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Abstract—In this paper, the Interference Network with General
Message Sets (IN-GMS) is introduced in which several
transmitters send messages to several receivers: Each subset of
transmitters transmit an individual message to each subset of
receivers. For such a general scenario, an achievability scheme is
presented using the random coding. This scheme is systematically
built based on the capacity achieving scheme for the Multiple
Access Channel (MAC) with common message as well as the best
known achievability scheme for the Broadcast Channel (BC) with
common message. A graphical illustration of the random
codebook construction procedure is also provided, by using
which the achievability scheme is easily understood. Some
benefits of the proposed achievability scheme are described. It is
also shown that the resulting rate region is optimal for a class of
orthogonal INs-GMS, which yields the capacity region. Finally, it
is demonstrated that how this general achievability scheme can
be used to derive capacity inner bounds for interference networks
with different distribution of messages; in most cases, the
proposed achievability scheme leads to the best known capacity
inner bound for the underlying channel. Capacity inner bounds
can also be derived for new communication scenarios.

Keywords- Interference Networks; General Message Sets;
Broadcast Channel; Mutiple Access Channel.

I. INTRODUCTION

The interference networks are of the most important multiuser
scenarios due to the wide range of practical communications
systems for which these models are fitted. Up to know these
networks have been extensively studied, however, our knowledge
regarding the behavior of information flow in them is still limited.
For instance, a computable characterization of the capacity region
for the two-user Classical Interference Channel (CIC) is unknown
[1], unlike its simple configuration. The best achievability scheme
for this channel is due to Han-Kobayashi (HK) [2] proposed in
1981. The multiuser interference networks recently have been
widely investigated in the literature. Nevertheless, they are far
less understood [3].

In this paper, we introduce the Interference Networks with
General Message Sets (IN-GMS), a network scenario where
several transmitters send messages to several receivers: Each
subset of transmitters transmit an individual message to each
subset of receivers. In fact, this scenario unifies all interference
channel models with diverse distribution of messages. For
example, the two-transmitter/two-receiver IN-GMS contains the
CIC, the Multiple Access Channel (MAC) with common message
[4], the Broadcast Channel (BC) with common message, the
cognitive radio channel [5], the X-channel [6], the Z-channel [7],
the cognitive interference channel with degraded message sets [8]
and etc, as special cases. In this paper, we present a random coding
scheme for such a general scenario. Having at hand an achievable
rate region for this channel in the general case sheds light on
information flow, not only for the system itself but also for its sub-
channels. Specifically, we demonstrate that all previously derived
achievable rate regions for different interference networks can be
deduced from our general scheme [9].

To building achievability schemes with
performance for such large networks, it is required:

satisfactory

1. To recognize the main building blocks involved in the
network.

2.  To know the best encoding/decoding strategy for each
building block.

3. To combine systematically the best
schemes of the building blocks.

achievability

In this paper, regarding the first step, we justify that the MAC
with common messages and the BC with common messages are
two main building blocks of the IN-GMS, which should be
focused on to derive a high performance achievability scheme for
this network. We then discuss in details the best
encoding/decoding strategy for these two models. Precisely
speaking, for the MAC with common messages it was shown [4]
that superposition coding achieves the capacity. Regarding the BC,
the capacity region is still unknown; the best achievability scheme
for the two-user BC is due to Marton [10]. In this paper, we
provide a graphical illustration for the superposition structures
among the generated codewords in a random coding scheme, by
which the encoding procedure is easily understood. Based on this
graphical representation, we argue that the superposition structures
among the generated codewords in the Marton’s coding for the
two-user BC with common message is exactly the same as that one
in the MAC with common message. We examine some other
coding strategies for the two-user BC and mention that the
resulting achievable rate region by them is equivalent to Marton’s
one or include in it as its subsets. Using these general insights, we
propose a random coding scheme for the multi-receiver BC with
common messages (for each subset of the receivers there exist a
common message), in which the superposition structures among
the generated codewords are exactly similar to the multi-
transmitter MAC with common messages.

As the last step, we combine systematically these two encoding
strategies, i.e., the capacity achieving scheme for the MAC with
common messages and the proposed coding for the BC with
common messages, to building an achievability scheme for the IN-
GMS. As one of the useful properties our achievability scheme is
that the superposition structures among the RVs is such that each
receiver decodes only its respective messages (using a jointly
typical decoder) and it is not required to decode non-intended
messages at some receivers. We also demonstrate that our
achievable rate region is optimal for a class of orthogonal IN-
MAC. Then, we describe that how our general achievability
scheme can be used to derive capacity inner bounds for
interference networks with diverse distribution of messages.

It should be mentioned that due to simplicity of exposition, in
this conference version of our paper, we only discuss the
achievability scheme for the two-transmitter/two-receiver case;
nevertheless, our systematic approach is such that all the rules in
derivation of the coding scheme directly extend to the case with
arbitrary number of transmitters and receivers, as will be reported
in [9]. Moreover, to analyze the error probability of the proposed
coding, we exploit a covering lemma proved in [3, p. 15-40].
Using a novel application of this lemma the necessary conditions
for vanishing the error probability in the encoding steps are readily
derived, which makes the analysis significantly concise. Also, the
analysis of the decoding steps is performed by constructing a table
of decoding errors, in a clear framework with a few computations.
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Figure 1. The two-transmitter/two-receiver Interference Network with General Message Sets (IN-GMS).

In the rest of the paper, we briefly state the preliminaries and
channel model definitions in Section II. The main results are given
in Section III. Due to space limitations, some steps in the analysis
of the coding scheme are omitted here, but they can be found in
[11]. The generalization of the coding scheme for networks with
arbitrary number of transmitters and receivers is given in [9].

II.  PRELIMINARIES AND DEFINITIONS

Throughout the paper the following notations are used:
Random Variables (RV) are denoted by upper case letters (e.g. X)
and lower case letters are used to show their realization (e.g. x).
The range set of a RV X is represented by X'. The Probability
Distribution Function (PDF) of a RV X is denoted by Px(x), and
the conditional PDF of X given Y is denoted by Pyy(x|y); also, in
representing PDFs, the arguments are sometimes omitted for
brevity. The probability of the event A is expressed by Pr(A). The
set of nonnegative real numbers and positive integers are denoted
by R, , and Z,, respectively. The notation [1: K] where K is a
positive integer, represents the set {1, ..., K}. The set of all jointly
€ -letter typical n-sequences (x™,y™) with respect to the PDF
Pyy(x,y) is denoted by 7" (Pxy), (To see the definition of such
sequences and their properties refer to [12]). Also, given the
sequence y", the set of all n-sequences x™ which are jointly
typical with y™ with respect to the PDF Pyy (x,y), is denoted by
T (Pyy|y™) . Finally, ppin(Px) denotes the minimum positive
value of Py.

Interference Networks with General Message Sets: Here,
we briefly discuss the communications scenario of the IN-GMS in
the two-transmitter/two-receiver case. The detailed definitions are
given in [9] wherein the general network from the viewpoint of
the number of transmitters and receivers is considered.

Consider a two-transmitter/two-receiver interference network
wherein the transmitters intend to send nine messages over the
channel; there exist three sets of triple messages where one
message set is transmitted over the channel by both transmitters
cooperatively, and the two other message sets are transmitted
separately, one set by each transmitter. In each message set there
exist three messages: two private messages, one for each receiver,
and also a common message for both receivers. Therefore, each
receiver is required to decode six messages three of which are
common between both receivers. This channel indeed includes all
possible schemes of transmitting messages over a two-user
interference network. Hence, we refer to as Interference Network
with General Message Sets (IN-GMS). Figure 1 illustrates the
channel model.

This network is determined by the conditional PDF
P(y;, ¥, %1, x,) which describes the relation between inputs and
outputs of the network. The network is assumed to be
memoryless. For a length- n block code, n € Z, , the it"

transmitter encodes its respective messages using the codewords
X" and the j** receiver decodes its intended messages by the
received sequence Y, i,j = 1,2. The explicit definitions of the
encoding and decoding procedures and the capacity region for the
IN-GMS can be found in [9]. As usual, every subset of the
capacity region of the network is called an achievable rate region.

In the next section, we present an achievable rate region for
this network using the random coding.

III.  MAIN RESULTS

In this section, we aim at establishing an achievability scheme
for the IN-GMS depicted in Fig. 1. Due to presence of several
messages which are required to transmit over the channel, one can
consider numerous achievability schemes for this network. But the
question is that what is the best transmission strategy?

To respond to this question, first, we discuss the main building
blocks involved in the network as well as the best
encoding/decoding strategy for each one. To recognize the main
building blocks of the IN-GMS, we look at the encoding and the
decoding sides of the network. Let us examine Fig. 1. From the
viewpoint of the encoding side, we have a multiple access problem
with common message. On the other hand, from the viewpoint of
the decoding side, we have a broadcasting problem, (both common
and private messages). Therefore, it is required to investigate the
MAC with common message and also the BC with common
message, in details. Consider the MAC with a common message,
as shown in Fig. 2.

The capacity region of this channel was determined in [4]
which is given as:

((Rl,Rz) € R}: ]
Ry < I(Xy;Y1Xp, W)

R, < I(Xz; Y|X1; w)
PwPx \wPx,\w Ri+R; < I(Xl,Xzi Y|W)

RO + Rl + RZ S I(XIJXZ; Y)

(M

For this channel, it was shown that the superposition coding
achieves the capacity. As a brief discussion regarding this coding
scheme, we mention that the common message M, is encoded by a
codeword constructed by the RV W based on Py,. Then, for each
of the private messages a codeword is generated superimposing on
the common message codeword W: The private message M; is
encoded using a codeword constructed by X; based on Pyw
i =1,2. The i** transmitter, i = 1,2, then sends X;(M;, M,) over
the channel. The decoder decodes the messages using a jointly
typical decoder. Figure 3 graphically illustrates the encoding
scheme.
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Figure 2. The two-user MAC with a common message.
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Figure 3. The graphical illustration of the generated codewords for the
MAC with a common message. Every two codewords connected by an arrow
build a superposition structure: The codeword at the beginning of the arrow is
the cloud center and that one at the end of the arrow is the satellite. The ellipse
beside each codeword shows what contains that codeword, in addition to those
ones in its cloud centers.

In this illustration, we use a directed graph to represent the
superposition structures among the generated codewords: Every
two codewords connected by an arrow (directed age) build a
superposition structure where the codeword at the beginning of the
arrow is the cloud center and that one at the end of the arrow is the
satellite. The ellipse beside each codeword shows what contains
that codeword, in addition to those ones in its cloud centers. This
graphical representation is very useful to understand an
achievability scheme, especially for large networks.

Then, consider the two-user BC with common information, as
shown in Fig. 4. The capacity region of the BC is still an unsolved
problem in network information theory. To date, the best capacity
inner bound for this channel is due to Marton [10], (see also [13])
which is given by:

(Ro, R, R;) ERY -

Ry +R, <I(W,U;Y;)

Ry + R, <I(W,V;Y,)

Ry+ R+ R, <I(W,U; Y) +1(V; Y,|W)

U —1UVIW)

Pwouvx | Ro + Ry + R, < I(U; i |W) + I(W,V; Y,)
—I(U; VW)

2Ry + R+ R, <I(W,U;Y)) + I(W,V;Y,)
—I1(U; VW)

)

Here, we briefly discuss the Marton’s coding scheme. Roughly
speaking, the common message M, is encoded by a codeword
constructed of W based on Py,. For each of the private messages, a
bin of codewords is randomly generated superimposing on the
common message codeword W : The bin respective to M; is
constructed by U based on Py, and that one for M, is constructed
by V based on Pyy,. These bins are explored against each other to
find a jointly typical pair of codewords. Using the mutual covering
lemma [3], the sizes of the bins are selected sufficiently large such
that the existence of such typical pair of codewords is guaranteed.
Superimposing on the designated codewords W, U, V, the encoder
then generates its codewords constructed by X based on Pyyyy,
and sends it over the channel. Each receiver decodes its respective
codewords (the first one decodes W, U and the second one decodes
W, V) using a jointly typical decoder. The resulting achievable rate
region is further enlarged and reaches to (2) by the fact that if the
rate triple (Ry, Ry, R,) € RE is achievable for the BC, then
(Ry —my — 1y, Ry + 71, R, + m,) €RE is also achievable. The
graphical representation of the Marton’s coding has been shown in
Fig. 5.
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Figure 4. The two-user BC with common message.
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Figure 5. The graphical illustration of the generated codewords for the BC
with a common message in the Marton’s scheme. This figure depicts the
superposition structures among the generated codewords. The parameters b,, b,
indicate the bin indices.

The superposition structures among the generated codewords
in the Marton’s coding scheme for the two-user BC with common
message are exactly the same as the MAC with common message,
as shown in Fig. 3. The only difference in the encoding scheme is
that, unlike the MAC, for the BC since all the messages are
available at one transmitter, it is possible to apply the binning
technique. Using the binning scheme we can construct the
transmitted codewords jointly typical with the PDF Py, x, which
yields a larger achievable rate region than the case where the
messages are encoded only using the superposition coding
according to the PDF Py, Py w Pyjw Pxjwuv -

It should also be mentioned that one can consider some new
coding schemes for the two-user BC other than the Marton’s one.
For example, it is possible to encode all the messages (both
common and private messages) only using the binning technique,
i.e., without superposition coding. In this scheme, roughly
speaking, respective to each message a bin of codewords is
generated (the bins are generated independently) and then these
three bins are explored against each other to find a jointly typical
triple. Using the multivariate covering lemma [3] the sizes of the
bins are selected such large to guarantee that there exists such
triple of codewords. The transmitter then generates its codeword
superimposing on this jointly typical triple and sends it over the
channel. Each receiver decodes its respective messages using a
jointly typical decoder. Other coding strategies are also available.
We have examined these coding schemes [9] and found that all the
resulting achievable rate regions are equivalent to the Marton’s
one or include in it as its subset. Therefore, we can conclude that to
broadcasting both common and private messages, it is more
beneficial to encode the private messages superimposing on the
common messages.

Using this general insight, in [9] we propose an achievability
scheme for transmission of the general message sets over the
multi-receiver BC such that the superposition structure among the
generated codeword is exactly similar to the multi-transmitter
MAC with common messages [4]. To derive this superposition
structure it is sufficient to look at the receivers of the BC from the
viewpoint of the respective messages, as the transmitters of a
MAC. The details can be found in [9].

The Marton’s achievable rate region (2) for the two-user BC is
optimal in all special cases for which the capacity region is known;
specifically, the degraded BCs, the more-capable BCs, the semi-
deterministic BCs [3]. It is also optimal for the Gaussian multiple-
input multiple-output BCs [3].

Now, let us turn to the IN-GMS depicted in Fig. 1. In the
following, we first derive an achievable rate region for this
network and then we show that some known results, specifically,



the HK rate region [2] for the two-user CIC can be derived from
our coding scheme as special cases.

Consider the IN-GMS as depicted in Fig. 1. In this model,
three sets of messages, i.e., {M;o, My, M5}, {Myo, Moy, My},
{M,,, M,,, M,,}, are sent over the channel where from the view
point of each set we have a broadcasting scenario: One private
message for each receiver and a common message for both. As
mentioned before, the main building blocks of the network are the
two-user BC with common message and also the two-user MAC
with common message. Therefore, to derive a satisfactory
achievability scheme for this network, it is required to combine
systematically the best coding schemes for these main building
blocks. Note that by considering transmission of only one of the
message sets {Myo, Myy, M5}, {Moo, Moy, Moz}, {M30, M2y, M5}
the IN-GMS reduces to the two-user BC; therefore, we build our
achievability scheme such that when it is specialized for these
sub-channels, the Marton’s inner bound (2) for the two-user BC
results.

Note that here we describe our coding scheme in details only
for the two-transmitter/two-receiver IN-GMS; nevertheless, due
to our systematic approach, all the rules applied here to establish
the achievability scheme directly extend to the case of arbitrary
number of transmitters and receivers, as will be reported in [9].
Also, it is worth noting that, however, our achievability scheme
may seem complex at the first glance, but indeed this is not the
case. Due to symmetry in the encoding and decoding steps, the
analysis of the proposed random coding is very simple. In
addition, in the encoding steps we exploit a multivariate covering
lemma proved in [3, p. 15-40] to obtain an admissible source
region for the two-user BC. Using a novel application of this
lemma, the necessary conditions for vanishing error probability in
encoding steps are readily derived, which makes the analysis
significantly concise; see [11] for details. In the following
theorem we state our main result.

Theorem 1) Define the rate region RV ~6MS as given in the

next page. The set RIV"5MS is an achievable rate region for the
IN-GMS depicted in Fig. 1.

Remarks:
1. The rate region RIV"6MS is convex.

2. The rate region RIN"CMS can be further enlarged by
considering the fact that if
(Roo» Ro1, Ro2» R10s Ri1, Ri2) Ra0 Ra1, Raz) € RS is achievable,
then the following 9-tuples are also achievable:

(Roo — 1 — 13, Roq + 71, Ry + T2, Rig, Ri1, Ri2s Ra0s Ra1, Ra2)
(Roos Ro1s Rozs R1g — Ty — T3, Ryq + T4, Rz + T3, Ryo, Rp1, Ra2)
(Roos Ro1s Rozs R10s Ri1, Ri2, Rag — Ty — T3, Ry + 14, Rpp + 115)

where (1, m,,m,) € R3. This fact is adapted from the same
observation for the BC, as discussed before.

3. One of the useful properties our achievability scheme is that
the superposition structures among the RVs is such that each
receiver decodes only its respective messages (using a jointly
typical decoder) and it is not required to decode non-intended
messages at some receivers. This is important, since usually
decoding non-intended messages at one receiver causes rate loss.

For the special cases of the two-user MAC with common message
and the BC with common message our achievable rat region (after
applying the technique mentioned in Remark 2) reduces to the (1)
and (2), respectively.

Proof of Theorem 1)

We derive the achievability of RN M5 given by (7) using a
random coding argument. To encode each of the messages
{Myo, My1, M13} U {Mog, Moy, Mo} U {M30, M3y, Ma,}, we use an
auxiliary RV. Inspired by Marton’s region characterization given
by (2), we encode the messages M;y, M;;, M;,,i = 0,1,2, by
W;, U;, V;, respectively.

Definition: Suppose m € Z,. Let A,,: Z}* — 7Z, be a bijection.
The order relation <, induced by A,,(.) on the set ZT', is

defined as follows. For every (a4, ..., a,,) and (b, ..., b,) in Z7
where (ay, ..., ay,) # (by, ..., by), we have:
@y, s @) <p,, by, e, b)) &
A (ay, o, ap) < Ay (by, ..., byy)
3)

Also, the “min” operator with respect to <, _, denoted by minA,,,
is defined as follows. Let S be a nonempty subset of Z}'. We
have:
minA,, § £ A, (min {4,,(s) : s € S})
)
where A;1(.) denotes the inverse function. The “max” operator
could be defined, similarly.

Let (Roo, Ro1, Roz, Rio, Ri1s Riz) Raos Ra1, Ryz) ERY , and  the
message M;j,{,j = 0,1,2, be a RV uniformly distributed over the
set [1:2™Rij] . Also, let A,:Z3 > Z, and A3:Z3 — Z, be two
arbitrary bejections with the “min” operators min4, and min/s;,
respectively, as defined by (4). As a convention, denote
minA,(®) £ (1,1) and minA;(@) £ (1,1,1).

Encoding steps: The encoding is performed in three steps:

Step 1: At the first step the messages {Myg, My,, My, } which are
sent by both transmitters cooperatively, are encoded. These
messages are encoded exactly similar to Marton’s coding scheme:
Fix the PDFs Py, Py, Pryw, - Let (Bo1,Boz) E RS be a
nonnegative pair of real numbers. These serve as the sizes of the
bins.

1. Generate at random 2"™Roo independent codewords W'
according to Pr(wg) = [Ii=; Py, (Wo_t). Label these codewords
W (mgo), where mg, € [1: 2™Roo],

2. For each W@(mg,), where my, € [1:2™F00] | randomly
generate 2"Ro1+Bov) independent codewords U according to
Pr(ug) = [1¢=1 Pyyw, (uo‘t|wo_t(m00)). Label these codewords
Ul (mgg, Mo1, bo1), Where mg, € [1: 2™Ro1] and by, € [1: 2™Bo1],

3. For each W{(my,), where myq € [1:2"Ro0] | randomly
generate 2"(Ro2+Bo2) independent codewords V' according to
Pr(vg) = [1i=1 Py, jw, (volt|wo‘t(m00)). Label these codewords
Vi (mgo, Moy, boz), Where mg, € [1: 2™R02] and by, € [1: 2™Boz],

Given mgg, Mgy, My, define the pair (b3, bJ,) as follows:
(o1, boz), bo; € [1:2MBoi], i =1,2
W(;n (mOO)'

Ug (Mgo, Mo1, bo1),
Vgt (Moo, M2, bo2)

(bJ,,b%,) 2 min4,
€T

®)

In other words, (b3, b3,) is the minimum pair (by, bop) (With
respect to A,) such that the codewords W', Ug, Vgt are jointly
typical. If there is no such codewords, then (bJ;, b,) 2 (1,1).

In the first step, the designated codewords for transmission are:

(Won(moo), Ug (Moo, M1, bgﬂ' V5t (Moo, Moy, bgz))

(6)

Using the mutual covering lemma [3], we can select the sizes
of the bins By, By, sufficiently large to guarantee that the
codewords (6) are jointly typical with respect to Py, y,v,-

In the next two steps, the two message sets {M;q, My, M1,}
and {M,,, M5, M,,} which are sent by transmitter 1 and 2,
respectively, are encoded. The codewords generated in Step 1
are now served as cloud centers for the new codewords (which
are generated in Steps 2 and 3) in such a fashion as depicted in
Fig. 6.



(Roos Ro1, Roz, Rig, Ri1, Ri2, Rao, Ra1, Rp2) € RY
3 (Bo1, Boz, Bio Bi1, Bi2, B2o, B21, B22) € RE,
Bo1 + Bop = 1(Ug; Vo[ Wp)
Bio = I(Uy, Vo; W [Wp), i = 1,2
By + Bi; = I(UOJ Vo; W1|W0) + I(Vo; Ui|Wo' U, Wi)li =12
Bio + Bip = 1(Uy, Vo; Wi [Wo) + 1(Uq; Vi|Wo, Vo, W), i = 1,2
Bjo + By + Biy = I(Uy, Vo; W [Wo) + T (Vy; Ui |Wy, Ug, W;) + 1(Uy, Uy; Vi [Wo, Vo, W), i = 1,2

R =Ry +By,  ij€{0,12}0)) % (0,0),

b b

Rll < IEii_)yl, R12 < IEf_’YZ
b b

R3; < IEg—>Y1’ Ry, < IEg—>Y2

RbI+RY <I_a Rb, +RY, <14
RIN-GMS & 1 21 E¢>yy’ 12 22 Ed-y, >
i - b b b b
PIN—GMS Rlo + Rll < IEg_)Yl’ Rlo + Rlz < IEE_’YZ

Rgo + Rgl < I Rgo + Rgz < IEg_)YZ
b b b b b b

Ry + RV, +RE, <1 Ry + RV, + RE, <1

RYy + RS+ R3y <Iga.,, R +R3+RY<Ig,

Rb, +RP, +RE, <14 Rb, +RP, + R, < I 4

Eg-yy’ E§-Y,
Ry + R, + RE, + RE, <1 RYy + RY, + RE, + RE, < 1
RS, + RP) + RP, + R, < I

R, + RPy + R?, + RS, < I
Rb, +RP, + R2y +R2, < I

R8; + R, + R3y + R3; < Iga Ly,
RS, + Ry + R?, + REy+ R, <1 R, + RPy + R?, + REy + RS, < 1

E-vy

Ed-yy Ed-Y,

E§ vy’ E§~Y,

By Ed-Y,

Efyovy

Efy-vy’ EL =Y,
Roo + R81 + Rlo + Ri1 + R% + RSy <lga ..,  Roo+ ROz +Rio+RY;+ Ry +RY; <lpa_,
(7
where,
6y, = 1(Ug; W;|Wy), 07 = 1(Ug; W,|Wp), 0y, = I(Wy; W, |Wo, Uy), By, = 1(Ug; Wy, W,|W,)
0, = [(U; Wo|Wo, Ug, Wy) 65, = [(Up; Wi Wy, Ug, W), Oy, = 1(Uy; Up|Wy, Uy, Wy, W>)
®)
IE:‘[i_’Yl = I(Ul; Y1|W0, Uo, WI' Wz, Uz) + 931 + Q}Zl
[Eéi—ﬂﬁ = I(Uz, Y1|W0, Uo, Wl' Wz, Ul) + 631 + 6;1
[Eéi—’}ﬁ = I(Ul, Uz, Y1|W0, UO’Wll Wz) + 631 + 651 + 6;1
Ipa_y, = 1(Wy, Uy Y |Wo, Uy, W, Us) + O3, + 0y + 65y, + 6y + 67,
IE?—»Yl = I(W,, Uy; Y1 |W,, Uy, Wy, Uy) + 931 + 931 + 931 + 931 + 9;1
Ipa_y, = 1(Wy, Uy, Uy; Y[ Wo, Ug, Wo) + 63, + 65, + 65, + 6%, + 67,
1E§1—>Y1 = I(Ul, Wz, Uz, Y1|W0, Uo, Wl) + 6%1 + 631 + 6;1 + 6?1 + 6;1
IEéi_)Yl = I(Uo, Ul' Uz; Y1|W0, Wl’ Wz) + 9;}1 + 6}%1 + 9}91 + 9;1
IEg—>Y1 = I(Wl, Ul' Wz, Uz; Y1|W0, Uo) + 6%1 + 6%1 + 6}5;1 + 6;1 + 631 + 9;1
IEld0—>Y1 = I(Uo, Wl’ Ul' Uz, Y1|W0, Wz) + 6}%1 + 6%1 + 631 + 6}%1 + 6?1 + 6;1
gg oy, = 1o, Uy, Wo, Uy Yy [Wo, W1) + Oy, + 67 + 63 + 65 +65 +067
IEld2—>Y1 = I(Uo, Wl’ Ul' Wz, Uz, Y1|W0) + 6}%1 + 6%1 + 631 + 6}%1 + 6?1 + 6;1
Eii3—’Y1 = I(Wo, Uo, Wl’ Ul' Wz, Uz; Yl) + 9}1 + 6}2/1 + 6}?}1 + 931 + 661 + Q}Zl
©)
Also, 63, ..., 67, and | £y, 1 g _y, are given similar to 6y, ...,0y, and | gy, gy, respectively, except ¥; should be replaced

by Y, and U; by V;, i = 0,1,2, everywhere. Moreover, P{¥~6MS denotes the set of all joint PDFs Poyyuovowyuviw, U v, x, x, Satistying:

PWoUoVoW1U1V1W2U2VzX1X2 = PWoUoVoPX1W1U1V1|W0U0V0PX2W2U2V2|W0U0Vo

(10)

In Fig. 6, every two codewords connected by a directed edge are both the codewords W{* and U{' are cloud centers for the codeword
arranged in a superposition manner: The codeword at the UT'. In other words, the codeword U is superimposed on three
beginning of the edge is the cloud center and the codeword at the codewords Wi, Wi, Uy, where W itself is also a cloud center for
end of the edge is the satellite. For example, the codeword W' is both W*, U§. Other relations among generated codewords can be
the cloud center for all other codewords. Also, in addition to W', understood from Fig. 6, similarly.



Generated codewords at Step 2

Generated codewords at < ' mgyo

Step 1

Generated codewords at Step 3

Maq, by

M3z, byy

Figure 6. The graphical illustration of the generated codewords for the IN-GMS. This figure depicts the superposition structures among the generated codewords.
The ellipses beside each codeword show what contains that codeword, in addition to those ones in its cloud centers.

Figure 6 clearly depicts the systematic combination of the capacity
achieving scheme for the MAC with common message with the
Marton’s coding for the BC with common message. The
superposition structures among the generated codewords is such
that each (WUV) -triple (which performs a broadcasting) is
configured in the Marton’s scheme, while the triplets (W,U,V,),
wu,vy), (W,U,V,) are configured in the capacity achieving
scheme for the MAC with common message. This representation
is also useful to clarify the factorization of the joint PDFs in
consideration of which the resulting rate region is evaluated (10).
This factorization is derived as follows:

Each RV in the capacity achieving scheme for the MAC with
common messages is replaced by the situated broadcasts RVs.

Using this general direction, the factorization (10) can be
perceived by the joint PDFs respective to the regions (1) and (2).

In the following, we describe the random codebook generation in
Steps 2 and 3, in details.

Step 2: In this step the messages {M;, M;4, M;,} which are sent by
transmitter 1, are encoded. Fix the PDFs
Py, 1wy Puyiwyuowyr @04 Py jw,vow, - Let (Big, Bi1, B1z) € RY be a
nonnegative triple of real numbers.

1. For each W(mg,), where mg, € [1: 2™Roo] | generate at
random 2"R10+B10) independent codewords Wi according to
Pr(wi') = [1f=1 Pw,w, (W1,t|W0,t(m00)). Label these codewords
W (myg, My, byo), where myq € [1: 2™R10] and by, € [1: 2B10].

2. For each triple codewords
(Won(moo)v Ug (Moo, Mo1, bo1), W1 (Moo, Myo, bm)) > where
Mmoo € [1:2"F00],my,; € [1:2"F01], by, € [1:2"P01],my, €
[1:2"R10], and by, € [1:2"P10], randomly generate 27(Ri1+Bi1)
independent codewords U* according to:

n
Pr(uy) = 1_[ Py, wygwy (e W1, Yo, Wo )
t=1
Label these codewords Uj'(mgg, Mo1, bo1, Migs b1o» M1, b11) »
where m,, € [1:2"R11] and b, € [1:2"B11],

3. For each triple codewords
(Won (M), Vo' (Moo, Mog, boz), Wi (Mo, My, b1o)) > where
Moo € [1:2"R00],my, € [1:27F02] by, € [1:2"P02],m,, €

[1:2"R10] | and by, € [1:2"P10], randomly generate 2" (R12+B12)
independent codewords V;* according to:

n
Pr(vi) = HPV1|W1VOW0 (171,r|W1,n Vo,t'Wo,c)

t=1
Label these codewords V{‘(myg, Mgz, bz, Myg, b1g, Maz, b12)
where my, € [1:2"”12] and b;, € [1: 2"B12],

Given (myy,myq,my,), define the triple (biy,bi},bl,) as

follows:
(bo, by, biy) =
(blo, bll' blz), bli € [1: ZnBOi],i = 0,1,2 :

)
W5 (mgo),
Ug (Mmoo, Moy, bgﬂ; Vo' (Moo, Moz, boTz);
WT* (Mg, My, b1o),
\ U{l(moo» Moy, bgl! myo, blO! my, bll)r /
Vit (Mg, Mgy, bng My, b1, Myz, b12)

minA;
eI

(11

In other words, (b, b, bi}) is the minimum triple (byq, by 1, b12)
(with  respect to Az ) such that the codewords
ug, vgt, wgt, W, UL, Vi are jointly typical with respect to the PDF
Pyyugvew,u,v, - If there is no such triple codewords, then
(bi,, b, b],) 2 (1,1,1). Note that, in the definition (11), the pair
(b}, bZ,) have been defined in Step 1 by (5).

In this step, the designated codewords are as:

n T
Wi (mgo, Myg, bio),

n T T T
UL (Moo, Moy, b1, Myg, big, My, biy),
n T T T
V' (Moo, Moz, boz, Mio, big, Mi2, biz)

(12)

Using the lemma proved in [3, p 15-40], we can select the sizes of
the bins By, B11, By, sufficiently large to guarantee that the
codeowrds (12) are jointly typical with those in (6), with respect to
the PDF PW0U0V0W1U1V1'

Given the messages (mgg, Mgy, Moz, Myg, Myq, M) , the first
transmitter generates a codewords X{* superimposing on the
codewords (6) and (12), according to:



Pr(xt) =
n

| | Py \wyu,vawoUve (xl,t|W1,t'u1,t' V1,t»Wo,t»u0,t»Vo,c)
t=1

and sends it over the channel.

Step 3: In this step the messages {M,,, M,;, M,,} which are sent by
transmitter 2, are encoded. The encoding scheme is exactly similar
to Step 2. Here, the random codewords are generated based on the
PDFs Py, 1w, Puyiwyuewer Proiwyvew, » and by following the same
lines as in Step 2 where the messages my,, myq, my, are replaced
by my,g, My, My, , the RVs Wy, Uy, Vi, Xy by Wy, Uy, V,, Xy, the
triple (Byg, B11,B12) € R3 by (Byg, By1,By) ER3 |, and the
indices byg, b11, b1z by by, byq, byy , respectively. We omit the
details to avoid repetition.

Decoding steps: Each decoder uses a jointly typical decoder to
decode its respective codewords. The encoding procedure at each
receiver is as follows:

1. At receiver 1, assume that the sequence Y;* has been received.
The  decoder tries to find a unique 1l1-tuple

(moo’ Moy, bo1, M1g, D1o, M1, b1, Mg, bag, Mo, b21) such that:

WOn(mOO)! U(1]1 (fr\lOO’ mol’ BOl)'

Wln (T/ﬁ'OO' ‘ﬁ\ll()' 510)' U]Tl(mOO' mol' BOl' ﬁllO' BIO' ﬁlll' Bll)r
WZn(fr\lOO’ fﬁ'ZO’ BZO)’ U;l (mOO' ﬁ\lov BOI' ‘fr\lZO' BZO’ fﬁ'le EZI)!
)6k
€ ‘Tfn(PWoUowlUleUzYl)

(13)

If there exists such 11-tuple, then the decoder estimates its
respective  transmitted messages by the corresponding
(Mg, Moy, My, Mqq, Mag, Mpy). If there is no such 11-tuple or
there is more than one, then the decoder produces an arbitrary
output and declares an error.

2. Similarly, at receiver 2 assume that the sequence Y7* has been
received. The decoder tries to find a wunique 11-tuple

(ﬁloo' Mgz, Do) Myg, b1g, My, b1z, Mg, byg, Moy, bzz) such that:

nr.o nl.o ~ N
Wq'(igo), Vo (moo'moz' boz);
nl.o ~ N nl.o ~ N ~ N ~ N
Wi (moo’ My, bw)' Vi (moo’ Moz, Bz, M1g, 1o, M1z, b12)'
n o~ o~ N n o~ o~ N o~ N o~ N
W, (moo' myo, bzo)' V; (moo» Moz, Doz, Mag, Do, Mz, bzz)'
Y

€ Tfn (PW0V0W1V1W2V2Y2)
(14)

If there exists such 11-tuple, then the decoder estimates its
respective  transmitted messages by the corresponding
(Mg, Moq, Myg, Mqq, Myg, Myq). If there is no such 11-tuple or
there is more than one, then the decoder produces an arbitrary
output and declares an error.

Analysis of error probability: Let
0<e< pmin(PWOU0V0W1U1V1W2U2V2X1X2Y1Y2)~ Denote Pg_y, as the
average error probability of decoding at the i*" receiver, i = 1,2.
Also, denote Pf as the total average probability of the code.
Therefore, we have:

Py < Piy, + Py,

(15)

Due to symmetry of the problem it is only required to analyze the
error probability at the first receiver. The necessary conditions for
vanishing the average probability of error at the first receiver can
be readily extended to the second receiver by exchanging some of
the parameters, as stated in the characterization of the rate region
RIN-GMS given by (7). The details of the analysis of error
probability in decoding at the first receiver can be found in [11]. m

Next, we present a class of INs-GMS for which the achievable rate
region derived in Theorem 1 is optimal which yields the capacity.

Definition: The IN-GMS is said to be orthogonal if the alphabets
transmitters are of the form X; = X, X Xp,i =12, and the
channel transition probability function satisfies:

P(ylr Y2 |x1! xZ) = ]P(yl |xA1' xAz)P(yZ |x31’ sz)
16)

In the following theorem, we provide a full characterization of the
capacity region of the orthogonal IN-GMS.

Theorem 2) The capacity region of the orthogonal IN-GMS (16)
denoted by C%t"..,<. is given as follows:

orth —
(SIN—GMS -

(ROO' R()l' ROZ! RIO' Rll' R12ﬁ RZO' R21' RZZ) S R?— :

Ryp + Ryy < 1(Xa; Y1 |Xa, W)

Ryo + Ryy < 1(Xa; Yi|Xa,, W)

Ryo + Ryy + Rog + Ryy < 1(Xa,, Xa,i Vi |W)

Roo + Roy + Ryg + Ryy + Ryg + Ryy < 1(Xa, Xas Y1) b

Pivus | Rio + Rz < I(XBl; Y2|X32; W)

Ry + Ryy < 1(Xp,; Y| X, W)

Rip + Ryz + Ryg + Ryy < 1(Xp,, Xp,; Vo |W)

Roo + Roz + Ryg + Ry + Ryg + Ryy < 1(Xp,, Xp,: V)
(17)

where P, o denotes the set of all joint PDFs as:

PWPXA1|WPXAZ|WPX31|WPXBZ|W
(18)
Remarks:

1. The rate region C%5t",,s given by (17), is convex.

2. Theorem 2 shows that the essential foundation of the
orthogonal IN-GMS is combined of two MACs with common
message, and the capacity achieving scheme for this channel is
based on a twin treatment of the superposition coding applied in
[4] for the MAC with common information. This also evidences
that the MAC with common message is one of the main building
blocks of IN-GMS.

Proof of Theorem 2) To prove the direct part, we make use of the
achievable rate region for the IN-GMS given in (7). By setting:

Wy =W, =W, =0, Ui = Xy,
Vi=Xp, U =X,, V=X

in (7) and restricting the joint PDF (10) as follows:

Pyovoxa, xp,xayx8, = PuoProPxa, 1o Pxs, 1voPxay U Pxs, o

(19)
we derive the following achievable rate region for the channel:
(ROO' ROI' ROZ' R10' Rll! RIZ' RZO' R21' RZZ) € Rg— :

Ry + Ryy < 1(Xa,5Y1|Xa,, Uo)

Ryo + Ry < 1(Xy,;: Ya|Xa,, Uo)

Ryg + Ryy + Ryg + Ryy < 1(Xa,, Xa,5 Y1 |Up)

U Roo + Roy + Ryo + Ryy + Ryg + Ry < 1(Up, Xa,, Xa 3 ¥y)

P | Ryo + Ryz < 1(Xp,; Yo|X5,, Vo)

Ry + Ryy < 1(Xp,; Ya|X5,, Vo)

Ry + Ryz + Ryg + Ryy < 1(Xp,, X5,3 Y| Vo)

Roo + Roz + Ryg + Ryz + Rag + Ry < 1(Vo, X5, X3 V)
(20)

where P denotes the set of all joint PDFs as in (19).

Now, consider the rate region (17). Given the PDFs
Py, PXA1|W'PXA2|W'PX31|W' PXBZ|W , with W eW , define two
independent RVs U, and V,, with the range of W as follows:



VaeW,i=12:
Py, (a) 2 Py (a) 2 Py(a)
PXAi|U0(- la) = PXAi|W(- la)
PXBi|VO(- la) = PXBl.|W(- la)
21)
Then, by substituting PUO’PVO’PXA1|U0‘ PXA2|U0‘ PXBl|Vo’PXBZ|V0 as
defined by (21) in (20), the resulting rate region is equivalent to
(17). The converse part will be given in [9]. m

Now, by an example we show that how one can establish
capacity inner bounds for different sub-channels of IN-GMS
using the general achievability scheme presented in Theorem 1
for this network, as well as the rate splitting technique.

Consider the two-user CIC in Fig. 7 as one of the sub-channels of
the IN-GMS. We aim at extracting the HK achievable rate region
[2] for this channel from the coding scheme presented for the IN-
GMS. To this end, as depicted in Fig. 7, each of the messages M;
and M, and thereby their respective communication rates R; and
R, are split in two parts:

M; = (M, M), R; = Ry + Ry, i=12

(22)

Now, consider the achievability scheme presented in Theorem 1
for the IN-GMS. In this coding scheme, let us restrict our
attention to the case of communicating only the messages
M;, My, at transmitter 1 and the messages M,,, M,, at transmitter
2. Therefore, in the rate region (7) the communication rates
respective to the other messages, i.e., My, M1, Moy, M5, My, as
well as the auxiliary RVs used to encode them (except W) are
nullified. The RV W, is used to serve as the time-sharing
parameter. Accordingly, in the rate region (7) we set:

Roo =Ro1 = Ros =R; =R;; =0
Ug=Vo=V,=U,=0

W, =@
(23)
Thereby, the distribution of the remaining RVs is given by:
Powowyuswovoxix, = PoPrywavsloProwavale o
2

On the one hand, by this assumptions we can set all the binning
rates, i.e., By1, B2, B1o» B11) B12, B2o» B21, B22, €qual to zero. One
can easily verify that the resulting rate region by these conditions
is described by the following constraints:

Ry, < 1(U1; Y1|W1' W, Q)

Rio + Ry < I(Wy, Uy Y1|W5, Q)

Ry < I(Wz; Y1|W1: Ui, Q)

Ri1 + Ryo < I(Uy, Wy Y1 |W4, Q)

Rio + Ryq + Ryo < (W1, Uy, W Y11Q)

Ryp < 1(Vo; Yo Wy, Wa, Q)

Ry0 + Ry < I(Wo, Vy; Yo | W, Q)

Rio S I(Wy; Y, |W,, V5, Q)

Rig + Ryp < I(Wy, Vy; Yo [W,, Q)

Rig + Ryo + Ryp < I(Wy, W, V53 Y11Q)

(25)

The union of all rates (Ryo, Ri1, Ryo, Ryz) € R? satisfying (25),
taken over the set of joint PDFs as (24), is achievable for the two-
user interference channel in which M;; is correctly decoded at the
i" receiver and M, at both receivers, i = 1,2. Then, note that for
the two-user CIC, according to (22), M, is a part of the first
transmitter message and M,, a part of the second transmitter
message, and hence it is required to decode only at their
respective receiver, correctly. On the one hand, the constraints
R20 < I(Wz; Y1|W1, Ul' Q) and R10 < I(Wl; Ylez, Vz, Q) given in
(25) are the cost we have to paid to correctly decode M, at
receiver 1 and M, at receiver 2, respectively. Hence, one can
remove these constraints from (25) and take the others with
definitions (22) as an achievable rate region for the two-user CIC.

M; = (Mo, Myy), Xp n M1 = (ﬂm-ﬁn)
Py, vzl x2)

My = (Myo, My3) - Xt e i, = (Mo, M)
%

Figure 7. The two-user Classical Interference Channel (CIC).

Then, by setting U; = X; and V, = X, in the resulting rate region
and applying Fourier-Motzkin  elimination to remove
R10, R11, R20, Ry3, the HK achievable rate region for the two-user
CIC is derived, (see also [14]).

Note that the procedure described above to derive the HK rate
region for the two-user CIC can also be followed for other sub-
channels of IN-GMS. We follow this approach for other channel
models in [9] and derive capacity inner bounds for new
communication scenarios.

CONCLUSION

In this paper, we introduced the IN-GMS and proposed an
achievability scheme for it using the random coding. This scheme
is systematically built based on the capacity achieving scheme for
the MAC with common message as well as the best known
achievability scheme for the BC with common message. We also
provided a graphical illustration of the random codebook
construction procedure, by using which the achievability scheme is
easily understood. Moreover, we proved that the resulting rate
region is optimal for a class of orthogonal INs-GMS, which yields
the capacity region. Finally, we demonstrated that how this general
achievability scheme can be used to derive capacity inner bounds
for interference networks with different distribution of messages.
In ongoing work [9], we investigate our achievable rate region for
interference networks with different distribution of messages.
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APPENDIX
» Analysis of error probability for the proposed coding scheme in Theorem |
Given the 9-tuple (mgq, Mg, Moz, Myg, My1, Myz, Mag, Myq, My,) Where m;; € [1: Z”RU], i,j =0,1,2, the encoding error events
E¢, ES, ES,ES, and also the decoding error events at the first receiver E, EZ, ..., Ef, are defined as follows:
Encoding errors:

V (bgy, bop) € [1:27Bo1] x [1: 27Boz] :
Ef = ( W5t (mgo),
Ug (Moo, Mg, bo1), Vo' (Moo, Mo2, boz)

) ¢ Tfn(PWOUOVo)
(26)

[V (b1, by1, byp) € [1:27P10] X [1: 2MB11] x [1: 27P1z] )

W5t (mgo),
/U(?(moo' Mo1, bg1): Vg (mgo, o2, bgz)'\
Wit (Mmoo, My, b1o), ¢ Ten(PWOUOVOW1U1V1)
Ut (Moo, M1, b1, Mig, big, My, bre),
Vit (Moo, Moz, bz Mig, big, M1z, biy)

>

E3

@7

V (byo, byq, byy) € [1:27B20] x [1: 2MB21] x [1:2MB22] :
W' (mgo),
Ug (Moo, Moy, bg1)' Vo' (Moo, Moz, bgz);
W3 (Mmoo, M2, b2o), ¢ Ten(PWOUOVOWZUZVZ)
U3 (Moo, Mo1, b1, M2, bag, M2y, bay),
V3 (Moo, Moz, bz, M0, o, My, )

e a
ES &

(28)

We' (o), )
Ug (moo, mos, by), Vgt (Moo, Moz, b)),
W1n(moo:m10:b1fo)»

U7 (Moo, Moy, bgp Mio, biro: miq, b1T1),
Vit (Mmoo, M2, bgz' Mio, b1To: miz, b1Tz),
Wf(moo:mzofbgo),

U3 (mgg, M1, by, Mao, b3, May, b31),

n
€ Je (PW0U0V0W1U1V1W2U2V2X1X2) >

n T T T
V3 (Moo, Mo2, bz, Ma0, b3g, Ma2, b32),

n T T T T
X1'(Mgo, Moy, by1, M10, big, My1, biy, Mz, bi),
n T T T T
X3 (Moo, Moy, by1, Myg, big, Myq, biy, Mz, bi3)

(29)

Decoding errors at receiver 1:

Two types of decoding error may be occurred at the receiver: The first one is the error event where the transmitted codewords do
not satisfy the decoding condition (13). This error event, denoted by EZ, is given as follows:

n n T
Wgt(mgo), Ug (Mg, Moy, by1),

n T n T T T
W (Moo, Myg, bio), UT (Moo, Mo1, bo1, M1, big, M1, bit),
n T n T T T
W3 (Mmoo, M2, b2o), U7 (Moo, Moy, by1, Mag, b3g, M1, b31),

% )

d a
Ey £ ¢ PW0U0W1U1W2U2Y1

(30)
The second type is that there exist some codewords other than the transmitted ones, which satisfy the decoding error condition

(13). In other words, there exist some 11-tuple (Mg, M1, by1, Mios b1o, Mi1, D11, M3, b3g, M5, b31) such that:

* * * * * * * * * * *
(mgo, Mo1, bg1, Mig, b1g, Mi1, bi1, M50, b3o, M31, b31)
*

T T T T T
(Moo, Mo1, b1, Mg, big, My1, bi1, Moo, b2g, Ma1, b21)

with



W5 (mgo), Ug (mgo, Mo, bg1),
Wi (mgo, mig, bio), UT' (Mg, Mg 1, b1, Mio, bio, miq, biy),
W3 (mgo, M3, b3o), U7 (MGo, Moy, b1, M50, b30, M3 1, b31),
)4k

€ Pwyuowyuawauzry

It should be noted that when two codewords construct a superposition structure, incorrect decoding of the cloud center codeword
leads to incorrect decoding of the satellite one. Consequently, using the graphical illustration in Fig. 6, one can consider 13
different decoding error events of the second type at the receiver, as described in Table 1.

- | we ug wi ut w3} uz

- | Moo | (Mgy,boy) | (Mg, b1q) | (Myy,by3) | (g, byg) | (Myq,by1)
EL | v v v * v v
Ed | v v v v v *
Eg v v v * v *
Ef v v * * v v
E | v v v v * *
Ed | v v * * v *
E;i v v v * * *
Eg v * v * v *
E;i v v * * * *
Eld() v * * * v *
E]l-11 v % v * * *
E]l-12 v * * * * *
E4 | * * * * * *

Table 1. The decoding errors at receiver 1.

ek

In this table, the sign indicates incorrect decoding of the respective codeword.
Evaluation of Pg.y, :

Now, for the error probability of decoding at the first receiver, i.e., Pg.,y, , we can write:

1
Py, S ——= Pr*(Ef UE§ UES UEf UES UEf U ..UERY)
Zn(Zinij) Mo0,M01,M02,
Mmio,M11,M12,
Mm20,M21,M22
. Pr*(E) + Pr*(EZ|(ET)°) + Pr*(ES|(ET)°)
13
= 7GRy +Pr(ESI(E), (EC, (E)) + Pro(EE(ED) + Y Pri(ER)
2EGRY) e s 41\E3 )7, WE2 )7 (B 0 |\Ea i
Mm10,M11,M12, i=1

M20,M21,M22

(1)
Moo, M1, Mo2,
My, My1, My, |, and A€ denotes the complement of the set A. Next, we bound the summands in (31). In
M30, M31, My
the following analysis, O (€) denotes a deterministic function of €, with O(e) — 0 as € - 0. Also, for notational convenience, we
define:

where Pr*(.) £ Pr* (

RE] = Rl} + Bijt ll] € {0;112}; (l']) * (Olo)

(32)
First we analysis the encoding errors. For the error event Ef, using the mutual covering lemma [3] it is readily derived Pr*(Ef) —
0 provided that:

Boy + Boy > 1(Ug; VoI Wy) + 0(€)

(33)
Then, consider the events ES and E$. To derive the conditions under which the probability of these error events vanishes, we
finely exploit a multivariate covering lemma proved in [3, 15-40]. First, we restate this lemma in the following.
Lemma 1) [3, p. 15-40] Consider a joint PDF Py v, w,u,v, (o, Vo, W1, Uy, V1) and its marginal PDFs Py y, (uo, Vo), Py, (W),
Py, w,u, Wilwy, ug), and Py v, (V1|wy, v). Let 0 < €; <€, < pmi"(PU0V0W1U1V1)' Also, let (By, B1,B,) € R3 be a triple of

non-negative real numbers. Given a pair of deterministic n-sequences (ug, vy) € 7. (PUOVO), a random codebook is generated as
follows:

1. Randomly generate 250 independent codewords W* according to Pr(w]') £ [T, Py, (WLC). Label these codewords as
Wi (by), where by € [1:2"B0] .



2. For the given deterministic n-sequences u? and for each W*(b,) where b, € [1:2"B0] | randomly generate 2™P1
independent codewords U' according to Pr(ul) =1, PU1|W1U0(u1,t|W1,t:u0,t) . Label these codewords as
U (ul, by, by) where b, € [1:2"51].

3. For the given deterministic n-sequences v} and for each W[*(b,) where by € [1:2™B0], randomly generate 27mB2
independent codewords V* according to Pr(vi) =[lk, PV1|W1V0(171_t|W1_t, Vo) - Label these codewords as
VI (vd, by, by) where b, € [1:27B2].

Then, there exists 0(€) — 0 as € - 0, where if:

By > I(Uy, Vo; W1) + 0(€)
By + By > [(Uy, Vo; W) + I(Vy; Uy |Ug, W1) + 0(€)
By + By > [(Uy, Vo; W) + 1(Ug; V1|V, Wy) + 0(e)
By + By + By, > I(Uy, Vo; W) + I (Vy; Uy |Ug, Wy) + 1(Uy, Uy; V1|V, Wy) + 0(€)

(34)
we have:
I
n—-oo
Pr ﬂ (W1n(bo), U7 (ug, bo, b1), Vi* (v, by, bz)) ¢ :ngl(PUoVowlulvl |u6‘, Vg) ug,vg | —0

by,1=0,1,2
b;e[1:2"Bi]

(35)

Note that, as a simple variation of Lemma 1, one can consider the case in which all codewords are generated superimposing on
another one, e.g., wg', (for a given joint PDF Py, . vow, u,v, Wo, Uo, Vo, W1, Ug, V1)). In this case, for vanishing the probability (35)
wherein conditioning on (uf, v{) is now replaced by (W, ug, v{), the mutual information functions in (34) should be reformed to
contain conditioning on W,. In fact, we use this variation of the lemma in proving our achievability scheme for the general IN-
GMS. Considering this variation of the lemma, we have depicted the superposition structures among the generated codwords in
Fig. 8.

N .
Ul : b1 /<
Generated codewords voby e W
Vln \ bZ
.U
- - = -
Won" ~
-~
-
A
n
Vs

Figure 8. The graphical illustration of the generated codewords in Lemma 1. This figure depicts the superposition structures among the generated codewrods. The
dashed arrows indicate the variation of the lemma where all codewords are generated superimposing on w'.

Interestingly, the superposition structures among the codewords in Lemma 1 are exactly the same as the respective codewords of
the achievability scheme in Theorem 1, as shown in Fig. 6. Therefore, we can directly apply it to evaluate Pr*(E5|(Ef)¢) and also
Pr*(ES|(Ef)€). We have:
Pre(EZ|(ET)) = Z Pr(wg', ug, v |(EY)) X pwg un vy
(wgugvi)
€T (Pwouovo)

(34

where p,n . n,ny is given as follows:

Wit (Mmoo, Myo, b1o),

a n T n n ., n ,n
p(wg,ug,v61> 2 Pr | | U1 (moo'mov bgl,mlo, blo,mll,bll); ¢ :T'E (PW0U0V0W1U1V1) Wq, Ug, Vg
. n T
byse[1:2"P1i] \\ V{" (Mgq, Mo2, b2, Myg, b1, My2, b12)
i=0,1,2

(35)



Using Lemma 1, one can deduce that p,,n ,n ,ny = 0 (and hence, Pr*(E5|(ET)¢) — 0) provided that:

( Byo > 1(Uy, Vo; W1 |Wy) + 0(€)
Big + B1y > 1(Ug, Vo; Wi W) + 1(Vy; Uy [ Wy, Up, W1) + 0 ()
Bio + Biz > 1(Ug, Vo; Wi |Wy) + I1(Ug; V1| Wo, Vo, W) + 0(€)
Bio + Bi1 + By > (U, Vo; W1 Wo) + [ (Vy; Uy Wy, Ug, Wy) + 1(Uy, Uy; Vi [Wo, Vo, Wy) + 0(€)

(36)
Symmetrically, Pr*(E$|(Ef)¢) — 0 provided that:
( By > 1(Ug, Vo; W, |Wy) + 0(e)
BZO + 321 > I(Uo, Vo, W2|W0) + I(Vo, U2|W0, Uo, Wz) + 0(6)
BZO + Bzz > I(Uo, Vo, W2|WO) + I(Uo, V2|WOJ Vo, Wz) + 0(6)
Byo + Byy + By > 1(Ug, Vo; W |Wo) + 1(Vo; Ux\Wo, Uy, Wa) + 1(Uy, Uz Vo [Wo, Vo, W2) + 0(€)
(37)

For the event Ef, because X,;W,U,V; - W, UV, =» X,W,U,V, forms a Markov chain by the Markov lemma [3] we have
Pre(EZI(ES) , (E5)°, (ET)) - 0.

Then, consider the decoding errors. For the event ES, because WyUy VoW, U, V,W,U,V, - X, X, — Y,forms a Markov chain we
have Pr*(E{|(E£)€) - 0, (note that conditioning on (E£) there is no encoding error). To analyze the decoding errors indicated
in Table 1, let us first evaluate the probability of the error event EZ. We have:

dy — n . n N ,n . n ,n
Pr*(Ef) = Z Pr(wg, ug, wit, wi', uz, ¥1') X Down ult whwlul yhy
wiul witbwlul
(38)
where p,nn o wnon yny is given as follows:
Pwuf wi whuf yi)
— n T T i n n o n N ,n . n . n n ., n ., ,n
= Z Pr(Ul (moo» Moy, by1, Myo, big, M1, b11) SN (PW0U0W1U1W2U2Y1 Wo, Ug, W1, Wo', Uy, V1 )|Wo » Uy, W1 )
(ig1,b11)%
(m11.b71)
-> > Pr(up I, uf, wi)
CE? ult
€T (PwoUoWq U1 WU, Y1 WO UG WE WS ul yT)
(@)
< Z QMH (U3 Wo,Uo.Wa Wa,Up Y1) (1+€) 9 =nH (Us [Wo,Uo W1) (1—€)
c
E{
< pn(RELHH U IWo,Uo. Wy WU Y1)—H (U1 [Wo,Uo W1)+0(€))
(39)
. * d . .
where (a) is due to [12, Th. 1.2 ]. Therefore, pyzon wnwnuzyry = 0, (and thereby Pr(EY) — 0) provided that:
Rﬂ < H(U; Wy, Uy, Wy) — H(U, Wy, Uy, Wy, W5, Uy, Y1) — O(€) = 1551_,1,1 —0(e)
(40)

The probability of other decoding errors can be evaluated, similarly. In fact, the following general direction can be easily deduced:
Pr*(E{) - 0, provided that:

Z (Rates respective to incorrect decoded

messages and bin indices ) < IE{’*}& —0(e), i=1,..13

7
(41)
where,

1

Effor; T

B: C: D :
H (Al { B™ is a cloud center for A"}) —H ({C" is incorrectly decoded} | { D™ is correctly decoded}' Yl)
Am is incorrctly
decoded

(42)

Now, using the error decoding table and also the graphical illustration in Fig. 6 which depicts the superposition structures among

the generated codewords, one can easily check that [ oy, e 1 £y, 1€ given by (9). This completes the proof. m



It should be noted that Lemma 1 used here to analyze the encoding errors can be naturally extended to the case where the
generated codewords are such that the superposition structures among them configure an arbitrary directed graph without directed
cycles. This extension will be used to analyze the proposed achievability scheme for the IN-GMS with arbitrary number of
transmitters and receivers [9]. Also, the general direction given by (41) and (42) to analyze the decoding errors are valid for other
networks with arbitrarily large size. Using these general treatments, the derivation of the resulting achievable rate region is
considerably simple [9].



