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Abstract—We consider a wireless sensor network consisting
of multiple nodes that are coordinated by a fusion center (FC)
in order to estimate a common signal of interest. In addition
to being coordinated, the sensors are also able to collaborate,
i.e., share observations with other neighboring nodes, prior to
transmission. In an earlier work, we derived the energy-optimal
collaboration strategy for the single-snapshot framework, where
the inference has to be made based on observations collected at
one particular instant. In this paper, we make two important
contributions. Firstly, for the single-snapshot framework, we
gain further insights into partially connected collaboration
networks (nearest-neighbor and random geometric graphs for
example) through the analysis of a family of topologies with
regular structure. Secondly, we explore the estimation problem
by adding the dimension of time, where the goal is to estimate a
time-varying signal in a power-constrained network. To model
the time dynamics, we consider the stationary Gaussian process
with exponential covariance (sometimes referred to as Ornstein-
Uhlenbeck process) as our representative signal. For such a
signal, we show that it is always beneficial to sample as
frequently as possible, despite the fact that the samples get
increasingly noisy due to the power-constrained nature of the
problem. Simulation results are presented to corroborate our
analytical results.

I. INTRODUCTION

We consider a wireless sensor network deployed for the
purpose of monitoring a common phenomenon. The sensors
transmit their observations to a fusion center in a cooper-
ative manner, so as to conserve the overall (energy/power)
resources available in the network. In the widely researched
area of distributed estimation [1],[2], the sensors are co-
ordinated to ensure that, without communicating with one-
another, they collectively maximize the quality of inference
at the FC. In the amplify-and-forward approach to distributed
estimation, the sensors linearly scale (based on the energy
allocated) their observations while communicating with the
FC. Since no coding across time is required and no non-linear
processing is required at the nodes, amplify-and-forward tech-
niques are operationally simple and enjoy widespread usage
in the literature. Early application of the amplify-and-forward
technique in distributed estimation was explored in [2] and
[3], where orthogonal and coherent multiple access channels
(MAC) were considered. In an orthogonal MAC setting,
each sensor has its own channel for communication with
the FC while in the coherent MAC scenario, all the sensors
coherently form a beam into a common channel which is
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then received by the FC. Other approaches to distributed
estimation consider rate constraint in transmission, where
the sensor nodes are required to quantize their observations
before transmission to the FC, examples include [1] and more
recently [4].

Some recent studies [5],[6] have demonstrated significant
improvement over the distributed framework by allowing the
sensor nodes to share their observations with other neigh-
boring nodes prior to transmission to the FC. This act of
sharing observations is referred to as spatial collaboration. In
an orthogonal MAC setting with a fully connected network,
it has been shown in [5] that it is optimal to compute the
estimates in the network and use the best available channel
to transmit the estimated parameter. In a recent work that
considered a coherent MAC channel for communication with
the FC [6], we presented an extension of the amplify-and-
forward framework that allowed spatial collaboration in a
partially connected network topology. It was observed that
even a sparsely connected network was able to realize a
performance which was very close to that of a fully connected
network. This is due to the fact that in an amplify-and-forward
framework, the observation noise is also amplified along with
the signal, thereby significantly increasing the energy required
for transmission. Spatial collaboration, in effect, smooths out
the observation noise, thereby improving the quality of the
signal that is transmitted to the FC using the same energy
resources.

In this paper, we explore the potential of collaborative
estimation further by making two significant contributions.
First, though it was observed earlier that even a moder-
ately connected network performs almost as well as a fully
connected network, no analytical results were presented. In
this paper, we extend our previous work by analyzing the
estimation performance for partially connected collaboration
networks. Though the analysis of arbitrary network topologies
is a difficult problem, we derive the estimation performance
for a family of structured network topologies, namely the
Q-cliques. We demonstrate that the insights obtained from
the structured topology apply approximately to two practical
topologies, namely the nearest neighbor and random geomet-
ric graphs, of similar connectivity. Given a particular net-
work topology, we investigate two different energy allocation
schemes for data transmission. In addition to the optimal
energy-allocation (EA) scheme as derived in [6], we also
consider the suboptimal but easy-to-implement equal energy-
allocation scheme, where neighboring observations are simply
averaged to mitigate the observation noise. For both of these

ar
X

iv
:1

21
0.

16
24

v2
  [

cs
.I

T
] 

 1
2 

O
ct

 2
01

2



schemes, we derive the performance in a closed form in
the asymptotic domain where the number of nodes is large
and the overall transmission capacity of the network is held
constant. These results offer insights into the relationship
between estimation performance and problem parameters like
channel and observation gains, prior uncertainty and extent
of spatial collaboration.

The collaborative estimation problem has so far been
analyzed in the single-snapshot context, where energy-
constrained spatial sampling is performed at one particular
instant and the inference is made using those samples. In
our second contribution in this paper, we extend the problem
formulation to consider power-constrained inference of a
random process, where the goal is to estimate the process
for all time instants. In contrast to the simple snapshot
framework, this involves obtaining multiple samples in time
and computing the filtered estimates for any desired time
instants, including time instants where observation samples
are not available. Since collection of each sample involves the
expenditure of energy resources, the appropriate constraint in
this situation is the energy spent per unit time (or power).
A key parameter here is the sampling frequency, the choice
of which affects the overall estimation performance. Note
that a higher sampling frequency usually means that one can
better capture the temporal variations. However, with a power
constraint, less energy is available for the collection of each
of those samples, which would result in more noisy samples.
This trade-off is investigated in the context of a Gaussian
random process with exponential covariance, where it turns
out that a higher sampling frequency always results in better
estimates.
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Fig. 1. Wireless sensor network performing collaborative estimation.

II. PROBLEM FORMULATION

We first consider the single snapshot estimation problem,
where the dimension of time is ignored. We will extend the
discussion to time varying Gaussian process later in Section
II-C. The single snapshot framework is depicted in Figure 1.
The parameter to be estimated, θ (written without any time
subscript to signify the single snapshot nature of the problem),
is assumed to be a zero-mean Gaussian source with prior
variance η2. Different noisy versions of θ are observed by N

sensors. The observation vector is x = [x1, . . . , xN ] where
xn = hnθ + εn, with hn and εn denoting the observation
gain and measurement noise respectively. The measurement
noise variables {εn}Nn=1 are assumed to be independent and
identically distributed (iid) Gaussian random variables with
zero mean and variance σ2.

Let the availability of collaboration links be represented
by the adjacency matrix A, where Anm = 1 (or Anm = 0)
implies that node n has (or does not have) access to the
observation of node m. Define an A-sparse matrix as one
for which non-zero elements may appear only at locations
(n,m) for which Anm = 1. The set of all A-sparse matrices
is denoted by SA. Corresponding to an adjacency matrix A
and an A-sparse matrix W , we define collaboration in the
network as individual nodes being able to linearly combine
local observations from other collaborating nodes

zn =
∑

m∈A(n)

W nmxm, (1)

where A(n) , {m : Anm = 1}, without any further loss
of information. In effect, the network is able to compute
a one-shot spatial transformation of the form z = Wx.
In practice, this transformation is realizable when any two
neighboring sensors are close enough to ensure reliable
information exchange. Note that, when W is restricted to
be diagonal (in other words, when A = I), the problem
reduces to the amplify-and-forward framework for distributed
estimation, which is widely used in the literature [2],[3],[5]
due to its simplicity in implementation and provably optimal
information theoretic properties for simple networks [7].

The transformed observations {zn}Nn=1 are transmitted to
the FC through a coherent MAC channel, so that the received
signal is y = gTz + u, where g and u describe the channel
gains and the channel noise respectively. The channel noise
u is assumed to be Gaussian distributed with zero mean and
variance ξ2. The FC receives the noise-corrupted signal y
and computes an estimate of θ. Since y is a linear Gaussian
random variable conditioned on θ,

θ ∼ N (0, η2), and

y|θ ∼ N

 gTWh︸ ︷︷ ︸
,µ (net gain)

θ, gTWΣW Tg + ξ2︸ ︷︷ ︸
,ζ2 (net noise variance)

 ,
(2)

the minimum-mean-square-error (MMSE) estimator θ̂ =
E [θ|y] is the optimal fusion rule. From estimation theory (for
details the reader is referred to [8]), the MMSE estimator and
resulting distortion DW is given by

θ̂ =
1

1 + ζ2

η2µ2

y

µ
, and

1

DW
=

1

η2
+ JW , JW =

µ2

ζ2
, (3)

where the quantity JW is the Fisher Information and µ and ζ2

are the net gain and net noise variance as defined in Equation
(2). The cumulative transmission energy required to transmit



the transformed observations z is

EW = E[zTz] = Tr
[
WExW

T
]
, where

Ex , E[xxT ] = η2hhT + Σ.
(4)

A. Collaboration strategies

Note that the quantities µ, ζ2 and, therefore, the distortion
D (equivalently J) and also the transmission energy E depend
on the choice of the collaboration matrix W . As indicated
earlier, we explore two strategies to determine W , namely 1)
optimal and 2) equal energy-allocation (EA) strategies, that
stem from two different engineering considerations.

In the optimal EA strategy, we assume that the FC knows
the channel and observation gains and also the collaboration
topology precisely. In such a situation, the FC can compute
the optimal collaboration matrix subject to a cumulative
transmission energy constraint

(Optimal EA) W opt = arg min
W∈SA

DW , s.t. EW ≤ E ,
(5)

and communicate the corresponding weights W opt to the
sensor nodes via a separate and reliable control channel. The
exact form of W opt and corresponding Jopt were derived in
[6] and are briefly described as follows.

Theorem 1 (Optimal single-snapshot estimation, [6]):
Let L be the cardinality of A, which is also the number
of non-zero collaboration weights. In an equivalent
representation, construct w ∈ RL by concatenating those
elements of W that are allowed to be non-zero. Accordingly,
define the L × L matrix Ω and L × N matrix G such that
the identities

Tr
[
WExW

T
]
= wTΩw, and gTW = wTG, (6)

are satisfied. Then the optimal Fisher Information is,

Jopt = h
T (Σ + Γ/Eξ)−1 h, where

Eξ , E/ξ2, and Γ ,
(
GTΩ−1G

)−1
,

(7)

which is achieved when the collaboration weights are wopt =
κΩ−1GΓ (Σ + Γ/Eξ)−1 h, with the scalar κ chosen to sat-
isfy wT

optΩwopt = E . W opt is the matrix equivalent of wopt.
When either the FC is computationally limited or reliable

control channels are not available, the optimal EA strategy
cannot be implemented. In these situations, one reason-
able way of assigning transmission energy and collabora-
tion weights at each node may be the equal EA strategy,
where all the sensors are allocated equal transmission energy
(namely E

N ). In addition, the nth sensor equally weighs all
the observations from its neighbors where the weights (say
{dn}Nn=1) are chosen to satisfy E

[
z2n
]
= E

N . Note from (1)
that zn = dn

∑
m∈A(n)(hmθ + εm). Consequently,

(Equal EA) [W eq]nm =

{
dn, if m ∈ A(n)
0, else ,

dn =

√√√√ E/N(∑
m∈A(n) hm

)2
η2 + |A(n)|σ2

,
(8)

where |A(n)| denotes the number of neighbors of n. The
Fisher Information corresponding to the equal EA strategy
is simply Jeq , JW eq , which can be obtained by applying
Equation (3).

Once the collaboration strategy (namely, either optimal or
equal EA) is chosen and a cumulative operating energy E
is specified, the resulting distortion performance (FI-s Jopt
or Jeq) depends on the following problem parameters, 1)
signal prior, measurement noise and channel noise, which
were assumed to be Gaussian distributed with zero mean and
variances η2, σ2IN and ξ2 respectively, 2) observation and
channel gains, and 3) the collaboration topology. To obtain
analytical expressions for FI-s, it is clear that we need to make
further simplifying assumptions on the observation/channel
gains (which will be discussed in Section III-A) and also the
topology for collaboration.
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Fig. 2. Example of Q-cliques.

B. Partially connected networks

With the goal to investigate partially connected collab-
oration topologies, we adopt the following methodology.
Intuitively, we expect the distortion to decrease as the network
becomes more connected (since it adds more degrees of
freedom) and it is our aim to obtain asymptotic limits that ex-
plicitly reflect the effect of connectedness. Since the analysis
of arbitrary topologies is difficult, we derive our analytical
results for a structured collaboration topology that consists
of several fully-connected clusters (or cliques) of finite size
Q, as illustrated in Figure 2. To be precise, if N = KQ,
we have A = IK ⊗

(
1Q1TQ

)
. Since all of the nodes in a

Q-clique network are (Q− 1)-connected, the performance of
this special topology may serve as an approximation to other
topologies where the average number of neighbors per node is
(Q−1). To demonstrate the efficacy of this approximation, we
will compare the analytical results for Q-clique networks with
numerical results for two practical collaboration topologies,
namely 1) nearest-neighbor (NN) topology and 2) random
geometric graphs (RGG) [9]. For the NN-topology, a sensor
receives the observations from its nearest Q − 1 neighbors.
For the RGG topology, a sensor collaborates with all other
sensors that are located within a circle of radius r with the
sensor at the center. The expected number of neighbors, which
is a function of r, can be derived using geometric arguments,
thereby enabling comparison with an equivalent Q-clique



topology. Examples of these two topologies are illustrated
in Figures 3(a) and 3(b) for a network with N = 20 nodes. It
may be noted that unlike the NN topology, all collaboration
links of an RGG topology are bidirectional by definition.
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Fig. 3. Example of two practical collaboration topologies for a N = 20-
node network. Bidirectional links are shown without arrows.

C. Ornstein-Uhlenbeck process

We now bring in the dimension of time, and consider
the problem of power-constrained estimation of time-varying
signals. In order to model the temporal dynamics, we assume
that the signal of interest is a stationary zero-mean Gaussian
random process θt with exponential covariance function

E [θt1 , θt2 ] = η2e−(|t1−t2|)/τ , (9)

where η2 and τ represent the magnitude and temporal vari-
ation of the parameter respectively. Note that τ → 0 implies
that the signal changes very rapidly, while τ → ∞ means
that the signal is constant over time. Such a process (with
covariance parameterized by η2 and τ ) is widely used in the
literature [10] due to its ability to model a time varying Gaus-
sian process while providing a relatively simple framework
for analysis. This process is also sometimes known as the
Ornstein-Uhlenbeck (OU) process.

𝒚 ≜  [… , 𝑦−𝑇 , 𝑦0, 𝑦𝑇 , 𝑦2𝑇 , … ]’ 

𝑇 2𝑇 ∞ 0 −∞ −𝑇 

Time  
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𝜚 ≜ 𝐸 𝜃0𝜃𝑡 /𝜂2 = ⅇ−𝑡/𝜏 

𝜌 ≜ 𝐸 𝜃0𝜃𝑇 /𝜂2 = ⅇ−𝑇/𝜏 

Fig. 4. Periodically sampled Ornstein-Uhlenbeck process.

Let P denote the power constraint in the network. We
assume that the OU process is sampled periodically with
the period T (see Figure 4), which implies that a total of
E = PT energy units is available for each sampling instant.
Let the spatial sampling at each instant be performed in a
manner similar to the single-snapshot framework discussed
earlier, namely through collaboration and coherent amplify-
and-forward beamforming. Let the signal received by the
FC at instant t be denoted as yt, so that the entire ob-
served sequence can be represented by the following infinite-
dimensional vector y , [. . . , y−T , y0, yT , y2T , . . .]

′. From the
linear Gaussian model y|θ in (2) and subsequent description
of Fisher Information J in (3), the spatial sampling process
can be abstracted (via an appropriate scaling) through the
additive model yt = θt + vt, where the aggregate noise
vt ∼ N

(
0, 1

J

)
summarizes the uncertainty due to {εn,t}Nn=1

(measurement noise at sensors) and ut (channel noise). We
assume εn,t and ut to be temporally white, from which
it follows that vt is temporally white as well. In vector
notations,

y = θ + v, v ∼ N
(
0,

1

J
I

)
, (10)

where θ , [. . . , θ−T , θ0, θT , θ2T , . . .]
′ and v ,

[. . . , v−T , v0, vT , v2T , . . .]
′. Having observed y, the MMSE

estimator of θt (the value of OU process at any instant t) is
given by the conditional expectation (refer to [8] for details)

θ̂t = E[θt|y] = Rθty′R−1yy′y, (11)

where Rθty′ , E [θty
′] and Ryy′ , E [yy′]. Moreover, the

variance of θ̂t is given by

Var (θt|y) = η2 −Rθty′R−1yy′Rθty. (12)

Since yt is sampled periodically at instants t = kT, k ∈ Z
and y contains infinite elements in both time directions,
the conditional variance Var (θt|y) is also expected to be
periodic in time, i.e., Var (θt|y) = Var (θt+kT |y) , ∀t, k.
Hence any interval of length T , say t ∈ [0, T ] is sufficient
for analyzing the conditional variance (12). Since we are
interested in estimating the OU process at all time instants,
the quality of inference has to be summarized by a metric that
is independent of time t. We consider two such performance
metrics, first of which is the average variance

Avar(T ) ,
1

T

∫ T

0

Var (θt|y) dt. (13)

Note that average variance depends on the sampling period
T , which is made explicit by the argument. However, there



may be situations when the sampling period T is also subject
to design. In this case, we need a metric that is independent
of T as well. In this situation, we may use the performance
metric to be the limiting value

Var0 , min
T

max
t∈[0,T ]

Var (θt|y) , (14)

which assumes that we select the sampling period T in a
manner that minimizes the worst-case conditional variance
for all time. We would consider both the metrics (13) and
(14) in this paper.

III. MAIN RESULTS

A. Single snapshot estimation

As motivated earlier, we consider an N -sensor network,
the collaboration topology of which consists entirely of Q-
cliques, where Q is a finite integer (see Figure 2). Let
N = KQ, which ensures that there is an integral number of
such cliques. Let the total energy available in the network be
E , which is finite. We consider the asymptotic limit when the
network is large (N → ∞) but the transmission capacity of
the equivalent Multiple-Input-Single-Output (MISO) channel
is kept finite. We assume that the random variables {g̃n}Nn=1

(which can be thought of as unnormalized channel gains) are
iid realizations from the pdf fg̃(·) and the channel gains are
gn = 1√

N
g̃n so as to ensure that the transmission capacity

remains the same even as the number of nodes increase1,
thereby enabling a fair comparison of networks of various
sizes. Without such a scaling, the transmission capacity would
increase to infinity (and the resulting distortion would be
driven down to zero) as the number of nodes increase, which
is a trivial regime to consider.

Let Jopt and Jeq denote the asymptotic limits of the Fisher
Information JW corresponding to the optimal (5) and equal
energy-allocation strategies (8) respectively. The following
results provide closed form expressions for these limits.

Theorem 2 (Fisher Information for Q-clique topology):

(Optimal EA) Jopt =
E
η2

E
[
g̃2
]

ξ2
(1−HQ) , and (15a)

(Equal EA) Jeq =
E
η2

(E [g̃])
2

ξ2
1

1 +RQ
, (15b)

where HQ and RQ are defined as

HQ = E

 1

1 + η2

σ2

(
h21 + · · ·+ h2Q

)
 , and (16a)

RQ =
1

Q (E [h])
2

(
Var [h] +

σ2

η2

)
, (16b)

respectively.
The proof of Theorem 2 is skipped here due to lack of

space and can be found in an extended version of this paper
[11]. A few remarks due to Theorem 2 are in order.

1Note that the channel capacity of the equivalent MISO channel is
1
2
log
(
1 +

E‖g‖2
ξ2

)
and that limN→∞ ‖g‖2 = E

[
g̃2
]

from the law of
large numbers.

Special Cases: In general, the equal EA scheme is
suboptimal, i.e., Jopt ≥ Jeq. However, the two energy
allocation schemes are asymptotically equivalent when Var[h]
and Var[g̃] are both zero, which is the case when the network
is homogeneous, i.e., h = h01 and g̃ = g̃01 (say). For such
a network,

Jopt = Jeq =
E g̃20
ξ2η2

1

1 + 1
Q

σ2

η2h2
0

. (17)

Explicit expressions for Rayleigh distributed gains: The
evaluation of (15a) is, in general, hindered by the computation
of HQ, which involves the computation of a Q-dimensional
integral. However, if the observation gains are Rayleigh2

distributed fh(h) = Rayleigh(h;αh), we can show (the
derivation is relegated to [11]) that

HQ =
(−1)Q−1λQ exp(λ)Ei(λ)−

∑Q−2
i=0 i!(−λ)Q−1−i

(Q− 1)!
,

(18)

where λ , σ2

2α2
hη

2 and Ei(z) ,
∫∞
z

exp(−t)/tdt is the
exponential integral function. It immediately follows that
H1 = λQ exp(λ)Ei(λ), which corresponds to the distributed
case (Q = 1), and HQ ≈ λ

Q−1 for large values of Q.
In our numerical simulations, we would consider Rayleigh
distributed channel and observation gains, for which (18) will
be useful.

Simulation results

Theorem 2 is important since it provides a framework to
evaluate the estimation performance for partially connected
collaboration topologies. Though (15a) and (15b) are accurate
indicators of performance for a structured network consisting
only of Q-cliques, it is of interest to see how this insight
applies for more complicated topologies. Towards that goal,
we simulate the nearest-neighbor and random geometric
graph topologies as described in Section II-B. We consider
a network with N = 104 nodes, which is large enough to
demonstrate convergent behavior. We consider η2 = 1, ξ2 = 1
fh(h) = Rayleigh(h; 1), fg̃(g̃) = Rayleigh(g̃; 1) and two
values of observation noise variance, namely σ2 = 1 and
σ2 = 2. The operating energy is fixed at E = 0.7. This choice
of E is made to reflect an operating region where substantial
performance gain is possible through spatial collaboration.

Numerical results obtained through Monte-Carlo simula-
tions of both the optimal and equal EA strategies with varying
degrees of spatial collaboration are illustrated in Figures 5(a)
and 5(b) for the NN and RGG topologies respectively. For
the (Q − 1)-nearest-neighbor case, the theoretical results
corresponding to an equivalent problem with Q-cliques are
juxtaposed. It is observed from Figure 5(a) that the perfor-
mance of the two schemes are almost identical. For a random
geometric graph, we consider that all the N sensors are
randomly spread in a unit square. If the radius of collaboration

2A Rayleigh distributed random variable x with parameter α has a proba-
bility density function Rayleigh(x;α) = x

α2 exp
(
− x2

2α2

)
for x ∈ [0,∞).

The first two moments are E [x] = α
√
π
2

and E
[
x2
]
= 2α2 respectively.



1 2 4 8 16 32

0.45

0.5

0.55

0.6

0.65

0.7

Number of nearest neighbors connected, Q + 1

D
is
to
rt
io
n
,
D

 

 

←− Distributed

Connected −→

Equal PA, σ2 = 2, Monte-Carlo
Equal PA, σ2 = 2, Approx
Equal PA, σ2 = 1, Monte-Carlo
Equal PA, σ2 = 1, Approx
Optimal PA, σ2 = 2, Monte-Carlo
Optimal PA, σ2 = 2, Approx
Optimal PA, σ2 = 1, Monte-Carlo
Optimal PA, σ2 = 1, Approx

(a) Fixed number of nearest neighbors

0 0.005 0.01 0.015 0.02 0.025 0.03

0.45

0.5

0.55

0.6

0.65

0.7

Radius of collaboration, r

D
is
to
rt
io
n
,
D

 

 

←− Distributed

Connected −→

Equal PA, σ2 = 2, Monte-Carlo
Equal PA, σ2 = 2, Approx
Equal PA, σ2 = 1, Monte-Carlo
Equal PA, σ2 = 1, Approx
Optimal PA, σ2 = 2, Monte-Carlo
Optimal PA, σ2 = 2, Approx
Optimal PA, σ2 = 1, Monte-Carlo
Optimal PA, σ2 = 1, Approx

(b) Random geometric graph

Fig. 5. Energy-constrained estimation with single snapshot spatial sampling.

is r, it follows that the expected number of neighbors is
approximately Q̃ = Nπr2, and that this approximation
is more accurate for large values of r. Hence in Figure
5(b), the theoretical results corresponding to an equivalent
problem with Q̃-cliques are juxtaposed. It is observed that
the theoretical approximations compare favorably with the
Monte-Carlo simulations, although they are less accurate
compared to the (Q− 1)-nearest-neighbor case.

From the two examples given above, it is observed that
only a small number of collaboration links are needed to
achieve near-connected performance. In particular, the dis-
tortion performance is seen to saturate as early as Q ' 20,
though a fully connected network would imply Q = N = 104

connections per node. This demonstrates the efficacy of
spatial collaboration as an approach to enhance estimation
performance beyond distributed networks.

B. Time varying process estimation

In this subsection, we compute the conditional variance of
the OU process given the vector of periodically sampled ob-
servations. Towards computing (12), we begin by describing
the matrix Ryy′ and vector Rθty′ . The covariance matrix of
the sampled parameter values θ takes the shape of the well
known stationary matrix (e.g., [10], [12]),

E[θθ′] = η2C, C ,



1 ρ ρ2 . . . ·

ρ 1
. . . . . .

...

ρ2
. . . . . . . . . ρ2

...
. . . . . . 1 ρ

· . . . ρ2 ρ 1


, (19)

where ρ , e−T/τ . The structured matrix C in Equation (19),
is often referred to as the Kac–Murdock–Szegö matrix in the
literature. From the additive model (10), it follows that

Ryy′ =
(
I + η2JC

)
/J. (20)

Similarly, the following expression for Rθty′ follows directly
from the definition % = e−t/τ , where t ∈ [0, T ],

E[θty′] = η2
[
. . . , ρ2%, ρ%, %, ρ/%, ρ2/%, . . .

]
. (21)

With the help of the above descriptions of Ryy′ and Rθty′ ,
computing (12) involves inverting the matrix I + η2JC (the
asymptotic closed form expression for such an inverse was
introduced in [12]) followed by a quadratic product. The
resulting algebra is involved but straightforward. We relegate
details of the derivation to [11] and state the result below.

Theorem 3 (Variance of OU process estimates):

Var (θt|y) =
η2
[
1 + η2Jρ′

{
1−

(
%−ρ/%
1−ρ

)2}]
√

(η2J + ρ′) (η2J + 1/ρ′)
,

where ρ′ ,
1− ρ
1 + ρ

, ρ = e−T/τ , % = e−t/τ , t ∈ [0, T ].

(22)

Equation (22) provides the closed form estimation variance
of an OU process at any instant t ∈ [0, T ], provided that
power constrained noisy samples are observed periodically
with period T . In addition to ρ, the quantity J also depends
on the sampling period T through the energy-FI (Fisher
Information) relation J = cPT

η2 , which follows from Theorem
2 by using E = PT and defining

c ,


E[g̃2](1−HQ)

ξ2 for Optimal EA,
(E[g̃])2

ξ2(1+RQ) for Equal EA.
(23)

In the following discussions, we illustrate the power-
constrained estimation of an OU process and show how the
instantaneous variance (22) can be used to compute other
performance measures described in Section II-C, namely a)
average variance, Avar(T ) and b) min-max performance limit,
Var0.
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Fig. 6. Power-constrained estimation of OU process

Simulation results

In Figure 6(a), we visualize the estimation of an OU
process with stationary variance η2 = 1 and covariance
drop-off parameter τ = 1s. We simulate a total duration of
Tobs = 30s, during which we consider sampling the same
process using two different sampling periods, T = 0.75s
(top) and T = 3s (bottom). The sampling noise sequence
{vkT }, which is an abstraction of the spatial data aggregation,
is simulated as independent zero-mean Gaussian random
variables with variance 1

2.5T for the two different sampling
periods. The inverse relation Var (vkT ) ∝ 1

T is due to the
fact that vkT represents a noise with variance 1

J and the
Fisher Information J = cPT

η2 as per Theorem 2. The constant
2.5 (which represents the quantity cP

η2 ) was chosen so as
to produce a visible contrast between the sampling errors
corresponding to the chosen sampling periods. As can be
seen in Figure 6(a), the samples are obtained almost without
any noise for T = 3s (bottom). The circles representing
noisy samples align almost on top of the thin line that
represents the path of the OU process. The samples are,
however, significantly noisy for T = 0.75s (top), since less
energy is available per sampling duration. This is evidenced
by the circles lying significantly distant from the OU process

path. The filtered estimates θ̂t = E [θt|{ykT }] are obtained
by applying (11) and are shown by the bold lines. When
compared visually, the filtered estimates appear more accurate
in the case of smaller sampling period (top). This observation
is justified by plotting the steady state variance, as obtained
from Theorem 3, in Figure 6(b) for various sampling periods
T = {0.1, 0.75, 1.5, 3}. Though the best-case variance (oc-
curring at t = kT ) is higher for smaller sampling periods,
the worst-case variance (occurring at t = (k + 0.5)T ) goes
down as the OU process is sampled more frequently. Because
the power is kept constant, the variance converges to a finite
value (rather than vanishing) for small values of T . Since the
gap between the worst-case and best-case scenarios reduces
with T , the limiting variance (≈ 0.4, annotated as Var0) is
flat with respect to time. From Equation (22), the limiting
variance can be derived precisely to be

Var0 , lim
T→0

Var (θt|y) =
η2√

1 + 2Pτc
, (24)

which also means that Var0 trivially satisfies

min
T

max
t∈[0,T ]

Var (θt|y) = Var0, (25)

thereby answering the question of min-max performance limit
as posed earlier in Equation (14). The following result is
obtained by substituting in (24) the value of constant c (see
(26)), thereby stating explicitly how the performance limit
depends on channel conditions and collaboration topology.

Corollary 4 (Min-max performance limits):

Var0 =


η2
/√

1 +
2PτE[g̃2](1−HQ)

ξ2 for Optimal EA,

η2
/√

1 + 2Pτ(E[g̃])2
ξ2(1+RQ) for Equal EA.

(26)
In addition to the instantaneous variance and min-max

performance limits, one may also be interested in the average
variance Avar(T ) as defined by Equation (13) in Section II-C.
The average variance is obtained by integrating (22) over
t ∈ [0, T ]. Since % = e−t/τ is the only variable in (22) that
depends on t, we obtain

Avar(T ) =
η2
[
1 + η2Jρ′

{
1− IT

(1−ρ)2

}]
√
(η2J + ρ′) (η2J + 1/ρ′)

,

where IT ,
1

T

∫ T

0

(%− ρ/%)2 dt =
1− ρ2

T/τ
− 2ρ.

(27)

We use average variance as the performance metric in
the following simulation, in which we consider both the
aspects discussed in this paper, namely the spatial aggrega-
tion procedure and the temporal dynamics. The simulation
settings are similar to those considered in Section III-A,
which we repeat here for the sake of completeness. The
sensor network comprises of N = 104 nodes. We consider
η2 = 1, ξ2 = 1, σ2 = 1, fh(h) = Rayleigh(h; 1) and
fg(g) = Rayleigh(g; 1). The exponential drop-off parameter
is set to τ = 1s and an observation duration of Tobs = 30s
is considered, which is large enough to demonstrate steady
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Fig. 7. Power-constrained estimation of OU process - Average variance

state behavior. The observation duration is discretized into
M = 1600 instants for generating the OU process sequence
using a first-order autoregressive model. The average variance
is obtained as the mean of the deviations from all M
estimates. Three values of sampling period are considered for
simulation, namely T = {0.7, 0.4, 0.1}. The limiting value
when T → 0, Var0, is also shown on all the graphs. The
operating power is chosen as P = 1.4 to reflect an operating
region where substantial performance gain is possible through
spatial collaboration. Both NN (Figure 7(a)) and RGG (Figure
7(b)) topologies are considered to show the applicability of
the Q-clique results to practical collaboration scenarios. As
earlier, both the equal-EA and optimal-EA spatial energy
allocation strategies are simulated. The results in Figure 7
show that the average variance decreases with T . Though
we have not rigorously proved that Avar(T ) is monotonically
decreasing in T , this assertion can be visually verified from
Figure 6(b), by comparing the area under the curves for any
two sampling periods (T = 3 and T = 1.5, say). This
observation coupled with the min-max property of Var0 leads

to the conclusion that an OU process should be sampled as
frequently as possible, even if that implies that less energy
is available per sampling period (resulting in more noisy
samples). However, this assertion is based on the assumption
that the sampling noise is temporally white. In practical
situations, the sampling errors may become correlated if
the samples are obtained too frequently, and caution must
be exercised to make sure that the temporal independence
assumption is valid.

IV. CONCLUSION

In this paper, we have considered the linear coherent esti-
mation problem in wireless sensor networks and investigated
two key aspects. First, we have provided an asymptotic anal-
ysis of the single-snapshot estimation problem when the col-
laboration topology is only partially connected. We achieve
this by obtaining the solutions for a family of structured
networks and then using those solutions to approximately
predict the performance of more sophisticated networks using
geometric arguments. Second, we have extended the problem
formulation towards the estimation of a time varying signal.
In particular, we have derived the instantaneous, average and
worst case performance metrics when the signal is modeled
as a Gaussian random process with exponential covariance.
Both these aspects were investigated under the assumption of
spatial and temporal independence among the measurement
and channel noise samples. In the future, we plan to relax
this assumption and observe the effect of spatial and temporal
correlation on the estimation performance.
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