given Y (i.e., X↔ Y ↔ AY and X↔ AY ↔ Y), we can relabel AY as Y and write

X = Y +N.
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3.1 Rate Region

The rate regionR(D) is a closed convex set in the nonnegative quadrant. It is closed by definition and is convex because any
convex combination of two points in the rate region is in the rate region as it can be achieved by time-sharing between the
encoding and decoding strategies of the two points. Therefore, we can characterize it completely by its supporting hyperplanes,
which can be expressed as the following optimization problem

R(D, µ) , inf
(R1,R2)∈R(D)

µR1 +R2,

where µ is a nonnegative real number. Let us define

R∗(D, µ) ,

{
v (Ppt−pt) if 0 ≤ µ ≤ 1

v (PG1) if µ > 1,

where v (Ppt−pt) and v (PG1) are the optimal values of the optimization problems (Ppt−pt) and (PG1), respectively, which
are defined as

(Ppt−pt) , min
KX|U

µ

2
log

|KX|∣∣KX|U
∣∣

subject to KX < KX|U < 0 and

D < KX|U,

and

(PG1) , min
KY|V,KX|U,V

µ

2
log

∣∣KY|V + KN

∣∣∣∣KX|U,V
∣∣ +

1

2
log

|KY|∣∣KY|V
∣∣

subject to KY < KY|V < 0,

KY|V + KN < KX|U,V < 0, and

D < KX|U,V.

We use similar notation to denote other optimization problems and their optimal values throughout the paper. The main result
of this paper is the following theorem.

Theorem 1. The minimum weighted sum rate for the vector Gaussian one-helper source coding problem is given by the
solution to the above matrix optimization problem

R(D, µ) = R∗(D, µ).

3.2 A Gaussian Achievable Scheme

In this subsection, we present a Gaussian achievable scheme (Fig. 2). The scheme is well-known and is sometimes referred
to as the Berger-Tung scheme [9, 10]. This scheme is known to be optimal for several problems in Gaussian multiterminal
source-coding literature [1, 11, 12, 13, 14, 15, 16]. However, it is not optimal in some cases. For instance, a lattice-based
scheme can outperform it if the goal is to reconstruct a hidden random vector that is jointly Gaussian with X and Y [17, 18],
and the discrete memoryless version of the scheme can be suboptimal if the sources have common components [19]. For the
problem under consideration however, we shall prove that the Berger-Tung scheme is indeed optimal. We present an overview
of the scheme here. The details for similar problem setups can be found in [1, 11].

Let S be the set of zero-mean jointly Gaussian random vectors U and V such that

(C1) U,X, Y, and V form a Markov chain U↔ X↔ Y ↔ V, and

(C2) KX|U,V 4 D.

Consider any (U,V) ∈ S and a large block length n. Let R
′

1 , I(X; U) + ε, where ε > 0. To construct the codebook for
encoder 1, first generate 2nR

′
1 independent codewords Un randomly according to the marginal distribution of U, and then

uniformly distribute them into 2nR1 bins. Encoder 2’s codebook is constructed by generating 2nR2 independent codewords
Vn randomly according to the marginal distribution of V.
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Given a source sequence Xn, encoder 1 looks for a codeword Un that is jointly typical with Xn, and sends the index b of
the bin to which Un belongs. Encoder 2, upon observing Yn, sends the index of the codeword Vn that is jointly typical with
Yn. The decoder receives the two indices, then looks into the bin b for a codeword Un that is jointly typical with Vn. The
decoder can recover Un and Vn with high probability as long as

R1 ≥ I(X; U|V) and

R2 ≥ I(Y; V).

The decoder then computes the MMSE estimate of the source Xn given the messages Un and Vn, and (C2) above guarantees
that this estimate will satisfy the covariance matrix distortion constraint. Let

RG(D) ,
{

(R1, R2) : there exists (U,V) ∈ S such that

R1 ≥ I(X; U|V) and

R2 ≥ I(Y; V)
}
.

Furthermore, define
RG(D, µ) , min

(R1,R2)∈RG(D)
µR1 +R2.

The following lemma gives the weighted sum-rate achieved by this scheme.

Lemma 1. The Gaussian achievable scheme achievesRG(D, µ) and

RG(D, µ) = R∗(D, µ).

Proof. It follows immediately that the Gaussian achievable scheme achieves RG(D, µ). The equality in Lemma 1 is proved
in Appendix A.

Lemma 1 implies that
R(D, µ) ≤ R∗ (D, µ) .

We prove the reverse inequality (converse) next. Since the proof is rather long, we divide it into sections. The next section
gives a nonrigorous overview of the argument. In the following section, we study the optimization problem (PG1) in the
definition ofR∗(D, µ) and establish several properties that its optimal solution satisfies. We use these properties in Section 6
to prove the main result needed for the converse. We finally complete the proof of Theorem 1 in Section 7.

4 Overview of the Converse Argument

The starting point of our proof is Oohama’s converse for the scalar case, which proceeds as follows. Let f (n)
1 and f (n)

2 be
encoding functions and g(n) be a decoding function that achieve the rate-distortion vector (R1, R2, D). Let C1 , f

(n)
1 (Xn)

and C2 , f
(n)
2 (Y n). By standard steps, we have

nR2 ≥ logM
(n)
2

≥ H(C2)

= I(Y n;C2).

Likewise, we have

nR1 ≥ logM
(n)
1

≥ H(C1)

≥ H(C1|C2)

= I(Xn;C1|C2)

= I(Xn;C1, C2)− I(Xn;C2).

5



It follows that

nR1 ≥ inf
C1,C2

I(Xn;C1, C2)− I(Xn;C2)

subject to
n∑
i=1

E
[
(Xn(i)− E[Xn(i)|C1, C2])2

]
≤ nD, (2)

I(Y n;C2) ≤ nR2, and

Xn ↔ Y n ↔ C2.

Now this infimum can be lower bounded by separately optimizing each term

nR1 ≥ inf
C1,C2

I(Xn;C1, C2) − sup
C2

I(Xn;C2)

subject to
n∑
i=1

E
[
(Xn(i)− E[Xn(i)|C1, C2])2

]
≤ nD subject to I(Y n;C2) ≤ nR2 and (3)

Xn ↔ Y n ↔ C2.

The first optimization problem,

inf
C1,C2

I(Xn;C1, C2)

subject to
n∑
i=1

E
[
(Xn(i)− E[Xn(i)|C1, C2])2

]
≤ nD,

which we call the distortion problem, can be solved using the entropy-maximizing property of the Gaussian distribution and
the concavity of the logarithm. The second problem,

sup
C2

I(Xn;C2)

subject to I(Y n;C2) ≤ nR2 and (4)

Xn ↔ Y n ↔ C2,

which we call the helper problem, can be solved via the conditional version of the entropy power inequality [2]. Substituting
these solutions into (3) yields exactly the R1 achieved by the scheme from the previous section for the given R2 and D. This
completes Oohama’s converse proof for the scalar case.

The key to Oohama’s proof is that separately minimizing the two terms in (2) does not decrease the objective. More
precisely, for any pair (C∗1 , C

∗
2 ) that achieves the infimum in (2) we have

I(Xn;C∗1 , C
∗
2 ) = inf

C1,C2

I(Xn;C1, C2)

subject to
n∑
i=1

E
[
(Xn(i)− E[Xn(i)|C1, C2])2

]
≤ nD, (5)

and

I(Xn;C∗2 ) = sup
C2

I(Xn;C2)

subject to I(Y n;C2) ≤ nR2 and (6)

Xn ↔ Y n ↔ C2,

Whenever (5) occurs, we shall say that the distortion problem incurs no loss. Whenever (6) occurs, we shall say that the
helper problem incurs no loss.

It is not difficult to verify that this proof also works when X is a scalar and Y is a vector. In particular, both the distortion
and helper problems incur no loss in this case. When both X and Y are vectors, the proof breaks down in three places:

1. The distortion problem incurs a loss in general. For instance, if D 4 KX, then the distortion problem is solved by
choosing C1 and C2 so that

n∑
i=1

E

[(
Xn(i)− E[Xn(i)|C1, C2]

)(
Xn(i)− E[Xn(i)|C1, C2]

)T]
= nD.

6



That is, the constraint is met with equality. For the original problem in (2), on the other hand, even if D 4 KX we can
only guarantee that

n∑
i=1

E

[(
Xn(i)− E[Xn(i)|C∗1 , C∗2 ]

)(
Xn(i)− E[Xn(i)|C∗1 , C∗2 ]

)T]
4 nD,

and equality does not hold in general. The lack of equality is easiest to see when KY is poorly conditioned. If KY

has essentially one nonzero eigenvalue, then the helper will allocate all of its rate in the direction of the associated
eigenvector. If R2 is large, this could result in “overshooting” the distortion constraint in that direction.

2. The helper problem also incurs a loss in general. One way of seeing this is to note that if the goal is only to maximize
the mutual information in (4), then one might choose C2 to favor a direction along which the distortion constraint D is
not active over one for which it is. This would necessarily deviate from the optimizer C∗2 of the original problem.

3. The vector EPI does not solve the helper problem in general.

To address the first issue, observe that the distortion problem incurs no loss if the optimizers C∗1 and C∗2 for the original
problem happen to meet the distortion constraint with equality, i.e., it holds that

n∑
i=1

E

[(
Xn(i)− E[Xn(i)|C∗1 , C∗2 ]

)(
Xn(i)− E[Xn(i)|C∗1 , C∗2 ]

)T]
= nD.

In prior work [7], we showed that it is possible to reduce the general case to this one by projecting the source and the distortion
constraint in the directions in which the distortion constraint is met with equality for the candidate optimal scheme. We call
this process distortion projection. This addresses the first issue. One can verify that if X is a vector and Y is a scalar, then the
second and third issues do not arise, and hence distortion projection together with Oohama’s converse arguments is sufficient
to solve the problem [7].

Liu and Viswanath [4] showed that the channel enhancement technique of Weingarten et al. [3] is sufficient to solve the
helper problem in the vector case, thereby addressing the third issue. Their solution, however, is not sufficient to handle the
second issue. Recently, Zhang [6] introduced a variation on the enhancement idea called source enhancement that subsumes
Liu and Viswanath’s approach. Source enhancement effectively replaces the original problem with a relaxation for which the
helper problem incurs no loss and the vector EPI solves the helper problem, although Zhang does not describe it in this way.
This addresses the second and third issues. Thus it appears that distortion projection, source enhancement, and Oohama’s
converse technique together should be sufficient to solve the case in which both X and Y are vectors. We shall show that this
is indeed true. Source enhancement and Oohama’s converse technique are lifted directly from [1, 6]. The distortion projection,
on the other hand, requires an extension beyond what was needed in the scalar helper case [7]. This extension requires us to
first establish several properties of the optimal Gaussian solution to the problem, to which we turn next.

5 Properties of the Optimal Gaussian Solution

In this section, we study the optimization problem (PG1) defined in Section 3.1. Note first that the constraints

KY|V < 0 and

KX|U,V < 0

are never active because otherwise the objective value is infinite. We therefore ignore these constraints in the study of the
problem. Now, instead of studying (PG1) directly as it is, we study an equivalent formulation. This formulation is implicit
in [6]. Note that if KY|V and KX|U,V are feasible for (PG1), then there exist two positive semidefinite matrices B1 and B2

such that

KY|V = KY −B2,

KX|U,V = KY|V + KN −B1

= KY −B2 + KN −B1

= KX −B1 −B2, and

KX −B1 −B2 4 D.
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Therefore, (PG1) is equivalent to the following problem

(PG2) , min
B1,B2

µ

2
log

|KX −B2|
|KX −B1 −B2|

+
1

2
log

|KY|
|KY −B2|

subject to Bi < 0 for all i ∈ {1, 2}, and

D < KX −B1 −B2.

We next establish several properties that the optimal solution to (PG2) satisfies.
Since (PG2) has continuous objective and a compact feasible set, there exists an optimal solution (B∗1,B

∗
2) to it. The

Lagrangian of the problem is [20, Sec. 5.9.1]

µ

2
log

|KX −B2|
|KX −B1 −B2|

+
1

2
log

|KY|
|KY −B2|

− Tr
(
B1M1 + B2M2 − (KX −B1 −B2 −D)Λ

)
,

where M1,M2, and Λ are positive semidefinite Lagrange multiplier matrices corresponding to the constraints B1 < 0,B2 <

0, and D < KX −B1 −B2, respectively. The KKT conditions for this problem are [20, Sec. 5.9.2]

µ

2
(KX −B∗1 −B∗2)−1 −Λ∗ −M∗

1 = 0, (7)

µ

2
(KX −B∗1 −B∗2)−1 − µ

2
(KX −B∗2)−1 +

1

2
(KY −B∗2)−1 −Λ∗ −M∗

2 = 0, (8)

B∗iM
∗
i = 0, for all i ∈ {1, 2} (9)

(KX −B∗1 −B∗2 −D)Λ∗ = 0, and (10)

M∗
1,M

∗
2,Λ

∗ < 0, (11)

where M∗
1,M

∗
2, and Λ∗ are optimal Lagrange multiplier matrices. Conditions (7) and (8) respectively are obtained by setting

gradients of the objective with respect to B1 and B2 to zero. Conditions (9) through (10) are slackness conditions on the
Lagrange multiplier matrices. We next establish that these KKT conditions must hold at (B∗1,B

∗
2).

Lemma 2. There exist matrices M∗
1,M

∗
2, and Λ∗ that satisfy the KKT conditions (7) – (11).

Proof. See Appendix B.

Let us define
∆∗ , Λ∗ − µ

2

[
(KX −B∗1 −B∗2)−1 − (KX −B∗2)−1

]
.

It follows from conditions (7) and (8) that

∆∗ =
µ

2
(KX −B∗2)−1 −M∗

1 =
1

2
(KY −B∗2)−1 −M∗

2. (12)

We have the following lemma.

Lemma 3. ∆∗ is a nonzero positive semidefinite matrix.

Proof. See Appendix C.

If ∆∗ happens to be positive definite, then distortion projection turns out to be unnecessary. To handle the case in which
∆∗ is singular, we shall use distortion projection. Since ∆∗,M∗

1, and M∗
2 are positive semidefinite, we can write their spectral

decompositions as

∆∗ =

r∑
i=1

λisis
T
i , (13)

M∗
1 =

p∑
i=1

αiaia
T
i , and (14)

M∗
2 =

q∑
i=1

βibib
T
i , (15)

where

8



(i) 0 < r ≤ m,

(ii) 0 ≤ p, q ≤ m,

(iii) λi > 0, for all i ∈ {1, . . . , r},

(iv) αi > 0, for all i ∈ {1, . . . , p}

(v) βi > 0, for all i ∈ {1, . . . , q}, and

(vi) {si}ri=1, {ai}
p
i=1, and {bi}qi=1 are sets of orthonormal vectors.

Note that we allow p and q to be zero because M∗
1 and M∗

2 can be zero. Since (12) implies

∆∗ + M∗
1 =

µ

2
(KX −B∗2)−1 � 0 and

∆∗ + M∗
2 =

1

2
(KY −B∗2)−1 � 0,

we must have

r + p ≥ m and

r + q ≥ m.

This means that if r + p = m, then s1, s2, . . . , sr,a1,a2, . . . ,ap must be linearly independent. Similarly, if r + q = m, then
s1, s2, . . . , sr,b1,b2, . . . ,bq must be linearly independent.

Define the matrix

S ,
[√

λ1s1,
√
λ2s2, . . . ,

√
λrsr

]
.

It now follows from the definition of ∆∗ that

Λ∗ < ∆∗ = SST

because
(KX −B∗1 −B∗2)−1 < (KX −B∗2)−1.

This and (10) imply that

(KX −B∗1 −B∗2 −D)S = 0. (16)

Let C be an m×m positive definite matrix and {C1,C2, . . . ,Ct} be a set of m×m positive definite matrices.

Definition 2. A non-zero m× p matrix E is C-orthogonal if ETCE is a diagonal matrix.

Definition 3. A non-zero m× p matrix E is {C1,C2, . . . ,Ct}-orthogonal if it is Ci-orthogonal for all i ∈ {1, 2, . . . , t}.

Definition 4. A non-zero m× p matrix E and a non-zero m× q matrix F are cross C-orthogonal if ETCF = 0.

Definition 5. A non-zero m× p matrix E and a non-zero m× q matrix F are cross {C1,C2, . . . ,Ct}-orthogonal if they are
cross Ci-orthogonal for all i ∈ {1, 2, . . . , t}.

Definition 6. A non-zero vector w is in span{ci}li=1 if there exist real numbers {γi}li=1 such that

w =

l∑
i=1

γici.

We denote this as
w ∈ span{ci}li=1.

We have the following theorem about the optimal solution to the optimization problem (PG2).

9



Theorem 2. There exist two matrices

T , [t1, t2, . . . , tm−r]

and
W , [w1,w2, . . . ,wm−r]

such that [S,T] and [S,W] are invertible and if r < m then

(a) t1, t2, . . . , tm−r ∈ span{ai}pi=1,

(b) T is
{

(KX −B∗2), (KX −B∗1 −B∗2)
}

-orthogonal with

TT (KX −B∗2)T = TT (KX −B∗1 −B∗2)T,

(c) S and T are cross
{
D, (KX −B∗2), (KX −B∗1 −B∗2)

}
-orthogonal,

(d) w1,w2, . . . ,wm−r ∈ span{bi}qi=1,

(e) W is
{
KY, (KY −B∗2)

}
-orthogonal with

WTKYW = WT (KY −B∗2)W, and

(f) S and W are cross
{
KY, (KY −B∗2)

}
-orthogonal.

Proof. It suffices to consider r < m case. Since ∆∗ = SST is rank deficient in this case, there exists z1 6= 0 such that

ST z1 = 0.

Let us define
t1 , (KX −B∗2)−1z1.

Therefore
ST (KX −B∗2)t1 = 0.

We have from (12), (13), and (14) that

µ

2
(KX −B∗2)−1 = ∆∗ + M∗

1 = SST +

p∑
i=1

αiaia
T
i .

On post-multiplying this by (KX −B∗2)t1, we obtain

µ

2
t1 = SST (KX −B∗2)t1 +

p∑
i=1

αiaia
T
i (KX −B∗2)t1

=

p∑
i=1

αiai
(
aTi (KX −B∗2)t1

)
.

This proves that
t1 ∈ span{ai}pi=1.

We next show that
t1 /∈ span{si}ri=1.

Suppose otherwise that
t1 ∈ span{si}ri=1.

Then there exist real numbers {ci}ri=1 such that

t1 =

r∑
i=1

cisi.

10



Since ST (KX −B∗2)t1 = 0, we have

sTi (KX −B∗2)t1 = 0 for all i ∈ {1, 2, . . . , r}.

On multiplying this by ci and then summing over all i in {1, 2, . . . , r}, we obtain

tT1 (KX −B∗2)t1 = 0,

which is a contradiction because KX −B∗2 is positive definite. We therefore have that

t1 /∈ span{si}ri=1.

We have shown so far that there exists t1 ∈ span{ai}pi=1 such that the rank of [S, t1] is r + 1 and

ST (KX −B∗2)t1 = 0.

Let us now assume that there exists
Tj , [t1, t2, . . . , tj ],

where
t1, t2, . . . , tj ∈ span{ai}pi=1

and 1 ≤ j < m− r such that the rank of [S,Tj ] is r + j,

ST (KX −B∗2)Tj = 0,

and
tTk (KX −B∗2)tl = 0

for all k 6= l in {1, 2, . . . , j}. Then there exists zj+1 6= 0 such that

[S,Tj ]
T zj+1 = 0.

Let us define
tj+1 , (KX −B∗2)−1zj+1.

We therefore have that
[S,Tj ]

T (KX −B∗2)tj+1 = 0.

It can be shown as before that

tj+1 ∈ span{ai}pi=1

and

tj+1 /∈ span
{
{si}ri=1, {tk}

j
k=1

}
.

Hence, the rank of [S,Tj+1], where
Tj+1 , [Tj , tj+1],

is r + j + 1,
ST (KX −B∗2)Tj+1 = 0,

and
tTk (KX −B∗2)tl = 0,

for all k 6= l in {1, 2, . . . , j + 1}. It now follows from the mathematical induction that there exist

t1, t2, . . . , tm−r ∈ span{ai}pi=1

such that if we define
T , [t1, t2, . . . , tm−r],

11



then [S,T] is invertible,

ST (KX −B∗2)T = 0, and

TT (KX −B∗2)T = G,

where
G , Diag

{(
tT1 (KX −B∗2)t1

)
,
(
tT2 (KX −B∗2)t2

)
, . . . ,

(
tTm−r(KX −B∗2)tm−r

)}
.

Since B∗1T = 0 from (9) and (KX −B∗1 −B∗2)S = DS from (16), we immediately have that

ST (KX −B∗2)T = ST (KX −B∗1 −B∗2)T = STDT = 0, and

TT (KX −B∗2)T = TT (KX −B∗1 −B∗2)T = G.

This completes the proof of parts (a) through (c) of the theorem.
For parts (d) through (f), we have from (12), (13), and (15) that

1

2
(KY −B∗2)−1 = ∆∗ + M∗

2 = SST +

q∑
i=1

βibib
T
i .

Similar to the previous case, we can find

w1,w2, . . . ,wm−r ∈ span{bi}qi=1

such that if we define
W , [w1,w2, . . . ,wm−r],

then [S,W] is invertible,

ST (KY −B∗2)W = 0, and

WT (KY −B∗2)W = H,

where
H , Diag

{(
wT

1 (KY −B∗2)w1

)
,
(
wT

2 (KY −B∗2)w2

)
, . . . ,

(
wT
m−r(KY −B∗2)wm−r

)}
.

Since B∗2W = 0 from (9), we conclude

STKYW = ST (KY −B∗2)W = 0, and

WTKYW = WT (KY −B∗2)W = H.

This completes the proof of parts (d) through (f) of the theorem.

We have the following corollary of Theorem 2.

Corollary 1. If r < m = r + p, then we can set
ti =

√
αiai

for all i in {1, 2, . . . , p}. Similarly, if r < m = r + q, then we can set

wi =
√
βibi

for all i in {1, 2, . . . , q}.

Proof. Let r < m = r + p and let us set
ti =

√
αiai

for all i in {1, 2, . . . , p} in the definition of T. We have from (12), (13), and (14) that

µ

2
(KX −B∗2)−1 =

r∑
i=1

λisis
T
i +

p∑
i=1

αiaia
T
i . (17)
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Now, on post-multiplying (17) by (KX −B∗2)s1, we obtain

µ

2
s1 =

r∑
i=1

λisi
(
sTi (KX −B∗2)s1

)
+

p∑
i=1

αiai
(
aTi (KX −B∗2)s1

)
,

which can be re-written as

s1

(µ
2
− λ1

(
sT1 (KX −B∗2)s1

))
−

r∑
i=2

λisi
(
sTi (KX −B∗2)s1

)
=

p∑
i=1

αiai
(
aTi (KX −B∗2)s1

)
. (18)

Since [S,T] is invertible from (17), its columns are linearly independent. Hence, the coefficients of all vectors in (18) must
be zero. Therefore,

λ1s
T
1 (KX −B∗2)s1 =

µ

2
,

sTi (KX −B∗2)s1 = 0, ∀i ∈ {2, . . . , r}, and

aTi (KX −B∗2)s1 = 0, ∀i ∈ {1, . . . , p}.

Likewise, on post-multiplying (17) by (KX−B∗2)s2, . . . , (KX−B∗2)sr, (KX−B∗2)a1, . . . , (KX−B∗2)ap and then equating
all coefficients to zero, we obtain similar equations. In summary,

λis
T
i (KX −B∗2)si =

µ

2
, ∀i ∈ {1, . . . , r},

αia
T
i (KX −B∗2)ai =

µ

2
, ∀i ∈ {1, . . . , p},

sTi (KX −B∗2)sj = 0, ∀i, j ∈ {1, . . . , r}, i 6= j,

aTi (KX −B∗2)aj = 0, ∀i, j ∈ {1, . . . , p}, i 6= j, and

sTi (KX −B∗2)aj = 0, ∀i ∈ {1, . . . , r},∀j ∈ {1, . . . , p}.

Hence,

[S,T]T (KX −B∗2)[S,T] =
µ

2
Im. (19)

Parts (a) through (c) of Theorem 2 follow immediately from (9), (10), and (19) because M∗
1 = TTT in this case.

The proof for the case when r < m = r + q is exactly similar. It starts with the following from (12), (13), and (15)

1

2
(KY −B∗2)−1 = ∆∗ + M∗

2 =

r∑
i=1

λisis
T
i +

q∑
i=1

βibib
T
i .

In summary, the key properties of the optimal Gaussian solution are as follows. If ∆∗ (and hence S) is not invertible,
then there exist two matrices T and W such that their columns respectively are in span{ai}pi=1 and span{bi}qi=1, [S,T] and
[S,W] are invertible, S and T are cross (KX −B∗2)-orthogonal, and S and W are cross (KY −B∗2)-orthogonal. We shall
exploit these properties in the next section to prove the optimality of an optimization problem, which is central to prove our
main result.

6 Converse Ingredients

Let us define an optimization problem as

(P ) , min
U,V

µI(X; U|V) + I(Y; V)

subject to KX|U,V 4 D and

X↔ Y ↔ V,

where X,Y,D, and µ are defined as before. We refer to this problem as the main optimization problem and denote it by (P ).
We have the following theorem.
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Theorem 3. A Gaussian (U,V) is an optimal solution of the main optimization problem (P ).

We prove this theorem in the remainder of the section. The proof for µ in [0, 1] is easy. In this case, the objective of (P )

can be lower bounded as

µI(X; U|V) + I(Y; V) = µI(X; U,V)− µI(X; V) + I(Y; V)

= µI(X; U) + µI(X; V|U) + µ[I(Y; V)− I(X; V)] + (1− µ)I(Y; V)

≥ µI(X; U) (20)

= µh(X)− µh(X|U)

≥ µ

2
log

|KX|
|KX|U|

, (21)

where

(20) follows because of the facts that
I(Y; V) ≥ 0

and
I(X; V|U) ≥ 0,

and we have
I(Y; V)− I(X; V) ≥ 0

because of the data processing inequality [21, Theorem 2.8.1] and the Markov chain X↔ Y ↔ V, and

(21) follows because the Gaussian distribution maximizes the differential entropy for a given covariance matrix [21, Theorem
8.6.5], i.e.,

h(X|U) ≤ 1

2
log
(
(2πe)

m ∣∣KX|U
∣∣) .

Inequalities (20) and (21) become equalities if we choose a Gaussian (U,V) such that V is independent of (X,Y,U).
Because of the distortion constraint in (P ), the conditional covariance of X given (U,V) should satisfy

0 4 KX|U,V = KX|U 4 D.

Since conditioning reduces covariance in a positive semidefinite sense, we also have

KX|U 4 KX.

Hence, if µ is in [0, 1], then a Gaussian (U,V) is an optimal solution of the main optimization problem (P ) and the optimal
value is

v (P ) = min
KX|U

µ

2
log

|KX|∣∣KX|U
∣∣

subject to KX < KX|U < 0 and

D < KX|U

= v (Ppt−pt) . (22)

We therefore assume that µ > 1 in the rest of the section.
Let us first restrict the solution space of (P ) to Gaussian distributions. This results in an optimization problem (PG1), or

equivalently (PG2), defined in Section 5. For convenience, we shall work with the (PG2) formulation. First note that since
restricting the solution space to Gaussian distributions can only increase the optimal value of the main optimization problem
(P ), we immediately have

v (PG1) = v (PG2) ≥ v (P ) . (23)

So, it suffices to prove the reverse inequality

v (PG2) ≤ v (P ) .
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Let (B∗1,B
∗
2) be an optimal solution to (PG2). As discussed in Section 5, (B∗1,B

∗
2) gives three matrices S,T, and W that

satisfy the properties in Theorem 2. Using these properties, the optimal value of (PG2) can be expressed as

v (PG2) =
µ

2
log

|KX −B∗2|
|KX −B∗1 −B∗2|

+
1

2
log

|KY|
|KY −B∗2|

=
µ

2
log

∣∣[S,T]T (KX −B∗2) [S,T]
∣∣

|[S,T]T (KX −B∗1 −B∗2) [S,T]|
+

1

2
log

∣∣[S,W]TKY[S,W]
∣∣

|[S,W]T (KY −B∗2) [S,W]|
(24)

=
µ

2
log

∣∣∣∣∣
(

ST (KX −B∗2) S 0

0 TT (KX −B∗2) T

)∣∣∣∣∣∣∣∣∣∣
(

ST (KX −B∗1 −B∗2) S 0

0 TT (KX −B∗1 −B∗2) T

)∣∣∣∣∣
+

1

2
log

∣∣∣∣∣
(

STKYS 0

0 WTKYW

)∣∣∣∣∣∣∣∣∣∣
(

ST (KY −B∗2) S 0

0 WT (KY −B∗2) W

)∣∣∣∣∣
(25)

=
µ

2
log

∣∣ST (KX −B∗2) S
∣∣ ∣∣TT (KX −B∗2) T

∣∣
|ST (KX −B∗1 −B∗2) S| |TT (KX −B∗1 −B∗2) T|

+
1

2
log

∣∣STKYS
∣∣ ∣∣WTKYW

∣∣
|ST (KY −B∗2) S| |WT (KY −B∗2) W|

=
µ

2
log

∣∣ST (KX −B∗2) S
∣∣

|STDS|
+

1

2
log

∣∣STKYS
∣∣

|ST (KY −B∗2) S|
, (26)

where

(24) follows because [S,T] and [S,W] are invertible,

(25) follows because S and T are cross
{

(KX−B∗2), (KX−B∗1−B∗2)
}

-orthogonal, and S and W are cross
{
KY, (KY−

B∗2)
}

-orthogonal, and

(26) follows from (16) and the facts that

TT (KX −B∗2) T = TT (KX −B∗1 −B∗2) T and

WTKYW = WT (KY −B∗2) W.

6.1 Distortion Projection

The special structure to the optimal Gaussian solution of (PG2) suggests a way to lower bound (P ) by projecting the sources
X and Y on S and imposing the distortion constraint on the subspace spanned by the columns of S. Note that the distortion
constraint is tight on this subspace for the optimal Gaussian solution. We refer to this method of lower bounding (P ) as
distortion projection. Let us define

X̃ , STX,

Ỹ , STY,

D̃ , STDS,

B̃∗1 , STB∗1S,

B̃∗2 , STB∗2S,

M̃∗
1 ,

(
ST (KX −B∗2) S

)−1
ST (KX −B∗2) M∗

1 (KX −B∗2) S
(
ST (KX −B∗2) S

)−1
, and

M̃∗
2 ,

(
ST (KY −B∗2) S

)−1
ST (KY −B∗2) M∗

2 (KY −B∗2) S
(
ST (KY −B∗2) S

)−1
.

Since S has full column rank, we immediately have that

KX̃,KỸ, D̃ � 0,

B̃∗1, B̃
∗
2 < 0, and

M̃∗
1, M̃

∗
2 < 0.
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The projected optimization problem (P̃ ) is now defined as

(P̃ ) , min
U,V

µI(X̃; U|V) + I(Ỹ; V)

subject to KX̃|U,V 4 D̃ and

X̃↔ Ỹ ↔ V.

We next show that the main optimization problem (P ) is lower bounded by the projected optimization problem (P̃ ). Since
[S,T] and [S,W] are invertible and mutual information is nonnegative, we have

µI(X; U|V) + I(Y; V) = µI
(
STX,TTX; U|V

)
+ I

(
STY,WTY; V

)
= µI

(
STX; U|V

)
+ µI

(
TTX; U|V,STX

)
+ I

(
STY; V

)
+ I

(
WTY; V|STY

)
≥ µI

(
X̃; U|V

)
+ I
(
Ỹ; V

)
. (27)

Consider any (U,V) feasible for (P ). Then

D < KX|U,V and (28)

X↔ Y ↔ V (29)

Now (28) implies

D̃ = STDS < STKX|U,VS = KX̃|U,V, (30)

and (29) yields

0 = I (X; V|Y)

= I
(
STX; V|Y

)
+ I

(
TTX; V|Y,STX

)
≥ I

(
STX; V|Y

)
(31)

= I
(
STX; V|STY,WTY

)
(32)

= h
(
STX|STY,WTY

)
− h

(
STX|V,STY,WTY

)
≥ h

(
STX|STY

)
− h

(
STX|V,STY

)
(33)

= I
(
STX; V|STY

)
= I
(
X̃; V|Ỹ

)
≥ 0, (34)

where

(31) and (34) follows because mutual information is nonnegative,

(32) follows because [S,W] is invertible, and

(33) follows because conditioning reduces entropy and we have from Theorem 2 that WTY is independent of STY, which
implies that WTY is also independent of STX because X = Y + N by assumption.

Now (34) is equivalent to

X̃↔ Ỹ ↔ V,

which together with (30) implies that (U,V) is feasible for (P̃ ). Hence, the feasible set of (P ) is contained in that of (P̃ ).
Moreover, (27) above implies that the objective of (P ) is no less than that of (P̃ ). We therefore have that the projected
optimization problem (P̃ ) lower bounds the main optimization problem (P ), i.e.,

v (P ) ≥ v(P̃ ). (35)
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By restricting the solution space of (P̃ ) to Gaussian distributions, we obtain its Gaussian version

(P̃G2) , min
B̃1,B̃2

µ

2
log

|KX̃ − B̃2|
|KX̃ − B̃1 − B̃2|

+
1

2
log

|KỸ|
|KỸ − B̃2|

subject to B̃i < 0 for all i ∈ {1, 2}, and

D̃ < KX̃ − B̃1 − B̃2.

It is easy to verify that the projected optimal Gaussian solution (B̃∗1, B̃
∗
2) is feasible for (P̃G2) and it meets the projected

distortion constraint D̃ with equality from (16). We next show that (B̃∗1, B̃
∗
2) is in fact optimal for (P̃ ).

Remark 1: If r = m, then there is no need for distortion projection because S is invertible, and hence so is ∆∗.

6.2 Source Enhancement

In this subsection, we use the KKT conditions (7) through (11) satisfied by (B∗1,B
∗
2) to derive conditions that must be satisfied

by (B̃∗1, B̃
∗
2). These conditions are then used to define the enhanced optimization problem, which lower bounds (P̃ ). We show

that the optimal solution to the enhanced optimization problem is Gaussian, in particular (B̃∗1, B̃
∗
2) is optimal for the problem.

This will in turn prove that (B̃∗1, B̃
∗
2) is optimal for (P̃ ). This approach of lower bounding is referred to as the source

enhancement [6] and is similar to the channel enhancement idea of Weingarten et al. [3].
We start with the following key lemma.

Lemma 4. For KX̃,KỸ, D̃, B̃
∗
i , and M̃∗

i , where i = 1, 2, defined as above, the following hold

Ir =
µ

2

(
KX̃ − B̃∗2

)−1 − M̃∗
1 =

1

2

(
KỸ − B̃∗2

)−1 − M̃∗
2, (36)

B̃∗i M̃
∗
i = 0 for all i ∈ {1, 2}, and (37)

KX̃ − B̃∗1 − B̃∗2 = D̃. (38)

Proof. See Appendix D.

Let KX̂ and KŶ be two real symmetric matrices satisfying

µ

2

(
KX̃ − B̃∗2

)−1 − M̃∗
1 =

µ

2

(
KX̂ − B̃∗2

)−1
and (39)

1

2

(
KỸ − B̃∗2

)−1 − M̃∗
2 =

1

2

(
KŶ − B̃∗2

)−1
. (40)

We now have the following lemma, which is similar to [3, Lemmas 11, 12].

Lemma 5. For KX̃,KỸ,KX̂,KŶ, B̃
∗
i , M̃

∗
i , i = 1, 2, defined as above, and µ > 1, the following hold

KX̂ − B̃∗2 =
µ

2
Ir, (41)

KŶ − B̃∗2 =
1

2
Ir, (42)

KX̂ � KŶ < KỸ � 0, (43)

KX̂ < KX̃ � 0, (44)

|KỸ|
|KỸ − B̃∗2|

=
|KŶ|

|KŶ − B̃∗2|
, and (45)

|KX̃ − B̃∗2|
|KX̃ − B̃∗1 − B̃∗2|

=
|KX̂ − B̃∗2|

|KX̂ − B̃∗1 − B̃∗2|
. (46)

Proof. See Appendix E.

Let X̂ and Ŷ be two zero-mean Gaussian random vectors with covariance matrices KX̂ and KŶ, respectively. Since
KX̂ � KŶ from (43), we can write

X̂ = Ŷ + N̂,

where N̂ is a zero-mean Gaussian random vector with the covariance matrix

KN̂ = KX̂ −KŶ =
µ− 1

2
Ir
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and is independent of Ŷ. Similarly, we can use (43) and (44) to relate X̂ and Ŷ with X̃ and Ỹ, respectively, and write

X̂ = X̃ + N1 and

Ŷ = Ỹ + N2,

where N1 and N2 are two zero-mean Gaussian random vectors with covariance matrices

KN1
= KX̂ −KX̃ and

KN2
= KŶ −KỸ,

respectively, and they are independent of X̃ and Ỹ. Using (38), we define

D̂ , D̃ + KN1
= KX̂ − B̃∗1 − B̃∗2. (47)

The enhanced optimization problem (P̂ ) is now defined as

(P̂ ) , min
U,V

µI(X̂; U|V) + I(Ŷ; V)

subject to KX̂|U,V 4 D̂ and

X̂↔ Ŷ ↔ V.

We next show that (P̂ ) lower bounds (P̃ ). Consider any (U,V) feasible for (P̃ ). Without loss of optimality, we can assume
that the joint distribution between X̃, Ỹ,U, and V is

p̃ , pX̃,ỸpU|X̃,VpV|Ỹ.

Now, p̃ induces two conditional distributions as follows

pV|Ŷ =

∫
Ỹ

pV|ỸpỸ|Ŷ

pU|X̂,V =

∫
X̃

pU|X̃,VpX̃|X̂,V,

where

pX̃|X̂,V =
pX̃,X̂pV|X̃∫
X̃
pX̃,X̂pV|X̃

.

Then
p̂ , pX̂,ŶpU|X̂,VpV|Ŷ

is a joint distribution between X̂, Ŷ,U, and V. It is clear that p̂ satisfies the Markov condition

X̂↔ Ŷ ↔ V. (48)

Moreover, (47) and the distortion constraint in the definition of (P̃ ) yield

KX̂|U,V = KX̃|U,V + KN1
4 D̃ + KN1

= D̂. (49)

We next use the chain rule of mutual information to obtain

I(X̃, X̂; U|V) = I(X̂; U|V) + I(X̃; U|V, X̂)

= I(X̃; U|V) + I(X̂; U|V, X̃)

= I(X̃; U|V)

and

I(Ỹ, Ŷ; V) = I(Ŷ; V) + I(Ỹ; V|Ŷ)

= I(Ỹ; V) + I(Ŷ; V|Ỹ)

= I(Ỹ; V).
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Since mutual information is nonnegative, these imply that

I(X̃; U|V) ≥ I(X̂; U|V) (50)

and

I(Ỹ; V) ≥ I(Ŷ; V) (51)

Now (48) and (49) together imply that the distribution p̂, and hence (U,V), is feasible for (P̂ ). Therefore, the feasible set of
(P̃ ) is contained in that of (P̂ ). Moreover, (50) and (51) assert that the objective value of (P̂ ) is no more than that of (P̃ ). We
therefore conclude that the enhanced optimization problem (P̂ ) lower bounds the projected optimization problem (P̃ ), i.e.,

v(P̃ ) ≥ v(P̂ ). (52)

Remark 2: If r < m = r + p, then there is no need to enhance the source X̃ and the distortion D̃ because M∗
1 = TTT

from Corollary 1, and hence M̃∗
1 = 0. Similarly, if r < m = r + q, then there is no need to enhance the source Ỹ because

M∗
2 = WWT from Corollary 1 again, and hence M̃∗

2 = 0. Finally, if r < m = r + p = r + q, then there is no need for
source enhancement.

6.3 Oohama’s Approach

We now apply Oohama’s approach [1] to prove that (B̃∗1, B̃
∗
2) is optimal for (P̂ ). The objective of (P̂ ) can be decomposed as

µI
(
X̂; U|V

)
+ I
(
Ŷ; V

)
= µI

(
X̂; U,V

)
−
[
µI
(
X̂; V

)
− I
(
Ŷ; V

)]
. (53)

We next define two subproblems that are used to lower bound the enhanced optimization problem (P̂ ). The first subproblem
(P̂1) minimizes the first mutual information in the right-hand-side of (53) subject to the distortion constraint in (P̂ ) and the
second subproblem (P̂2) maximizes the expression within the parenthesis in the right-hand-side of (53) subject to the Markov
condition in (P̂ ). In other words, (P̂1) is defined as

(P̂1) , min
U,V

µI
(
X̂; U,V

)
subject to KX̂|U,V 4 D̂,

and (P̂2) is defined as

(P̂2) , max
V

µI
(
X̂; V

)
− I
(
Ŷ; V

)
subject to X̂↔ Ŷ ↔ V.

It is clear from the decomposition in (53) and from the definitions of (P̂ ), (P̂1), and (P̂2) that (P̂1) and (P̂2) lower bound (P̂ ),
i.e.,

v(P̂ ) ≥ v(P̂1)− v(P̂2). (54)

We now give two lemmas about the optimal solutions to subproblems (P̂1) and (P̂2).

Lemma 6. A Gaussian (U,V) with the conditional covariance matrix

KX̂|U,V = KX̂ − B̃∗1 − B̃∗2 = D̂

is optimal for the subproblem (P̂1), and the optimal value is

v(P̂1) =
µ

2
log

∣∣KX̂

∣∣∣∣D̂∣∣ . (55)

Proof. See Appendix F.
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Lemma 7. A Gaussian V with the conditional covariance matrix

KŶ|V = KŶ − B̃∗2

is optimal for the subproblem (P̂2), and the optimal value is

v(P̂2) =
µ

2
log

∣∣KX̂

∣∣∣∣KX̂ − B̃∗2
∣∣ − 1

2
log

∣∣KŶ

∣∣∣∣KŶ − B̃∗2
∣∣ . (56)

Proof. See Appendix G.

Substituting (55) and (56) into (54), we obtain

v(P̂ ) ≥ µ

2
log

∣∣KX̂ − B̃∗2
∣∣∣∣D̂∣∣ +

1

2
log

∣∣KŶ

∣∣∣∣KŶ − B̃∗2
∣∣

=
µ

2
log

∣∣KX̃ − B̃∗2
∣∣∣∣D̃∣∣ +

1

2
log

∣∣KỸ

∣∣∣∣KỸ − B̃∗2
∣∣ (57)

= v
(
PG2

)
, (58)

where

(57) follows from (38), (45), (46), and (47), and

(58) follows from (26).

We conclude from (35), (52), and (58) that

v (P ) ≥ v (PG2) .

It now follows from this and (23) that

v (P ) = v (PG1) = v (PG2) , (59)

which proves that a Gaussian (U,V) is optimal for the main optimization problem (P ). This completes the proof of Theorem
3.

7 Converse Proof of Theorem 1

Liu and Viswanath gave a single-letter outer bound to the rate region in [4]. We shall use a similar outer bound that is
reminiscent of the Berger-Tung outer bound [9, 10].

Lemma 8. If the rate-distortion vector (R1, R2,D) is achievable, then there exist random vectors U and V such that

R1 ≥ I(X; U|V),

R2 ≥ I(Y; V),

D < KX|U,V, and

X↔ Y ↔ V.

The proof of the lemma is similar to [7, Lemma 2] and is omitted. We are now ready to prove the converse of Theorem 1.
If (R1, R2,D) is achievable, then

µR1 +R2 ≥ v (P ) (60)

=

{
v (Ppt−pt) if 0 ≤ µ ≤ 1

v (PG1) if µ > 1
(61)

= R∗(D, µ), (62)

where
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(60) follows from Lemma 8, and

(61) follows from (22) and (59).

And if (R1, R2,D) ∈ RD, then (62) again holds because R∗(D, µ) is continuous in D. So, (62) is a lower bound for any
(R1, R2) in the rate regionR(D). Hence,

R(D, µ) = inf
(R1,R2)∈R(D)

µR1 +R2

≥ R∗(D, µ).

This completes the converse proof of Theorem 1.
Remark 3: It follows from Theorem 1 and Lemma 1 that one can add the constraints

U↔ X↔ Y ↔ V and

(U,V,X,Y) are jointly Gaussian

to the optimization problem

(P ) , min
U,V

µI(X; U|V) + I(Y; V)

subject to KX|U,V 4 D and

X↔ Y ↔ V,

without changing its optimal value.

8 Solution for the General Case

In this section, we lift the assumptions on KX,KY, and D and allow them to be any positive semidefinite matrices. We shall
show that the Gaussian achievable scheme is optimal for this general problem. For this section, we denote the rate region of
the problem by R (KX,KY,D). Note that KX and KY completely specify the joint distribution of X and Y because we
continue to assume that X = Y +N. Similarly,RG (KX,KY,D) is used to denote the rate region achieved by the Gaussian
achievable scheme. We use R (KX,KY,D, µ) and RG (KX,KY,D, µ) to denote the two minimum weighted sum-rates.
Likewise, we denote the set S defined in Section 3.2 by S(KX,KY,D). We use similar notation later in the section. We start
with the following extension.

Theorem 4. If KX and D are positive definite, and KY is positive semidefinite, then

R (KX,KY,D, µ) = RG (KX,KY,D, µ) .

Proof. It suffices to prove that
R (KX,KY,D, µ) ≥ RG (KX,KY,D, µ) .

If KY is positive definite (hence nonsingular), then the result follows from Theorem 1. We therefore assume that KY is
singular and has a rank p < m. The eigen decomposition of KY is

KY = QΣQT ,

where Q is an orthogonal matrix and
Σ = Diag(α1, . . . , αp, 0, . . . , 0).

Let us partition Q as
Q = [Q1,Q2],

where Q1 is an m× p matrix. Let us define

QTKNQ ,

(
E FT

F G

)
,
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where E, F, and G are submatrices of dimensions p×p, (m−p)×p, and (m−p)×(m−p), respectively. Since QT
2 KYQ2 = 0

and X = Y + N, we have that
G = QT

2 KNQ2 = QT
2 KXQ2 � 0,

i.e., G is positive definite. Using this, we define

A ,

(
Ip −FTG−1

0 Im−p

)
QT .

A defines a transformed problem in which the transformed sources are

X̄ , AX and

Ȳ , AY,

which satisfy
X̄ = Ȳ + N̄,

where N̄ , AN, and the transformed distortion matrix is

D̄ , ADAT .

The covariance matrix of the transformed source Ȳ is

KȲ = AKYAT = Σ =

(
Σ1 0

0 0

)
,

where

Σ1 , Diag(α1, . . . , αp),

and the covariance matrix of N̄ is

KN̄ = AKNAT

=

(
Ip −FTG−1

0 Im−p

)(
E FT

F G

)(
Ip 0

−G−1F Im−p

)

=

(
E− FTG−1F 0

0 G

)
.

Using these, the covariance matrix of the transformed source X̄ can be expressed as

KX̄ = KȲ + KN̄

=

(
Σ1 + E− FTG−1F 0

0 G

)
.

Since A is invertible, the above transformation is information lossless, and hence the transformed problem is equivalent to the
original problem. Therefore,

R (KX,KY,D, µ) = R
(
KX̄,KȲ, D̄, µ

)
and

RG (KX,KY,D, µ) = RG
(
KX̄,KȲ, D̄, µ

)
.

So, it is sufficient to prove that
R
(
KX̄,KȲ, D̄, µ

)
≥ RG

(
KX̄,KȲ, D̄, µ

)
.

Let us define the following matrices

K
N̄

(n)
1

,

(
0 0

0 1
nG

)
and

K
N̄

(n)
2

,

(
E− FTG−1F 0

0
(
1− 1

n

)
G

)
,
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where n is a positive integer. It is clear that these matrices are positive semidefinite and they satisfy

KN̄ = K
N̄

(n)
1

+ K
N̄

(n)
2
.

Let N̄
(n)
1 and N̄

(n)
2 be zero-mean vector Gaussian sources with covariance matrices K

N̄
(n)
1

and K
N̄

(n)
2
, respectively. In

addition, suppose they are independent of each other and all other vector Gaussian sources. We can then write

X̄ = Ȳ + N̄
(n)
1 + N̄

(n)
2 .

Let us consider a new problem in which encoder 1 has access to X̄, encoder 2 has access to
(
Ȳ, N̄

(n)
1

)
, and the distortion

constraint on X̄ is D̄. This problem is clearly a relaxation to the original problem because encoder 2 has access to more
information about X̄ than the original problem. In other words, any feasible scheme for the original problem is also feasible
for this new problem. Now since there is no distortion constraint on Ȳ and the sufficient statistic of X̄ in

(
Ȳ, N̄

(n)
1

)
is

Ȳ + N̄
(n)
1 , this new problem is equivalent to the problem in which encoder 2, instead of

(
Ȳ, N̄

(n)
1

)
, has access to the sum

Ȳ + N̄
(n)
1 . Let us denote this sum by Ȳ(n), i.e.,

Ȳ(n) , Ȳ + N̄
(n)
1 ,

which has a positive definite covariance matrix

KȲ(n) = KȲ + K
N̄

(n)
1

=

(
Σ1 0

0 1
nG

)
.

It follows that

R
(
KX̄,KȲ(n) , D̄, µ

)
≤ R

(
KX̄,KȲ, D̄, µ

)
.

Since this is true for all n andR
(
KX̄,KȲ(n) , D̄, µ

)
is nondecreasing in n, we obtain

lim
n→∞

R
(
KX̄,KȲ(n) , D̄, µ

)
≤ R

(
KX̄,KȲ, D̄, µ

)
. (63)

Since KX̄,KȲ(n) , and D̄ are positive definite, the conclusion of Theorem 1 holds for this sequence of relaxed problems, i.e.,
for each n

R
(
KX̄,KȲ(n) , D̄, µ

)
= RG

(
KX̄,KȲ(n) , D̄, µ

)
.

This and (63) together imply that

lim
n→∞

RG
(
KX̄,KȲ(n) , D̄, µ

)
≤ R

(
KX̄,KȲ, D̄, µ

)
. (64)

Now for each n, there exists
(
U(n),V(n)

)
in S

(
KX̄,KȲ(n) , D̄

)
such that

RG
(
KX̄,KȲ(n) , D̄, µ

)
= µI

(
X̄; U(n)|V(n)

)
+ I

(
Ȳ(n); V(n)

)
. (65)

Since X̄, Ȳ(n),U(n), and V(n) are jointly Gaussian, we can without loss of generality parameterize them by positive semidefi-
nite matrices B1 and B2 as in the definition (PG2). These matrices lie in a compact set because they satisfy the KKT conditions
that are continuous, and they are bounded as B1 + B2 ≺ KX̄. Therefore, there exists a subsequence of KȲ(n) along which(
U(n),V(n)

)
converges to (U,V) in S

(
KX̄,KȲ, D̄

)
. Since the right-hand-side of (65) is continuous in

(
Ȳ(n),U(n),V(n)

)
,

this implies

lim
n→∞

RG
(
KX̄,KȲ(n) , D̄, µ

)
= µI

(
X̄; U|V

)
+ I

(
Ȳ; V

)
≥ RG

(
KX̄,KȲ, D̄, µ

)
. (66)

It now follows from (64) and (66) that

R
(
KX̄,KȲ, D̄, µ

)
≥ RG

(
KX̄,KȲ, D̄, µ

)
.

This proves Theorem 4.
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We next use Theorem 4 to prove our result for the most general case of the problem.

Theorem 5. For any positive semidefinite KX,KY, and D, we have

R (KX,KY,D, µ) = RG (KX,KY,D, µ) .

Proof. Let us suppose that the rank of KX is p ≤ m. Since KX is positive semidefinite, its eigen decomposition is

KX = QΣQT ,

where Q is an orthogonal matrix and
Σ = Diag(α1, . . . , αp, 0, . . . , 0).

Let us partition Q as
Q , [Q1,Q2],

where Q1 is an m× p matrix. Since QT
2 KXQ2 = 0 and X = Y + N, we have

QT
2 KYQ2 = QT

2 KNQ2 = 0,

which implies that

QTKYQ =

(
QT

1 KYQ1 0

0 0

)
and

QTKNQ =

(
QT

1 KNQ1 0

0 0

)
.

Let us define

QTDQ ,

(
E FT

F G

)
,

where E, F, and G are submatrices of dimensions p × p, (m − p) × p, and (m − p) × (m − p), respectively. We need the
following lemma.

Lemma 9. [20, Appendix A.5.5, p. 651] QTDQ < 0 if and only if

G < 0,

E− FTG+F < 0, and

(Im−p −GG+)F = 0,

where G+ is the pseudo-inverse or Moore-Penrose inverse of G [20, Appendix A.5.4, p. 649].

Let

T ,

(
T1

T2

)
,

(
Ip −FTG+

0 Im−p

)
QT ,

where T1 is a p×m matrix. Using this, we obtain a transformed problem in which the transformed sources are

X̄ ,

(
X1

X2

)
,

(
T1X

T2X

)
= TX and

Ȳ ,

(
Y1

Y2

)
,

(
T1Y

T2Y

)
= TY.
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Using Lemma 9, we obtain the transformed distortion matrix

D̄ , TDTT

=

(
Ip −FTG+

0 Im−p

)
QTDQ

(
Ip 0

−G+F Im−p

)

=

(
Ip −FTG+

0 Im−p

)(
E FT

F G

)(
Ip 0

−G+F Im−p

)

=

(
E− FTG+F 0

0 G

)

=

(
D1 0

0 D2

)
, (67)

where

D1 , E− FTG+F and

D2 , G.

The covariance matrix of the transformed source X̄ is

KX̄ = TKXTT

=

(
Ip −FTG+

0 Im−p

)
QTKXQ

(
Ip 0

−G+F Im−p

)

=

(
Ip −FTG+

0 Im−p

)(
Σ1 0

0 0

)(
Ip 0

−G+F Im−p

)

=

(
Σ1 0

0 0

)
,

where

Σ1 , Diag(α1, . . . , αp),

and the covariance matrix of the transformed source Ȳ is

KȲ = TKYTT

=

(
Ip −FTG+

0 Im−p

)
QTKYQ

(
Ip 0

−G+F Im−p

)

=

(
Ip −FTG+

0 Im−p

)(
QT

1 KYQ1 0

0 0

)(
Ip 0

−G+F Im−p

)

=

(
QT

1 KYQ1 0

0 0

)
.

It follows that X2 and Y2 are deterministic, i.e.,
X2 = Y2 = 0.

Since T is invertible, the distortion constraint is equivalent to

TDTT <
1

n

n∑
i=1

E

[(
X̄n(i)− ˆ̄Xn(i)

)(
X̄n(i)− ˆ̄Xn(i)

)T]

=
1

n

n∑
i=1

E

( Xn
1 (i)− X̂n

1 (i)

0

)(
Xn

1 (i)− X̂n
1 (i)

0

)T
=

 1
n

∑n
i=1E

[(
Xn

1 (i)− X̂n
1 (i)

)(
Xn

1 (i)− X̂n
1 (i)

)T]
0

0 0

 . (68)
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Since D1 and D2 are positive semidefinite from Lemma 9, (67) and (68) imply that the distortion constraint is equivalent to

D1 <
1

n

n∑
i=1

E

[(
Xn

1 (i)− X̂n
1 (i)

)(
Xn

1 (i)− X̂n
1 (i)

)T]
.

Since T is invertible, the above transformation is information lossless, and hence the transformed problem is equivalent to
the original problem. Moreover, the transformed problem is effectively p-dimensional with the sources X1 and Y1, and the
distortion matrix D1 such that

KX1
= Σ1 � 0 and

X1 = Y1 + N1,

where N1 , T1N. We therefore have that

R (KX,KY,D, µ) = R (KX1 ,KY1 ,D1, µ) and (69)

RG (KX,KY,D, µ) = RG (KX1 ,KY1 ,D1, µ) . (70)

Since KX1
is positive definite, if D1 is singular, then the right-hand side of (69) and (70) are both infinite, so the conclusion

trivially holds. Otherwise, we have that KX1
and D1 are positive definite and KY1

is positive semidefinite. In that case
Theorem 4 implies that

R (KX1
,KY1

,D1, µ) = RG (KX1
,KY1

,D1, µ) .

This together with (69) and (70) establishes the desired equality

R (KX,KY,D, µ) = RG (KX,KY,D, µ) .

Theorem 5 is thus proved.

Appendix A: Proof of Equality in Lemma 1

Suppose µ is in [0, 1]. Then for any (U,V) in S, we have

µI(X; U|V) + I(Y; V) = µI(X; U,V)− µI(X,V) + I(Y; V)

= µI(X; U) + µI(X; V|U) + µ[I(Y,V)− I(X; V)] + (1− µ)I(Y; V)

≥ µI(X; U) (71)

=
µ

2
log

|KX|
|KX|U|

where (71) follows because of the facts that
I(Y; V) ≥ 0

and
I(X; V|U) ≥ 0,

and we have
I(Y,V)− I(X; V) ≥ 0

because of the data processing inequality [21, Theorem 2.8.1] and the Markov chain X ↔ Y ↔ V. The inequality (71) is
achieved by any (U,V) in S such that V is independent of (X,Y,U), and the conditional covariance of X given (U,V)

satisfies

0 4 KX|U,V = KX|U 4 D.

Since conditioning reduces covariance in a positive semidefinite sense, we have an additional constraint

KX|U 4 KX.
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We therefore have the following

RG(D, µ) = min
(R1,R2)∈RG(D)

µR1 +R2

= min
(U,V)∈S

µI(X; U|V) + I(Y; V)

= min
KX|U

µ

2
log

|KX|∣∣KX|U
∣∣

subject to KX < KX|U < 0 and

D < KX|U

= v (Ppt−pt) .

Suppose now that µ > 1. Then any (U,V) in S can be characterized by positive semidefinite conditional covariance matrices
KY|V and KX|U,V such that

KY < KY|V < 0,

KY|V + KN < KX|U,V < 0,

D < KX|U,V,

and

I(X; U|V) =
1

2
log
|KY|V + KN|
|KX|U,V|

,

I(Y; V) =
1

2
log

|KY|
|KY|V|

.

In this case, we have

RG(D, µ) = min
(R1,R2)∈RG(D)

µR1 +R2

= min
(U,V)∈S

µI(X; U|V) + I(Y; V)

= min
KY|V,KX|U,V

µ

2
log

∣∣KY|V + KN

∣∣∣∣KX|U,V
∣∣ +

1

2
log

|KY|∣∣KY|V
∣∣

subject to KY < KY|V < 0,

KY|V + KN < KX|U,V < 0, and

D < KX|U,V

= v (PG1) .

Appendix B: Proof of Lemma 2

We will be using several results and terms from Bertsekas et al. [22]. The book contains all of the background that these
results need. The proof of the lemma is partially similar to that of Lemma 5 in [3]. Let us first introduce some notation
used in the proof. We use vec(A1,A2) to denote the column vector created by the concatenation of the columns of m ×m
matrices A1 and A2. If a = vec(A1,A2), then we use the notation mat(a) to denote the inverse operation to get back the
pair (A1,A2), i.e.,

mat(a) = (A1,A2).

The set of all column vectors created by the concatenation of the columns ofm×m symmetric matrices A1 and A2 is denoted
by A, i.e.,

A , {vec(A1,A2) : Ai = AT
i for all i ∈ {1, 2}}.

ri(B) is used to denote the relative interior of the set B. The sum of the two vector sets V1 and V1 is denoted by V1 + V2 and
is defined as

V1 + V2 , {v1 + v2 : vi ∈ Vi for all i ∈ {1, 2}}.

We also need the following facts from linear algebra.
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Lemma 10. (a) If E is an m× n matrix and F is an n×m matrix, then Tr(EF) = Tr(FE).

(b) If E and F are positive semidefinite, then EF = 0 if and only if Tr(EF) = 0.

Proof. Part (a) immediately follows from the definition of Tr(·) function. Part (b) can be proved using the eigen decomposi-
tions of E and F.

We can express the problem (PG2) as

min
b

h(b)

subject to b ∈ B,

where b , vec(B1,B2),

h(b) ,
µ

2
log

|KX −B2|
|KX −B1 −B2|

+
1

2
log

|KY|
|KY −B2|

,

and the feasible set B is written as
B , B1 ∩ B2 ∩ B12,

where for i ∈ {1, 2}
Bi , {vec(B1,B2) : Bi < 0} ∩ A

and
B12 , {vec(B1,B2) : B1 + B2 < KX −D} ∩ A.

Since h(·) is continuously differentiable, it follows from [22, Proposition 4.7.1, p. 255] that any local minima b∗ must satisfy

−∇h(b∗) ∈ TB(b∗)∗, (72)

where∇h(b∗) is the gradient of h(·) at b∗, and TB(b∗)∗ is the polar cone of the tangent cone TB(b∗) of B at b∗. Now since
Bi for all i ∈ {1, 2} and B12 are nonempty convex sets and ri(B1)∩ ri(B2)∩ ri(B12) is nonempty, it follows from [22, Problem
4.23, p. 267] and [22, Proposition 4.6.3, p. 254] that

TB(b∗)∗ = TB1
(b∗)∗ + TB2

(b∗)∗ + TB12
(b∗)∗. (73)

We next show that

−∇h(b∗) ∈ TB1(b∗)∗ ∩ A+ TB2(b∗)∗ ∩ A+ TB12(b∗)∗ ∩ A. (74)

Note that −∇h(b∗) is a column concatenation of two m×m symmetric matrices. This together with (72) and (73) yields

−∇h(b∗) = z1 + z2 + z12 ∈ A, (75)

where for i ∈ {1, 2}

zi ∈ TBi
(b∗)∗ and

z12 ∈ TB12
(b∗)∗.

Let us now define

(Ki,Li) , mat(zi),∀i ∈ {1, 2} and

(K12,L12) , mat(z12).

Using this, we define

z̄i , vec
(

1

2

(
Ki + KT

i

)
,

1

2

(
Li + LTi

))
,∀i ∈ {1, 2} and

z̄12 , vec
(

1

2

(
K12 + KT

12

)
,

1

2

(
L12 + LT12

))
.
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Since B1 is a nonempty convex set, it follows from [22, Proposition 4.6.3, p. 254] that

zT1 (b− b∗) ≤ 0, ∀b ∈ B1. (76)

Consider any b ∈ B1. Let
(E1,F1) , mat(b− b∗).

We now obtain

z̄T1 (b− b∗) =
1

2
Tr
((

K1 + KT
1

)
E1

)
+

1

2
Tr
((

L1 + LT1
)
F1

)
= Tr (K1E1) + Tr (L1F1) (77)

= zT1 (b− b∗)

≤ 0, (78)

where

(77) follows because E1 and F1 are symmetric, and

(78) follows from (76).

By definition, z̄1 ∈ A. This and (78) imply that

z̄1 ∈ TB1
(b∗)∗ ∩ A. (79)

We can similarly show that

z̄2 ∈ TB2(b∗)∗ ∩ A and (80)

z̄12 ∈ TB12(b∗)∗ ∩ A. (81)

Now

z̄1 + z̄2 + z̄12

= vec
(

1

2

(
K1 + K2 + K12 + KT

1 + KT
2 + KT

12

)
,

1

2

(
L1 + L2 + L12 + LT1 + LT2 + LT12

))
= vec ((K1 + K2 + K12) , (L1 + L2 + L12)) (82)

= z1 + z2 + z12

= −∇h(b∗), (83)

where

(82) follows because K1 + K2 + K12 and L1 + L2 + L12 are symmetric from (75), and

(83) follows from the equality in (75).

This together with (79) – (81) implies (74).
We now proceed to characterize the right-hand side of (74). Consider any z ∈ TB1(b∗)∗ ∩ A. It again follows from [22,

Proposition 4.6.3, p. 254] that

zT (b− b∗) ≤ 0, ∀b ∈ B1. (84)

Let us define

(M1,M2) , mat(z),

(B1,B2) , mat(b), and

(B∗1,B
∗
2) , mat(b∗).
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Then (84) can be re-written as

2∑
i=1

Tr(Mi(Bi −B∗i )) ≤ 0, ∀vec(B1,B2) ∈ B1. (85)

We first show that M2 = 0. Let us pick (B1,B2) = (B∗1,B
∗
2 + M2). This means that

Tr(M2M2) ≤ 0,

which implies that M2 = 0 because M2 is symmetric. We next prove that M1 is negative semidefinite. Suppose there exists
w 6= 0 such that wTM1w > 0. We then have

0 < wTM1w = Tr(wTM1w) = Tr(M1wwT ),

where the last equality follows from Lemma 10(a). But this contradicts (85) because vec(B∗1 + wwT ,B∗2) ∈ B1, and hence
M1 4 0. We finally show that M1B

∗
1 = 0. Let (B1,B2) = (αB∗1,B

∗
2), where α > 1. Then (85) implies that

Tr(M1B
∗
1) ≤ 0.

Likewise, on picking 0 < α < 1, we obtain
Tr(M1B

∗
1) ≥ 0.

Both together establish
Tr(M1B

∗
1) = 0,

which together with Lemma 10(b) implies that
M1B

∗
1 = 0

because −M1 and B∗1 are positive semidefinite. We therefore have that

TB1
(b∗)∗ ∩ A ⊆ {vec(M1,0) : M1 4 0 and M1B

∗
1 = 0}. (86)

Similarly, we can show that

TB2(b∗)∗ ∩ A ⊆ {vec(0,M2) : M2 4 0 and M2B
∗
2 = 0}. (87)

Consider any z ∈ TB12(b∗)∗ ∩ A. As before, we obtain

2∑
i=1

Tr(Λi(Bi −B∗i )) ≤ 0, ∀vec(B1,B2) ∈ B12, (88)

where

(Λ1,Λ2) , mat(z).

On picking (B1,B2) = (B∗1 + Λ1,B
∗
2 −Λ1), (88) yields

Tr(Λ1Λ1)− Tr(Λ2Λ1) ≤ 0.

Similarly, picking (B1,B2) = (B∗1 −Λ2,B
∗
2 + Λ2) gives

Tr(Λ2Λ2)− Tr(Λ1Λ2) ≤ 0.

Both together imply that
Tr((Λ1 −Λ2)(Λ1 −Λ2)) ≤ 0,

and therefore
Λ1 −Λ2 = 0,

because Λ1 and Λ2 are symmetric. Let us denote Λ1 and Λ2 by Λ. As before, we can show that Λ 4 0. We next prove that

Tr(Λ(B∗1 + B∗2 −KX + D)) = 0.
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Observe that (B1,B2) =
(
α(B∗1 + B∗2 −KX + D) + KX −D − B∗2,B

∗
2

)
, where α > 0, is a valid choice of (B1,B2) in

(88). For α > 1, this implies
Tr(Λ(B∗1 + B∗2 −KX + D)) ≤ 0,

and for 0 < α < 1, it gives
Tr(Λ(B∗1 + B∗2 −KX + D)) ≥ 0.

Therefore
Tr(Λ(B∗1 + B∗2 −KX + D)) = 0.

This and Lemma 10(b) imply that
Λ(B∗1 + B∗2 −KX + D) = 0.

We thus have that

TB12
(b∗)∗ ∩ A ⊆ {vec(Λ,Λ)|Λ 4 0 and Λ(B∗1 + B∗2 −KX + D) = 0}. (89)

It now follows from (74), (86), (87), and (89) that∇h(b∗) can be written as

∇h(b∗) = vec (M1 + Λ,M2 + Λ)

for some M1,M2, and Λ such that

MiB
∗
i = 0, for all i ∈ {1, 2}

Λ(B∗1 + B∗2 −KX + D) = 0, and

M1,M2,Λ < 0.

Lemma 2 now follows because

∇h(b∗) = vec
(
µ

2
(KX −B∗1 −B∗2)−1,

µ

2
(KX −B∗1 −B∗2)−1 − µ

2
(KX −B∗2)−1 +

1

2
(KY −B∗2)−1

)
.

Appendix C: Proof of Lemma 3

Using (12), we obtain

∆∗ =
µ

2
(KX −B∗2)−1 −M∗

1

= (KX −B∗2)−1
[µ

2
(KX −B∗2)− (KX −B∗2)M∗

1(KX −B∗2)
]

(KX −B∗2)−1.

It is hence sufficient to show that

µ

2
(KX −B∗2)− (KX −B∗2)M∗

1(KX −B∗2)

is positive semidefinite. On pre- and post-multiplying (7) by KX −B∗1 −B∗2, we obtain

µ

2
(KX −B∗1 −B∗2)− (KX −B∗1 −B∗2)(M∗

1 + Λ∗)(KX −B∗1 −B∗2) = 0. (90)

Using (9) and (10), we have

(KX −B∗1 −B∗2)M∗
1(KX −B∗1 −B∗2) = (KX −B∗2)M∗

1(KX −B∗2) and (91)

(KX −B∗1 −B∗2)Λ∗(KX −B∗1 −B∗2) = DΛ∗D. (92)

Now (90) through (92) together imply that

µ

2
(KX −B∗2)− (KX −B∗2)M∗

1(KX −B∗2) =
µ

2
B∗1 + DΛ∗D,

which is a positive semidefinite matrix.
We next show that ∆∗ is nonzero. Suppose otherwise that

∆∗ = 0.
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This together with (12) implies that

M∗
1 =

µ

2
(KX −B∗2)−1 � 0 and

M∗
2 =

1

2
(KY −B∗2)−1 � 0,

i.e., M∗
1 and M∗

2 are positive definite. It now follows from (9) that

B∗1 = B∗2 = 0,

which is a contradiction because (0,0) is not feasible for the optimization problem (PG2) by (1).

Appendix D: Proof of Lemma 4

It is clear by definition that B̃∗1, B̃
∗
2, M̃

∗
1, and M̃∗

2 are positive semidefinite matrices. To prove (36), we use the first equality
in (12) and obtain

SST = ∆∗

=
µ

2
(KX −B∗2)

−1 −M∗
1

=
µ

2
[S,T]

(
[S,T]T (KX −B∗2) [S,T]

)−1

[S,T]T −M∗
1 (93)

=
µ

2
[S,T]

(
ST (KX −B∗2) S 0

0 TT (KX −B∗2) T

)−1

[S,T]T −M∗
1 (94)

=
µ

2
[S,T]

( (
ST (KX −B∗2) S

)−1
0

0
(
TT (KX −B∗2) T

)−1

)
[S,T]T −M∗

1

=
µ

2
S
(
ST (KX −B∗2) S

)−1
ST +

µ

2
T
(
TT (KX −B∗2) T

)−1
TT −M∗

1, (95)

where

(93) follows because [S,T] is invertible, and

(94) follows because S and T are cross (KX −B∗2)-orthogonal.

On pre- and post-multiplying (95) by ST (KX −B∗2) and (KX −B∗2) S, respectively, and again using the fact that S and T

are cross (KX −B∗2)-orthogonal, we obtain(
ST (KX −B∗2) S

) (
ST (KX −B∗2) S

)
=
µ

2

(
ST (KX −B∗2) S

)
− ST (KX −B∗2) M∗

1 (KX −B∗2) S,

which is equivalent to

Ir =
µ

2

(
ST (KX −B∗2) S

)−1 −
(
ST (KX −B∗2) S

)−1
ST (KX −B∗2) M∗

1 (KX −B∗2) S
(
ST (KX −B∗2) S

)−1
. (96)

Similarly, using the second equality in (12) together with the facts that [S,W] is invertible and S and W are cross (KY −B∗2)-
orthogonal, we obtain

Ir =
1

2

(
ST (KY −B∗2) S

)−1 −
(
ST (KY −B∗2) S

)−1
ST (KY −B∗2) M∗

2 (KY −B∗2) S
(
ST (KY −B∗2) S

)−1
. (97)

Now (96) and (97) together can be written as

Ir =
µ

2

(
KX̃ − B̃∗2

)−1 − M̃∗
1 =

1

2

(
KỸ − B̃∗2

)−1 − M̃∗
2. (98)

This proves (36).
To prove (37), we have from (9) and (14) that

B∗1ai = 0,

for all i in {1, 2, . . . , p}. Since the columns of T are in span{ai}pi=1, we have

B∗1T = 0.
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This and (9) together imply
B∗1

(
M∗

1 −
µ

2
T
(
TT (KX −B∗2) T

)−1
TT
)

= 0.

We now use (95) and obtain
B∗1

(µ
2

S
(
ST (KX −B∗2) S

)−1
ST − SST

)
= 0,

which can be re-written as
B∗1S

(µ
2

(
KX̃ − B̃∗2

)−1 − Ir

)
ST = 0.

Using the first equality in (98) yields
B∗1SM̃∗

1ST = 0.

We next invoke Lemma 10(b) to obtain
Tr
(
B∗1SM̃∗

1ST
)

= 0.

Using Lemma 10(a) gives
Tr
(
STB∗1SM̃∗

1

)
= 0,

which is equivalent to
Tr
(
B̃∗1M̃∗

1

)
= 0.

Since B̃∗1 and M̃∗
1 are positive semidefinite, by invoking Lemma 10(b) again, we obtain

B̃∗1M̃∗
1 = 0.

The proof of
B̃∗2M̃∗

2 = 0.

is exactly similar. This proves (37). The proof of (38) is immediate from (16).

Appendix E: Proof of Lemma 5

The proofs of (41) and (42) are easy. They follow from (36), (39), and (40). Since µ > 1, (41) and (42) imply that

KX̂ � KŶ.

KX̃ and KỸ are positive definite by definition. Since M̃∗
1 and M̃∗

2 are positive semidefinite,

KX̂ < KX̃ and

KŶ < KỸ

follow from (39) and (40), respectively. This proves (43) and (44). To prove (45), we have∣∣KỸ

∣∣∣∣KỸ − B̃∗2
∣∣ =

∣∣KỸ − B̃∗2 + B̃∗2
∣∣∣∣KỸ − B̃∗2

∣∣
=

∣∣Ir + B̃∗2
(
KỸ − B̃∗2

)−1∣∣∣∣Ir∣∣
=

∣∣Ir + B̃∗2
[(

KỸ − B̃∗2
)−1 − 2M̃∗

2

]∣∣∣∣Ir∣∣ (99)

=

∣∣Ir + B̃∗2
(
KŶ − B̃∗2

)−1∣∣∣∣Ir∣∣ (100)

=

∣∣KŶ

∣∣∣∣KŶ − B̃∗2
∣∣ ,

where

(99) follows from (37), and

(100) follows from (40).
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To prove (46), we proceed similarly and obtain∣∣KX̃ − B̃∗2
∣∣∣∣KX̃ − B̃∗1 − B̃∗2
∣∣ =

∣∣Ir∣∣∣∣Ir − B̃∗1
(
KX̃ − B̃∗2

)−1∣∣
=

∣∣Ir∣∣∣∣Ir − B̃∗1
[(

KX̃ − B̃∗2
)−1 − 2

µM̃∗
1

]∣∣ (101)

=

∣∣Ir∣∣∣∣Ir − B̃∗1
(
KX̂ − B̃∗2

)−1∣∣ (102)

=

∣∣KX̂ − B̃∗2
∣∣∣∣KX̂ − B̃∗1 − B̃∗2
∣∣ ,

where

(101) follows from (37), and

(102) follows from (39).

Appendix F: Proof of Lemma 6

We have

h
(
X̂|U,V

)
≤ 1

2
log
(

(2πe)
r∣∣KX̂|U,V

∣∣) (103)

≤ 1

2
log
(

(2πe)
r∣∣D̂∣∣), (104)

where

(103) follows from the fact the Gaussian distribution maximizes the differential entropy for a given covariance matrix [21,
Theorem 8.6.5], and

(104) follows from the distortion constraint in the definition of (P̂1) and the concavity of log | · | function.

Inequalities (103) and (104) are equalities if X̂,U, and V are jointly Gaussian with the conditional covariance matrix KX̂|U,V
such that

KX̂|U,V = D̂ = KX̂ − B̃∗1 − B̃∗1, (105)

where the last equality follows from (47). We thus conclude that a Gaussian (U,V) with the conditional covariance matrix
satisfying (105) is optimal for the subproblem (P̂1), and the optimal value is

v(P̂1) = µh
(
X̂
)
− µ

2
log
((

2πe
)r∣∣D̂∣∣)

=
µ

2
log
((

2πe
)r∣∣KX̂

∣∣)− µ

2
log
((

2πe
)r∣∣D̂∣∣)

=
µ

2
log

∣∣KX̂

∣∣∣∣D̂∣∣ .
Appendix G: Proof of Lemma 7

Since conditioned on V, Ŷ and N̂ are independent, we use the vector EPI [21, Theorem 17.7.3] to obtain

h(Ŷ|V)− µh(X̂|V) = h(Ŷ|V)− µh(Ŷ + N̂|V)

≤ h(Ŷ|V)− µr

2
log
(
2

2
rh(Ŷ|V) + 2

2
mh(N̂)

)
. (106)

The inequality (106) is equality if Ŷ and V are jointly Gaussian and the conditioned covariance matrix

KŶ|V = aKN̂,
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for some constant a > 0. By following standard calculus arguments, we can show that for µ > 1 the right-hand side of (106)
is concave in h(Ŷ|V) and has a global maximum at

h(Ŷ|V) = h(N̂)− r

2
log(µ− 1). (107)

Let VG and Ŷ be jointly Gaussian such that the conditional covariance matrix of Ŷ given VG is

KŶ|VG
= KŶ − B̃∗2.

We next show that this VG achieves equality in (106) and satisfies (107) simultaneously. We have from (41) and (42) that

KŶ − B̃∗2 = (µ− 1)−1KN̂, (108)

i.e., the conditional covariance matrix KŶ|VG
is proportional to KN̂. Hence, (106) is satisfied with equality. Moreover, for

this VG, (107) and (108) are equivalent. Therefore,

h(Ŷ|V)− µh(X̂|V) ≤ 1

2
log
(

(2πe)
r∣∣KŶ − B̃∗2

∣∣)− µ

2
log
(

(2πe)
r∣∣KX̂ − B̃∗2

∣∣).
We thus conclude that VG is optimal for (P̂2) and the optimal value is

v(P̂2) = µh
(
X̂
)
− h
(
Ŷ
)

+
1

2
log
(

(2πe)
r∣∣KŶ − B̃∗2

∣∣)− µ

2
log
(

(2πe)
r∣∣KX̂ − B̃∗2

∣∣)
=
µ

2
log
(

(2πe)
r∣∣KX̂

∣∣)− 1

2
log
(

(2πe)
r∣∣KŶ

∣∣)+
1

2
log
(

(2πe)
r∣∣KŶ − B̃∗2

∣∣)− µ

2
log
(

(2πe)
r∣∣KX̂ − B̃∗2

∣∣)
=
µ

2
log

∣∣KX̂

∣∣∣∣KX̂ − B̃∗2
∣∣ − 1

2
log

∣∣KŶ

∣∣∣∣KŶ − B̃∗2
∣∣ .
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