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Abstract— In many applications of simulation optimization,
the random output variable whose expectation is being opti-
mized is a deterministic function of a low-dimensional random
vector. This deterministic function is often expensive to com-
pute, making simulation optimization difficult. Motivated by
an application in the design of grafts for heart surgery with
uncertainty about input parameters, we use Bayesian methods
to design an algorithm that exploits this random vector’s low-
dimensionality to improve performance.

I. INTRODUCTION

Motivated by an application in cardiovascular surgery
with parameter uncertainty, we develop a new method for
optimization of an objective function whose value is the
average of the output of a computationally expensive simu-
lator, where the input is varied across some low-dimensional
space. We use Bayesian methods, in which inference based
on a Gaussian process prior learns the behavior of the
computationally expensive simulator across the input space
and tracks our uncertainty about values at unevaluated points,
and value of information calculations tell us at which inputs
it would be most valuable to evaluate the simulator next.

The application that we consider is the design of idealized
bypass graft models under uncertain shape design variables
and unsteady flow, using a simulation of blood-flow near
the graft. Our goal in using simulation is to compute the
optimal graft attachment angles that minimize the area
of low wall-shear stress (WSS). Previously, non-Bayesian
methods (surrogate management framework SMF) [1] were
used to perform robust shape optimization in cardiovascular
simulations [2], [3], [4]. To account for uncertainties, a
stochastic collocation method [4] was coupled with the SMF
framework. This method has the ability to converge to a mesh
local optima for Lipschitz continuous functions. [3] demon-
strated that accounting for implementation and measurement
uncertainties affects the optimal graft attachment angle.

In this work, we investigate the expected performance of
the design variables under low-dimensional uncertainties. We
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assume that the area of low WSS regions, which is our simu-
lation output, depends on the attachment angles incorporating
a “fudge factor” to account for random implementation error,
the random stenosis radius, and the random inflow velocity.
The random output variable is thus a deterministic function
of a low-dimensional random vector. Evaluation of this deter-
ministic function is expensive, and its derivative information
is unavailable. Our goal is to optimize the expectation of this
output variable (or its variant) by allocating simulation effort
efficiently across different values of the random vector.

This type of problems arises in many applications of sim-
ulation optimization. [5] and [6] perform robust optimization
of the design of biomechanical devices by employing an
empirical best linear unbiased prediction of the structural re-
sponse, where they also incorporate environmental variables.

In its attempt to evaluate the expectation (integral) of an
implicit function, this work is closely related to the Bayesian
Quadrature [7] or the Bayesian Monte Carlo method [8],
which models the integrand using Gaussian process (GP) [9],
and then performs inference about the integral by taking
advantage of the analytical convenience of the GP models.

To design a strategy that samples efficiently, we employ
a Bayesian approach, in which we begin with a GP prior
distribution on the response function, updating this prior
distribution based on sampling information, evaluate the
expectation of the response function under uncertain model
inputs and unsteady flow, and use “value of information”
computations to decide how to best allocate sampling effort.

The value of information approach [10], [11], [12], [13]
has been used in Bayesian ranking and selection [14],
where sampling decisions are made to achieve the highest
potential for improving the final selection decision. The
current work incorporates this technique and proposes a one-
step lookahead sampling procedure. Procedures of this type
are commonly used in Bayesian experimental designs, e.g.,
global optimization [15], [16], [17]. They are also called
knowledge-gradient policies [18].

II. PROBLEM FORMULATION

In this section we formulate the Bayesian shape optimiza-
tion problem of idealized bypass graft models with unsteady
flow. This problem is studied in [3], which uses the stochastic
collocation technique to incorporate and study the effects of
input uncertainties, and applies a derivative-free optimization
method to perform robust shape design.



In this problem, the design variables are the target anas-
tomosis angles x1 and x2 given to the surgeon. Given these
target values, the actual angles of a bypass graft constructed
in a surgery are not x1 and x2, but instead θ1 = x1 + δ1
and θ2 = x2 + δ2, where δ1 and δ2 are the implementation
errors introduced during surgery. As shown in Figure 1,
we denote by r and v the stenosis radius and the inflow
velocity respectively. We then write x= (x1,x2), δ = (δ1,δ2),
θ = x+δ and ω = (r,v).

Fig. 1. Schematic of the bypass graft surgery with the two attachment
angles, inlet velocity and stenosis radius shown.

We assume that the area of low WSS regions is fully
determined by the actual anastomosis angles θ , the stenosis
radius r, and the inflow velocity v. Given θ and ω = (r,v),
we denote by f (θ ,ω) the corresponding area of low WSS.
We can use simulation to evaluate f (θ ,ω) exactly. However,
each evaluation is time-consuming, limiting how many times
we may perform this evaluation.

To optionally include risk aversion into our objective
function, we define a utility function U by

U(θ ,ω) =− f (θ ,ω) or U(θ ,ω) = e−α· f (θ ,ω),

where α > 0 is a parameter that models aversion to risk, with
larger values of α corresponding to more aversion to risk.
The second definition can be used to control the standard
deviation (sensitivity) of f due to input uncertainties.

For analytical convenience, we suppose that our probabil-
ity distributions over ω and δ are independent and normal
(ω may be truncated at 0). Denote by p(δ ,ω) their joint
pdf, which is assumed known.

Our overarching goal is to find the target anastomosis
angles x that maximize the expected value of U(·, ·), i.e.,
we want to solve

max
x

g(x) , (1)

where
g(x) :=

∫ ∫
U (x+δ ,ω) p(δ ,ω)dδ dω (2)

is the expected uility that results from using target values x.

III. STATISTICAL INFERENCE AND
VALUE OF INFORMATION ANALYSIS

To support the solution to the optimization problem, we
use Bayesian statistics to provide an estimate of U (θ ,ω)
across all points (θ ,ω), based on those points at which U
has actually been evaluated. This statistical framework also
provides uncertainties associated with these estimates. This
is useful because evaluating U is time-consuming, and so
we cannot simply evaluate it at each point of interest. These
estimates of U , and their associated uncertainties, then imply

estimates and uncertainties of g(x) across the domain of x.
In this section, we first describe the statistical framework in
which this estimation takes place. We then describe a value
of information analysis based upon this statistical framework,
in which we quantify the value of evaluating U at a given set
of previously unevaluated values. This quantification of the
value of information will then be used later in Section IV to
create an algorithm for solving (1).

We work in a Bayesian framework, in which we place a
Gaussian process (GP) prior distribution over the function L.
For an overview of GP priors see [9].

U(·, ·)∼ GP(µ0(·, ·),Σ0(·, ·, ·, ·)) ,

where

µ0 : (θ ,ω) 7→ R,
Σ0 :

(
θ ,ω,θ ′,ω ′

)
7→ R,

and Σ0 is a positive semi-definite function. A typical choice
of Σ0 is the square exponential covariance function (see
Section V-A). At each time n = 1,2, . . . , our algorithm
will evaluate some point (θn,ωn), and observe the resulting
objective, yn = U (θn,ωn). Define Dn = {θ1:n,ω1:n,y1:n} to
contain all of this data. The posterior distribution of U at
time n is then

U(·, ·) | Dn ∼ GP(µn(·, ·),Σn(·, ·, ·, ·)) ,

where µn and Σn can be computed using standard results
from Bayesian linear regression (see, e.g., [9] or [19]).
Section V-B gives explicit expressions for µn and Σn.

Denote by En and Covn the expectation and covariance
conditioned on Dn, respectively. That is, En and Covn are the
expectation and covariance under the posterior distribution
at time n. Then, we relate the posterior distribution on U to
the posterior distribution on the function g via the following
expressions. First, the posterior mean of the function g
at an arbitrary point x can be calculated by interchanging
integration over the values of g(x) with the integration
defining g(x) in (2) via Fubini’s theorem to obtain,

En [g(x)] =
∫ ∫

µn (x+δ ,ω) p(δ ,ω)dδ dω, (3)

A similar computation provides the covariance between g(x)
and g(x′) at two arbitrary points x and x′ in the following
expression.

Covn
[
g(x) ,g

(
x′
)]

=
∫ ∫ ∫ ∫

Σn
(
x+δ ,ω,x′+δ

′,ω ′
)

p(δ,ω) p
(
δ
′,ω ′
)

dδ dω dδ
′dω
′.

(4)

Note that taking x = x′ gives an expression for the variance.
We will frequently refer to the posterior mean of g(x), and

so for brevity we introduce the notation

an (x) = En[g(x)], (5)

which is defined in terms of µn(·, ·) by (3). Section V-C gives
an explicit expression for an(x). Then, if we were stop after



n evaluations of the simulator and choose the solution to (1)
with the best estimated value, we would choose

x∗n = argmax
x

En [g(x)] = argmax
x

an (x) .

In a formal sense, this solution is Bayes-optimal when we are
neutral with respect to the risk introduced by our uncertainty
about the simulation’s output.

We now conduct an analysis to determine the expected
solution quality that will result from a single additional
evaluation of the simulator. The improvement in solution
quality is then the value of the information provided by this
additional evaluation.

Consider a given time n, and a given candidate point
(θ ,ω) to evaluate at time n + 1. The expected quality
of the best solution we can obtain after we observe the
sample yn+1 = U (θ ,ω) that results from this evaluation is
maxx an+1 (x). This quantity is unknown at time n, as it
depends on the outcome yn+1. If we calculate its expected
value at time n, and take the difference between this expected
solution quality and the solution quality maxx an (x) that we
have at time n, then we obtain the value of the information
achieved from measuring (θ ,ω) at time n+1,

Vn (θ ,ω) = En

[
max

x
an+1(x)

∣∣θn+1=θ ,ωn+1=ω

]
−max

x
an(x).

The algorithm we present in §IV seeks to evaluate the
simulator at the point maximizing the value of information.
That is, we want to evaluate at time n+1

(θn+1,ωn+1) = argmax
θ ,ω

Vn (θ ,ω) . (6)

We now show how to compute Vn(θ ,ω). To perform
this computation, we must first determine the distribution of
an+1 (x) conditioned on Dn and (θn+1,ωn+1) for an arbitrary
x. The following lemma describes this distribution.

Lemma 1: Define

bn (x,θn+1,ωn+1)

=

[∫∫∫∫ [
Σn
(
x+δ ,ω,x+δ

′,ω ′
)
−Σn+1

(
x+δ ,ω,x+δ

′,ω ′
)]

p(δ ,ω) p
(
δ
′,ω ′

)
dδ dω dδ

′ dω
′]1/2

. (7)

Then

an+1 (x) | Dn,θn+1,ωn+1 ∼N
(
an (x) ,b2

n (x,θn+1,ωn+1)
)
.

(8)
Section V-C gives an explicit expression for
bn (x,θn+1,ωn+1). Denote by X the set of design variables
x under consideration. We assume that X is discrete and
finite. Define the following two vectors

~an = {an (x) : x ∈X } ,
~bn (θ ,ω) = {bn(x,θn+1,ωn+1) |θn+1=θ ,ωn+1=ω : x ∈X} .

(9)

Then
Vn (θ ,ω) = h

(
~an,~bn (θ ,ω)

)
, (10)

where

h
(
~a,~b
)

:= E
[

max
i

ai +biZ
]
−max

i
ai.

and Z is a standard normal variable. [11] gives an algorithm
for computing h and [20] provides a MATLAB implemen-
tation. The derivative of Vn (θ ,ω) with respect to θ and ω ,
denoted by ∇θVn (θ ,ω) and ∇ωVn (θ ,ω), is also available,
and is described in Section V-D. We can then solve (6) using
multi-start gradient ascent.

IV. ALGORITHM

We now summarize the algorithm that implements this
value of information approach.

1) Evaluate U at a number of randomly chosen (θ ,ω).
Fit a GP prior (see Section V-A) to U based on these
evaluations, using maximum likelihood estimation.

2) At each time n≥ 0:
a) If the stopping rule is met, go to Step 4; else go

to Step 2b.
b) Update ~an,~bn(·, ·), Vn(·, ·) and ∇Vn(·, ·) according

to (9), (10) and Section V-C, V-D.
c) Maximize Vn(·, ·) using multi-start gradient as-

cent. Let (θn+1,ωn+1) be the minimizer, and
evaluate U (θn+1,ωn+1).

3) Increase n and return to Step 2.
4) Report x∗n = argmaxan(x) as our final solution.

V. DETAILED COMPUTATIONS

In this section, we provide explicit expressions for the
quantities introduced in the previous sections. We first de-
scribe the GP model in Section V-A, and then compute
µn(·, ·), Σn(·, ·, ·, ·) in Section V-B, an(·), bn (·,θn+1,ωn+1)
in Section V-C, and ∇Vn(·, ·) in Section V-D.

A. Gaussian process priors

GP priors are frequently used in the Bayesian global
optimization literature [21], [22], [15], where people use such
priors to model their belief about an implicit continuous
function over Rd that closer arguments are more likely to
correspond to similar values.

The previous work has demonstrated that the correlations
in a GP prior are extremely important for reducing the
number of samples needed to evaluate an expensive function,
because they allow us to learn about areas that have not been
measured from those that have.

In our particular GP prior for U , the covariance between
U (θ ,ω) and U (θ ′,ω ′) for some

θ =

 θ (1)

...
θ (d1)

 , ω =

ω(1)

...
ω(d2)

 , θ
′ =

 θ ′(1)

...
θ ′(d1)

 , ω
′ =

ω ′(1)

...
ω ′(d2)


(d1 = d2 = 2), i.e, Σ0 (θ ,ω,θ ′,ω ′), is a decreasing function
of the distance between (θ ,ω) and (θ ′,ω ′). In this work, we



use the following square exponential covariance function:

Σ0
(
θ ,ω,θ ′,ω ′

)
= σ

2
0 · exp

(
−

d1

∑
k=1

α
(k)
1

[
θ
(k)−θ

′(k)
]2
−

d2

∑
k=1

α
(k)
2

[
ω
(k)−ω

′(k)
]2)

,

(11)

where σ2
0 is the common prior variance, and

α
(1)
1 , . . . ,α

(d1)
1 ,α

(1)
2 , . . . ,α

(d2)
2 are the length scales. Values

of these parameters are usually obtained using maximum
likelihood estimation from the observations of U . This and
other commonly used covariance functions, e.g., the Matern
covariance function, are carefully discussed in [9] Section
4.

The mean of a GP prior is usually a linear regression
function. Typical choices for µ0(·, ·) include

1) zero order polynomial (constant): µ0 (θ ,ω)≡ ξ ,
2) first order polynomial (linear):

µ0 (θ ,ω) =
d1

∑
k=1

ξ
(k)
1 θ

(k)+
d2

∑
k=1

ξ
(k)
2 ω

(k),

3) second order polynomial (quadratic), etc.,

where ξ ,ξ
(1)
1 ,. . .,ξ

(d1)
1 ,ξ

(1)
2 ,. . .,ξ

(d2)
2 are the coefficients of the

polynomials (“basis functions”). We use the generalized least
squares estimates of these coefficients in practice (see [23]
or [9] Section 2, 5).

To validate the GP model for our bypass graft surgery
application, we apply leave-one-out cross-validation of the
model with different covariance functions and regression
functions using 137 observations from the cardiovascular
simulation. As an example, Figure 2 shows the validation
results of a GP prior with covariance (11) and a constant
mean. We see that this model fits the data sufficiently well
except for a very small number of outliers.

Fig. 2. Leave-one-out cross-validation of the Gaussian process prior
with covariance (11) and a constant mean, using 137 observations from
the cardiovascular simulation. Each dot compares the actual value of an
observation against its predicted value from the other observations. Each
error bar is the 95%-confidence interval of the corresponding prediction.

B. µn(·, ·) and Σn(·, ·, ·, ·)
We briefly describe the GP posterior distribution of U in

this subsection. Define

Ỹ =

y1−µ0(θ1,ω1)
...

yn−µ0(θn,ωn)

, Tn=

Σ0(θ1,ω1,θ1,ω1) · · · Σ0(θ1,ω1,θn,ωn)
...

. . .
...

Σ0(θn,ωn,θ1,ω1) · · · Σ0(θn,ωn,θn,ωn)

,
(12)

and

tn (·, ·) =
[
Σ0 (·, ·,θ1,ω1) · · · Σ0 (·, ·,θn,ωn)

]
T−1

n . (13)

Then for arbitrary θ ,ω and θ ′,ω ′, by the Kalman filter
equations (see, e.g., [19] Section 14.6), we have

µn (θ ,ω) = µ0 (θ ,ω)+ tn (θ ,ω)Ỹ , (14)

Σn
(
θ,ω,θ ′,ω ′

)
= Σ0

(
θ,ω,θ ′,ω ′

)
− tn(θ,ω)

Σ0(θ
′,ω ′,θ1,ω1)

...
Σ0(θ

′,ω ′,θn,ωn)

 .
(15)

C. an(·) and bn (·,θn+1,ωn+1)

Based on Section V-A and V-B, we now explicitly com-
pute an(·) and bn (·,θn+1,ωn+1), which can then support the
calculation of the value of information (10).

Suppose that

δ
(k)∼N

(
µ
(k)
1 ,1/β

(k)
1

)
, k = 1, . . . ,d1,

ω
(k)∼N

(
µ
(k)
2 ,1/β

(k)
2

)
, ω

(k)≥ 0, k = 1, . . . ,d2,

and that δ (1), . . . ,δ (d1),ω(1), . . . ,ω(d2) are mutually indepen-
dent.

Define

S0 (x) =
∫ ∫

µ0 (x+δ ,ω) p(δ ,ω)dδ dω, (16)

and for i = 1, · · · ,n+1,

Si (x) =
∫ ∫

Σ0 (x+δ ,ω,θi,ωi) p(δ ,ω)dδ dω. (17)

Then by (5), (3) and (12)-(17), we have

an (x) = S0 (x)+
∫

tn (x+δ ,ω)Ỹ p(δ ,ω)dδ dω

= S0 (x)+
[
S1 (x) · · · Sn (x)

]
T−1

n Ỹ . (18)

By (15) and the Sherman-Morrison-Woodbury formula
(see, e.g., [24]), we can write

Σn
(
θ ,ω,θ ′,ω ′

)
−Σn+1

(
θ ,ω,θ ′,ω ′

)
=

Σn (θ ,ω,θn+1,ωn+1)Σn (θ
′,ω ′,θn+1,ωn+1)

Σn (θn+1,ωn+1,θn+1,ωn+1)
.

Plug this and (12)-(17) into (7), then we have

bn (x,θn+1,ωn+1) =

∫∫
Σn(x+δ ,ω,θn+1,ωn+1) p(δ,ω)dδdω√

Σn (θn+1,ωn+1,θn+1,ωn+1)

=
Sn+1 (x)−

[
S1 (x) · · · Sn (x)

]
T−1

n α√
Σ0(θn+1,ωn+1,θn+1,ωn+1)−αT T−1

n α

,

(19)



where

α =

Σ0 (θ1,ω1,θn+1,ωn+1)
...

Σ0 (θn,ωn,θn+1,ωn+1)


and T denotes matrix transposition.

Given a GP prior with covariance (11) and a constant
mean ξ , we now give an explicit expression for Si(x) (i =
0,1, . . . ,n+1) . By plugging in (11) and p(δ ,ω), we have

Si (x) = σ
2
0 ·

d1

∏
k=1


√

β
(k)
1

2π
·A(k)

i

 · d2

∏
k=1


√

β
(k)
2

2π
·B(k)

i


for i = 1, . . . ,n+1, and S0 (x) = ξ , where

A(k)
i =

∫
∞

−∞

exp

(
−α

(k)
1

[
x(k)+δ

(k)−θ
(k)
i

]2
−

β
(k)
1
2

[
δ
(k)−µ

(k)
1

]2)
dδ

(k),

B(k)
i =

∫
∞

0
exp

(
−α

(k)
2

[
ω
(k)−ω

(k)
i

]2
−

β
(k)
2
2

[
ω
(k)−µ

(k)
2

]2)
dω

(k).

Simple algebra then yields

A(k)
i =

√
π

α
(k)
1 + 1

2 β
(k)
1

·

exp

−α
(k)
1 [x(k)−θ

(k)
i ]2−

β
(k)
1 [µ

(k)
1 ]2

2
+

[
β
(k)
1 µ

(k)
1+2α

(k)
1 [x(k)−θ

(k)
i ]
]2

4α
(k)
1 +2β

(k)
1


and

B(k)
i =

Φ

(
β
(k)
2 µ

(k)
2 +2α

(k)
2 ω

(k)
i√

2α
(k)
2 +β

(k)
2

)
√

π−1
[
α
(k)
2 + 1

2 β
(k)
2

] ·
exp

[
−α

(k)
2 [ω

(k)
i ]2− 1

2
β
(k)
2 [µ

(k)
2 ]2 +

[β
(k)
2 µ

(k)
2 +2α

(k)
2 ω

(k)
i ]2

4α
(k)
2 +2β

(k)
2

]
,

where Φ is the standard normal cdf.

D. ∇Vn(·, ·)
We briefly describe the algorithm in [11] for computing

h here to provide notation and context that supports the
computation of ∇θVn (θ ,ω) and ∇ωVn (θ ,ω).

First, h
(
~a,~b
)

does not change if we reorder the com-
ponents of the inputs. Thus, without loss of generality, we
assume that the bi are in non-decreasing order and ties in b
are broken so that ai ≤ ai+1 if bi = bi+1. Then, we remove
all those entries i for which ai + biz < max j 6=i ai + biz for
all values of z. An algorithm for doing this is given in
Algorithm 1 in [25]. This gives new vectors ~a′ and ~b′ with
|~a′|= |~b′| ≤ |~a|= |~b|, where | · | denotes the length of a vector.
Then,

h
(
~a,~b
)
=
|~a′|−1

∑
i=1

(
b′i+1−b′i

)
f (−|ci|) , (20)

where

f (−z) := ϕ(z)− zΦ(−z),

ci :=−
a′i+1−a′i
b′i+1−b′i

for i = 1, . . . , |~a′|−1, (21)

and ϕ and Φ are the standard normal pdf and cdf.
Now let ~a′ and ~b′ be the reordering of ~an and ~bn (θ ,ω)

respectively in the acceptance set of Algorithm 1 in [25].
Then if |~a′| = 1, Vn (θ ,ω) = h

(
~an,~bn (θ ,ω)

)
= 0, and

∇Vn (θ ,ω) =~0. Otherwise,

∇Vn (θ ,ω)

=−∇h
(
~an,~bn (θ ,ω)

)
=
|~a′|−1

∑
i=1

(
b′i+1−b′i

)
Φ(−|ci|)∇|ci|−

(
∇b′i+1−∇b′i

)
f (−|ci|) (22)

=
|~a′|−1

∑
i=1

(
∇b′i+1−∇b′i

)
[−|ci|Φ(−|ci|)− f (−|ci|)] (23)

=
|~a′|−1

∑
i=1

(
∇b′i−∇b′i+1

)
ϕ (|ci|) ,

where (22) follows from (20) and ∇ f =Φ; (23) follows since
∇a′i = 0 for all i, and by the definition in (21),

∇ |ci|=
−
∣∣a′i+1−a′i

∣∣(∇b′i+1−∇b′i
)(

b′i+1−b′i
)2 .

It then suffices to compute ∇b′i for all i, or equivalently,
∇θn+1bn (x,θn+1,ωn+1) and ∇ωn+1bn (x,θn+1,ωn+1) for all x.
Now let ∇ denote the gradient w.r.t. θn+1 or ωn+1. By (19),
it is clear that

∇bn (x,θn+1,ωn+1)

= γ1

∇Sn+1 (x)−∇
(
α

T)T−1
n

S1 (x)
...

Sn (x)




− 1
2

γ
3
1 γ2
[
∇Σ0 (θn+1,ωn+1,θn+1,ωn+1)−2∇

(
α

T)T−1
n α

]
,

(24)

where

γ1 =
[
Σ0 (θn+1,ωn+1,θn+1,ωn+1)−α

T T−1
n α

]−1/2
,

γ2 = Sn+1 (x)−
[
S1 (x) · · · Sn (x)

]
T−1

n α,

∇
(
α

T)=[∇Σ0(θ1,ω1,θn+1,ωn+1) · · ·∇Σ0(θn,ωn,θn+1,ωn+1)
]
.

With a GP prior (11), we can write (24) explicitly by
plugging in

∇θn+1Σ0 (θi,ωi,θn+1,ωn+1)

=

{
~0, i=n+1,
2α1 (θi−θn+1)Σ0 (θi,ωi,θn+1,ωn+1) , i=1,. . . ,n,

∇ωn+1Σ0 (θi,ωi,θn+1,ωn+1)

=

{
~0, i=n+1,
2α2 (ωi−ωn+1)Σ0 (θi,ωi,θn+1,ωn+1) , i=1,. . . ,n,



and

∇
θ
(k)
n+1

Sn+1(x) = 2α
(k)
1 Sn+1(x)

[
x(k)−θ

(k)
n+1−ν1

]
,

∇
ω
(k)
n+1

Sn+1(x) = 2α
(k)
2 Sn+1(x)

ϕ(ν2)/Φ(ν2)+ν2√
2α

(k)
2 +β

(k)
2

−ω
(k)
n+1

,
where

ν1 =
β
(k)
1 µ

(k)
1 +2α

(k)
1

(
x(k)−θ

(k)
n+1

)
2α

(k)
1 +β

(k)
1

,ν2 =
β
(k)
2 µ

(k)
2 +2α

(k)
2 ω

(k)
n+1√

2α
(k)
2 +β

(k)
2

.

VI. NUMERICAL RESULTS

We now explore the performance of the sampling algo-
rithm proposed in Section IV.

We consider an initial test problem, where we simplify
the design variable x and the environmental variable ω to be
one-dimensional, and assume no implementation error (δ ≡
0). Suppose that ω ∼N (1,1/9) and that the deterministic
utility function is

U =−100(ω−θ
2)2− (1−θ)2. (25)

We compare our algorithm against the random search
algorithm, in which each (θn,ωn) is selected independently
and uniformly at random. In each sample path, we fit a GP
prior distribution with covariance (11) and a constant mean
to U after 10 initial random evaluations, and re-fit it after 40
evaluations. We measure the performance of the algorithms
by their expected opportunity cost E [maxx g(x)−g(x∗n)] at
each time n, where in this problem the objective function g
has an analytical form.

Fig. 3. Performance of the proposed value-of-information (VOI) based
algorithm and the random search algorithm in the test problem (25).

Figure 3 shows that the proposed algorithm significantly
outperforms the random search algorithm, before they both
achieve near-optimal solutions after the GP model re-fitting.
The results are based on 500 sample paths for each algorithm.

For more sophisticated problems, the proposed value-of-
information approach will demonstrate greater advantage
over the naive strategies. We will include later experimental

results for other test problems and the graft surgery applica-
tion.

APPENDIX

Proof of Lemma 1

Proof: By (3) and (5),

an+1 (x) =
∫

µn+1 (x+δ ,ω) p(δ ,ω)dδ dω.

Since the posterior mean µn+1(·, ·) is a linear function of the
observations up to time n and yn+1, we can write an+1 (x) |
Dn,θn+1,ωn+1 as

sn (x,θn+1,ωn+1)+ tn (x,θn+1,ωn+1) · yn+1,

where sn and tn are real-valued, deterministic functions of Dn.
Now since yn+1 conditioned on Dn,θn+1,ωn+1 is normally
distributed, we know that an+1 (x) is also normally distributed
conditioned on Dn,θn+1,ωn+1.

By the tower property,

an (x) = En [g(x)] = En [En+1 [g(x)]] .

Also since Σn+1 does not depend on yn+1 (it is fully de-
termined by Dn, θn+1 and ωn+1), we know that bn is well
defined. By (4) and the conditional variance formula,

bn (x,θn+1,ωn+1) = Varn [g(x)]−Varn+1 [g(x)]

= Varn [g(x)]−En [Varn+1 [g(x)] | θn+1,ωn+1]

= Varn [En+1 [g(x)] | θn+1,ωn+1] .

Thus (8) follows.
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