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Toward Sustainable Networking:
Storage Area Networks with Network Coding

Ulric J. Ferner, Muriel Médard, and Emina Soljanin

Abstract—This manuscript provides a model to characterize
the energy savings of network coded storage (NCS) in storage
area networks (SANs). We consider blocking probability of drives
as our measure of performance. A mapping technique to analyze
SANs as independentM/G/K/K queues is presented, and
blocking probabilities for uncoded storage schemes and NCSare
derived and compared. We show that coding operates differently
than the amalgamation of file chunks and energy savings are
shown to scale well with striping number. We illustrate that for
enterprise-level SANs energy savings of 20–50% can be realized.

Index Terms—Cloud computing, data centers, network coding,
queuing theory, storage area networks, sustainability.

I. I NTRODUCTION

CURRENT projections indicate that the worldwide data
center (DC) industry will require a quadrupling of capac-

ity by the year 2020 [1], primarily through increased demand
for high-definition video streaming. In addition to requiring
significant financial investments, worldwide DC capacitiesare
approaching a scale in which their energy consumption and
carbon footprint is significant [2]. approaching the scale of
the worldwide airline industry [1], [3], [4].

In this paper, we consider the energy efficiency of individual
storage area networks that make up DCs. Storage area net-
works (SANs) are designed so that large numbers of content
consumers can be serviced concurrently, while the average
quality of the user experience is maintained. Specifically,the
probability that a piece of content is unavailable to any user,
and there being an interruption during consumption, is kept
small. To achieve these small blocking probabilities, individual
content is replicated on multiple drives [5]. This replication
increases the chance that, if a server or drive with access to
target content is unavailable, then another copy of the same
file on a different drive can be read instead. Modern content
replication strategies are designed to help SANs service mil-
lions of video requests in parallel [6]. Examples of services
that use such scalable systems include YouTube [7] and Hulu
[8].

The goal of this paper is to characterize the financial and
energy savings of NCS in a single SAN. The key contributions
include:

• We provide aM/G/K/K model for SANs;
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• Using this model, we derive blocking probabilities of
SANs with uncoded storage;

• We analyze an NCS scheme using a similar framework
to random linear network coding (RLNC) and show that
NCS performs better than uncoded storage; and

• We present a simple energy consumption model for
SANs to illustrate how reductions in blocking probability
translate into energy savings.

To increase the speed of data distribution and download
speeds, the use of network coding has garnered significant
attention, primarily in peer-to-peer networks [9]–[11]. In sys-
tems closer to SANs such as distributed storage, network
coding has been proposed for data repair [12]–[14]. How-
ever to the authors’ knowledge, little work has considered
the application of network coding in SANs for blocking
probability improvements. Network designs for the explicit
management of network energy have focused on full DCs
or content distribution networks [15], [16], as opposed to
individual SANs.

The remainder of this paper is organized as follows. Section
II provides preliminary material, including the SAN energy
model and the SAN service model. Section III develops a
theoretical analysis of NCS and its effects on SAN energy.
Section IV discusses new directions for research and concludes
the paper.

II. PRELIMINARIES

Firstly, this section describes the typical energy breakdown
for a single SAN. Secondly, the SAN video-streaming based
service model used later in the paper is described.

A. Data Center Energy Model

The energy use of a SAN is decomposed into the storage of
data and the energy used in the transmission of that stored data.
Storage energy in the SAN is consumed by (i) servers;1 (ii)
storage units; and (iii) auxiliary units such as cooling, office
lighting, and load balancers. Transmission energy is defined
as the energy consumed by all active routers and switches
between SAN drives and users’ terminals. A typical energy
breakdown is depicted in Fig. 1.

We compute the average energyE(x) of a SAN, composed
of servers and routers [15] using

E(x) = xp (n γs + hγr) , (1)

1Modern DCs can have anywhere between 1 and 300 000 servers. [2]
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Servers Drives Auxiliary

Servers Drives Auxiliary
CPU, RAM 87W

Per drive 15W
Other 211W
Total/Server 325W Total/Server ≈90W Total/Server 340W

Fig. 1: A typical SAN is composed of multiple servers, drives, and
auxiliary components such as cooling and lighting [15], [17], [18].
A typical breakdown of the energy consumption of these unitsis
depicted. The iconography used throughout this paper is also shown.

TABLE I: Typical network parameters in the SAN energy consump-
tion model for (1).

Parameter name Notation Typical value
Number of hops from a user to a DC h 14
Router energy/bit γr 150 J/Gb
Server energy/bit γs 572.3 J/Gb
PUE p 2

wherex is the communication load in Gb/s andp is a constant
power usage effectiveness (PUE).2 Parametersγs andγr are
the server and router energy per bit, respectively. Note that γs
andγr are both measured in W/ Gb/s= J/Gb. Finally,h is
the average number of hops from a user to the DC andn is
the number of servers in the SAN.

As per Fig. 1, the direct power requirements of storage units
are small in comparison to servers and auxiliary units and
(1) ignores direct storage unit power consumption. Critically
however, although the power requirements of storage units are
small, reducing the number of storage units correspondingly
reduces the number of servers required to manage those
storage units. It is through this coupling of server and storage
requirements that reducing storage requirements can reduce
SAN energy requirements.

It is instructive to illustrate typical parameters values in (1).
Industry standards for PUEp range from 1.09 to 3, depending
on the size and sophistication of the systems of interest [1],
[19]. On the server energy per bitγs, numerous studies have
sought to measure this experimentally by estimating the total
power consumed by a single server and applying affine load-
to-power models. We use experimentally derived estimates of
γs = 572.3 and γr = 150 [15]. See Table I for a summary;
these will be used in Section III to calculate total SAN energy
consumption.

B. Storage Area Network Service Model

The analysis of SAN energy usage requires an understand-
ing of the availability of requested content over time, where the
available content is located, as well as the service time forthat
content. The modeled hardware components that service user

2The auxiliary services of a SAN are captured by the industry standard
“power usage effectiveness” multiplier, defined as the ratio of the total energy
consumed over the energy consumed by the IT equipment such asservers,
external storage, and internal routers and switches [15].

read requests are load balancers, servers, I/O buses and storage
drives. We describe the connectivity of these components as
well as the service models for each.

Upon arrival of a user’s read request, that request traverses a
path through the following hardware components: The request
arrives at a load balancer and is then forwarded onto a subset
of servers. Those servers attempt to access connected drives to
read out and transfer the requested content back to the user.Let
{Si}

n
i=1 be the set ofn SAN servers, and{Du,j}

mu

j=1 be the
mu drives connected toSu. Definev = max{m1, . . . ,mn} as
the maximum number of drives to which a single server can
be connected.

Any individual drive can only concurrently access a limited
number of read requests—this restriction is particularly pro-
nounced in the case of high-definition (HD) video—so each
drive has an I/O bus with access bandwidthB bits/second
[20], and a download request requires a streaming and fixed
bandwidth ofb bits/second. Component connectivity is shown
in Fig. 2.

We use the following notation for files and chunks therein.
Let drives in the SAN collectively store a file libraryF =
{f1, . . . , fF }, wherefi is the ith file, and there areF files
stored in total. Each filefi is decomposed into equal-sized
chunks, and all files are of the same size. Note that, in the
NCS scheme, chunks are the units across which coding is
performed. Typical chunk sizes for video files in protocols
such as HTTP Live Streaming (HLS) are on the order of a
few seconds of playback [21], although this is dependent on
various codec parameters. The SAN storesW copies of each
file. We order theT chunks of filefi in time, by f

(k)
i =

{f
(k)
i,1 , . . . , f

(k)
i,T }, wheref (k)

i,j is thekth copy of thejth ordered
chunk of file i.

We allow striping of file chunks across multiple drives.
Striping is a technique in which chunks from the same file are
systematically distributed across multiple disks [20] to speed
up read times. An example of a common striping standard is
the RAID0 standard. In particular, a server striping filef (k)

i

may read sequential chunks from the same file in a round-
robin fashion among multiple drives. We make the following
assumptions about file layout throughout the SAN, and the
striping of content:

• File are not striped among servers, i.e., each file copyf
(k)
i

is managed by only a single server and chunks off
(k)
i

are not split across drives connected to different servers;
• Defines as the number of drives across which each file

is striped; if a file is striped acrosss drives, we refer to
it as ans-striped file; and

• The contents of each drive that stores a portion of an
s-striped file is in the formf (k)

i,j , f
(k)
i,j+s, f

(k)
i,j+2s, . . . , and

define these chunks as thejth stripe-set for filefi.

As an example, consider a SAN in whichf (1)
i is striped

across three drives. A server connected to all drives would
read chunks in the following order: (1)f (1)

i,1 from D1,1; (2)

f
(1)
i,2 from D1,2; (3) f (1)

i,3 from D1,3; (4) f (1)
i,4 from D1,1, and

so on.
We model user read requests as a set of independent Poisson

processes. In particular, we invoke the Kleinrock independence
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Fig. 2: Hardware components in the SAN service model. The load balancer is denoted by the auxiliary nodeLB, serverm by Sm, and
drive (m, j) by Dm,j . Each drive is connected to a single server through an I/O buswith access bandwidthB b/s. Each chunk read request
arrives at and is processed byLB prior to being forwarded to some serverSi, and then a set of drives. Filefi is s-striped and each server
has access toW copies of each file chunk, each on different drives. In this connectivity layout, drive contents are shown to the right of each
colon.

assumption [22] and model arriving read requests for each
chunk fi,j as a Poisson process with arrival ratenλ, which
is independent of other chunk read request arrivals. Upon a
request arrival, the load balancer randomly assigns the request
to some serverSu with uniform distribution. (This splits the
incoming Poisson process and each server sees requests at
rate λ.) ServerSu then requests the relevant chunks from
its connected drives{Du,j}

mu

j=1. Since a download request
requires a streaming and fixed bandwidth ofb bits/second
then if the requested file iss-striped, each drive I/O bus
will require access bandwidth of sizeb/s. See Fig. 2 for an
illustration. In addition, the ratiosB/b is thenumber of access
bandwidth slotsthat each active drive has available to service
read arrivals. Once a particular drive’s I/O access bandwidth
is allocated, that drive has an average service time of1/µ
seconds to service that chunk read request.

A drive can only accept a new request from a server if it has
sufficient I/O access bandwidthb/s available at the instant the

read request arrives. If instead all access bandwidth slotsare
currently allocated, then that request is rejected orblockedby
that drive. If a request is accepted by a drive then that drive’s
controller has determined it can meet the various read timing
guarantees for that request and a bandwidth slot is allocated.
Internally, each drive has a disk controller queue for requests
and some service distribution governing read request times
[23]–[27]. However, thanks to the internal disk controller’s
management of request timing guarantees, all accepted request
reads begin service immediately from the perspective of the
server.3 If a drive currently cannot accept new read requests
from servers we say that drive is in ablocked state. If no useful
information relevant to a download request at serverSu can be
serviced from any connected drives upon that requests arrival,

3The full service distribution for modern drives such as SATAdrives is
dependent on numerous drive model specific parameters including proprietary
queue scheduling algorithms, disk mechanism seek times, cylinder switching
time, and block segment sizes [25].
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then that server blocks or rejects that read request.

III. E NERGY CONSUMPTION OFNCS AND UCS

This section begins by determining the SAN blocking
probability in a UCS scheme as a function of the number
of drives and the striping number. The NCS scheme is then
described, after which the corresponding blocking probabilities
are determined. The energy consumption functions of UCS and
NCS schemes are then contrasted and compared.

In the UCS scheme, without loss of generality, set the library
F = {fi} to be a singles-striped file withW copies of each
chunk in the SAN. If no drive contains more than one copy
of a single chunk, thensW ≤ mu, ∀u ∈ {1, . . . , n}. Assume
that all chunks have uniform read arrival rates soλ = λj ∀j ∈
{1, . . . , T }. As discussed, the path traversed by each Poisson
process arrival is shown in Fig. 2, and once a chunk read is
accepted by a drive, that drive takes an average time of1/µ
to read the request.

We model the blocking probability of this system as follows.
File fi is blockedif there exists at least one chunk infi that
is in a blocked state. Chunkfi,j is available if there exists a
drive that contains it and has an available access bandwidth
slot. An s-striped drive that holds a single stripe set may
service requests from either⌈T/s⌉ or ⌊T/s⌋ different chunks,
depending on the length of the stripe set. We merge all read
requests for chunks fromjth stripe set of a file copy into a
single Poisson process with arrival rate

λ⌊T/s⌋+ I(j ≤ T mod s) , (2)

wherej ∈ {1, . . . , s} is a drive index containing thejth stripe-
set, andI is the indicator function. For each file copy, there
will be T mod s drives with rate⌈T/s⌉ ands−T mod s with
rate⌊T/s⌋. We map each access bandwidth slot onto a single
independent service unit from anM/G/KU/KU queue, see
for instance [28], in which each queue hasKU service units.
There areW copies of any stripe set on different drives, so
our M/G/KU/KU queue has

KU = ⌊sBW/b⌋ (3)

independent service units for thejth stripe set. This mapping
is depicted in Fig. 3. TheM denotes that the arrival process is
Poisson;G denotes a general service distribution with average
rateµ; andKU denotes the total number of service units in
the system, as well as the maximum number of active service
requests after which incoming requests are discarded [28].

The blocking probabilityP (j)
b of the jth stripe set queue is

given by the well-studiedErlang B blocking formula,

P
(j)
b =







(ρ⌈T/s⌉)K
U

e(ρ⌈T/s⌉)Γ(1+KU ,ρ⌈T/s⌉)
, j ≤ T mod s

(ρ⌊T/s⌋)K
U

e(ρ⌊T/s⌋)Γ(1+KU ,ρ⌊T/s⌋)
else

where ρ = λ/µ and Γ is the upper incomplete Gamma
function. The probability that a chunk is available is equal
to 1 − P

(j)
b . The probability thatfi is blockedPU

b , i.e., the
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(a) An example SAN in which a single server has access toW copies of
file fi. Each connected drive has total access bandwidthB, and each slot
takes bandwidthb/s. Hence, each connected drive has⌊sB/b⌋ available access
bandwidth slots and employs the UCS scheme. Using UCS, the queue mapping
for this architecture is shown below in Fig. 3(b). For simplicity of illustration,
we assume integrality ofT/s.
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s independent
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queues

sB/b service units per drive D1,1

D1,s(W−1)

D1,s

D1,sW

λT/s
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(b) The equivalentM/G/KU/KU mapping from Fig. 3(a). For simplicity of
illustration, we assume integrality ofT/s.

Fig. 3: An example mapping from a network architecture with a
single server to anM/G/KU/KU queue in the UCS scheme. Note
that s independent queues exist in this mapping. For simplicity of
illustration, we assumeT mod s = 0.

probability that not all chunks are available, is then givenby

PU
b = 1−

(

1−
(ρ⌈T/s⌉)K

U

eρ⌈T/s⌉Γ(1 +KU , ρ⌈T/s⌉)

)T mod s

×

(

1−
(ρ⌊T/s⌋)K

U

eρ⌊T/s⌋Γ(1 +KU , ρ⌊T/s⌋)

)s−T mod s

.

(4)

A. NCS Design

We now describe our NCS scheme and compute the cor-
responding blocking probability. NCS is equivalent to UCS
except that we replace each chunkf

(k)
i,j from the SAN with a

coded chunkc(k)i,j . To allow for video streaming applications,
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we wish to allow a user to receive, decode, and begin playing
chunks at the beginning of a file prior to having received the
entire file. Coded chunks are constructed as follows. We divide
each file intoL equal-sized block windows or generations,
each containingr chunks. Owing to striping, we constrain
r ≤ s and s/r ∈ N

+. (There will be no performance gain
from network coding if there is coding across chunks on the
same drive, and coding across chunks on the same drive must
exist if r > s.) Let Bi,l be thelth block window/generation,
whereBi,l is a subset of filefi’s chunk indices andBi,l is
disjoint from all other block windows. See Fig. 4(a) for an
illustration.

Coded chunkc(k)i,j , j ∈ Bi,l, is a linear combination of all
uncoded chunks in the same block window that containsfi,j,

c
(k)
i,j =

∑

p∈Bi,l

α
(k)
p,jf

(k)
i,p (5)

whereα(k)
p,j is a column vector of coding coefficients drawn

from a finite fieldFq of size q [29], and where we treatf (k)
i,p

as a row vector of elements fromFq. We assign coding coeffi-
cients that compose eachα(k)

p,j with uniform distribution from
Fq, mirroring RLNC [30], in which the random coefficients
are continuously cycled. In this scheme, coded chunkci,j now
provides the user with partial information on all chunks in
its block window. Note that coefficients are randomly chosen
across both the chunk indexj as well as the copyk. Similarly
to [12], when a read request arrives for a coded chunk, the
relevant drive transmits bothc(k)i,j as well as the corresponding

coefficients{α(k)
p,j}.

In the NCS scheme, the blocking probability is determined
as follows. Similar to UCS, we merge the independent Poisson
arrival processes for uncoded chunks{fi,j : j ∈ Bi,l} into a
Poisson process with arrival rate eitherrλ⌈T/s⌉ or rλ⌊T/s⌋,
depending on the stripe-set length. This process can be inter-
preted as requests for any coded chunk that has an innovative
degree of freedom in thelth block window. See Fig. 4 for an
example mapping from a hardware architecture to a queue in
which W = 1. Generalizing such an architecture, the request
rates for an innovative chunk in thelth block window are
again mapped to an equivalentM/G/KC/KC queue with
parameter

KC = rKU , (6)

and so the blocking probabilityP (jC)
b for each coded stripe

setM/G/KC/KC queue is given by

P
(jC)
b =







(rρ⌈T/s⌉)K
C

erρ⌈T/s⌉Γ(1+KC ,rρ⌈T/s⌉)
, j ≤ (T mod s) /r

(rρ⌊T/s⌋)K
C

erρ⌊T/s⌋Γ(1+KC ,rρ⌊T/s⌋)
, else.

The constraints/r ∈ N
+ ensures that the queuing model

hass/r independent queuing systems and that no intra-drive
coding exists, in a similar fashion to the UCS scheme. This
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(a) An example of a single server system that only has access to a single copy of
file fi. This depiction withW = 1 is in contrast to Fig. 3 and is only for visual
simplicity. Chunks are coded using NCS, and those in the samehighlighted
block are composed of coded chunks from the same block window.
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(b) A queue mapping from Fig. 4(a).

Fig. 4: An example mapping from a single server hardware archi-
tecture with a single copyW = 1 of file fi to anM/G/KC/KC

queue in an NCS in blocks ofr chunks. In Fig. 4(a), file chunks have
been coded using NCS, and those in the same highlighted blockare
composed of coded chunks from the same block window as per (5).
For simplicity of illustration, we assume integrality ofT/s.

implies the NCS blocking probabilityPC
b is given by

PC
b = 1−

(

1−
(rρ⌈T/s⌉)K

C

erρ⌈T/s⌉Γ(1 +KC , rρ⌈T/s⌉)

)s/r

×

(

1−
(rρ⌊T/s⌋)K

C

erρ⌊T/s⌋Γ(1 +KC , rρ⌊T/s⌋)

)
s
r−⌊T mod s

r ⌋

.

(7)

B. UCS and NCS Comparison

We now compare the blocking probabilities and energy
efficiencies of NCS and UCS. Fig. 5 plots (4) and (7) as a
function ofW for three different stripe-ratess = 2, 4, 8, which
we refer to as low, medium, and high stripe-rates, respectively.
We set the number of chunks toT = 150 to approximate a
short movie trailer if chunks are divided up using a protocol
such as HLS. Finally, the number of videos that each drive
can concurrently serviceB/b is set to 2.
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As the stripe-rate increases, the benefit of the NCS scheme
over UCS become more apparent. In particular, assuming
a target quality of service (QOS) ofPb = 10−8, in the
low stripe-rate scenario the number of file copies required
has approximately a 20% savings. In contrast, in the high
stripe-rate scenario the number of file copies required has
approximately a 50% savings.

C. Super-chunks

We now sharpen the distinction between NCS and existing
chunk-layout schemes. It is reasonable to ask, if coding chunks
across drives provides blocking probability gains, then does
amalgamating chunks together in other formats provide similar
gains? We consider an example of amalgamating sequential
chunks(fi,j , . . . , fi,j+l) into super-chunksand compare the
blocking probability performance of that scheme to the afore-
mentioned UCS scheme. We adapt the UCS scheme to use
super-chunks as follows. Consider the super chunk file layout
depicted in Fig. 6. If the chunk size is increasedl times in
comparison to normal chunks, then each super-chunk will take
l times longer to be read. Keeping the number of chunks or
superchunks on each drive constant for comparison purposes,
then in the super-chunk scheme we have ans/l-striped file
as opposed to ans-striped file. Consider independent arrival
processes for each super-chunk each with ratelλ and that
the entire super-chunk is returned upon request. The traffic
intensity for the super-chunk model is given by

lλT/s/µ/l = l2ρT/s . (8)

In addition, owing to striping over a smaller number of drives
we have less bandwidth available to service incoming requests.
This drops the number of service units in the queuing system
to

KSC = ⌈KU/l⌉ . (9)

Assuming integrality ofs/l, the final blocking probability for
the super chunk scheme is then given by

PSC
b = 1−

(

1−
(l2ρT/s)⌈K

U/l⌉

el2ρT/sΓ(1 + ⌈KU/l⌉, l2ρT/s)

)s/l

.

(10)

Fig. 7 provides an example plot comparing the blocking
probabilities of the normal chunk layout to the super-chunk
file layout, with l = 2. The performance of the super-chunk
file layout is significantly degraded compared to the normal
chunk layout since the rate of the system has increased and
the number of service units available to service those requests
has decreased.

Alternative super-chunk layouts exist where, for example,
the memory per drive is kept constant as opposed to the
number of chunks per drive. In such a layout the load of
the system increases by a factor ofl and the number of
service units remains the same; again the blocking probability
is higher than the normal file layout. The performance gain
of NCS is tightly coupled to the increase in the number of
available service units to service chunk read requests. Different

file layout schemes such as super-chunks can certainly allow
system designers to rearrange queue statistics by merging
queues, but it isthe inter-drive information coupling and the
increase in available service units that follows from it which is
a key differentiator between NCS and such existing placement
strategies.

D. Energy and Financial Implications

We now estimate the potential energy savings for a SAN
that uses NCS using the model outlined in Section II-A. The
two primary terms in the energy coefficient in (1) are the
nγs andhγr terms. Although the storage of data with RLNC
would likely reduce communication requirements and hence
reduceh, we assume there are no differences inh in NCS
and UCS. An estimate of the order of magnitude of energy
savings follows. As an illustration, assume that each server
manages up to twelve drives,v = 12 and that each drive stores
2 terabytes (TB) of data: Hence every 24 TB of data saved
allows one server to be switched off. Referring to Fig. 1 and
Table I, a server directly consumes 325 W and with a typical
PUE of 2, each switched off server yields a 650 W/24 TB,
i.e., 27 W/TB, saving.

A percentage energy saving illustration is estimated using
(1). In an enterprise SAN server energy consumption domi-
nates router consumption, so

E(x) = xp (n γs + hγr)

≈ xp nγs , (11)

and with a targetPb = 10−8, we estimate that theenergy
consumption is reduced by 20–50%as one moves from a low
to high striping-rate regime.

We now convert these energy savings into SAN operating
expenditure financial savings. A typical annual energy cost
for an enterprise-size SAN is USD$3M [4] and over a typical
ten year lifetime, savings can be estimated using a discounted
cashflow model to compute the net present value (NPV) [31]:

NPV =

10
∑

i=1

CFi

(1 +WACC)i
, (12)

whereNPV is the net present value,CFi is the cash flow
in year i, andWACC is the weighted cost of capital for the
industry of interest given by [32]

WACC =
D

D + E
rD +

E

D + E
rE . (13)

In this case,D, E, rD, andrE are the average debt, equity, cost
of debt, and cost of equity in the DC industry, respectively.We
use the average ratio of values as per Table II to compute an
NPV savings of USD$4.04–10.1M.This significant financial
saving stems from the fact that small duplication savings are
significantly magnified in enterprise level SANs owing to large
server and drive numbers.

IV. D ISCUSSION& CONCLUSIONS

This paper has characterized the energy savings of NCS in
SANs. We introduced a mapping technique to analyze SANs
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TABLE II: Estimated finance performance parameters for the DC
industry, taken from publicly available financial market data for the
U.S. communication equipment industry [33].

Parameter Estimated value
D/(D +E) 0.55

rD 0.07
rE 0.09

as independentM/G/K/K queues and derived the blocking
probability for UCS schemes. These UCS schemes were then
contrasted with NCS, in which potential energy savings of
20–50% were illustrated. It was demonstrated that blocking
probability gains scale well with striping number and that NCS
operates differently from chunk amalgamation.

The presented blocking probability gains of NCS over UCS
are dependent on the stripe rate and the Kleinrock indepen-
dence assumption of arrivals. The Kleinrock assumption for
the independence of incoming chunk read requests requires
significant traffic mixing and moderate-to-heavy traffic loads
[22]. This models reality most closely in large SANs with
sufficient traffic-mixing from different users and with traffic
loads such as those found in enterprise-level DCs. In contrast,
in smaller SANs, such as those found in closet DCs, the
number of users and the traffic load are smaller and the
correlated effects of arrivals between chunks in the same file
will become more important.

Given the Kleinrock assumption, results show that blocking
probability improvements scale well with striping rates, i.e.,
as striping rates increase with NCS, the number of required
file copies decreases. This may motivate the exploration of
very high stripe rates in certain systems for which blocking
probability metrics are of particular concern. Although wedo
not specifically advocate for very high stripe-rates, the overall
benefits of striping will remain in use in some form as long
as there is a demand and supply mismatch between I/O. Over
the last two decades, application bitrate demand growth has
continued to outpace increases in drives’ I/O growth; as long
as this trend continues the striping paradigm is likely to remain
and the benefits of very high stripe-rates may require further
exploration.

Future work includes extending analysis of NCS to corre-
lated arrivals between chunks, to inter-SAN architecturesand
to full CDN architectures. In addition, the implementationof
NCS in a testbed could provide additional compelling insights.
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(a) The effect of NCS on duplication requirements in an example single SAN
on the blocking probabilityPb with a low stripe-rate in a system with low load.
In this setup the stripe-rate is set tos = 2, the number of chunks isT = 150,
B/b = 2 andρ = 0.2.
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(b) The effect of NCS on duplication requirements in a singleSAN on the
blocking probabilityPb with a medium stripe-rate in a system with heavy load.
In this setup the stripe-rate is set tos = 4, the number of chunks isT = 150,
B/b = 2 andρ = 0.9.

3 4 5 6 7
10

−10

10
−8

10
0

 

 
UCS
NCS

PSfrag replacements

P
b

W

r = 2, 4, 8

(c) The effect of NCS on duplication requirements in a singleSAN on the
blocking probabilityPb with a high stripe-rate in a system with heavy load. In
this setup the stripe-rate is set tos = 8, the number of chunks isT = 150,
B/b = 1 andρ = 0.9.

Fig. 5: The effect of NCS on duplication requirements as a function
of blocking probability under various stripe-rates and system loads.
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Fig. 6: An example of a super chunk file layout. Each connecteddrive
has sB/b available access bandwidth slots and employs the UCS
scheme with super chunks. Each super chunk is an amalgamatedset
of l chunks.
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Fig. 7: A comparison of blocking probability for the UCS and the
super-chunk scheme. The number of chunks is set toT = 150, s =
4, B/b = 2 and ρ = 0.9. The size of each super-chunk is two
amalgamated chunks sol = 2.
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