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Abstract—Despite great interest in solving RNA secondary
structures due to their impact on function, it remains an
open problem to determine structure from sequence. Among
experimental approaches, a promising candidate is the “chemical
modification strategy”, which involves application of chemicals
to RNA that are sensitive to structure and that result in
modifications that can be assayed via sequencing technologies.
One approach that can reveal paired nucleotides via chemical
modification followed by sequencing is SHAPE, and it has been
used in conjunction with capillary electrophoresis (SHAPE-CE)
and high-throughput sequencing (SHAPE-Seq). The solution of
mathematical inverse problems is needed to relate the sequence
data to the modified sites, and a number of approaches have
been previously suggested for SHAPE-CE, and separately for
SHAPE-Seq analysis.

Here we introduce a new model for inference of chemical
modification experiments, whose formulation results in closed-
form maximum likelihood estimates that can be easily applied
to data. The model can be specialized to both SHAPE-CE and
SHAPE-Seq, and therefore allows for a direct comparison of
the two technologies. We then show that the extra information
obtained with SHAPE-Seq but not with SHAPE-CE is valuable
with respect to ML estimation.

I. INTRODUCTION

RNA dynamics are increasingly recognized as central com-
ponents of cellular function, controlling key processes such
as gene regulation, antiviral defense, and environmental sens-
ing [1], [2], [3]. Strong links between RNA structure and
function underlie the importance of structural analysis, which
greatly benefits from the wealth of information provided by
existing and emerging chemical mapping techniques [4]. In
chemical mapping experiments, a chemical reagent modifies
RNA molecules in a structure-dependent fashion. Depending
on the reagent used, four distinct types of information can
be gleaned, including spatial nucleotide contact information,
solvent accessibility of the backbone, the local electrostatic
environment adjacent to each nucleotide, and local nucleotide
flexibility [4], [5]. This information is then used to infer RNA
structural dynamics, either independently or in conjunction
with structure prediction algorithms [6], [7]. The modification
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Fig. 1. Overview of a SHAPE-Seq chemical mapping experiment, model,
and statistical analysis.

location is detected by means of conversion to cDNA using
reverse transcriptase (RT), whereby transcription is blocked
at the sites of modification (see illustration in Fig. 1). This
generates a pool of cDNA fragments that begin at the 3′

end of the molecule and terminate at the modified sites, or
possibly at sites where there was natural RT dropoff [8].
Traditionally, the cDNA fragments have been resolved and
quantified with capillary electrophoresis (CE) [8], although
recently next-generation sequencing (NGS) technologies with
much higher throughput have been used instead [9].

There are several challenges in interpreting chemical map-
ping data obtained from reverse transcription, irrespectively of
the fragment quantification method that follows it. Primarily, in
molecules with multiple modifications, only the first one (i.e.,
the closest to the 3′ end) is revealed (see Fig. 1), and thus less
information is available about the 5′ region of the molecule.
Second, RT’s natural propensity to terminate at any site needs
to be decoupled from modification-based termination, and
this effect is controlled for in a separate control experiment.
Finally, experimental variations need to be controlled for when
combining measurements.

In previous work, we introduced a stochastic model for a
specific next-gen sequencing based chemical modification ex-
periment called SHAPE-Seq (selective 2′-hydroxyl acylation
analyzed by primer extension followed by sequencing) [10].
Here we extend that work by presenting a more general model
that entails fewer assumptions. In addition to capturing our
previous SHAPE-Seq model as a special case, it is suitable
for other experimental protocols, such as SHAPE-CE (SHAPE
followed by capillary electrophoresis). The new model has the
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added advantage that the generalization reveals a simplified
maximum likelihood estimation scheme that leads to an ele-
gant and fast approach for recovering chemical modification
signal. Finally, we show how the general framework can be
used to directly compare the power of SHAPE-CE to SHAPE-
Seq. A key result is that SHAPE-Seq improves on SHAPE-CE
not only by allowing for multiplexing but also by measuring
extra information that can be utilized in the statistical inference
framework we propose.

II. MODELING SEQUENCING-BASED CHEMICAL MAPPING

We consider an RNA molecule that contains n sites, num-
bered 1 to n according to their sequence-position with respect
to the molecule’s 3′ end (see Fig. 1), where the 3′ end is
excluded from analysis and assumes position 0. A cDNA
fragment of length k that maps to the sequence between sites
0 and k − 1 (1 ≤ k ≤ n) is called a k-fragment, and a full
transcript of length n+ 1 is called a complete fragment. In a
SHAPE experiment, often called the (+) channel, the RNA is
treated with an electrophile that reacts with conformationally
flexible nucleotides to form 2′-O-adducts. We define the
relative reactivity of a site, βk, to be the probability of adduct
formation at that site. In the control experiment, called the (−)
channel, the primary source of incomplete fragments is RT’s
natural dropoff while transcribing the molecule. Because its
propensity to drop may vary along sites, we define the dropoff
propensity at site k, γk, to be the conditional probability that
transcription terminates at site k, given that RT has reached
this site. Therefore, associated with the RNA molecule are
2n probabilities: B = (β1, . . . , βn), 0 ≤ βk ≤ 1 ∀ k, and
Γ = (γ1, . . . , γn), 0 ≤ γk ≤ 1 ∀ k, which we wish to estimate
from sequencing data.

While we can readily infer the natural dropoff propensities
from the (−) channel data alone [10], the fragments observed
in the (+) channel reflect the combined effects of natural
dropoff and chemical modification. A point that is key to
interpreting chemical mapping data is that a k-fragment is
assumed to be generated when site k is the site that is
first encountered by RT, regardless of the number of adducts
that formed upstream of k. Assuming that adduct formations
at the various nucleotides are statistically independent, the
probability that a molecule is modified at site k (and possibly
also at subsequent sites) is

Prob (first adduct at site k) = βk

k−1∏
i=1

(1− βi) (1)

for all 1 ≤ k ≤ n. Incorporating the natural degradation in the
elongating pool of modified molecules, we have

Prob

(
k-fragment

from
modification

)
=

k−1∏
i=1

(1− γi)× βk
k−1∏
i=1

(1− βi). (2)

We assume all other fragments originate from natural dropoff,
either from unmodified or modified molecules, thus accounting

for the following probability:

Prob (k-fragment from natural dropoff) (3)

= Prob

(
dropoff
at site k

∣∣∣ no adduct
at any site
l ≤ k

)
× Prob

( no adduct
at any site
l ≤ k

)

= γk

k−1∏
i=1

(1− γi)
k∏
i=1

(1− βi).

Taken together, Eqs. 2 and 3 imply

Prob (k-fragment in (+) channel) (4)

=
[
1− (1− γk)(1− βk)

] k−1∏
i=1

(1− γi)(1− βi)

for all 1 ≤ k ≤ n. Finally, because complete fragments can
only arise from natural dropoff, we have

Prob (complete fragment in (+) channel) (5)

=

n∏
i=1

(1− γi)
n∏
i=1

(1− βi) =

n∏
i=1

(1− γi)(1− βi).

Assuming we observe (X1, . . . , Xn+1) k-fragment and
complete-fragment counts in the (+) channel, and similarly,
(Y1, . . . , Yn+1) fragment counts in the (−) channel, the like-
lihood of observing the entire sequencing data is given by

L(B,Γ) =

n∏
k=1

[
γk

k−1∏
i=1

(1− γi)
]Yk

(6)

n∏
k=1

[(
1− (1− γk)(1− βk)

)
k−1∏
i=1

(1− γi)(1− βi)
]Xk

[ n∏
i=1

(1− γi)
]Yn+1

[ n∏
i=1

(1− γi)(1− βi)
]Xn+1

.

III. MAXIMUM-LIKELIHOOD ESTIMATION

In this section, we use the likelihood formulation in Eq. 6
to show that the ML estimates are given by

β∗k = max

0,

Xk∑n+1
i=k Xi

− Yk∑n+1
i=k Yi

1− Yk∑n+1
i=k Yi

 , 1 ≤ k ≤ n. (7)

Moreover, as will become clear from the derivation below,
the likelihood formulation in Eq. 6 and its optimization
can be readily extended to accommodate data from multiple
replicates. One can then estimate the reactivities from mul-
tiple sources of data simultaneously and in a straightforward
manner, and without any further assumptions or estimation of
the statistical inter-experiment variation.



We start by rearranging terms in the log-likelihood function
and writing it as the following sum of n terms:

logL(B,Γ) =

n∑
k=1

[ n+1∑
i=k+1

(Xi + Yi) log(1− γk) (8)

+

n+1∑
i=k+1

Xi log(1− βk) + Yk log γk

+Xk log
(
1− (1− γk)(1− βk)

)]
.

Eq. 8 suggests that logL(B,Γ) is separable in the pairwise
variables (βk, γk), hence each of the n two-dimensional
functions can be optimized separately. To simplify notation,
we introduce the constants Sk =

∑n+1
i=k+1(Xi + Yi), Rk =∑n+1

i=k+1Xi, and the functions

lk(βk, γk) = Sk log(1− γk) +Rk log(1− βk) (9)
+Yk log γk +Xk log

(
1− (1− γk)(1− βk)

)
for 1 ≤ k ≤ n, such that logL(B,Γ) =

∑n
k=1 lk(βk, γk).

We now optimize lk(βk, γk) under the assumption that all
fragment counts are positive. In that case, γk is bound to lie
in (0, 1) and βk cannot exceed 1, but the constraint βk ≥ 0 is
not inherent in the function and needs to be imposed during
optimization. If we relax it, we find the optimal solution by
setting the partial derivatives to zero, as follows

− Rk
1− βk

+
Xk(1− γk)

1− (1− γk)(1− βk)
= 0 (10)

− Sk
1− γk

+
Yk
γk

+
Xk(1− βk)

1− (1− γk)(1− βk)
= 0,

yielding the solution

β̂k =

Xk∑n+1
i=k Xi

− Yk∑n+1
i=k Yi

1− Yk∑n+1
i=k Yi

, γ̂k =
Yk∑n+1
i=k Yi

. (11)

One can verify local maximality of (β̂k, γ̂k) from lk’s Hessian.
Its global optimality then follows from lk(βk, γk)’s continuity
and from the fact that it approaches −∞ near the boundary
of its domain’s closure. Eq. 11 clearly results in β̂k < 1, but
there is no guarantee that β̂k ≥ 0, as its numerator consists
of two terms, each comprising of data from either the (+) or
the (−) channels. As such, they are not constrained to yield
a positive difference, and might result in infeasible estimates.
We then wish to find a feasible ML solution, and we argue
that whenever β̂k < 0, this solution is attained at

(β∗k , γ
∗
k) = (0,

Xk + Yk∑n+1
i=k (Xi + Yi)

) (12)

(see Appendix for justification). This means that whenever
we observe a site k for which Xk∑n+1

i=k Xi
< Yk∑n+1

i=k Yi
, the

best explanation of the observed data is that no modification
occurred at that site and that all k-fragments arose from natural
dropoff. Remarkably, this result supports existing approaches
to analyzing SHAPE-CE data, whereby sites whose recovered
signal is negative are assigned zero reactivity [7].

We now allow zero counts when k ≤ n, while assuming that
Xn+1, Yn+1 > 0. The latter assumption is justified by the fact
that Yn+1 = 0 is indicative of severe dropoff that could stem
from strong transcription termination at select sites or reflect
a cumulative effect of imperfect transcription elongation over
a long RNA strand. Both situations are avoided by truncating
the analyzed sequence at n′ < n, such that Yn′+1 > 0. On
the other hand, Xn+1 = 0 (while Yn+1 > 0) suggests a “too
high” average modification rate, leading to strong signal decay
in the (+) channel. One should then decrease the reagent’s
concentration. Nevertheless, zero counts at intermediate sites
are commonly observed in practice. When Xk = 0 but Yk 6= 0,
it is straightforward to show that the optimum is determined
by Eq. 12, whereas the case where Yk = 0 and Xk 6= 0 is
optimized by the initial solution in Eq. 11.

A. Poisson-distributed chemical modification

In this subsection, we revisit a chemical mapping model
that we have previously developed and used for structure
characterization [10]. The model incorporates an assumption
on the stochastic nature of the underlying chemistry, and we
discuss its implications on ML estimation from SHAPE-Seq
data. By casting the model as a special case of the framework
we presented above we are able to simplify our previous
estimation scheme to obtain closed-form ML estimates of
relative reactivies for the Poisson model in [10]:

r∗k = max
{

0, log
(
1− Yk∑n+1

i=k Yi

)
− log

(
1− Xk∑n+1

i=k Xi

)}
. (13)

The work in [10] makes an assumption that is widely
used in models of biochemical reactions, whereby the reac-
tion with the modifying reagent follows a Poisson process.
Specifically, during modification, an RNA may be exposed
to varying numbers of electrophile molecules, and we model
the number of times it is exposed to these molecules as
a Poisson process of an unknown rate c > 0, i.e., we
assume that Prob(i exposures) = cie−c

i! . It is worth noting
that the Poisson framework is especially suitable for low-
incidence settings [11], and that mapping experiments are
particularly calibrated to yield single-hit kinetics, that is,
they aim to achieve an average modification rate of c ≈ 1.
Now, each exposure may result in the modification of a
site, where the site is determined according to a probability
distribution Θ = (θ1, . . . , θn),

∑n
k=1 θk = 1, where θk

represents the relative reactivity of site k. It is easy to show
that the number of modifications at site k also obeys a
Poisson distribution, with an unknown rate rk = cθk, that is,
Prob(i modifications at site k) = (cθk)

ie−cθk

i! . It then follows
that Prob(site k is not modified) = e−cθk . Setting

βk := 1− Prob (site k is not modified) = 1− e−cθk , (14)



we can write

Prob (first adduct at site k) (15)

= βk

k−1∏
i=1

(1− βi) = (1− e−cθk)e−c
∑k−1
i=1 θi

= (1− e−cθk)ec(
∑n
i=k θi−1)

= ec(
∑n
i=k θi−1) − ec(

∑n
i=k+1 θi−1),

P rob(no modification) =

n∏
i=1

(1− βi) = e−c. (16)

When plugging these expressions into Eq. 6, the likelihood
function reduces to that in [10]. We can therefore use the
initial estimates in Eq. 11 along with Eq. 14 to estimate the
distribution Θ as follows:

θ̂k =
1

ĉ

[
log
(
1− Yk∑n+1

i=k Yi

)
− log

(
1− Xk∑n+1

i=k Xi

)]
, (17)

where the scaling constant ĉ is the estimate of the average
modification rate, which is recovered from Eq. 16 to equal

ĉ = −
n∑
i=1

log(1− β̂i) = log
(

Yn+1∑n+1
i=1 Yi

)
− log

(
Xn+1∑n+1
i=1 Xi

)
.

(18)
It is now apparent that Eqs. 17 and 18 are the outputs of
Algorithm 1 in [10].

When optimization yields negative β̂k’s, they correspond
to negative θ̂k’s (see Eq. 14). However, when imposing non-
negativity, these are projected onto β∗k = 0, and θ?k ∝
log(1 − β∗k) = 0 accordingly. The revised modification rate
estimate now amounts to c∗ = −

∑
i:β̂i>0 log(1− β̂i), which

is larger than the initial ĉ. Consequently, the distribution Θ̂ is
updated such that all negative entries are set to zero, while the
others are effectively scaled down due to the increase from ĉ
to c∗. In other words, one merely needs to compute the relative
reactivity estimate in Eq. 13 and then normalize it by c∗ to
generate a proper probability distribution Θ∗. Alternatively,
one could apply any other normalization method to the outputs
of Eq. 13, such as the ones currently used for interpreting
SHAPE reactivities [12], [7]. This would retain the relativity
between reactivities, while adjusting the dynamic range to a
scale that is in line with current settings of subsequent structure
prediction modules [7], [13].

In practice, the formulation of site-specific modifications
via n independent Poisson processes, as opposed to the
multinomially-distributed choice of a site via Θ, vastly sim-
plifies the likelihood function’s derivation and optimization.
In particular, it removes the need for the iterative likelihood
optimization routine that follows Algorithm 1 in [10]. The
equivalence between the two formulations is an instance of
general equivalence between multinomial and Poisson log-
linear models with respect to ML estimation [11], [14].

It is interesting to compare the estimates obtained un-
der a Poisson assumption with those obtained without it.
To qualitatively compare them, consider the relations θ∗k ∝
− log(1−β∗k), and note that −log(1−x) ≈ x when x ≈ 0. This

means that a Poisson assumption is not expected to affect sites
with small reactivity, but on the other hand, it amplifies the
estimated relative reactivities at more reactive sites, and more
intensely as the reactivity increases (i.e., as 1−β∗k → 0). It thus
exerts its effect by stretching the dynamic range of reactivities,
and thereby might confer more sensitivity to outliers. Because
the effect’s intensity depends on β∗k’s magnitude, it is likely to
be more pronounced under high modification rate conditions,
where either the reagent concentration is high or the RNA
entails many highly reactive sites.

A quantitative comparison between the two models using
experimental data for the Staphylococcus aureus plasmid
pT181 sense RNA is shown in Fig. 2. To allow for a fair
comparison between B∗ and Θ∗, we scaled B∗ such that
its entries sum to 1. Note that the scaling factor is larger
in the Poisson case, and thus the Poisson-based reactivities
are smaller than their general-model counterparts at relatively
unreactive sites. The data in Fig. 2 reveal very mild differences
between the estimates and consequently, minor increase in the
dynamic range. Similar results were observed for a number of
other molecules that we have probed [9]. It is worth noting
that the modification rate in this experiment was estimated at
c∗ = 1.94 adducts per molecule, which is relatively high and
clearly diverts from single-hit kinetics. This suggests that the
Poisson assumption may not be critical even in the presence of
high modification rate, and that the two model-based schemes
may generally be used interchangeably.

Finally, we stress that the Poisson-based correction aligns
more closely with current CE-based analysis methodology [7],
[15], in the sense that the signals are in fact corrected
separately for each channel and then subtracted, along the
lines of Eq. 13. In contrast, ML estimation under the general
framework is not amenable to such decoupling (see Eq. 11).
Alongside this seemingly Poisson-based correction, current
analysis guidelines also recommend using one of two outlier
filters [7], and these may remedy the increased sensitivity to
outliers that we highlighted earlier.

IV. ADAPTATION TO QUANTIFICATION BY CAPILLARY
ELECTROPHORESIS

Traditional chemical mapping techniques have used elec-
trophoresis to identify the cDNA fragments and to quantify
their abundances [4]. Most recently, capillary electrophoresis
(CE) has been used to detect fluorescently labeled cDNAs
from experiments. CE systems output an electropherogram,
consisting of analog traces that report fluorescence intensity as
a function of time. These traces must be extensively processed
to extract quantitative nucleotide information, and while steady
progress is being made with the development of computer-
aided analysis tools [12], [16], [17], there is still a need for
more statistically-robust and automated analysis methods.

Despite the challenges in analyzing CE-based data and the
advances offered by NGS platforms, the conventional approach
is still valuable for two reasons. First, it is currently cheaper
and faster to apply when the multiplexing and sensitivity
advantages of the newer platforms are not needed, and second,
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Fig. 2. Relative reactivity estimates for S. aureus plasmid pT181 sense RNA under the general-model and the Poisson-model maximum-likelihood frameworks.
Sites 1-45 showed negligible probabilities and were omitted from display.

it can be used for probing a few pilot RNAs prior to conducing
a larger-scale NGS-based experiment. These considerations
have motivated us to adapt our SHAPE-Seq ML framework to
the case of SHAPE-CE. While the differences in analog versus
digital signal processing are apparent, an essential difference
between SHAPE-Seq and SHAPE-CE data has to do with the
lack of information about complete fragments in CE settings.
This is due to large amounts of long fragments under single-
hit-kinetics conditions, causing detector saturation. Notably,
a strong full-length signal also poses difficulty in accurately
quantifying the last stretch of 10-20 nucleotides [18], but in
this work, we only address the first issue and assume that all
other peaks are quantifiable.

A. Maximum likelihood framework

Here, we show that in the absence of complete-fragment
information, the relative reactivities at sites 1 to n − 1 are
estimated using the following formula (1 ≤ k ≤ n− 1):

β
(CE)∗
k = max

0,

X̃k∑n
i=k X̃i

− Ỹk∑n
i=k Ỹi

1− Ỹk∑n
i=k Ỹi

 , (19)

where (X̃1, . . . , X̃n) and (Ỹ1, . . . , Ỹn) are the areas under the
detected peaks in the (+) and (−) channel traces, respectively.
We also show that β(CE)∗

n cannot be determined from the
available information.

Our result is possible due to the very recent automation of
the trace-alignment and peak-fitting steps with the HiTRACE
software [17]. This, in turn, generates quantifiable nucleotide
reactivity data, in the form of integrated peak areas, prior to
signal correction and scaling. The peak areas can then be used
in place of the digital sequence-counts to deconvolve the ef-
fects of over-modification and natural dropoff on the observed
(+) channel signal, as was recently done in [15] by means
of an optimization routine. This is in contrast to previous
analysis tools, where signal correction and scaling were needed
prior to the application of semi-manual alignment, fitting, and
integration routines [12].

We assume that the peak areas from the (+) and (−)
channels are proportional to the fragment counts as follows:
X̃k = δXk and Ỹk = εYk for all 1 ≤ k ≤ n where δ and ε
are unknown positive constants. The two potentially different

constants reflect experimental variation between the channels,
including differences in such factors as molecular concentra-
tions and dye intensities [12]. Currently, these are corrected
for by scaling the (−) channel signal by a constant factor
that is set either manually following visual inspection [12] or
automatically via an optimization routine [15]. We will see
that in our ML scheme there is no benefit in applying such a
“correction”.

The likelihood of observing the peak areas is given by

LCE(B,Γ) =

n∏
k=1

[
γk

k−1∏
i=1

(1− γi)
] Ỹk
ε

(20)

n∏
k=1

[(
1− (1− γk)(1− βk)

)
k−1∏
i=1

(1− γi)(1− βi)
] X̃k
δ

,

and the log-likelihood function is then written as

logLCE(B,Γ) =

n−1∑
k=1

lCEk (βk, γk) +
1

ε
Ỹn log γn (21)

+
1

δ
X̃n log

(
1− (1− γn)(1− βn)

)
,

where

lCEk (βk, γk) = Uk log(1− γk) (22)

+Vk log(1− βk) +
1

ε
Ỹk log γk

+
1

δ
X̃k log

(
1− (1− γk)(1− βk)

)
,

and Uk =
∑n
i=k+1( 1

δ X̃i + 1
ε Ỹi), Vk = 1

δ

∑n
i=k+1 X̃i.

Assuming all peak areas are nonzero, we can repeat the
derivation in the previous section, while noting two differ-
ences: first, different coefficients appear in the equations and
second, the last equation (when k = n) is different. Whereas
the first difference is minor when all observables are positive,
the second one leads to an important difference in the ML
solution. Therefore, we start by optimizing lCEk (βk, γk) when
1 ≤ k ≤ n− 1 to obtain

β̂CEk =

X̃k∑n
i=k X̃i

− Ỹk∑n
i=k Ỹi

1− Ỹk∑n
i=k Ỹi

, γ̂CEk =
Ỹk∑n
i=k Ỹi

. (23)



In the special cases where X̃k or Ỹk are zero, but Uk and Vk are
positive and Uk > Vk, we obtain

(
β̂CEk , γ̂CEk

)
=
(
0, Ỹk∑n

i=k Ỹi

)
and

(
β̂CEk , γ̂CEk

)
=
(

X̃k∑n
i=k X̃i

, 0
)
, respectively. It can also be

verified that these points correspond to a global maximum,
independently of the δ and ε values. When β̂CEk < 0, one
can repeat previous arguments to show that the constrained
maximum is attained at

(
β
(CE)∗
k , γ

(CE)∗
k

)
=
(
0,

1
δ X̃k+

1
ε Ỹk

Uk−1

)
.

Taken together, these results lead to the formulation in Eq. 19.
Importantly, one cannot evaluate γ(CE)∗

k without knowledge of
the relative scaling factor δ

ε , however, our goal is to estimate
the relative reactivities, and these are independent of δ

ε .
While the estimates in Eq. 19 bear great similarity to

the NGS-based estimates, the case where k = n reveals
a different scenario, as the missing X̃n+1 and Ỹn+1 ham-
per βn’s estimation. In this case, we optimize the function
lCEn (βn, γn) = 1

ε Ỹn log γn + 1
δ X̃n log

(
1− (1− γn)(1−βn)

)
,

which is maximized at γ̂n = 1, where its value is indepen-
dent of β̂n’s value. Consequently, one cannot determine β̂n.
Moreover, one cannot recover the exact fraction of modified
molecules, as it depends on all n reactivities as follows:

fmod = Prob(molecule is modified) = 1−
n∏
i=1

(1−βi). (24)

A possible way to circumvent this limitation is by excluding
site n from analysis and evaluating only β(CE)∗

1 , . . . , β
(CE)∗
n−1

based on all available peak areas, including X̃n and Ỹn. In
practice, the effect of such omission is likely to be minor, since
the studied RNA sequence is typically embedded in between
auxiliary RNA constructs, called structure cassettes [8], and
site n is therefore included in one of these cassettes [9]. We
can then approximate the modification fraction by f̂CEmod ≈ 1−∏n−1
i=1

(
1−β(CE)∗

i

)
, where the goodness of this approximation

depends on how large X̃n is in comparison to the missing
X̃n+1. This is because the approximation implicitly assumes
that β(CE)∗

n = 0, whereas in the presence of a full-length
signal we would have β(CE)∗

n = 1 − X̃n+1

X̃n+X̃n+1
× Ỹn+Ỹn+1

Ỹn+1
,

which might diverge from zero whenever X̃n+1

X̃n+X̃n+1
diverges

from 1. The reasoning behind setting β̂n = 0 is twofold:
first, our past experience with analyzing SHAPE-Seq data
shows that the structure cassettes tend to display negligible
reactivities, and second, the observed counts Xn+1 and Yn+1

were very large compared to any other count. For example,
in mapping experiments we conducted, Xn+1 amounted to
approximately 10% of the total (+)-channel reads and Yn+1

amounted to 15%− 20% of the total (−)-channel reads [10],
[9], whereas the rest of the reads were associated with a total
of 100− 200 nucleotides. Based on these observations and on
the premise that SHAPE-CE statistics should follow similar
patterns, we believe that this approximation is fairly accurate
in general. Nonetheless, one must keep in mind that this may
not always be the case, especially when studying long RNAs,
where cumulative dropoff effects result in severe signal atten-
uation and consequently relatively weak full-length signal. In

addition, we point out another subtle difference between the
scheme’s implementations under the two platforms. Specifi-
cally, we may not assume that the CE-based Uk and Vk are
always positive, whereas we made a similar assumption when
we derived NGS-based estimates. That assumption was based
on the fact that probing experiments can be designed such that
a strong full-length signal arises. While this also applies to
CE-based protocols, the absence of a full-length signal might
complicate analysis whenever X̃n = 0 or Ỹn = 0. However,
this can be easily remedied by converting these zeros into
very small constants, such that the resulting approximations
are negligible.

To summarize, building on recent contributions to the
automation of CE-based analog signal processing [17], our
method facilitates a simple and completely automated data
analysis pipeline for CE-based chemical mapping probes, and
in particular, for SHAPE-CE. Another interesting point arising
from our derivation is that our ML scheme is invariant under
background-signal scaling.

B. Effects of full-length signal information on ML estimation

Our analysis highlights the fact that the difference in ML
estimation between the two platforms lies essentially in the
presence or absence of a full-length signal (compare Eqs. 7
and 19). In this subsection, we first use our derivation to
qualitatively explore the potential impact of this difference.
We then quantify its effects by deleting the full-length signal
information from SHAPE-Seq data to mimic SHAPE-CE data,
such that the estimates under both platforms can be compared.

Before we start, we stress that this difference between
platforms pertains only to RNAs that are no longer than 400-
600 nucleotides [4], a limitation imposed by RT’s imperfect
processivity, as well as to RNAs that do not contain major
transcription barriers that result in severe dropoff. RNAs of
these two types are probed by annealing multiple primers
at various sites [13], [19], [20], in which case a full-length
signal is not obtained from most primer locations even when
the fragments are sequenced. In such settings, NGS and CE
platforms generate similar information, and analysis should
follow the lines of the CE framework. In what follows, we
simplify the exposition by using the same notation for Xk

and X̃k, and similarly for Yk and Ỹk.
To better understand the implications of not recording the

full-length information, we rewrite the initial estimates as

1−β̂SEQk =
1− Xk∑n+1

i=k Xi

1− Yk∑n+1
i=k Yi

, 1−β̂CEk =
1− Xk∑n

i=kXi

1− Yk∑n
i=k Yi

, (25)

and consider the following two examples.
1) Assume for simplicity that the (+) and (−) RNA pools

are the same size, i.e.,
∑n+1
i=1 Xi =

∑n+1
i=1 Yi, and

suppose we probe a highly reactive molecule, or alterna-
tively, use high reagent concentration. Both scenarios di-
vert from single-hit kinetics toward higher modification
rates, resulting in large dropoff in the (+) channel. As
an extreme case, assume that the proportion of complete
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Fig. 3. Reactivity estimates in the presence and absence of complete-fragment information for S. aureus plasmid pT181 sense RNA (a) and B. subtilis RNase
P RNA (b). Sites at the 3′ end that showed negligible reactivities were omitted from display.

fragments in the (+) channel is negligible, such that∑n
i=1Xi ≈

∑n+1
i=1 Xi, while it is significant in the (−)

channel. In this case, the difference between 1− β̂SEQk

and 1−β̂CEk amounts to the difference between Yk∑n+1
i=k Yi

and Yk∑n
i=k Yi

. Because Yn+1 occupies a major fraction
of the (−) channel pool, the denominator of the right-
hand expression is larger than the left-hand one, and
consequently β̂SEQk > β̂CEk . This example illustrates
that the missing information might lead to different
estimates, and that under some scenarios, it results
in under-estimation of all reactivities. Furthermore, the
effect becomes more pronounced as we progress toward
site n, since Yn+1 occupies increasingly larger fractions
of
∑n+1
i=k Yi. For this reason, the relative reactivities are

distorted as well, even when all the βk’s are under-
estimated.

2) In this example, we still assume that
∑n+1
i=1 Xi =∑n+1

i=1 Yi, but we now require both Xn+1 and Yn+1

to represent significant fractions of the overall pools.
We further assume that at the last two sites we observe
Yn = Yn−1 = 3, Xn−1 = 30, and Xn = 6. Then, for
site k = n − 1 we obtain β̂CEn−1 = 1 − (1 − 30

36 )/(1 −
3
6 ) = 2

3 , but on the other hand, when Xn+1, Yn+1 are
large enough (e.g., on the order of thousands), we have
β̂SEQn−1 ≈ 0. Here, unknown large end-signals lead to
the misinterpretation of minor (+) channel signals (or
merely system noise) as indicative of high reactivity.
This stems from misrepresentation of the molecular pool
composition by X1, . . . , Xn, and as before, the effect
tends to intensify as we get closer to site n.

These examples describe very specific and perhaps extreme
scenarios, and clearly, it is difficult to predict the effect of a
given pair Xn+1, Yn+1 on the estimates of the entire RNA
sequence, as these also depend on the underlying fragment-
length distributions. While distortion may certainly be small at
many sites, such differences accumulate when all estimates are
jointly aggregated into an estimate of the modification fraction
fmod. To demonstrate this cumulative effect, we first assume
that the initial estimate B̂ consists entirely of nonnegative β̂k’s
under both platforms, and so no zeroing is applied. It is then
easy to see that

f̂CEmod ≈ 1− Xn

Yn
×
∑n
i=1 Yi∑n
i=1Xi

(26)

f̂SEQmod = 1− Xn+1

Yn+1
×
∑n+1
i=1 Yi∑n+1
i=1 Xi

,

where the inequality is due to an unknown β̂n under CE
settings (see discussion following Eq. 24). For simplicity, we
again assume equally sized (+) and (−) RNA pools, in which
case Xn+1

Yn+1
completely determines f̂SEQmod , whereas f̂CEmod is

affected by site n’s data ratio, Xn
Yn

, as well as by Xn+1 and
Yn+1’s portions of the entire RNA pools (rather than by their
ratio). It thus appears that the CE-based estimate is more
susceptible to the actual experimental conditions and to noise
toward the signal’s end. Yet, in practice, many of the point
estimates are zeroed out and so the formulation above may
not accurately capture the true estimates.

We conclude with two examples computed from SHAPE-
Seq data, where we compare the NGS- and CE-based ML
frameworks for the Staphylococcus aureus pT181 RNA and



for the Bacillus subtilis RNase P RNA specificity domain.
The CE case was analyzed by deleting the (+) and (−) end
signals, thus reflecting our assumption that SHAPE-CE data
closely resembles SHAPE-Seq data, as we have previously
observed for these two RNAs [9]. The estimated reactivities
shown in Fig. 3 support our observations, and a clear trend of
divergence between the estimates under the two frameworks
is apparent toward the 5′ end, where in these two cases the
CE data result in over-estimation. Interestingly, the divergence
in the fraction of modified molecules was minor in the pT181
case (f̂CEmod ≈ 0.9 vs. f̂SEQmod ≈ 0.86) and amounted to approxi-
mately 20% for RNase P (f̂CEmod ≈ 0.62 vs. f̂SEQmod ≈ 0.52). Our
results thus point out to a potential shortcoming of likelihood-
based signal recovery schemes, when used in conjunction
with CE systems. It is important to stress, however, that the
previous and less automated method developed by the Weeks
and Giddings labs [12] does not suffer from this shortcoming.
This is because it relies on visual assessment of the signal’s
decay and its subsequent correction, whereas likelihood-based
methods such as ours and the one reported in [15] explicitly
utilize the observed frequencies to correct the signal. At the
same time, relying on user feedback poses challenges to the
reproducibility and accuracy of analysis, as discussed in [10].

V. CONCLUSION

In this work, we presented a model and a maximum-
likelihood framework, which lead to simple closed-form reac-
tivity estimates, and which are applicable to chemical probes
that use either CE or NGS for transcript quantification. We
used this general framework to directly compare the estimates
obtained with the two detection platforms, and concluded that
lack of full-length signal information in CE settings degrades
the estimates quality, and hence SHAPE-Seq is a more in-
formative, and potentially more accurate, technique. Yet, it
remains to determine the effects of this missing information on
structure prediction’s accuracy in order to clearly characterize
the benefits of using new protocols such as SHAPE-Seq.

APPENDIX

To justify our claim that Eq. 12 pertains to the feasible
ML solution, we first assume that βk = 0 and then optimize
lk(0, γk) = Sk log(1−γk)+(Xk+Yk) log γk to obtain γ∗k as its
maximizing argument. Hence, this point represents the maxi-
mum over all points on one edge of the constrained optimiza-
tion domain D = {(βk, γk) : 0 ≤ βk ≤ 1, 0 ≤ γk ≤ 1}. Now,
assume that our claim is not correct, i.e., the maximum over
D is not attained at a point where βk = 0. Then, there exists
a point (β̃k, γ̃k) such that lk(β̃k, γ̃k) > lk(β∗k , γ

∗
k) ≥ lk(0, γk)

for any 0 < γk < 1. Clearly, (β̃k, γ̃k) must lie in D’s interior
since lk approaches −∞ near all other three edges of D. Next,
we construct a rectangular compact set E = {(βk, γk) : 0 ≤
βk ≤ a < 1, 0 < b ≤ γk ≤ c < 1} ⊂ D around (β̃k, γ̃k),
where we choose a, b and c such that lk(β̃k, γ̃k) exceeds lk’s
values over E’s boundary. This is possible due to the function’s
decline to −∞ as βk approaches 1 and as γk approaches {0, 1}
and because lk(β̃k, γ̃k) is greater than lk’s values at the fourth

edge (where βk = 0). Since E is compact, lk must attain a
global maximum over it, but it follows from the construction
that the maximum must lie in its interior. This, in turn, means
that this maximum must also be a stationary point (since lk is
differentiable over E), which contradicts the fact that the only
stationary point is (β̂k, γ̂k), which lies outside of D.
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