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Abstract—Recovering signals from their Fourier
transform magnitudes is a classical problem referred
to as phase retrieval and has been around for decades.
In general, the Fourier transform magnitudes do not
carry enough information to uniquely identify the signal
and therefore additional prior information is required.
In this paper, we shall assume that the underlying
signal is sparse, which is true in many applications
such as X-ray crystallography, astronomical imaging,
etc. Recently, several techniques involving semidefinite
relaxations have been proposed for this problem, how-
ever very little analysis has been performed.

The phase retrieval problem can be decomposed into
two tasks - (i) identifying the support of the sparse
signal from the Fourier transform magnitudes, and (ii)
recovering the signal using the support information.
In earlier work [13], we developed algorithms for (i)
which provably recovered the support for sparsities upto
O(n1/3−ε). Simulations suggest that support recovery is
possible upto sparsity O(n1/2−ε). In this paper, we focus
on (ii) and propose an algorithm based on semidefinite
relaxation, which provably recovers the signal from its
Fourier transform magnitude and support knowledge
with high probability if the support size is O(n1/2−ε).

Index Terms—Phase Retrieval, Semidefinite Relax-
ation, Sparse Signals, Autocorrelation

I. INTRODUCTION

Physical measurement systems in many cases
can only output the squared modulus of the
Fourier transform. Phase information is either lost
or unreliable in these systems. This is a funda-
mental problem in many areas of engineering and
applied physics, including optics [1], X-ray crys-
tallography [2], astronomical imaging [3], speech
processing [4], particle scattering and electron
microscopy.
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1018927, by the Office of Naval Research under the MURI grant
N00014-08-1-0747, and by Caltech’s Lee Center for Advanced
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Recovering a signal from its Fourier transform
magnitude, or equivalently its autocorrelation, is
known as phase retrieval. This problem has gen-
erated a lot of interest over the last few decades
and a wide range of techniques have been pro-
posed. The Gerchberg-Saxton algorithm [5] was
the first popular method to solve this problem.
Fienup, in his seminal paper [7], proposed a
broad framework for iterative algorithms. Error
reduction, Basic Input-Output (BIO) and Hybrid
Input-Output (HIO) algorithms were presented.
[6] provides a theoretical framework to under-
stand the algorithms.

In many applications of phase retrieval, the
signals encountered are naturally sparse. For ex-
ample, astronomical imaging deals with the loca-
tions of stars in the sky, electron microscopy deals
with the density of electrons and so on. Recently,
attempts have been made to exploit the sparse
nature of signals. [8] proposes an iterative algo-
rithm based on alternating projections. Semidef-
inite relaxation based algorithms are explored in
[9], [10], [11], [12] and [13].

In our earlier work [12], [13], we divided the
phase retrieval problem into two tasks to exploit
sparsity - (i) support recovery using the Fourier
transform magnitudes and (ii) signal recovery
using the signal support. In [13] we proposed an
algorithm that provably recovers the support with
high probability if the support size is O(n1/3−ε),
simulations suggest it does so for support sizes
upto O(n1/2−ε). In this paper, we focus on task
(ii). In other words, analyze the convex pro-
gram obtained using semidefinite relaxations on
the phase retrieval problem with apriori knowl-
edge of support of the signal, i.e., the locations
where the signal has non-zero values. We discuss
certain sufficient conditions for unique mapping
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between the signal and its autocorrelation, and
show that for signals upto sparsity O(n1/2−ε),
the convex program uniquely recovers them from
their Fourier transform magnitude with very high
probability if their support is known apriori.

This paper is organized as follows. In Section
2, we formulate the phase retrieval problem. In
Section 3, we discuss some sufficient conditions
for unique signal recovery from its Fourier trans-
form magnitude and prove that sparse signals
(upto O(n1/2−ε)) can be uniquely recovered with
very high probability. The semidefinite relaxation
based technique is proposed and analyzed in Sec-
tion 4. Section 5 presents the simulation results
and concludes the paper.

II. PROBLEM SETUP

Let x = (x0, x1, ....xn−1) be a real-valued
signal of length n and sparsity k, where sparsity
is defined as the number of non-zero entries in
the signal. Its autocorrelation, denoted by a =
(a0, a1, ....an−1), is defined as

ai
def
=

∑
j

xjxj+i = (x ? x̃)i (1)

where x̃ is the time reversed version of x. Note
that cyclic indexing scheme is used. Let u =
(u0, u1, ....un−1) denote the support of the signal
x, defined as

ui =

{
1 if xi 6= 0

0 otherwise
(2)

In this work, we will assume that u is known
apriori and the k locations are chosen from the n
available locations uniformly and randomly. The
signal values in the support are chosen from a
Gaussian distribution independently. We are inter-
ested in sparse x, i.e., k << n where k =

∑
i ui.

Let y = (y0, y1, ....yn−1) be the Fourier transform
of x, i.e,

y = Fx (3)

where F is the n × n DFT matrix. Observe
that power spectral density, denoted by |y|2 =
(|y0|2, |y1|2, ....|yn−1|2) and a are Fourier pairs,
and hence the problem of signal recovery from the

magnitudes of Fourier transform is equivalent to
recovering the signal from its autocorrelation. The
problem of signal recovery with known support
can be formulated as

find x (4)

subject to ai =
∑
j

xjxj+i 0 ≤ i ≤ n− 1

xi = 0 iff ui = 0 0 ≤ i ≤ n− 1

Define Mi = fif
T
i ∀i = {0, 1, ....n − 1}, where

fi is the ith column of the n× n DFT matrix. (4)
can also be written as

find x (5)

subject to |yi|2 = xTMix 0 ≤ i ≤ n− 1

xi = 0 iff ui = 0 0 ≤ i ≤ n− 1

III. UNIQUE RECOVERY

Since the mapping from signals to Fourier
transform magnitudes is not one-to-one, unique
recovery is not possible in general. For any
Fourier transform magnitude, every possible
phase combination corresponds to a different sig-
nal and hence, additional prior information is
required to guarantee uniqueness. In this section,
we show that for signals upto O(n1/2−ε) sparsity,
knowledge of the support is sufficient to guarantee
unique mapping with very high probability.

A. Sufficient Criteria for Uniqueness

Suppose S = (s0, s1, ...sk−1) = {i|ui 6= 0} be
the set of all elements that belong to the support
of the signal. Construct a weighted graph G with
k vertices, denoted by {v0, v1, ....vk−1} such that

(i) There exists an edge between vertices vi and
vj iff the following condition is satisfied

∀sg, sh ∈ S, sg − sh 6= si − sj

unless (i, j) = (g, h) or (i, j) = (h, g)
(6)

where the difference considered is modulo
n.

(ii) If there exists an edge between vi and vj , its
weight, denoted by wij is given by

wij = a|si−sj | (7)
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The key idea is that if an edge exists between
vi and vj , then wij = xsixsj , i.e, if an edge
exists between two vertices, then the product of
the corresponding signal values is known, because
no other term contributes to a|si−sj |.

Lemma III.1. Suppose the graph G is connected
and has a triangle, then the signal can be ex-
tracted uniquely from the autocorrelation upto a
global sign.

Proof: Without loss of generality, let the
induced subgraph of {v1, v2, v3} be a triangle. We
see that
w12w13

w23

= xs1
2, xs2 =

w12

xs1
& xs3 =

w13

xs1
(8)

from which (xs1 , xs2 , xs3) can be recovered upto a
global sign. Note that if there is an edge between
vi and vj , and if one of xsi or xsj is known,
the other can be recovered. Since the graph G is
connected, with the knowledge of xs1 upto a sign,
all the entries can be recovered upto a global sign.

B. Probability of Success of Lemma III.1
In this part, we calculate the probability of the

graph G being connected.

Lemma III.2. Let p denote the probability that
there is an edge between vi and vj for (i, j) ∈
{0, 1...k − 1}. Then p ≥ 1− k2

n
.

Proof: Consider any pair of vertices vi and
vj . There will be no edge between them if there
exists another pair of vertices vg and vh such that
sg−sh = si−sj by construction. Since the support
entries are chosen uniformly and randomly, we
have

Pr{∃(g, h) 6= (i, j) or (j, i)|sg − sh = si − sj}

≤
q=k∑
q=1

r=k∑
r=1

Pr{sq − sr = si − sj} ≤
k2

n

p = 1−Pr{∃(g, h) 6= (i, j), (j, i)|sg−sh = si−sj}

≥ 1− k2

n
(9)

All index additions and differences considered are
modulo n.

Lemma III.3. Suppose δ(G) denotes the mini-
mum degree of a graph G, then δ(G) ≥ k(1−1/t)
with probability q > 1 − ε for any ε > 0, t > 0
and n > n(ε) if k2t

n
< 1.

Proof: Consider a vertex vi. Construct a
graph Gi from G by removing all the edges which
do not involve the vertex vi. Let us consider the
vertex exposure martingale [14] on this graph Gi

with the graph function d(vi), where d(v) denotes
the degree of the vertex v. Let Hj be the induced
subgraph of Gi formed by exposed vertices after j
exposures. We define a martingale X0, X1, .....Xk

as follows
Xj = E[d(vi)|Hj] (10)

Refer to the Appendix for details. Observe that
X0 = E[d(vi)] ≥ k(1 − k2

n
) and Xk = d(vi),

where d(vi) is the degree of the vertex vi. Note
that |Xj+1 − Xj| ≤ 1 ∀ 0 ≤ j ≤ m − 1.
Azuma’s inequality [14] gives us

Pr{d(vi) < E[d(vi)]− λ} ≤ 2e−λ
2/2k (11)

for λ > 0. Choosing λ = k(1
t
− k2

n
), which is

greater than 0 when k2t
n
< 1, we get

Pr{d(vi) < k(1− 1

t
)} ≤ 2e−

k
2
( 1
t
− k2

n
)
2

(12)

Using union bound to accomodate all the vertices
vi for i = {0, 1...k − 1}, we get

Pr{∃i|d(vi) < k− k

t
} ≤

i=k∑
i=1

Pr{d(vi) < k− k

t
}

(13)

≤ 2ke−
k
2
( 1
t
− k2

n
)
2

< ε for n > n(ε) (14)

Theorem III.1. The graph G is connected and
has a triangle with probability q > 1− ε for any
ε > 0 if k = O(n1/2−ε) and n > n(ε)

Proof: Suppose k = O(n1/2−ε) and t = 2.
We see that all the conditions of Lemma (III.3)
are met, and hence every vertex in the graph has
a degree at least k

2
with very high probability.

Dirac’s theorem [15] states that such graphs have
a Hamiltonian cycle, which shows that the graph
is connected. The probability that there doesn’t
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exist a triangle between any three vertices chosen
can be upper bounded by 3k

2

n
using union bounds.

Hence, we have

q ≥ 1− (2ke−
k
2
( 1
2
− k2

n
)
2

+ 3
k2

n
) > 1− ε (15)

if n > n(ε).
Hence, we see that signals with sparsity

O(n1/2−ε) can be uniquely recovered from their
Fourier transform magnitude with very high prob-
ability if their support is known apriori.

IV. CONVEX ALGORITHM FOR ROBUST
RECOVERY

Note that (5) is a non-convex problem as the
autocorrelation constraints are non-convex. While
the ideas discussed in Section 3 can be used
to develop an algorithm to recover the signal
from their autocorrelation with known support
information [13], we see that the algorithm would
be very sensitive to noise for obvious reasons.
Convex programs are known to be robust to noise,
with the performance degrading gracefully with
noise. In this section, we introduce a series of
relaxations to convert (5) into a convex problem,
and analyze its performance.

A. Semidefinite Relaxation
The semidefinite relaxation technique has

shown great promise in solving many non-convex
quadratically constrained programs. Suppose we
define X = xSx

T
S , where xS is the vector contain-

ing all the elements belonging to the support. This
technique is also known as lifting in the popular
literature. (5) can be rewritten as

find X (16)
subject to |yi|2 = trace(Mi(S, S)X)

rank(X) = 1

where Mi(S, S) is the k × k submatrix of Mi

with the indices corresponding to the support for
0 ≤ i ≤ k − 1. [16] shows that the best convex
relaxation of (16) is

minimize trace(X) (17)
subject to |yi|2 = trace(Mi(S, S)X)

X < 0

(17) is hence the best convex relaxation of the
phase retrieval problem with known support. If the
output of the program is a matrix of rank 1, the
signal can be extracted successfully by a simple
decomposition.

B. Performance Analysis of the Convex Program

The signal can be successfully recovered by
(17) if the output of the program is a rank 1
matrix. Analysis of semidefinite relaxation based
programs to guarantee a rank 1 solution is a
difficult task. In this section, we will consider
a further relaxation of (17) and provide lower
bounds for guarantees of rank 1 output with very
high probability.

Lemma IV.1. If there is an edge between vertices
vi and vj in the graph G, then Xij can be deduced
from the autocorrelation.

Proof: By construction, if there is an edge
between vi and vj , then a|si−sj | = xsixsj . By
definition, Xij = xsixsj and hence Xij can be
calculated from the autocorrelation.

A further relaxation of (17) can be obtained by
using only the values of X which can be directly
calculated from the autocorrelation, i.e,

minimize trace(X) (18)
subject to Xij = a|si−sj | if vi ↔ vj

X < 0

where vi ↔ vj implies there is an edge between
vi and vj .

As a slight detour, let Z be a positive semidef-
inite t× t matrix with all the off-diagonal entries
given. Suppose the off-diagonal entries are such
that Zij = zizj , where z is a t×1 vector. Since we
have a positive semidefinite condition on Z, any
2×2 submatrix of Z is also positive semidefinite,
i.e.,

ZiiZjj ≥ (zizj)
2 ∀ distinct (i, j) (19)

Consider the convex program

minimize trace(Z) (20)

subject to ZiiZjj ≥ (zizj)
2 ∀ distinct (i, j)

797



Lemma IV.2. (20) gives a rank 1 solution with a
very high probability for sufficiently large t.

Proof: Suppose the rank 1 completion Z =
zzT is not the minimizer of (20). Then there exists
atleast one Zii which is strictly lesser than z2i , say
(1 − ε)z2i for ε > 0. The constraints require all
other diagonal entries to be greater than or equal
to 1

1−εz
2
j = (1 + ε

1−ε)z
2
j . The objective function

can be written as

trace(Z) =
i=t∑
i=1

Zii ≤ (1−ε)z2i +
∑
j 6=i

(1+
ε

1− ε
)z2j

=
∑
j

zj
2 +

ε

1− ε
(
∑
j 6=i

z2j − (1− ε)z2i ) (21)

If we can guarantee that (
∑

j 6=i z
2
j − (1− ε)z2i ) >

0 for all i, then we are through. [18] provides
an exponentially decreasing probability in t for
failure of the required condition.

Theorem IV.1. The convex program (18) extracts
the signal from the magnitude of its Fourier trans-
form with very high probability if k = O(n1/2−ε).

Proof: Lemma III.3 shows that δ(G) >
k(1− 1

t
) if k2t

n
< 1. Hajnal-Szemeredi theorem on

disjoint cliques [17] states that if δ(G) > k(1− 1
t
),

there exists a subgraph which consists of k
t

vertex
disjoint union of complete graphs of size t. Sup-
pose we choose t = log(n). Lemma IV.2 applies
to each of the k

t
complete graphs and hence using

union bound, we see that trace minimization gives
us all the diagonal entries corresponding to the
rank 1 solution with very high probability for
k = O(n1/2−ε). Since the graph G is connected,
we know both the diagonal and the principal off-
diagonal entries. They come from a rank 1 matrix,
hence the rank 1 completion is the only possible
positive semidefinite completion, and hence the
unique minimizer of the convex program. Hence
the signal can be extracted uniquely by a simple
decomposition as long as k = O(n1/2−ε).

Observe that the results derived in this section
are for (18), which is a much relaxed version of
(17). Hence, the sparsities derived act as lower
bound guarantees and one can expect (17) to
perform well for much higher sparsities.

V. SIMULATION RESULTS

In this section, we discuss the performance of
the convex programs (17) and (18) in recovering
signals from the magnitudes of their Fourier trans-
form with apriori support knowledge. Since the
program (17) is a tighter version of (18), it can be
expected to perform atleast as good as (18), and
hence (18) provides a lower bound to recovery
success rate.

Simulations were performed for various choices
of signal length n and their probabilities of suc-
cessful recovery are plotted against various sparsi-
ties. For a given n and k, the support entries were
chosen uniformly and randomly. The signal values
in the support were chosen from a Gaussian
distribution independent of each other.

Figures 1 and 2 show the success rate of
programs SDR (17) and Lower Bound (18) for
n = 64 and n = 128 respectively, for various
choices of k. It can be observed that signals can
be recovered with high probability if they have
sparity O(n1/2−ε).
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Fig. 1. Success rate of recovery of programs (17) and (18) for
n = 64 and various sparsities

We observed that (17) recovers signals from
their Fourier transform magnitudes for sparsities
much higher than the lower bound O(n1/2−ε). As
we can see from Figures 1 and 2, signals with
sparsities of the order of O(n) were recovered
with very high probaiblity. This is due to the huge
number of linear constraints in (17) in addition
to fixing some entries in the matrix. Hence, if
support information is available through other
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Fig. 2. Success rate of recovery of programs (17) and (18) for
n = 128 and various sparsities

means apart from recovery algorithms, (17) is
a very effective method to reproduce the signal
values from their Fourier transform magnitudes
even if they are not sparse.

VI. APPENDIX

A. Proof for vertex exposure martingale

We can see that X0, X1, .....Xk form a martin-
gale as follows

E[Xj+1|X0, X1, ....Xj]

= E[E[d(vi)|Hj+1]|X0, X1, ....Xj]

=
∑
Hj+1

p(Hj+1|X0, X1, ....Xj)E[d(vi)|Hj+1]

=
∑
Hj+1

p(Hj+1|Hj)
∑
G′

p(G′|Hj+1)dG′(vi)

where dG′(vi) is the degree of vi in the graph
G′ and the summation is done over all possible
graphs G′.

=
∑
G′

∑
Hj+1

p(G′, Hj+1|Hj)dG′(vi)

= E[d(vi)|Hj] = Xj (22)

REFERENCES

[1] A. Walther, ”The question of phase retrieval in optics,”
Opt. Acta 10, 4149 (1963).

[2] R. P. Millane, ”Phase retrieval in crystallography and
optics,” J. Opt. Soc. Am. A 7, 394-411 (1990)

[3] J.C. Dainty and J.R. Fienup,“Phase Retrieval and Im-
age Reconstruction for Astronomy,” Chapter 7 in H.
Stark, ed., Image Recovery: Theory and Application

[4] L. Rabiner, B.H. Juang, “Fundamentals of Speech
Recognition,” Signal Proc. Series, Prentice Hall, 1993.

[5] R. W. Gerchberg, W. O. Saxton. “A practical algorithm
for the determination of the phase from image and
diffraction plane pictures”. Optik 35, 237 (1972).

[6] H.H. Bauschke, P.L. Combettes and D.R. Luke, ”Phase
retrieval, error reduction algorithm, and Fienup vari-
ants: a view from convex optimization”. J. Opt. Soc.
Am. A, 19(7): 1334-1345, 2002.

[7] J. R. Fienup, “Phase retrieval algorithms: a compari-
son”. Appl. Opt. 21, 2758–2769 (1982).

[8] Y.M. Lu and M. Vetterli. “Sparse spectral factorization:
Unicity and reconstruction algorithms”. ICASSP 2011.

[9] E. J. Candes, Y. Eldar, T. Strohmer, and V.
Voroninski. “Phase retrieval via matrix completion”.
arXiv:1109.0573v2

[10] E. J. Candes, T. Strohmer and V. Voroninski.
PhaseLift: exact and stable signal recovery from mag-
nitude measurements via convex programming. To
appear in Communications on Pure and Applied Math-
ematics

[11] Y. Shechtman, Y.C. Eldar, A. Szameit and M. Segev,
”Sparsity Based Sub-Wavelength Imaging with Par-
tially Incoherent Light Via Quadratic Compressed
Sensing”, Optics Express, vol. 19, Issue 16, pp. 14807-
14822, Aug. 2011.

[12] K. Jaganathan, S. Oymak and B. Hassibi, “Phase Re-
trieval for Sparse Signals using Rank Minimization”.
Acoustics, Speech and Signal Processing (ICASSP),
2012 IEEE International Conference.

[13] K. Jaganathan, S. Oymak and B. Hassibi, “Recovery
of Sparse 1-D Signals from the Magnitudes of their
Fourier Transform”. International Symposium on In-
formation Theory (ISIT), 2012.

[14] N. Alon and J.H. Spencer, ”The Probabilistic
Method”, Chapter 7.

[15] R.L. Graham, ”Handbook of Combinatorics”
[16] B.Recht, M.Fazel and P.Parrilo. ”Guaranteed

Minimum-Rank Solutions of Linear Matrix Equations
via Nuclear Norm Minimization”. SIAM Review, Vol
52, no 3, pages 471-501, 2010.

[17] Hajnal, A. and Szemeredi, E. ”Proof of a Conjecture
of Erdos”. In Combinatorial Theory and Its Appli-
cations, Vol. 2 (Ed. P.Erdos, A.Renyi and V.T. Sos).
Amsterdam, Netherlands: North-Holland, 1970.

[18] R. Vershynin, ”Introduction to the non-asymptotic
analysis of random matrices”. arXiv: 1011.3027v7

799


