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Secure Multiplex Coding with Dependent and
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Abstract—The secure multiplex coding (SMC) is a technique
to remove rate loss in the coding for wire-tap channels and
broadcast channels with confidential messages caused by the
inclusion of random bits into transmitted signals. SMC replaces
the random bits by other meaningful secret messages, and
a collection of secret messages serves as the random bits to
hide the rest of messages. In the previous researches, multiple
secret messages were assumed to have independent and uniform
distributions, which is difficult to be ensured in practice. We
remove this restrictive assumption by a generalization of the
channel resolvability technique.

We also give practical construction techniques for SMC by
using an arbitrary given error-correcting code as an ingredient,
and channel-universal coding of SMC. By using the same
principle as the channel-universal SMC, we give coding for the
broadcast channel with confidential messages universal to both
channel and source distributions.

Index Terms—broadcast channel with confidential messages,
information theoretic security, multiuser information th eory,
universal coding, the secure multiplex coding

I. Introduction

A. Overview

Recently, the security of personal information is demanded
much more. The wire-tap model is a typical secure message
transmission model with the presence of an eavesdropper.
Specially, there are the legitimate sender called Alice, the
legitimate receiver called Bob, and the eavesdropper Eve.
There is also a noisy broadcast channel from Alice to Bob and
Eve. Alice wants to send secret messages reliably to Bob and
secretly from Eve. This problem was first formulated by Wyner
[35]. Csiszár and Körner generalized Wyner’s original problem
to include common messages from Alice to both Bob and
Eve, and determined the optimal information rate tuples of the
secret message and the common message, and the information
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leakage rate of the secret message to Eve, which is measured
by the conditional entropy of the secret message given Eve’s
received signal [9]. They called their generalized problemas
the broadcast channel with confidential messages, hereafter
abbreviated as BCC. The secrecy of messages over the wire-
tap channel and the BCC is realized by including meaningless
random variable, which is called the dummy message, into
Alice’s transmitted signal. This decreases the information rate.

In order to get rid of this information rate loss, Yamamoto
et al. [22] proposed the secure multiplex coding, hereafter
abbreviated as SMC, as a generalization of the wire-tap
channel coding. The SMC can be used, for example, in the
following case. When a company treats a collection of personal
information, it is required to keep the secrecy of the respec-
tive personal information. However, it may not be required
to keep the secrecy of the relation among several personal
information. For example, when all of personal information
are subject to the uniform distribution of the same length
bit sequence, the secrecy of their exclusive OR may not
be required. Consider the case when the sender Alice sends
the collection ofT persons’ personal informationS1, . . . ,ST

via the channel partially leaked to Eve. It is required that
the receiver Bob can decode all ofS1, . . . ,ST , and that
Eve cannot obtain any information of the respective personal
information. In order to keep the secrecy of the messageSi

from Eve, Yamamoto et al. [22] proposed to use the remaining
informationS1, . . . ,Si−1,Si+1, . . . ,ST as the dummy message
for the messageSi . Then, they realized the secrecy of the
messageSi without loss of the information rate. This type
of coding problem is called the SMC. It is known that the
application of the channel resolvability [13] yields the security
of the wire-tap channel model [15]. Hence, employing this
method, Yamamoto et al. [22] proved the security of SMC.

On the other hand, sinceS1, . . . ,Si−1,Si+1, . . . ,ST are per-
sonal information, they are not necessarily uniform random
bits and might be dependent, while the existing papers [27],
[22] assumed their uniformity and independence. Such as-
sumption is difficult to be ensured in practice. Unfortunately,
the application of the original channel resolvability can prove
the security only when the messagesS1, . . . ,Si−1,Si+1, . . . ,ST

are conditionally uniform and independent ofSi because it
treats the approximation of the channel output distribution with
the uniform input random variable. One may consider that the
compressed data satisfies that assumption so that the removal
of that assumption is not needed. However, as is shown in [14],
[16], the compressed data is not uniform in the sense of the
variational distance nor the divergence. That is, the uniformity
assumption does not hold for such compressed data. Hence,
the removal of the assumption is essential for non-uniform
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information source.
The reader might also conceive that this problem could

be solved by a straightforward combination of the coding
for intrinsic randomness [33] and that for the original se-
cure multiplex coding [22], [27]. We emphasize that this is
false. We cannot recover the original secret messages from a
codeword generated by an intrinsic randomness encoder, anda
new technique must be deployed to remove the independence
and uniform assumption on the multiple secret messages. One
of the main contributions of this paper is to remove that
assumption. In order to treat the non-uniform and dependent
case, we need a generalization of the channel resolvability.
Hence, this paper also studies a generalization of the channel
resolvability problem [13], [15].

Even after we solve the above problem by a generalization
of the channel resolvability problem, the security ofSi depends
on the randomness and the dependence of the remaining
messagesS1, . . . ,Si−1,Si+1, . . . ,ST on Si . This dependence
causes another difficulty in the asymptotic formulation of
SMC. That is, we need to characterize the randomness and
the dependence in the asymptotic setting. For this purpose,we
introduce several kinds of asymptotic conditional uniformity
conditions and study their properties. In addition to this,for
the case when the channel is unknown, we also treat universal
coding for the secure multiplex coding [22]. Further, as a
byproduct, we obtain source-channel universal coding for the
broadcast channel with confidential messages [9]. We divide
the introductory section to six subsections.

Finally, we should explain the assumptions for our probabil-
ity spaces. In the main body, we assume that all of probability
spaces are finite sets. However, our result can be extended
to the case of measurable spaces except for the contents in
Sections VIII-A, XII, and XIII. This generalization contains
the case of continuous sets. In Appendix D, we summarize
how to generalize our results to the case of measurable spaces.
As a byproduct, we show the strong security for the Gaussian
channel.

B. Generalization of the Channel Resolvability

For a given channelW with input alphabetX and output
alphabetY, and given information sourceX on X, Han and
Verdú [13] considered to find a codingf : A → X and a
random variableA such that the distributions ofW( f (A)) is
close toW(X) with respect to the variational distance or the
normalized divergence, and evaluated the minimum resolution
of A to make the variational distance or the normalized
divergence asymptotically zero. In their problem formulation,
one can choose the randomnessA used to simulate the channel
output distribution.

In this paper, we shall consider the situation in which we are
given a channelW, an information sourceX, and randomness
A and asked to find codingf : A → X such thatW( f (A)) is as
close as possible toW(X) with respect to unnormalized diver-
gence. We shall study how closeW( f (A)) can be toW(X) in
Theorems 14 and 17 in Section VI. Hence, this problem can be
regarded as a generalization of channel resolvability because
this problem contains the original channel resolvability as a
special case in the above sense.

C. Asymptotic Conditional Uniformity

In Subsection VIII-A, in order to characterize the
randomness and the dependence of the messages
S1, . . . ,Si−1,Si+1, . . . ,ST on the other messageSi

asymptotically, we introduce three asymptotic conditional
uniformity conditions. Then, we can characterize
what a conditional distribution of the messages
S1, . . . ,Si−1,Si+1, . . . ,ST has a similar performance to
the conditionally uniform distribution when we apply SMC.
We summarize the relations among those conditions as
Theorem 29. In particular, in Appendix C, we show that
two introduced asymptotic conditional uniformity conditions
are equivalent. Hence, we essentially have two different
conditional uniformity conditions, namely, the weaker and
the stronger asymptotic conditional uniformity conditions.

In Subsection VIII-B, we give sufficient conditions for
the Slepian-Wolf compression so that the compressed data
satisfies these asymptotic conditional uniformity conditions.
For the stationary ergodic sources, we show the existence ofa
sequence of Slepian-Wolf codes whose compressed data satis-
fies the weaker asymptotic conditional uniformity conditions
(Theorem 30 and Remark 31). Also for the i.i.d. sources, we
show the existence of a sequence of Slepian-Wolf codes whose
compressed data satisfies the stronger asymptotic conditional
uniformity conditions (Theorem 32 and Remark 33).

D. Secure Multiplex Coding

Here, we explain the detail of our contributions to SMC.
As is explained above, we have to realize the security of
Si when the remaining messagesS1, . . . ,Si−1,Si+1, . . . ,ST are
not uniform and are dependent on the messageSi . In order
to solve this problem, we employ our generalized channel
resolvability coding in Theorems 14 and 17. Then, we can
construct coding for a wire-tap channel that can ensure the
secrecy of message against the eavesdropper Eve when the
dummy message used by the encoder is non-uniform and
statistically dependent on the secret message that has to be
kept secret from Eve. We apply our generalized channel
resolvability coding to the above SMC case. Hence, we can
remove the independence and uniform assumption on the
multiple secret messages while the original paper [22] by
Yamamoto et al. and the previous paper [27] by the present
authors assumed the independence and the uniformity of the
multiple secret messages.

Indeed, Yamamoto et al. [22] treated only the secrecy of
each messageSi , and did not evaluate the information leakage
of multiple messagesSi1, . . . , Sin to Eve, and the present
authors analyzed such information leakage in [27]. The present
authors also generalized coding in [27] so that Alice’s encoder
can support the common messageS0 to both Bob and Eve. The
present authors also characterized the achievable information
leakage rate in [27]. Those enhancements are retained in this
paper.

In Section VII, we shall give two code constructions for
SMC. The first construction given in Subsection VII-B is a
simple application of channel resolvability coding in Theorem
14. Although it achieves the capacity region when there is no
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common message, it is insufficient to fully prove the capacity
region. In Subsection VII-C, to overcome this defect, we
propose the second construction given in Theorem 17, which
is based on another type of the channel resolvability coding.
By using these constructions, we shall evaluate the decoding
error probability and the mutual information to Eve in Section
VII in single-shot setting in the sense of [34].

In Section IX we formulate the capacity region of SMC,
analyze the asymptotic performance of two constructions,
and prove that the second construction achieves the capacity
region of SMC. The capacity region is defined based on the
weaker asymptotic conditional uniformity condition givenin
Definition 36. In Section X, we shall prove that the mutual
information to Eve converges to zero when the normalized
mutual information to Eve converges to zero under the stronger
asymptotic conditional uniformity given in Definition 28. The
convergence is so-called the strong security [28]. In Subsection
X-B, we also derive the exponent of the mutual information
to Eve. The relation between our results and the paper [22] is
explained as (145).

Section XI addresses a more practical issue. In Theorem 22
of Section VII, we show that we can have an upper bound
of mutual information between multiple secret messages and
Eve’s received signal, by attaching randomly chosen group
homomorphisms satisfying Condition 15 toany given error-
correcting code for channels with single sender and single
receiver or the broadcast channel with degraded message sets
[23]. However, the upper bound in Theorem 22 becomes
difficult to be computed when the error-correcting code is not
given by the standard random coding in information theory.
In Section XI, we shall construct more practical codes by
combining the construction of Section VII with an arbitrary
given error-correcting code. Under these codes, we shall give
two upper bounds on the leaked mutual information that can
be computed easily in practice. Section XI gives enhancement
of our earlier proceeding paper [18].

E. Universal Coding

Universal coding is construction of encoder and decoder
that do not use the statistical knowledge on the underlying
information system (usually channel and/or source) [8]. In
Section XII we shall give a construction of SMC universal
to channel. The basic idea in Section XII is to combine the
construction in Section VII with the universal coding using
constant-type codes for the broadcast channel with degraded
messages sets (BCD) in [24], while in Sections VII–X the
superposition random coding in [23] is used as their error-
correcting mechanism. The exponent given in Section XII is
better than that given in our earlier proceeding paper [19].

Channel-universal coding for BCC had not been studied
before [19], and coding for BCC can be regarded as a special
case of SMC while Muramatsu et al. [29] treat channel-
universal coding for wire-tap channel independently of [19]. In
Section XII and [19] we consider SMC universal to channel,
but its universality to the source is not considered. In Section
XIII we give a coding for BCC universal to both channel
and source. Its channel-universality is realized by the same

principle as Section XII and [19]. The exponent given in
Section XII is also greater than that given in our earlier
proceeding paper [19].

In Section XIV, we compare the exponent of leaked in-
formation given in Sections XII and XIII and that given in
Subsection X-B. As a result, we show that the exponent in
Sections XII and XIII is greater than one of exponents in
Subsection X-B, which is the same as that in [19]. We also
derive the equality condition.

F. Organization of This Paper

The outline of this paper is given as follows. First, we
prepare notations used in this paper in Section II. Second,
we prepare information quantities and their properties used
in this paper in Section III. Then, we review the formulation
and existing results of BCC in Subsection IV-A. We give its
reformulation for the dependent and non-uniform messages
case in Subsection IV-B. This new formulation is essential
in the later discussion for SMC with dependent and non-
uniform multiple messages. In Subsection V-A, we review the
formulation and existing results of BCD as a special case of
BCC, which will be used for our codes of SMC. In Subsection
V-B, we review Körner and Sgarro [24]’s result for universal
code for BCD, which will be used for our construction of
universal codes for SMC and BCC. In Section VI, we proceed
to generalization of channel resolvability, which is a key idea
of the paper and is used for codes of SMC and universal codes
for SMC and BCC. Section VII introduces SMC with the
single-shot setting. Section VIII introduces three asymptotic
conditional uniformity conditions. Based on these conditions,
Sections IX–XI treats SMC with the asymptotic setting, as
is explained in Subsection I-D. In Section XII, combining
the discussion of Subsections V-A and VII-D, we propose
universal coding for SMC by using Körner and Sgarro [24]’s
universal coding for BCD. In Section XIII, we propose source-
channel universal coding for BCC. Appendices are devoted
for several additionally required discussions for asymptotic
conditional uniformity conditions. This paper contains two
types of descriptions for each topics, i.e., the single-shot
description [34] and then-fold description. Formulations and
many coding theorems are given with the single-shot descrip-
tion. The definitions of capacity regions are given in then-fold
description.

II. Notation in This Paper

X denotes the channel input alphabet andY (resp.Z)
denotes the channel output alphabet to Bob (resp. Eve). We
assume thatX, Y, andZ are finite unless otherwise stated.
We denote the conditional probability of the channel to Bob
and Eve byPYZ|X. Then, taking the marginal distribution, we
denote the conditional probability of the channel to Bob (resp.
Eve) byPY|X (resp.PZ|X). Also, we denote the distribution of
the random variableX by PX.

We denote the uniform distribution onΩ by Pmix,Ω. When
Ω is a subset ofX × Y, Pmix,Ω is a joint distribution for the
random variablesX andY. We denote the marginal distribution
of Pmix,Ω for the random variableX and the random variableY
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by PX,mix,Ω and PY,mix,Ω, respectively. Further, the conditional
distribution on the random variableX conditioned to the other
random variableY is denoted byPX|Y,mix,Ω, i.e.,

PX|Y,mix,Ω(x|y) = PX|Y=y,mix,Ω(x) :=
Pmix,Ω(x, y)
PY,mix,Ω(y)

(1)

for x ∈ X andy ∈ Y. We denote the support of the distribution
PX by supp(PX). Given a joint distributionPXY, we define
the distributionPX|Y=y on X by PX|Y=y(x) := PX|Y(x|y). When
we need to treat another distribution of the same random
variablesX andY, we denote it byQXY. This is because it is
crucial to consider several distributions on the same probability
space in this paper1. In this case, we denote the marginal
distribution overX by QX, and the conditional distribution
by QX|Y. We also define the distributionQX|Y=y on X by
QX|Y=y(x) := QX|Y(x|y).

When we have to treat more than two distributions onX,
Y, andZ, the above notation is not useful. In this case, we
consider the setP(X) of probability distributions onX or
the setW(X, Y) of conditional probability distributions from
X to Y, which are mathematically equivalent to probability
transition matrices. When the output alphabet of the channel
is given as a product setY × Z, the alphabet is written by
W(X,Y×Z). For any probability transition matrixW ∈ W(X,
Y × Z), Wx expresses the output distribution when the input
X is x. When we focus on the random variableY, we use the
notationWY

x (y) :=
∑

z∈ZWx(y, z).
In the following, we treat an arbitrary probability transition

matrix W ∈ W(X, Y). Given a subsetΩ ⊂ X, we define the
restrictionW|Ω ∈ W(Ω, Y) by W|Ω(y|x) = W(y|x) for x ∈ Ω
and y ∈ Y. We often employ another probability transition
matrix Ξ from V to X. We define the probability transition
matrix fromV to Y by W◦Ξv(y) :=

∑

x∈XWx(y)Ξv(x) for v ∈
V andy ∈ Y. When a probability distributionP onX is given,
we define the distribution onY by W◦P(y) :=

∑

x∈XWx(y)P(x)
for y ∈ Y. When we need the joint distribution onX×Y, we
use the notationW×P(x, y) :=Wx(y)P(x) for x ∈ X andy ∈ Y
as [6]. Similarly, when a distributionPXV onX×V is given,
we use the notationW × PXV(v, x, y) := Wx(y)PXV(x, v) for
v ∈ V, x ∈ X, andy ∈ Y.

When a function f : V → X is given and a random
variableV taking the values inV obeys the distributionPV,
we can define the random variablef (V) taking the values inX.
The random variablef (V) takes the valuex with probability
∑

v∈ f−1(x) PV(v). We also use the same symbolf : V → X
to denote the probability transition matrix fromV to X, in
which, the output value is deterministically determined bythe
input. Then,W ◦ f is a stochastic mappingV to Y, and we
have

(W ◦ f )(y|v) =W(y| f (v)) (2)

1Recently, the meta converse theorem was introduced for the channel coding
in [48], [50]. In the meta converse theorem, it is the key point to optimize
the choice of the distribution on the output alphabet and we usually denote
the distribution different from the marginal distribution byQ[49], [50]. Also,
another recent paper [51] adopts this notation for optimizing the distribution.
This kind notation becomes more popular, recently.

for v ∈ V and y ∈ Y. Given a probability transition matrix
W′ ∈ W(U, V), we definef ◦W′ ∈ W(U, X) by

( f ◦W′)(x|u) :=
∑

v∈ f−1(x)

W′(v|u) (3)

for x ∈ X andu ∈ U. As a special case, given a distributionQ
onV, f ◦Q is defined as a distribution onX in the following
way.

( f ◦ Q)(x) :=
∑

v∈ f−1(x)

Q(v). (4)

Remember thatWx denotes the output distribution on the
output alphabetY with input x. Then, WX is the random
variable taking its values on the output distributions onY.
Given a real valued functiong of distributions onY, we regard
g(WX) as a random variable taking the valueg(Wx) with the
probability PX(x). Hence, we obtain

EXg(WX) =
∑

x

PX(x)g(Wx),

whereEX denotes the expectation concerningX.
Given two random variablesX and Y, for a real valued

function h on X × Y, we regardEX|Yh(X,Y) as a random
variable taking the valueEX|Y=yh(X, y) with the probability
PY(y). In order to identify an information quantity, e.g.,
mutual informationI (X; Y) and the Shannon entropyH(X),
we sometimes need to specify the distributionP of interest.
In such a case, we use the notationsI (X; Y)[P] and H(X)[P]
for identifying what distribution is considered.

Further, in this paper, we discuss our codes and their
performances in the single-shot setting[34] when their descrip-
tions do not require their asymptotic discussions. However, in
several parts, we need to treatn-fold memoryless extensions
when we discuss their asymptotic performances. Hence, we
need to prepare the notations forn-fold independent and
identical distributions andn-fold memoryless extensions of
given channels. For a given probability distributionsQ and
PX of the random variableX on X, we denote theirn-fold
independent and identical distributions byQn and Pn

X.
When we consider the random variables onXn, even if they

do not obey the independent and identical distributions, wede-
note the random variables byXn and denote their distributions
by PXn. However, when we consider a general sequence of
random variables those take values not in the product setsXn

but in general setsXn, we denote the random variables byXn

and denote their distributions byPXn. Similarly, for a given
probability transition matricesW and PY|X from X to Y, we
denote theirn-fold memoryless extensions byWn and Pn

Y|X.
We also denote the set of positive real numbers byR+, and

denote the set of non-negative real numbers byR≥0.

III. I nformation Quantities

In this paper, to evaluate the secrecy and the decoding error
probabilities, we employ several information quantities.For
distributionsPA on A and PAB on A × B, we define Rényi
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entropy and conditional Rényi entropy

H1+ρ(A) := −1
ρ

log
∑

a

PA(a)1+ρ

H1+ρ(A|B) := −1
ρ

log
∑

a,b

PB(b)PA|B=b(a)1+ρ.

H1(A) and H1(A|B) are defined to beH(A) and H(A|B).
Then, we have several important properties for Rényi en-
tropy and conditional Rényi entropy. Sinceρ 7→ ρH1+ρ(A),
ρ 7→ ρH1+ρ(A|B) are concave and limρ→0 ρH1+ρ(A) =
limρ→0 ρH1+ρ(A|B) = 0, we have

H1+ρ′(A) ≤ H1+ρ(A), H1+ρ′ (A|B) ≤ H1+ρ(A|B) (5)

for 0 ≤ ρ ≤ ρ′.
Similarly, as is shown in [17], we have the following

proposition for the function

ψ(ρ|Q‖P) := log
∑

a

Q(a)1+ρP(a)−ρ. (6)

Proposition 1: [17] The function ψ(ρ|Q‖P) satisfies the
following properties:

(1) ρ 7→ ψ(ρ|Q‖P) is convex.
(2) ψ(0|Q‖P) = 0.
(3) d

dρψ(ρ|Q‖P)|ρ=0 = D(Q‖P).
(4) The relations

D(Q‖P) :=
∑

a

P(a) log
P(a)
Q(a)

= lim
ρ→+0

ψ(ρ|Q‖P)
ρ

≤ψ(ρ|Q‖P)
ρ

(7)

hold for 0< ρ2.
For a given channelW from X toY, we define the function

[17]:

ψ(ρ|W,PX) := log
∑

x

PX(x)eψ(ρ|Wx‖W◦PX). (8)

When the channel is written asPZ|L, ψ(ρ|W,P) can be rewritten
as follows.

ψ(ρ|PZ|L,PL) = log
∑

z

∑

ℓ

PL(ℓ)PZ|L(z|ℓ)1+ρPZ(z)−ρ. (9)

This quantity is extended as

ψ(ρ|PZ|V,PV|U ,PU)

:= log
∑

u

PU(u)
∑

v

PV|U(v|u)
∑

z

PZ|V(z|v)1+ρPZ|U(z|u)−ρ.

(10)

for conditional distributionsPZ|V, PV|U and a distributionPU .
Also, we introduce the following functions as in [17].

E0(ρ|PZ|L,PL)

:= log
∑

z















∑

ℓ

PL(ℓ)(PZ|L(z|ℓ)1/(1−ρ))















1−ρ

, (11)

E0(ρ|PZ|V,PV|U ,PU)

:= log
∑

u

PU(u)
∑

z















∑

v

PV|U(v|u)(PZ|V(z|v)1/(1−ρ))















1−ρ

. (12)

2Item (4) was not directly given in [17]. However, it can be shown by the
combination of other items.

Observe thatE0 is essentially Gallager’s functionE0 [12]. As
can be easily shown, these quantities satisfy the additivity as
follows[17], [12].

ψ(ρ|Pn
Z|L,P

n
L) = nψ(ρ|PZ|L,PL) (13)

ψ(ρ|Pn
Z|V,P

n
V|U ,P

n
U) = nψ(ρ|PZ|V,PV|U ,PU) (14)

E0(ρ|Pn
Z|L,P

n
L) = nE0(ρ|PZ|L,PL) (15)

E0(ρ|Pn
Z|V,P

n
V|U ,P

n
U) = nE0(ρ|PZ|V,PV|U ,PU) (16)

Then, we have the following proposition.
Proposition 2: [12], [17] We have the following five items

for fixed 0< ρ < 1 and fixed conditional distributionPZ|L.

(1) The functionρ 7→ E0(ρ|PZ|L,PL) is convex for a
given distributionPL[12].

(2) exp(E0(ρ|PZ|L,PL)) is concave with respect toPL[17,
Lemma 1].

(3) The relationψ(ρ|PZ|L,PL) ≤ E0(ρ|PZ|L,PL), i.e.,

exp(ψ(ρ|PZ|L,PL)) ≤ exp(E0(ρ|PZ|L,PL)) (17)

holds for any distributionPL of L[17, (16)].
(4) The relation

lim
ρ→0

ψ(ρ|PZ|L,PL)

ρ
= lim

ρ→0

E0(ρ|PZ|L,PL)

ρ
= I (Z; L)

(18)

holds for a distributionPL[17, Section III][12].

Lemma 3:When two distributionsQL and PL of L satisfy
PL(ℓ) ≤ C1QL(ℓ) for any ℓ with given constantsC1 ≥ 1 and
0 < ρ < 1, we have

exp(E0(ρ|PZ|L,PL)) ≤ C1 exp(E0(ρ|PZ|L,QL)). (19)

Proof: (19) can be shown as follows.

exp(E0(ρ|PZ|L,PL)) =
∑

z















∑

ℓ

PL(ℓ)(PZ|L(z|ℓ)1/(1−ρ))















1−ρ

≤
∑

z















∑

ℓ

C1QL(ℓ)(PZ|L(z|ℓ)1/(1−ρ))















1−ρ

≤C1−ρ
1

∑

z















∑

ℓ

QL(ℓ)(PZ|L(z|ℓ)1/(1−ρ))















1−ρ

=C1−ρ
1 exp(E0(ρ|PZ|L,QL)) ≤ C1 exp(E0(ρ|PZ|L,QL)).

As a generalization of Item (4) of Proposition 2, we have
the following lemma.

Lemma 4:The relation

lim
ρ→0

ψ(ρ|PZ|V,PV|U ,PU)

ρ
= lim
ρ→0

E0(ρ|PZ|V,PV|U ,PU)

ρ

=I (Z; V|U) (20)

holds for a distributionPU , and conditional distributionsPZ|V
and PV|U .

Proof: Due to (18), we have

eψ(ρ|PZ|V ,PV|U ,PU ) =
∑

u

PU(u)1+ ρI (Z; V|U = u) + o(ρ)

=1+ ρI (Z; V|U) + o(ρ).
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Taking the logarithm, we obtain limρ→0
ψ(ρ|PZ|V ,PV|U ,PU )

ρ
=

I (Z; V|U). Similarly, we can show limρ→0
E0(ρ|PZ|V ,PV|U ,PU )

ρ
=

I (Z; V|U).
Considering the Legendre transforms, we define

Ẽψ(R,PZ,V,U) := max
0≤ρ≤1

ρR− ψ(ρ|PZ|V,PV|U ,PU), (21)

ẼE0(R,PZ,V,U) := max
0≤ρ≤1

ρR− E0(ρ|PZ|V,PV|U ,PU). (22)

Taking the maximum, we define

E0,max(ρ|PZ|V) :=max
PV

E0(ρ|PZ|V,PV)

= log max
PV

∑

z

(
∑

v

PV(v)PZ|V(z|v)
1

1−ρ )1−ρ

=max
PVU

E0(ρ|PZ|V,PV|U ,PU). (23)

Lemma 5:The functionρ 7→ E0,max(ρ|PZ|V) is convex.
Proof: Given convex functionsx 7→ fi(x), the function

x 7→ maxi fi(x) is also convex. Hence, the item (1) of
Proposition 2 yields the desired argument.

Next, for W
Z ∈ W(V, Z), we consider a different infor-

mation quantityẼl :

Ẽl(R,W
Z × QVU)

:= min
WZ∈W(U×V,Z)

(

D(WZ‖WZ|QVU)

+ [R− I (V; Z|U)[WZ × QVU]]+
)

. (24)

Due to Item (3) of Proposition 2, we have

Ẽψ(R,W
Z × QVU) ≥ ẼE0(R,W

Z × QVU). (25)

In this paper, we will derive the following relations:

Ẽl(R,W
Z × QVU) ≥ẼE0(R,W

Z × QVU) (26)

and

min
QV

Ẽl(R,W
Z × QV) = min

QV

ẼE0(R,W
Z × QV)

= max
ρ∈[0,1]

ρR− E0(ρ|WZ
) (27)

as Theorems 67 and 80 in Section XIV, respectively.
Similar to Ẽl , we introduce the following quantities for

WY ∈ W(V,Y) andWZ ∈ W(V,Z)

Êb(Rp,Rc, W̃
Y × QVU)

:=min
(

[ I (VU; Y)[W̃Y × QU,V] − Rp − Rc]+,

[ I (V; Y|U)[W̃Y × QU,V] − Rp]+
)

, (28)

Ẽb(Rp,Rc,W
Y × QVU)

:= min
W̃Y∈W(U×V,Y)

D(W̃Y‖WY|QVU) + Êb(Rp,Rc, W̃
Y × QVU),

(29)

Ẽe(Rc,W
Z × QU)

:= min
W̃Z∈W(U×V,Z)

D(W̃Z‖WZ|QVU) + [ I (U; Z)[W̃Z × QVU] − Rc]+,

(30)

whereD(W̃ Y‖WY|QVU) is defined forW̃Y,WY ∈ W(V,Y) as

D(W̃Y‖WY|QVU) :=
∑

u,v

QVU(u, v)D(W̃Y
u,v‖WY

v ). (31)

In the above definition,WY andWZ are treated as elements of
W(U ×V,Y) andW(U ×V,Z), respectively.

IV. Broadcast Channels with Confidential Messages

A. Review of Existing Results

First, we give a formulation of broadcast channels with
confidential messages with single shot setting[34]. Let Alice,
Bob, and Eve be as defined in Section I.X denotes the channel
input alphabet andY (resp.Z) denotes the channel output
alphabet to Bob (resp. Eve). We assume thatX, Y, andZ are
finite unless otherwise stated.

We denote the conditional probability of the channel to
Bob (resp. Eve) byPY|X (resp.PZ|X). The purpose of broad-
cast channels with confidential messages is the following.
(1) Alice reliably sends the common messageE to Bob
and Eve. (2) Alice confidentially and reliably sends the
secret messageS to Bob. Here, we denote the sets of the
common messages and the secret messages byE and S.
Our code is given by Alice’s stochastic encoderϕa from
S × E to X, Bob’s deterministic decoderϕb : Y → S × E
and Eve’s deterministic decoderϕe : Z → E. The triple
ϕ = (ϕa, ϕb, ϕe) is called a code for broadcast channels with
confidential messages. Then, when the common messageE
and the secret messageS obey the distributionPS,E, the
performance is evaluated by the following quantities. (1) The
sizes of the sets of the common messages and the secret
messages, i.e.,|E| and|S|. (2) Bob’s decoding error probability
Pb[PY|X, ϕ,PS,E], which is the probability Pr{(S,E) , ϕb(Y)}
under the distribution (PY|X ◦ ϕa) × PS,E. (3) Eve’s decoding
error probability Pe[PY|X, ϕ,PS,E], which is the probability
Pr{E , ϕe(Z)} under the distribution (PZ|X◦ϕa)×PS,E. (4) Eve’s
uncertainty H(S|Z)[PZ|X, ϕa,PS,E], which is the conditional
entropyH(S|Z) under the distribution (PZ|X ◦ϕa)×PS,E. Since
these quantities are functions of the channel and the code,
such dependencies are denoted by the symbol [PY|X, ϕ,PS,E]
in the above notation. Instead ofH(S|Z)[PZ|X, ϕa,PS,E], we
sometimes treat (5) leaked informationI (S; Z)[PZ|X, ϕa,PS,E],
which is the mutual informationI (S; Z) under the distribution
(PZ|X ◦ ϕa) × PS,E.

We sometimes need to evaluate the error probability
when S and/or E is fixed. In such a case, we denote
it by Pb[PY|X, ϕ,PE|S=s], Pb[PY|X, ϕ,S = s,E = e], and
Pe[PY|X, ϕ,PS|E=e].

Now, we review the asymptotic formulation of broadcast
channels with confidential messages with then-fold discrete
memoryless extension when both of the common messages
and the secret messages are subject to uniform distributions.
The setSn denotes the set of the confidential message and
En does the set of the common message when the block
coding of lengthn is used. We shall define the achievability
of a rate triple (R1, Re, R0), whereR0 and R1 are the rates
of the common and confidential messages, andRe is the
entropy rate conditioned with Eve’s random variable for the
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confidential message. For the notational convenience, we fix
the base of logarithm, including one used in entropy and
mutual information, to the base of natural logarithm.

Definition 6: [9] The rate triple (R1, Re, R0) is said to be
achievablefor the information leakage rate criterion if the
following condition holds. The size of the sets of the common
and confidential messages are|En| = enR0 and |Sn| = enR1. The
common and confidential messages are subject to the uniform
and independent distribution onSn and En. There exists a
sequence of the codesϕn = (ϕa,n, ϕb,n, ϕe,n), i.e., Alice’s
stochastic encoderϕa,n fromSn×En toXn, Bob’s deterministic
decoderϕb,n : Yn → Sn × En and Eve’s deterministic decoder
ϕe,n : Zn→ En such that

lim
n→∞

Pb[Pn
Y|X, ϕn,Pmix,Sn,En] = 0

lim
n→∞

Pe[Pn
Z|X, ϕn,Pmix,Sn,En] = 0

lim inf
n→∞

H(Sn|Zn)[Pn
Y|X, ϕa,n,Pmix,Sn,En]

n
≥ Re.

The capacity region with the information leakage rate criterion
of the BCC is the closure of the achievable rate triples for the
information leakage rate criterion.

Theorem 7:[9] The capacity region with the information
leakage rate criterion of the BCC is given by the set ofR0, R1

andRe such that there exists a Markov chainU → V → X→
YZ and

R1 + R0 ≤ I (V; Y|U) +min[I (U; Y), I (U; Z)],

R0 ≤ min[I (U; Y), I (U; Z)],

Re ≤ I (V; Y|U) − I (V; Z|U),

Re ≤ R1.

As described in [25],U can be regarded as the common mes-
sage,V the combination of the common and the confidential
messages, andX the transmitted signal.

In this paper, we treat the source-channel universal coding
for BCC, in which, we guarantee the security independently of
the choice of the source distribution. While the lower bound
of the above conditional entropyH(Sn|Zn)[Pn

Y|X, ϕa,n,PSn,En]
depends on the the source distributionPSn,En, we can find
an upper bound of mutual information that does not depend
on the source distribution, as is shown in Section XIII. As
a preparation for the above source-channel universal coding
for BCC, we propose another type of capacity region for
the uniform and independent distributed case while the non-
uniform and dependent case will be treated latter.

Definition 8: The rate triple (R1, Rl , R0) is said to be
achievablefor the leaked information criterion if the following
conditions hold. In this notation,R1, Rl , and R0 denote the
rates of the confidential message, the leaked information, and
the common message, respectively. The size of the sets of
the common and confidential messages are|En| = enR0 and
|Sn| = enR1, and the common and confidential messages are
subject to the uniform and independent distribution onSn and
En. There exists a sequence of the codesϕn = (ϕa,n, ϕb,n, ϕe,n),
i.e., Alice’s stochastic encoderϕa,n from Sn × En to Xn,
Bob’s deterministic decoderϕb,n : Yn → Sn × En and Eve’s

deterministic decoderϕe,n : Zn→ En such that

lim
n→∞

Pb[Pn
Y|X, ϕn,Pmix,Sn,En] = 0

lim
n→∞

Pe[Pn
Z|X, ϕn,Pmix,Sn,En] = 0

lim sup
n→∞

I (Sn; Zn)[Pn
Y|X, ϕa,n,Pmix,Sn,En]

n
≤ Rl .

The capacity region with the leaked information criterion of
the BCC is the closure of the achievable rate triples.

The capacity region with the leaked information criterion
of the BCC is characterized as a corollary of Theorem 7.

Corollary 9: The capacity region with the leaked informa-
tion criterion of the BCC is given by the set ofR0, R1 andRl ,
such that there exists a Markov chainU → V → X→ YZ and

R1 + R0 ≤ I (V; Y|U) +min[I (U; Y), I (U; Z)],

R0 ≤ min[I (U; Y), I (U; Z)],

Rl ≥ R1 − [ I (V; Y|U) − I (V; Z|U)]+,

where [x]+ := max(x, 0). That is, whenR1 +R0 < I (V; Y|U) +
min[I (U; Y), I (U; Z)] and R0 < min[I (U; Y), I (U; Z)], there
exists a sequence of the codesϕn = (ϕa,n, ϕb,n, ϕe,n), i.e.,
Alice’s stochastic encoderϕa,n from Sn × En to Xn, Bob’s
deterministic decoderϕb,n : Yn → Sn × En and Eve’s
deterministic decoderϕe,n : Zn→ En such that

lim
n→∞

Pb[Pn
Y|X, ϕn,Pmix,Sn,En] = 0

lim
n→∞

Pe[Pn
Z|X, ϕn,Pmix,Sn,En] = 0

and

lim sup
n→∞

I (Sn; Zn)[Pn
Y|X, ϕa,n,Pmix,Sn,En]

n
≤R1 − I [(V; Y|U) − I (V; Z|U)]+.

B. Our Approach to BCC

Next, we consider the BCC with the single-shot setting
when the common and confidential messages do not obey
the uniform and independent distributions onS and E, i.e.,
the confidential messageS may have a correlation with the
common messagesE. When the confidential messageS is
independent of the common messagesE,

I (S; Z) ≤ I (S; ZE) = I (S; Z|E) + I (S; E) = I (S; Z|E),

I (S; Z) = H(S) − H(S|Z) ≥ H(S|E) − H(S|Z)

=H(S|E) − (H(S|ZE) + I (S; E|Z)) = I (S; Z|E) − I (S; E|Z)

≥I (S; Z|E) − H(E|Z) ≥ I (S; Z|E) − H(E|ϕe(Z)).

When the error probability goes to zero, Fano’s inequality
guarantees thatH(E|Z) goes to zero. Hence,I (S; Z) and
I (S; Z|E) have the same asymptotic behaviors. So, even if we
replaceI (S; Z) by I (S; Z|E) in Definition 8, we obtain the same
capacity region. However, when the confidential messageS is
dependent on the common messagesE, I (S; Z) and I (S; Z|E)
have the different asymptotic behavior as follows. Since

I (S; Z) = I (S; ZE) − I (S; E|Z)

≥I (S; E) − H(E|Z) ≥ I (S; E) − H(E|ϕe(Z)),
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I (S; Z) is asymptotically lower bounded byI (S; E) when
the error probability goes to zero. That is, when the mutual
informationI (S; E) is positive, the mutual informationI (S; Z)
cannot go to zero because Eve can infer the secret message
from the common message. Thus, it is not suitable to treat
the mutual informationI (S; Z) as leaked information fromZ.
Hence, we adopt the conditional mutual informationI (S; Z|E)
as leaked information fromZ.

Remark 10:Csiszár and Körner [9] treated BCC with non-
uniform information source. However, their formulation was
different from our formulation in the following point. In their
formulation, they fixed a correlated non-uniform distribution
PS,E on S × E and assumed that the information sourceSn

and En obey itsn-fold independent and identical distribution
Pn

S,E. In addition to this, their code depends on the distribution
PS,E. However, in our formulation, we do not assume the
independent and identical distributed condition for the dis-
tribution PSn,En of the information sourceSn and En. This is
because information source is not given as an independent and
identical distribution or known, in general. Hence, we study a
universal code independent of the distributionPSn,En of sources
in Section XIII. Thus, our code is useful for a realistic case.

V. Broadcast Channels with Degraded Message Sets

A. Capacity Region

Next, we review the broadcast channel with degraded mes-
sage sets (abbreviated as BCD) considered by Körner and
Marton [23] in the single-shot setting. If we setRe = 0 in
the BCC, the secrecy requirement is removed from BCC, and
the coding problem is equivalent to BCD. In this problem,
we treat the private messageSp taking values inSp and the
common messageSc taking values inSc.

Corollary 11: [23] The capacity region of the BCD is given
by the pair of the rateRc of common message and the rate
Rp of private message such that there exists a Markov chain
U → V = X→ YZ and

Rc ≤ min[I (U; Y), I (U; Z)],

Rc + Rp ≤ I (V; Y|U) +min[I (U; Y), I (U; Z)].

Note that the statement of our Corollary 11 is the same as
[9, Corollary 5] and different from [23]. However, as is stated
in [9, Remark 5], the equivalence between the two statements
can be easily shown by some algebra.

Here, we only consider a sequence of codes that achieves
the rate pair (Rc,Rp) satisfying

Rc < min[I (U; Y), I (U; Z)], Rp < I (V; Y|U). (32)

For a given Markov chainU → V = X → YZ, we construct
an ensemble of codes by the following random coding with
the single-shot setting, which is mathematically equivalent to
the construction by Kaspi and Merhav [21].

Code Ensemble 1 (Kaspi and Merhav [21, Section II]):

3 For an arbitrary elementsc ∈ Sc, Φc(sc) is the random
variable taking values inU and is subject to the distribution
PU , and is independent ofΦc(s′c) with s′c , sc ∈ Sc. For an
arbitrary elementsp ∈ Sp, Φp(sc, sp) is the random variable
taking values inV, is independent ofΦp(s′c, s

′
p) with s′c , sc,

and depends on the random variableΦc(sc). Under the
conditionΦc(sc) = u, the random variableΦp(sc, sp) is subject
to the distributionPV|U=u and is conditionally independent of
Φp(sc, sp′ ) with s′p , sp. Bob’s decoderΦb and Eve’s decoder
Φe are defined as the maximum likelihood decoders. The
quartet (Φp,Φc,Φb,Φe) is abbreviated asΦ.

Here, the all values of the random variables{Φc(sc)}sc and
{Φp(sc, sp)}sc,sp are disclosed to all players prior to the real
communication because these random variables decides our
code.

Lemma 12:[21, Theorem 1 and Section IV] The above
ensemble of codesΦ satisfies the following inequalities.

EΦPb[PY|V,Φ] ≤|Sp|ρeE0(−ρ|PY|V,PV|U ,PU )

+ (|Sc||Sp|)ρeE0(−ρ|PY|U,V ,PU,V ) (33)

EΦPe[PZ|V,Φ] ≤|Sc|ρeE0(−ρ|PZ|U ,PU ), (34)

whereE0(−ρ|PZ|U ,PU) and E0(−ρ|PY|V,PV|U ,PU) are defined
in (11) and (12).

Here, we should remark that Inequalities (33) and (34) hold
for any distribution over the messages because the proof by
[21] does not make any assumption for the distribution over
the messages.

Due to Lemma 12, Markov inequality guarantees that

PrΩ1 <
1
2
, PrΩ2 <

1
2

Ω1 :=

{

Pb[PY|V,Φ,Pmix,Sp,Sc] > 2|Sp|ρeE0(−ρ|PY|V,PV|U ,PU )

+2(|Sc||Sp|)ρeE0(−ρ|PY|U,V ,PU,V)

}

Ω2 := {Pe[PZ|V,Φ,Pmix,Sp,Sc] > 2|Sc|ρeE0(−ρ|PZ|U ,PU )}.

Since Pr(Ω1 ∪Ω2) < 1, we have Pr(Ωc
1 ∩Ωc

2) > 0. That is, for
an arbitrary distributionPSp,Sc over the messages, there exists
a codeϕ such that

Pb[PY|V, ϕ,PSp,Sc] ≤2|Sp|ρeE0(−ρ|PY|V,PV|U ,PU )

+ 2(|Sc||Sp|)ρeE0(−ρ|PY|U,V ,PU,V ) (35)

Pe[PZ|V, ϕ,PSp,Sc] ≤2|Sc|ρeE0(−ρ|PZ|U ,PU ). (36)

Now, we apply the above inequalities to then-fold discrete
memoryless extension. Then, for an arbitrary distribution
PSp,n,Sc,n over the messages, there exists a sequence of codes
ϕn with the rate of common messageRc and the rate of private

3A code ensemble and a code construction play a distinguishedrole in this
paper because they give a procedure to make our codes. Hence,we give them
serial numbers that are separate from other environments, Theorems, Lemmas,
and Remarks. Although both of a code ensemble and a code construction give
a procedure for our code, the procedure by a code ensemble is less practical,
and that by a code construction is more practical. To clarifythis difference,
we assigned one of two environments to them dependently of their properties.
Code constructions will be given in Section XI after code ensembles are
presented in the previous sections.
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messageRp of lengthn such that

Pb[Pn
Y|V, ϕn,PSp,n,Sc,n] ≤2en(ρRp+E0(−ρ|PY|V ,PV|U ,PU ))

+ 2en(ρ(Rp+Rc)+E0(−ρ|PY|U,V ,PU,V )) (37)

Pe[Pn
Z|V, ϕn,PSp,n,Sc,n] ≤2en(ρRc+E0(−ρ|PZ|U ,PU )). (38)

The above values go to zero under the condition (32), because
the condition (32) guarantees that both exponents are positive
with sufficiently smallρ > 0.

Indeed, Kaspi and Merhav [21] derived a better bound than
(34) by employing four parameters even in the single-shot
setting. The bound (34) can be seen as a special case of Kaspi
and Merhav [21]’s bound. Since the bound (34) can derive
the capacity region of SMC, we only use the bound (34) for
simplicity.

B. Universal Code for BCD

Körner and Sgarro [24] provided the code that attains the
above rate region universally for source and channel in the
following sense.

Theorem 13:[24] For an arbitrary real numberǫ > 0, there
exists an integerN satisfying the following. For an arbitrary
integern ≥ N, a given joint typeQVU of lengthn on the sets
V ×U, and ratesRp andRc, there exists a codeϕn with the
ratesRp andRc such that

Pb[Wn, ϕn,Sp,n = sp,n,Sc,n = sc,n]

≤ exp(−n[Ẽb(Rp,Rc,W
Y × QU,V) − ǫ]), (39)

Pe[W
n, ϕn,Sp,n = sp,n,Sc,n = sc,n]

≤ exp(−n[Ẽe(Rc,W
Z × QU,V) − ǫ]) (40)

for any sp,n ∈ Sp,n, sc,n ∈ Sc,n and anyW ∈ W(V, Y× Z),
where the exponents̃Eb(Rp,Rc,WY × QU,V) and Ẽe(Rc,WZ ×
QU,V) are defined in (29) and (30), respectively.

VI. General Channel Resolvability

In the wire-tap channel model, when the dummy message
obeys the uniform distribution, channel resolvability [13] can
be used for guaranteeing the security [15]. In this paper,
we consider the security of SMC with non-uniform and
dependent secret messages. For the analysis of this case,
we have to consider the secrecy when the dummy message
does not necessarily obey the uniform distribution. Hence,
the security evaluation [15] based on the original channel
resolvability cannot be extended to the security of SMC with
non-uniform and dependent secret messages. Thus, we need
a generalization of channel resolvability. In this section, we
propose a generalization of channel resolvability in the single-
shot setting.

First, we fix a channelW from the alphabetX to the
alphabetY. For a fixed distributionPX on X, we focus
on an encoderΛ from the message setA to the alphabet
X. The purpose of the encoderΛ is approximation of the
average output distributionW ◦ PX by the output distribution
with inputΛ(A). The original channel resolvability [13] treats
the minimum asymptotic rate of|A| such that the output
distributionW◦Λ◦Pmix,A can approximate the average output

distribution W ◦ PX with a suitable choice ofΛ in the sense
that the variational distance goes to zero. In the single-shot
setting, the problem can be converted to the following way:
How well the given average output distributionW◦PX can be
approximated by the output distributionW◦Λ◦Pmix,A when the
cardinality |A| is less than a given amount. In this paper, we
consider this approximation problem when the messageA does
not obey the uniform distributionPmix,A. Since our problem
can be regarded as a generalization of channel resolvability,
it is called general channel resolvability, which is essential
for the secure multiplex coding with common messages with
dependent and non-uniform secret messages.

Now, we apply the random coding on the alphabetA with
the probability distributionPA. For an arbitrarya ∈ A, Λ(a)
is the random variable subject to the distributionPX on X.
For a , a′ ∈ A, Λ(a) is independent ofΛ(a′). Then, the
random encoderΛ := {Λ(a)}a∈A gives the map fromA to X
asa 7→ Λ(a).

Then, we have the following theorem:

Theorem 14 (General channel resolvability):For
ρ ∈ (0, 1], we have

EΛeρD(W◦Λ◦PA‖W◦PX) ≤ EΛeψ(ρ|W◦Λ◦PA‖W◦PX)

≤1+ e−ρH1+ρ(A)eψ(ρ|W,PX).

By applying Jensen inequality to the functionx 7→ ex,
Theorem 14 yields

EΛD(W ◦ Λ ◦ PA‖W ◦ PX) ≤ 1
ρ

logEΛeρD(W◦Λ◦PA‖W◦PX)

≤1
ρ

log(1+ e−ρH1+ρ(A)eψ(ρ|W,PX)),

which is non-uniform generalization of [15, Lemma 2]. This
theorem will be used for the proof of Theorem 20.

Proof: Due to (7), we have

ρD(W ◦Λ ◦ PA‖W ◦ PX) ≤ ψ(ρ|W ◦ Λ ◦ PA‖W ◦ PX).
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The average ofeψ(ρ|W◦Λ◦PA‖W◦PX) is evaluated as

EΛeψ(ρ|W◦Λ◦PA‖W◦PX)

=EΛ
∑

y

(
∑

a

PA(a)WΛ(a)(y)
)1+ρ

(W ◦ PX)(y)−ρ

=EΛ
∑

y

(
∑

a

PA(a)WΛ(a)(y)
)(

∑

a′
PA(a′)WΛ(a′)(y)

)ρ
(W ◦ PX)(y)−ρ

=
∑

y

∑

a

(

EΛ(a)PA(a)WΛ(a)(y)EΛ|Λ(a)

(

PA(a)WΛ(a)(y)

+
∑

a′,a

PA(a′)WΛ(a′)(y)
)ρ

(W ◦ PX)(y)−ρ
)

≤
∑

y

∑

a

(

EΛ(a)PA(a)WΛ(a)(y)
(

PA(a)WΛ(a)(y)

+ EΛ|Λ(a)

∑

a′,a

PA(a′)WΛ(a′)(y)
)ρ

(W ◦ PX)(y)−ρ
)

(41)

=
∑

y

∑

a

(

EΛ(a)PA(a)WΛ(a)(y)
(

PA(a)WΛ(a)(y)

+
∑

a′,a

PA(a′)(W ◦ PX)(y)
)ρ

(W ◦ PX)(y)−ρ
)

≤
∑

y

∑

a

(

EΛ(a)PA(a)WΛ(a)(y)
(

PA(a)WΛ(a)(y) + (W ◦ PX)(y)
)ρ

· (W ◦ PX)(y)−ρ
)

(42)

≤
∑

y

∑

a

EΛ(a)PA(a)WΛ(a)(y)

(PA(a)ρWΛ(a)(y)ρ + (W ◦ PX)(y)ρ)(W ◦ PX)(y)−ρ (43)

=
∑

y

∑

a

EΛ(a)PA(a)WΛ(a)(y)(1+ PA(a)ρWΛ(a)(y)ρ(W ◦ PX)(y)−ρ)

=1+
∑

y

∑

a

EΛ(a)PA(a)1+ρWΛ(a)(y)1+ρ(W ◦ PX)(y)−ρ

=1+
∑

a

PA(a)1+ρ
∑

y

∑

x

PX(x)Wx(y)1+ρ(W ◦ PX)(y)−ρ

=1+ (
∑

a

PA(a)1+ρ)eψ(ρ|W,PX).

In the above derivation, (41) follows from the concavity of
x 7→ xρ, (42) follows from

∑

a′,a PA(a′) ≤ 1, (43) follows
from the inequality (x+ y)ρ ≤ xρ + yρ.

Next, in order to reduce the complexity of encoding, we
consider the case whenX andA are Abelian groups. We in-
troduce the following condition for the ensemble for injective
homomorphismsF from A to X.

Condition 15: Let F be a random variable that takes its val-
ues on injective4 homomorphisms fromA to X. For arbitrary
elementsx , 0 ∈ X and a , 0 ∈ A, the relationF(a) = x
holds with probability at most 1

|X|−1.
When X andA are vector spaces over a finite fieldFq,

the set of all injective homomorphisms fromA to X satisfies
Condition 15.

Remark 16:WhenX andA have the same Abelian group
structure as the vector space over a finite fieldF2 with the the
same dimensionk, these can be regarded as the finite filed
F2k . For y ∈ F2k, the homomorphismfy from A to X from A

4The condition of injectivity is not necessarily for Theorem17. However,
the injectivity for F will needed in the discussion in Subsection XI-C. Hence,
to avoid to make so many conditions, we assume the injectivity, here.

to X is defined by the multiplication asfy : x → xy. Then,
as mentioned in [44, Remark 9], when the random variableY
chosen inF2k subject to the uniform distribution, the function-
valued random variablefY satisfies Condition 15. To realize
the function-valued random variablefY, we need to choose
a finite filed F2k with efficient multiplication. Constructions
of such a finite filedF2k are given in [45, Appendix D], [46,
Section 7.3.1].

We choose another random variableG in X that obeys the
uniform distribution onX and is independent of the choice of
F. Then, we define a mapΛF,G(a) := F(a) +G and have the
following theorem:

Theorem 17 (Algebraic channel resolvability):Under the
above choice, we obtain

EF,GeρD(W◦ΛF,G◦PA‖W◦Pmix,X) ≤ EF,Geψ(ρ|W◦ΛF,G◦PA‖W◦Pmix,X)

≤1+ e−ρH1+ρ(A)eψ(ρ|W,Pmix,X). (44)

This theorem will be used for the proof of Lemma 21, which
is essential for the proof of Theorem 22.

Proof: We introduce the random variableZa := ΛF,G(a) =
F(a) + G. The random variableZa is independent of the
choice of F. For a′ ∈ A, ΛF,G(a′) = F(a′ − a) + Za.
Since (|X| − 1)EF|ZaWΛF,G(a)(y) = (|X| − 1)EFWF(a′−a)+Za(y) ≤
∑

x Wx(y) = |X|W ◦ Pmix,X(y) for a ∈ A andy ∈ Y, we obtain
EF|ZaWΛF,G(a)(y) ≤ |X|

|X|−1W ◦ Pmix,X(y) for a ∈ A and y ∈ Y.
Further, sinceF is injective, we have|A| ≤ |X|, which implies
∑

a PA(a)2 ≥ 1
|A| ≥

1
|X| . Hence, sincex 7→ xρ is concave, we

obtain

∑

a

PA(a)(
1− PA(a)
1− 1/|X| )

ρ ≤ (
1−∑

a PA(a)2

1− 1/|X| )ρ ≤ (
1− 1/|X|
1− 1/|X| )

ρ = 1.

(45)

Our proof of Theorem 14 can be applied to our proof of
Theorem 17 by replacingΛ(a), Λ|Λ(a), and PX by Za, F |Za
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and Pmix,X. Then, we obtain

EF,Geψ(ρ|W◦ΛF,G◦PA‖W◦Pmix,X)

≤
∑

y

∑

a

(

EZa PA(a)WΛF,G(a)(y)
(

PA(a)WΛF,G(a)(y)

+ EF|Za

∑

a′,a

PA(a′)WΛF,G(a′)(y)
)ρ

W ◦ Pmix,X(y)−ρ
)

(46)

≤
∑

y

∑

a

(

EZa PA(a)WZa(y)
(

PA(a)WZa(y)

+
|X|
|X| − 1

∑

a′,a

PA(a′)W ◦ Pmix,X(y)
)ρ

W ◦ Pmix,X(y)−ρ
)

(47)

≤
∑

y

∑

a

(

EZa PA(a)WZa(y)
(

PA(a)WZa(y)

+
1− PA(a)
1− 1/|X|W ◦ Pmix,X(y)

)ρ
W ◦ Pmix,X(y)−ρ

)

(48)

≤
∑

y

∑

a

(

EZa PA(a)WZa(y)
(

PA(a)ρWZa(y)ρ

+ (
1− PA(a)
1− 1/|X| )

ρW ◦ Pmix,X(y)ρ
)

W ◦ Pmix,X(y)−ρ
)

(49)

=
∑

y

∑

a

(

EZa PA(a)WZa(y)((
1− PA(a)
1− 1/|X| )

ρ

+ PA(a)ρWZa(y)ρW ◦ Pmix,X(y)−ρ)
)

=
∑

a

PA(a)(
1− PA(a)
1− 1/|X| )

ρ

+
∑

y

∑

a

EZa PA(a)1+ρWZa(y)1+ρW ◦ Pmix,X(y)−ρ)

=
∑

a

PA(a)(
1− PA(a)
1− 1/|X| )

ρ

+
∑

a

PA(a)1+ρ
∑

y

∑

x

PX(x)Wx(y)1+ρW ◦ Pmix,X(y)−ρ)

≤1+ (
∑

a

PA(a)1+ρ)eψ(ρ|W,Pmix,X). (50)

In the above derivation, (46) follows in the same way as
(41), (47) follows from Condition 15, (48) follows from
∑

a′,a PA(a′) ≤ 1, (49) follows from the inequality (x+ y)ρ ≤
xρ + yρ. The final inequality follows from (45).

In the following, we assume that the input alphabetX is an
Abelian group, and an action ofX on the output alphabetY
is given asx · y for x ∈ X and y ∈ Y. A channelW from X
to Y is regular in the sense of Delsarte-Piret [10], if there is
a probability distributionPY such that

Wx(y) = PY(x · y).

Since a regular channelW satisfies

D(W ◦ ΛF,g ◦ PA‖W ◦ Pmix,X) = D(W ◦ΛF,g′ ◦ PA‖W ◦ Pmix,X)

for any g, g′ ∈ X, we obtain the following corollary. This
corollary implies that we do not need the additional random
variableG in the regular channel case.

Corollary 18: When the channelW is a regular channel
given by a distributionPY onY, we obtain

EFeρD(W◦ΛF,g◦PA‖W◦Pmix,X) ≤ EFeψ(ρ|W◦ΛF,g◦PA‖W◦Pmix,X)

≤1+ e−ρH1+ρ(A)eψ(ρ|W,Pmix,X) = 1+ e−ρH1+ρ(A)eψ(ρ|PY‖PY) (51)

for any g ∈ X, wherePY(y) :=
∑

x Pmix,X(x)PY(x · y).
Proof: Due to Theorem 14, it is enough to show

ψ(ρ|W,Pmix,X) = ψ(ρ|PY‖PY). SincePY(y) = W ◦ Pmix,X(y) =
W ◦ Pmix,X(x · y), we have

eψ(ρ|W,Pmix,X) =
∑

x

Pmix,X(x)
∑

y

PY(x · y)1+ρPY(y)−ρ

=
∑

x

Pmix,X(x)
∑

y

PY(y)1+ρPY(x−1 · y)−ρ

=
∑

x

Pmix,X(x)
∑

y

PY(y)1+ρPY(y)−ρ

=
∑

y

PY(y)1+ρPY(y)−ρ = eψ(ρ|PY‖PY).

VII. Secure Multiplex Coding with CommonMessages:
Single-Shot Setting

In this section, we give the formulation of the secure mul-
tiplex coding with common messages. After the formulation,
we give two kinds of random construction of codes for the
secure multiplex coding with common messages and evaluate
their performance in the single-shot setting.

A. Formulation and Preparation

In the secure multiplex coding with common messages,
Alice sends the common messageS0 to Bob and Eve, and
T secret messagesS1, . . . ,ST to Bob. We do not necessarily
assume the uniformity nor independence for the distributions
of messagesS0,S1, . . . ,ST . Hence, there might exist statistical
correlations among messagesS0,S1, . . . ,ST . Even in this
scenario, Alice and Bob can useS1, . . . ,Si−1, Si+1, . . . ,ST

as random bits makingSi ambiguous to Eve. When we
focus on SI := (Si ; i ∈ I) for a non-empty proper sub-
set I(, ∅) ( {1, . . . ,T}, the remaining informationSIc

serves as random bits makingSI ambiguous to Eve. The
messagesS0,S1, . . . ,ST are assumed to belong to the sets
S0,S1, . . . ,ST . The setS1× . . .×ST of all secret messages is
denoted byS. In order to explain the SMC model without
S0, we consider the following example. Consider the case
whenS1, . . . ,ST are personal information forT persons. That
is, Si corresponds to the personal information of thei-th
person. Assume that it is required only to keep the secrecy of
the respective personal informationS1, . . . ,ST from the third
party. The secrecy of the relation among respective personal
informations is not required. For example, whenS1, . . . ,ST are
the uniform random bits with the same size, the secrecy of the
sum S1 ⊕ . . . ⊕ ST is not required, where⊕ is exclusive OR.
In order to treat this secrecy problem, we give a formulation
of the SMC model as follows.

The purpose of the coding in the SMC model is to reliably
send the messagesS0,S1, . . . ,ST to Bob, and to makeSI
ambiguous to Eve by using the remaining informationSIc for
several non-empty proper subsetsI ( {1, . . . ,T}. Our code is
given by Alice’s stochastic encoderϕa from S × S0 to X,
Bob’s deterministic decoderϕb : Y → S × S0 and Eve’s
deterministic decoderϕe : Z → S0. The tripleϕ = (ϕa, ϕb, ϕe)
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S0 S1, . . . ,ST
(

common
message

)





















multiple
secret

messages





















↓
randomly chosen

but fixed
isomorphism

F′

↓
+← G′

↓
(B1, B2)

↓ ւ ց
(S0, B1) B2

(

common message
for BCD encoder

) (

private message
for BCD encoder

)

↓ ↓
Encoder for BCD (broadcast channel with degraded message sets)

↓ ↓
Φc(S0, B1) ∼ PU Φp(S0, B1, B2) ∼ PV

(not sent, used only
for random selection
of codeword
Φp(S0, B1, B2)

↓

artificial
channelPX|V

↓

Bob Y← physical
channelPYZ|X

↓
Z

Eve

Fig. 1. Communication structure used in Sections VII–XII

is called a code for the secure multiplex coding with common
messages. Then, the performance is evaluated by the following
quantities: (1) The sizes of the sets of the common messages
and all of the secret messages, i.e.,|S0|, |S1|, . . . , |ST |. (2)
Bob’s decoding error probabilityPb[PY|X, ϕ,PST ], which is the
probability Pr{(S0,S1, . . . ,ST) , ϕb(Y)} under the distribution
(PY|X ◦ ϕa) × PST with T := {0, . . . ,T}. (3) Eve’s decoding
error probability Pe[PZ|X, ϕ,PST ], which is the probability
Pr{S0 , ϕe(Z)} under the distribution (PZ|X ◦ ϕa) × PST . (4)
Leaked informationI (SI; Z|S0)[PZ|X, ϕa,PST ] for non-empty
proper subsetI ( {1, . . . ,T}, which is the mutual information
I (SI; Z|S0) under the distribution (PZ|X ◦ϕa)×PST . Instead of
I (SI; Z|S0)[PZ|X, ϕa,PST ], other researchers sometimes treat
(5) Eve’s uncertaintyH(SI|Z,S0)[PZ|X, ϕa,PST ], which is
the conditional entropyH(SI|Z,S0) under the distribution
(PZ|X ◦ ϕa) × PST . However, when we treat the universality
of our code, leaked informationI (SI; Z|S0)[PZ|X, ϕa,PST ] is
used as criterion for performance of our code. That is, we
adopt leaked informationI (SI; Z|S0)[PZ|X, ϕa,PST ] rather than

Eve’s uncertaintyH(SI|Z,S0)[PZ|X, ϕa,PST ].

In the above formulation, we treat the leaked information
I (SI; Z|S0)[PZ|X, ϕa,PST ] for several non-empty proper sub-
setsI ( {1, . . . ,T}. Depending on the situation, we decide
which non-empty proper subsetI is considered. Hence, in
that case, we can fix a familyJ of non-empty proper sub-
setsI of {1, . . . ,T} for which we discuss the leaked infor-
mation I (SI; Z|S0)[PZ|X, ϕa,PST ]. For example, in the case
of the above personal information, we consider the subsets
{1}, {2}, . . . , {T}. Hence, we chooseJ asJ := {{1}, {2}, . . . , {T}}.
When we do not specify the familyJ, we treat the leaked in-
formation I (SI; Z|S0)[PZ|X, ϕa,PST ] for all non-empty proper
subsetsI of {1, . . . ,T}.

This model can be regarded as a generalization of the wire-
tap model in the following way. When there is no common
messages andT = 2, there exist only two messagesS1 and
S2 in the secure multiplex coding. In the wire-tap channel
model, S1 corresponds to the message to be secretly sent
to Bob, and S2 does to the dummy message makingS1
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ambiguous to Eve. As a special case of our code, a wire-
tap code is given by Alice’s stochastic encoderϕa from
S1 × S2 to X and Bob’s deterministic decoderϕb : Y → S1.
Then, the performance is evaluated by the following quantities.
(1) The size of the secret message|S1|. (2) Bob’s decoding
error probability Pb[PY|X, ϕ,PS1,2]. (4) Leaked information
I (S1; Z)[PZ|X, ϕa,PS1,2].

In order to guarantee that the leaked information is small,
we employ the method of generalized channel resolvability
given in Section VI. In order to employ this method, we have
to use the random coding method to construct a codeϕ. In
this section, we propose two kinds of random construction for
our code. For a simple application of Theorem 14, which is
a simple generalization of channel resolvability, we propose
the first construction in Subsection VII-B. When there is
no common message, this construction achieves the capacity
region, as is mentioned in Remark 39. However, it cannot fully
achieve the capacity region that will be defined in Section IX-B
when there exists a common messageS0.

To resolve this defect, in Subsection VII-C, we propose the
second construction, which attains the capacity region. This
construction has two steps. In the first step, similar to the
BCD encoder, we use the superposition random coding. In the
second step, as illustrated in Fig. 1, we split the confidential
message into the private messageB2 and a partB1 of the
common message encoded by the BCD encoder. The coding
scheme for BCC in [9] uses this kind of message splitting.
The average leaked information under this kind of construction
is evaluated by Theorem 17, which is an algebraic version
of channel resolvability. However, when there is no common
message, the first construction realizes a better exponential
decreasing rate for leaked information than the second con-
struction.

When we fix a codeϕ, we obtain the following observations.
Any distribution P̃Z on Z and any non-empty proper subset
I ( {1, . . . ,T} satisfy

ρI (SI; Z|S0)[PZ|V, ϕ,PST ]

=ρ
∑

s0

PS0(s0)I (SI; Z|S0 = s0)[PZ|V, ϕ,PST ]

=ρ
∑

s0

PS0(s0)D(PZ,SI|S0=s0,ϕ‖PZ|S0=s0,ϕ × PSI |S0=s0,ϕ)

≤ρ
∑

s0

PS0(s0)D(PZ,SI|S0=s0,ϕ‖P̃Z × PSI |S0=s0,ϕ) (52)

=
∑

s0

PS0(s0)
∑

sI

PSI |S0(sI|s0)ρD(PZ|SI=sI,S0=s0,ϕ‖P̃Z), (53)

where (52) follows from the following general inequality

D(PX,Y‖PX × PY) ≤ D(PX,Y‖QX × PY) (54)

for any distributionQX overX. Due to (7), we have

ρD(PZ|SI=sI,S0=s0,ϕ‖P̃Z) ≤ ψ(ρ|PZ|SI=sI,S0=s0,ϕ‖P̃Z). (55)

Thus, combining Jensen inequality and the above observations,
we obtain the following lemma.

Lemma 19:Any distribution P̃Z onZ and any non-empty
proper subsetI ( {1, . . . ,T} satisfy

eρI (SI;Z|S0)[PZ|V ,ϕ,PST ] ≤ e
∑

s0
PS0 (s0)

∑

sI PSI|S0 (sI |s0)ρD(PZ|SI=sI ,S0=s0,ϕ‖P̃Z)

≤
∑

s0

PS0(s0)
∑

sI

PSI |S0(sI|s0)eρD(PZ|SI=sI ,S0=s0,ϕ‖P̃Z) (56)

≤
∑

s0

PS0(s0)
∑

sI

PSI |S0(sI|s0)eψ(ρ|PZ|SI=sI ,S0=s0,ϕ‖P̃Z). (57)

B. First Construction

Now, we introduce the first kind of random coding for SMC.

Code Ensemble 2:For a given Markov chainU → V →
X→ YZ, we give the random codingΦc andΦp in the same
way as Code Ensemble 1 withSc = S0 andSp = S1 × · · · ×
ST . Similar to the case of BCD, Bob’s decoderΦb and Eve’s
decoderΦe are defined as the maximum likelihood decoders.
Hence, our code is written by the quartet(Φc,Φp,Φb,Φe).

As a special case of Code Ensemble 2, a wire-tap code is
given as the case whenT = 2 and we do not have the random
variablesS0. The averaged performance of the above code is
evaluated by the following theorem. Indeed, we cannot derive
the capacity region from the following theorem. However,
the following theorem has an advantage when the conditional
mutual information goes to zero. As is explained in Section X,
the following theorem yields a better bound for the exponential
decreasing rate of the conditional mutual information than
Theorem 22 in a specific case.

Theorem 20:The above ensemble of codesΦ =

(Φc,Φp,Φb,Φe) satisfies the following inequalities.

EΦ exp(ρI (SI; Z|S0)[PZ|V,Φ,PST ])

≤1+ e−ρH1+ρ(SIc |SI,S0)+ψ(ρ|PZ|V,PV|U ,PU ), (58)

EΦPb[PY|V,Φ,PST ]

≤|S|ρeE0(−ρ|PY|V ,PV|U ,PU ) + (|S0||S|)ρeE0(−ρ|PY|U,V ,PU,V), (59)

EΦPe[PZ|V,Φ,PST ] ≤ |S0|ρeE0(−ρ|PZ|U ,PU ). (60)

Theorem 20 yields the following observation. Applying
Jensen’s inequality to the convex functionx 7→ ex, we obtain

EΦρI (SI; Z|S0)[PZ|V,Φ,PST ]

≤ log(1+ e−ρH1+ρ(SIc |SI,S0)+ψ(ρ|PZ|V ,PV|U ,PU ))

≤e−ρH1+ρ(SIc |SI,S0)+ψ(ρ|PZ|V ,PV|U ,PU ). (61)

The number of non-empty proper subsetsI ( {1, . . . ,T} is
2T−2. Similar to (35) and (36), since 2(2T−2)+2 = 2T+1−2 <
2T+1, Markov inequality guarantees that there exists a codeϕ
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such that

exp(ρI (SI; Z|S0)[PZ|V, ϕ,PST ])

≤2T+1(1+ e−ρH1+ρ(SIc |SI,S0)+ψ(ρ|PZ|V ,PV|U ,PU ))

≤2T+2e[−ρH1+ρ(SIc |SI,S0)+ψ(ρ|PZ|V ,PV|U ,PU )]+ , (62)

ρI (SI; Z|S0)[PZ|V, ϕ,PST ]

≤2T+1e−ρH1+ρ(SIc |SI,S0)+ψ(ρ|PZ|V ,PV|U ,PU ), (63)

Pb[PY|V, ϕ,PST ]

≤2T+1|S|ρeE0(−ρ|PY|V ,PV|U ,PU ) + 2T+1|S0|ρeE0(−ρ|PY|U ,PU ), (64)

Pe[PZ|V, ϕ,PST ]

≤2T+1|S0|ρeE0(−ρ|PZ|U ,PU ). (65)

Taking the logarithm in (62), we obtain

I (SI; Z|S0)[PZ|V,Φ,PST ]

≤(T + 2)
log 2
ρ
+ [

1
ρ
ψ(ρ|PZ|V,PV|U ,PU) − H1+ρ(SIc |SI,S0)]+.

(66)

Proof of Theorem 20:
Inequalities (59) and (60) can be shown by Lemma 12. The

remaining inequality (58) can be shown as follows.

EΦeρI (SI;Z|S0,Φ)

(a)
≤EΦ

∑

s0

PS0(s0)
∑

sI

PSI|S0(sI|s0)eψ(ρ|PZ|SI=sI ,S0=s0,Φ‖PZ|U=Φc(s0))

=
∑

s0

PS0(s0)
∑

sI

PSI|S0(sI|s0)

· EΦcEΦp|Φce
ψ(ρ|PZ|SI=sI ,S0=s0,Φ‖PZ|U=Φc(s0))

(b)
≤

∑

s0

PS0(s0)
∑

sI

PSI|S0(sI|s0)

· EΦc(1+ e−ρH1+ρ(SIc |SI=sI,S0=s0)eψ(ρ|PZ|V ,PV|U=Φc(s0)))

=
∑

s0

PS0(s0)
∑

sI

PSI|S0(sI|s0)

· (1+ e−ρH1+ρ(SIc |SI=sI,S0=s0)eψ(ρ|PZ|V,PV|U ,PU ))

=1+ e−ρH1+ρ(SIc |SI,S0)eψ(ρ|PZ|V ,PV|U ,PU ),

(a) follows from application of (57) to the case with̃PZ =

PZ|U=Φc(s0), and (b) follows from Theorem 14.

C. Second Construction

Next, we give the second kind of random coding for SMC
as follows.

Code Ensemble 3: First Step:For a given Markov chain
U → V → X → YZ, we introduce two random variablesB1

and B2 that take values in Abelian groupsB1 and B2 and
are subject to the uniform distributions. The pair of random
variables (B1, B2) is used for sending the all of secret messages
in S1 × · · · × ST . Assuming thatS1 × . . .×ST has an Abelian
group structure, we give the random codingΦc and Φp in
the same way as Code Ensemble 1 withSc = S0 × B1 and
Sp = B2.

Second Step: We choose an ensemble satisfying Condition
15 of isomorphismsF′ fromS1×· · ·×ST toB1×B2 as Abelian
groups. We choose the random variableG′ ∈ B1 × B2 that

obeys the uniform distribution onB1×B2 and is independent
of the choice ofF′ and anything else. Then, we define a
mapΛF′ ,G′ (s) := F′(s) +G′. Combining the above codes, we
construct the codeΦa = Φp ◦ΛF′ ,G′ : S0 ×S1 × · · · × ST →V
as (s0, s1, . . . , sT) 7→ Φp(s0,ΛF′ ,G′ (s1, . . . , sT)). Similar to the
case of BCD, Bob’s decoderΦb and Eve’s decoderΦe are
defined as the maximum likelihood decoders. Hence, our code
is written by the triple (Φa,Φb,Φe). The structure of encoder
is illustrated in Fig. 1.

As a special case of Code Ensemble 3, a wire-tap code
is given as the case whenT = 2 and we do not have
the random variablesS0. For a fixed codeϕp, PZ|S0=s0,Φp=ϕp

denotes the average output distribution of the channel of the
transmitted codewordϕp(s0, B1, B2) averaged overB1, B2. In
order to evaluate the averaged performance of the above code
(Φa,Φb,Φe), we prepare the following lemma.

Lemma 21:When the codeΦp is fixed toϕp in the BCD
part, we have the following average performance.

EF′ ,G′ exp(ρI (SI; Z|S0)[PZ|V, ϕp ◦ ΛF′ ,G′ ,PST ])

≤EF′ ,G′

∑

s0

PS0(s0)
∑

sI

PSI|S0(sI|s0)

· eρD(PZ|SI=sI ,S0=s0,Φp=ϕp‖PZ|S0=s0,Φp=ϕp )

≤1+
∑

s0

PS0(s0)
∑

sI

PSI|S0(sI|s0)e−ρH1+ρ(SIc |SI=sI,S0=s0)

· eψ(ρ|PZ|B1,B2,S0=s0,Φp=ϕp ,Pmix,B1,B2 ). (67)

Further, whenPZ|V is a regular channel and the mapϕp|S0=s0 :
(b1, b2) 7→ ϕp(b1, b2, s0) is a homomorphism from an Abelian
groupB1 × B2 to an Abelian groupV for any s0 ∈ S0, the
inequalities (67) hold even whenG′ is a constantg′.

Lemma 21 will be applied for the evaluation of the per-
formance of Code Ensemble 3. However, it will be also used
for the evaluation of the performance of another type of codes
without common messages based on a specific error correcting
code in Section XI. Hence, Lemma 21 addresses the case when
the mapϕp|S0=s0 is a homomorphism.

Lemma 21 yields the following observation. Applying
Jensen’s inequality for the convex functionx 7→ ex and the
inequality log(1+ x) ≤ x, we obtain

EF′ ,G′ρI (SI; Z|S0)[PZ|V, ϕp ◦ΛF′ ,G′ ,PST ]

≤ log
(

1+
∑

s0

PS0(s0)
∑

sI

PSI |S0(sI |s0)e−ρH1+ρ(SIc |SI=sI,S0=s0)

· eψ(ρ|PZ|B1,B2,S0=s0,Φp=ϕp ,Pmix,B1,B2 )
)

≤
∑

s0

PS0(s0)
∑

sI

PSI |S0(sI|s0)e−ρH1+ρ(SIc |SI=sI,S0=s0)

· eψ(ρ|PZ|B1,B2,S0=s0,Φp=ϕp ,Pmix,B1,B2 ). (68)
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Proof: Applying (56) and (57) to the case wheñPZ =

P̃Z|S0=s0,Φp=ϕp, we obtain

EF′ ,G′e
ρI (SI;Z|S0)[PZ|V ,ϕp◦ΛF′ ,G′ ,PST ]

≤EF′ ,G′

∑

s0

PS0(s0)
∑

sI

PSI |S0(sI|s0)

· eρD(PZ|SI=sI ,S0=s0,Φp=ϕp‖PZ|S0=s0,Φp=ϕp )

≤EF′ ,G′ |Φp=ϕp

∑

s0

PS0(s0)
∑

sI

PSI |S0(sI|s0)

· eψ(ρ|PZ|SI=sI ,S0=s0,Φp=ϕp‖PZ|S0=s0,Φp=ϕp ). (69)

For a fixedsI, we apply Theorem 17 to the case whenA is
SIc, X is B1×B2, G is G′+F′(sI, 0), which is independent of
F′, andF is the mapsIc 7→ F′(0, sIc) that satisfies Condition
15. Then,ΛF′ ,G′ (sI, sIc) = F′(sI, sIc) +G′ = F′(0, sIc) + ZsI .
Thus, we obtain

EF′ ,G′e
ψ(ρ|PZ|SI=sI ,S0=s0,Φp=ϕp‖P̃Z|S0=s0,Φp=ϕp )

≤1+ e−ρH1+ρ(SIc |SI=sI,S0=s0)eψ(ρ|PZ|B1,B2,S0,Φp=ϕp ,Pmix,B1,B2 ). (70)

Thus, we obtain (67).
Further, whenPZ|V is a regular channel and the map

ϕp|S0=s0 : (b1, b2) 7→ ϕp(b1, b2, s0) is a homomorphism from
an Abelian groupB1 × B2 to an Abelian groupV for any
s0 ∈ S0, the channelPZ|V ◦ ϕp|S0=s0 is a regular channel from
B1 × B2 to V. Hence, due to Corollary 18, the inequalities
(67) hold even whenG′ is a constantg′.

Using the above lemma, we obtain the following theorem,
which gives the averaged performance of the above code
(Φa,Φb,Φe). By using this theorem, we will give the capacity
region in Subsection IX-B.

Theorem 22:Assume that the codeΦ = (Φa,Φb,Φe) is the
ensemble given in Code Ensemble 3. Then, the inequalities

EΦa exp(ρI (SI; Z|S0)[PZ|V,Φa,PST ])

≤EΦa

∑

s0

PS0(s0)
∑

sI

PSI |S0(sI|s0)eρD(PZ|SI=sI ,S0=s0,Φa‖PZ|S0=s0,Φp )

≤1+ |B1|ρe−ρH1+ρ(SIc |SI,S0)+E0(ρ|PZ|V,PV|U ,PU ), (71)

and

EΦPb[PY|V,Φ,PST ] ≤|B2|ρeE0(−ρ|PY|V ,PV|U ,PU )

+ (|S0||S|)ρeE0(−ρ|PY|U,V ,PU,V ) (72)

EΦPe[PZ|V,Φ,PST ] ≤|S0|ρeE0(−ρ|PZ|U ,PU ). (73)

hold.
Theorem 22 yields the following observation. Applying

Jensen’s inequality to the convex functionx 7→ ex, we obtain

EΦaρI (SI; Z|S0)[PZ|V,Φa,PST ]

≤ log(1+ |B1|ρe−ρH1+ρ(SIc |SI,S0)+E0(ρ|PZ|V ,PV|U ,PU ))

≤|B1|ρe−ρH1+ρ(SIc |SI,S0)+E0(ρ|PZ|V ,PV|U ,PU ). (74)

Here, we chooseρ0 as

ρ0 := argmin
ρ∈[0,1]

[

log |B1| +
1
ρ

E0(ρ|PZ|V,PV|U ,PU)

− H1+ρ(SIc |SI,S0)
]

+
+ (T + 2)

log 2
ρ

.

(75)

Then, Similar to (35) and (36), since 2(2T−2)+2 = 2T+1−2 <
2T+1, Markov inequality guarantees that there exists a code
ϕ = (ϕa, ϕb, ϕe) such that

exp(ρ0I (SI; Z|S0)[PZ|V, ϕa,PST ])

≤2T+1(1+ |B1|ρ0e−ρ0H1+ρ(SIc |SI,S0)+E0(ρ0|PZ|V ,PV|U ,PU ))

≤2T+2e[ρ0 log |B1|−ρ0H1+ρ0 (SIc |SI,S0)+E0(ρ0|PZ|V,PV|U ,PU ),PST ]+ , (76)

I (SI; Z|S0)[PZ|V, ϕa,PST ]

≤ min
0≤ρ≤1

2T+1

ρ
|B1|ρe−ρH1+ρ(SIc |SI,S0)+E0(ρ|PZ|V,PV|U ,PU ), (77)

Pb[PY|V, ϕ,PST ]

≤2T+1 min
0≤ρ≤1

(|B2|ρeE0(−ρ|PY|V ,PV|U ,PU ) + (|S0||S|)ρeE0(−ρ|PY|UV ,PUV)),

(78)

Pe[PZ|V, ϕ,PST ]

≤2T+1 min
0≤ρ≤1

|S0|ρeE0(−ρ|PZ|U ,PU ) (79)

for any non-empty proper subsetI ( {1, . . . ,T}. Taking the
logarithm in (76), we obtain

I (SI; Z|S0)[PZ|V,Φa,PST ]

≤
[

log |B1| +
1
ρ0

E0(ρ0|PZ|V,PV|U ,PU) − H1+ρ0(SIc |SI,S0)
]

+

+ (T + 2)
log 2
ρ0

= min
ρ∈[0,1]

[

log |B1| +
1
ρ

E0(ρ|PZ|V,PV|U ,PU) − H1+ρ(SIc |SI,S0)
]

+

+ (T + 2)
log 2
ρ

. (80)
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Proof of Theorem 22: We show (71). Using (17), we
obtain

EΦp,Φce
ψ(ρ|PZ|B1,B2,S0=s0,Φp ,Pmix,B1,B2 )

≤EΦp,Φce
E0(ρ|PZ|B1,B2,S0=s0,Φp ,Pmix,B1,B2 ) (81)

=EΦp,Φc

∑

z

(
∑

b1,b2

PB1,B2(b1, b2)PZ|B1,B2,S0=s0,Φp(z|b1, b2)
1

1−ρ )1−ρ

=EΦp,Φc

∑

z

(
∑

b1,b2

1
|B1||B2|

PZ|V(z|Φp(s0, b1, b2))
1

1−ρ )1−ρ

≤EΦp,Φc

∑

z

∑

b1

(
∑

b2

1
|B1||B2|

PZ|V(z|Φp(s0, b1, b2))
1

1−ρ )1−ρ (82)

=EΦp,Φc

∑

z

∑

b1

|B1|ρ
|B1|

(
∑

b2

1
|B2|

PZ|V(z|Φp(s0, b1, b2))
1

1−ρ )1−ρ

(83)

≤EΦc

∑

z

∑

b1

|B1|ρ
|B1|

(
∑

b2

1
|B2|

EΦp|ΦcPZ|V(z|Φp(s0, b1, b2))
1

1−ρ )1−ρ

(84)

=
∑

z

∑

b1

|B1|ρ
|B1|

EΦc(
∑

b2

1
|B2|

∑

v

PV|U(v|Φc(s0, b1))PZ|V(z|v)
1

1−ρ )1−ρ

(85)

=
∑

z

∑

b1

|B1|ρ
|B1|

EΦc(
∑

v

PV|U(v|Φc(s0, b1))PZ|V(z|v)
1

1−ρ )1−ρ

=
∑

z

∑

b1

|B1|ρ
|B1|

∑

u

PU(u)(
∑

v

PV|U(v|u)PZ|V(z|v)
1

1−ρ )1−ρ

=
∑

z

|B1|ρ
∑

u

PU(u)(
∑

v

PV|U(v|u)PZ|V(z|v)
1

1−ρ )1−ρ

=|B1|ρeE0(ρ|PZ|V ,PV|U ,PU ), (86)

where (81), (82) (84), and (85) follow from (17), the inequality
(x + y)1−ρ ≤ x1−ρ + y1−ρ, the concavity ofx 7→ x1−ρ, and the
definition of the ensemble of the codeΦp, respectively.

Summarizing the above discussion, we obtain

EΦae
ρI (SI;Z|S0)[PZ|V ,Φa,PST ]

≤EΦa

∑

s0

PS0(s0)
∑

sI

PSI |S0(sI|s0)eρD(PZ|B1,B2,S0=s0,Φp‖P̃Z|S0=s0,Φp )

(87)

=EΦpEF′ ,G′ |Φp

∑

s0

PS0(s0)
∑

sI

PSI |S0(sI|s0)

· eρD(PZ|B1,B2,S0=s0,Φp‖P̃Z|S0=s0,Φp )

≤
∑

s0

PS0(s0)
∑

sI

PSI|S0(sI|s0)

· EΦp(1+ e−ρH1+ρ(SIc |SI=sI,S0=s0)eψ(ρ|PZ|B1,B2,S0,Φp ,PB1,B2 )) (88)

≤
∑

s0

PS0(s0)
∑

sI

PSI|S0(sI|s0)

· (1+ e−ρH1+ρ(SIc |SI=sI,S0=s0)|B1|ρeE0(ρ|PZ|V,PV|U ,PU )) (89)

=1+ e−ρH1+ρ(SIc |SI,S0)|B1|ρeE0(ρ|PZ|V ,PV|U ,PU ),

where (87), (88), and (89) follow from (56), the second
inequality in Lemma 21, and (86), respectively. Then, we
obtain (71).

Further, (72) and (73) follow from Lemma 12.

D. Group Symmetry

Next, when the channel has a nice property with respect
to group action, we treat the upper bound of the leaked
information with a fixed BCD codeϕp. That is, we discuss
the upper bound given in Lemma 21 under an assumption for
group action, which will be given latter. The following analysis
is required for evaluation of universal coding in Sections XII
and XIII and a practical code construction in Subsection XI-B.

For simplicity, we first discuss the case with no common
message, i.e.,|S0| = 1 and |B1| = 1. Assume that a groupG
acts onV andZ. The action ofg ∈ G is written asg · v and
g · z for v ∈ V andz ∈ Z. Then, due to Eqs. (2), (3), and (4),
we have

(g−1 ◦ PZ|V ◦ g)(z|v) = PZ|V(g · z|g · v)

(g−1 ◦ PV)(v) = PV(g · v).

Then, the setV can be divided to orbits{Vo}o∈O by the action
of G. The setO of indexes of the orbits is called the orbit
space. Given a codeϕp as an injective map fromB2 to V,
Recall that we denote the uniform distribution on the image
Imϕp by Pmix,Imϕp, and we define the distributionPϕp(o) :=
| Imϕp∩Vo|/| Imϕp| on the orbit spaceO and the distribution

Pϕp onV by Pϕp(v) :=
Pϕp (o)
|Vo| when the elementv belongs to

the subsetVo. Then, we obtain the following lemma.
Lemma 23:When the relationg−1 ◦ PZ|V ◦ g = PZ|V holds

for any g ∈ G, v ∈ Z, andv ∈ V,

ψ(ρ|PZ|B2,Φp=ϕp ,Pmix,B2) = ψ(ρ|PZ|V,Pmix,Imϕp)

≤E0(ρ|PZ|V,Pmix,Imϕp) ≤ E0(ρ|PZ|V,Pϕp). (90)

In particular, when the image Imϕp is included in one orbit
Vo, Pϕp is the uniform distribution on the orbitVo.

Proof: SinceeE0(ρ|g−1◦PZ|V◦g,g−1◦Pmix,ϕp ) = eE0(ρ|PZ|V,g−1◦Pmix,ϕp ),
we have

eψ(ρ|PZ|V,Pmix,Im ϕp) ≤ eE0(ρ|PZ|V ,Pmix,Imϕp )

=
∑

g∈G

1
|G|e

E0(ρ|g−1◦PZ|V◦g,g−1◦Pmix,Im ϕp)

=
∑

g∈G

1
|G|e

E0(ρ|PZ|V ,g−1◦Pmix,Im ϕp)

≤eE0(ρ|PZ|V ,
∑

g∈G
1
|G| g

−1◦Pmix,Imϕp )
= eE0(ρ|PZ|V,Pϕp). (91)

Next, we consider the general case. Assume that a groupG
acts onU, V, andZ. The code pair code (ϕc, ϕp) is a map
from S0 × B1 ×B2 to U ×V. For a givens0 ∈ S0, we define
the mapsϕc|S0=s0 and (ϕc, ϕp)|S0=s0 by

ϕc|S0=s0(b1) := ϕc(s0, b1) ∈ U
(ϕc, ϕp)|S0=s0(b1, b2) := (ϕc(s0, b1), ϕp(s0, b1, b2)) ∈ U ×V.

For simplicity, we assume that the image of (ϕc, ϕp)|S0=s0 is
included in one orbit inU×V, which is denoted by (V×U)o.
Hence, the image ofϕc|S0=s0 is included in one orbit inU,
which is denoted byUo.
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Lemma 24:Assume that the image of (ϕc, ϕp)|S0=s0 is in-
cluded in a orbit (V × U)o in U × V. When the relation
g−1 ◦ PZ|V ◦ g = PZ|V holds for anyg ∈ G, the relation

eψ(ρ|PZ|B1,B2,S0=s0,Φp=ϕp ,Pmix,B1,B2 )

≤|B1|ρeE0(ρ|PZ|V,PV|U,mix,(V×U)o ,Pmix,Uo ) (92)

holds for anys0 ∈ S0.
Proof: For a givenu ∈ Uo, we define the stabilizer of

u by Hu := {g ∈ G|g · u = u}, which is a subgroup ofG.
For arbitraryu ∈ Uo, we define the two subsetsV′u,Vu ⊂ V
by {u} × V′u = Im(ϕc, ϕp)|S0=s0 ∩ ({u} × V) and {u} × Vu =

(V×U)o ∩ ({u} × V). Then, we obtain the relations

PV|U=u,mix,Im(ϕc,ϕp)|S0=s0
= PV|mix,V′u (93)

PV|U=u,mix,(V×U)o = PV|mix,Vu. (94)

For the definitions of the left hand sides, see (1). We can also
show that

∪g∈Hu{g · v|v ∈ V′u} = Vu.

Sinceg−1◦PV|U=g·u,mix,(V×U)o = PV|U=u,mix,(V×U)o, the condition
g−1 ◦ PZ|V ◦ g = PZ|V implies that

eE0(ρ|g−1◦PZ|V◦g,g−1◦PV|U=g·u,mix,(V×U)o )

=eE0(ρ|PZ|V,PV|U=u,mix,(V×U)o ). (95)

We obtain the following relations. In the following derivation,
(96) and (98) follow from (83) and (95), respectively. Applying
Lemma 23 to the case ofG = Hu, we obtain the inequality
(97) from (93) and (94).

eψ(ρ|PZ|B1,B2,S0=s0,Φp=ϕp ,Pmix,B1,B2 )

≤
∑

z

∑

b1

|B1|ρ
|B1|

(
∑

b2

1
|B2|

PZ|V(z|ϕp(s0, b1, b2))
1

1−ρ )1−ρ (96)

=|B1|ρ
∑

z

∑

u

PU,mix,Imϕc|S0=s0
(u)

·
[
∑

v

PV|U=u,mix,Im(ϕc,ϕp)|S0=s0
(v)PZ|V(z|v)

1
1−ρ

]1−ρ

=|B1|ρ
∑

u

PU,mix,Imϕc|S0=s0
(u)eE0(ρ|PZ|V ,PV|U=u,mix,Im(ϕc,ϕp)|S0=s0

)

≤|B1|ρ
∑

u

PU,mix,Imϕc|S0=s0
(u)eE0(ρ|PZ|V ,PV|U=u,mix,(V×U)o ) (97)

=|B1|ρ
∑

g∈G

1
|G|

∑

u

PU,mix,Imϕc|S0=s0
(g · u)eE0(ρ|PZ|V ,PV|U=u,mix,(V×U)o )

(98)

=|B1|ρ
∑

u

PU,mix,(V×U)o(u)eE0(ρ|PZ|V,PV|U=u,mix,(V×U)o )

=|B1|ρeE0(ρ|PZ|V,PV|U=u,mix,(V×U)o ,PU,mix,Uo ).

Remark 25:Section VII deals with the security when a
channel PZ|V from V to Z is given. The discussion of
Section VII can be extended to the case with a channel
PZ|VU fromV×U to Z. In this case,ψ(ρ|PZ|V,PV|U ,PU) and

E0(ρ|PZ|V,PV|U ,PU) are modified to

ψ(ρ|PZ|V,U,PV|U ,PU)

:= log
∑

u

PU(u)
∑

v

PV|U(v|u)
∑

z

PZ|V,U(z|v, u)1+ρPZ|U(z|u)−ρ

E0(ρ|PZ|V,U,PV|U ,PU)

:= log
∑

u

PU(u)
∑

z















∑

v

PV|U(v|u)PZ|V,U(z|v, u)1/(1−ρ)















1−ρ

.

All of the discussions in this section are still valid even ifwe
replacePZ|V(z|v) by PZ|V,U(z|v, u) with the above modification.
These extensions to the channelPZ|VU will be used in Section
XII as a mathematical tool for our proof.

VIII. A symptotic Conditional Uniformity

A. Three Kinds of Asymptotic Conditional Uniformity Condi-
tions

In SMC, we use the messageSIc as a dummy message. The
secrecy of the messageSI depends on the conditional entropy
of the dummy messageSIc given SI. Then, it is not easy to
treat the asymptotic performance without fixing the conditional
entropy rate of the dummy messageSIc. Hence, we need to
characterize the randomness of the dummy messageSIc under
the condition with respect toSI in the asymptotic setting. In
order to treat the capacity region and the strong security, we
introduce several kinds of asymptotic conditional uniformity
conditions for a general sequence of source distributionsPST ,n
on the message setsSi,n for i = 0, 1, . . . ,T satisfying the
relations|Si,n| := enRi for i = 0, 1, . . . ,T.

Definition 26: The sequence of distributionsPST ,n of the
dummy messageSIc,n is called weak asymptotically con-
ditionally uniform (WACU) for a non-empty proper subset
I(, ∅) ( {1, . . . ,T} when

lim
n→∞

1
n

H(SIc,n|SI,n,S0,n) =
∑

i∈Ic

Ri . (99)

Definition 27: The sequence of distributionsPST ,n of the
dummy messageSIc,n is calledsemi-weak asymptotically con-
ditionally uniform (SWACU) for a non-empty proper subset
I(, ∅) ( {1, . . . ,T} when the relation

lim
n→∞

1
n

H1+ δ
n
(SIc,n|SI,n,S0,n) =

∑

i∈Ic

Ri (100)

holds for anyδ > 0.
Definition 28: Fix an arbitrary fixed real numberǫ ≥ 0. The

sequence of distributionsPST ,n of the dummy messageSIc,n is
calledǫ-strong asymptotically conditionally uniform(ǫ-SACU)
for for a non-empty proper subsetI(, ∅) ( {1, . . . ,T} when
the relation

Hlog(Ic) ≥
∑

i∈Ic

(Ri − ǫ), (101)

where

Hlog(Ic) := lim
δ→∞

lim inf
n→∞

1
n

H1+ δ logn
n

(SIc,n|SI,n,S0,n). (102)

Sinceρ − 1 behaves asδ logn
n in (102), we use the subscript

log in (102). In the case ofǫ = 0, it is simply calledstrong
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asymptotically conditionally uniform(SACU) for a non-empty
proper subsetI(, ∅) ( {1, . . . ,T}. In this case, the condition
(101) is equivalent with

Hlog(Ic) =
∑

i∈Ic

Ri (103)

because the opposite inequality holds due to the cardinalities
of respective message sets.

In particular, when the sequence of distributionsPST ,n of
the dummy messageSIc,n is WACU for any non-empty
proper subsetI ( {1, . . . ,T}, it is simply called WACU. We
sometimes fix a familyJ of non-empty proper subsetsI of
{1, . . . ,T}, and treat only non-empty proper subsetsI ∈ J. In
this case, we call the sequence of distributionsPST ,n WACU for
a family J when it is WACU for any non-empty proper subset
I ∈ J. We also apply these conventions to SWACU, SACU,
and ǫ-SACU. The relations among the above conditions are
summarized as follows.

Theorem 29:The following relations hold.

SACU ⇒ SWACU ⇔ WACU
⇓

ǫ-SACU

Proof: The equivalence between SWACU and WACU will
be shown as Lemma 93 in Appendix C. Other relations are
trivial from their definitions.

In fact, as is shown in Subsection VIII-B, even if the original
information does not satisfy the WACU condition (99) or the
SACU condition (103) withǫ = 0, if we apply Slepian-Wolf
data compression [30] to the original sources so that the total
compressed rate of the whole data attains the entropy rate of
the whole sources, the compressed data satisfies the WACU
condition (99) and/or the SACU condition (103). Similarly, as
is shown in Subsection VIII-B, even if the original information
does not satisfy theǫ-SACU condition (101), if we apply
Slepian-Wolf data compression [30] to the original sources
so that the error probability goes to zero exponentially and
the difference between the entropy rate of the whole system
and the total compressed rate is less thanǫ, the compressed
data satisfies theǫ-SACU condition (101).

B. Asymptotic Conditional Uniformity Conditions and
Slepian-Wolf Data Compression

In Subsection X-A, we have introduced several asymp-
totic conditional uniformity conditions. In this subsection,
we clarify which kind of data compressed by Slepian-Wolf
compression satisfies asymptotic conditional uniformity con-
ditions. For this purpose, we assume that the random variables
Sn
T = (Sn

0,S
n
1, . . .S

n
T) are subject to then-fold stationary

ergodic joint distributionPn
ST

over Sn
0 × Sn

1 × · · · × Sn
T . The

symbols H(S0, . . . ,ST), H(SI), and H(S0,SI) describe the
entropy rates of the respective random variables for any non-
empty proper subsetI ( {1, . . . ,T}. The following theorem
treats the WACU condition for the compressed data.

Theorem 30:We choose the asymptotic compression rates
R0, . . . ,RT such that

∑T
i=0 Ri = H(S0, . . . ,ST) and

∑

i∈I Ri ≤
H(SI), R0 +

∑

i∈I Ri ≤ H(S0,SI) for any non-empty proper

subsetI ( {1, . . . ,T}. Choose a sequencemn such thatmn
n →

1.
Let ϕn

i : Smn
i → {1, . . . , ⌈enRi⌉} be Slepian-Wolf encoders and

ϕ̂n : {1, . . . , ⌈enR0⌉} × · · · × {1, . . . , ⌈enRT ⌉} → Smn
0 × · · · × S

mn
T be

its Slepian-Wolf decoder for any positive integern such that

ε(ϕn, ϕ̂n) := Pr{(Smn
0 , . . .Smn

T ) , ϕ̂n(ϕn
0(Smn

0 ), . . . , ϕn
T (Smn

T ))} → 0,
(104)

whereϕn = (ϕn
0, . . . , ϕ

n
T ). Then, we have

lim
n→∞

1
n

H((ϕn
i (Smn

i ))i∈Ic |(ϕn
i (Smn

i ))i∈I, ϕ
n
0(Smn

0 )) =
∑

i∈Ic

Ri (105)

for any non-empty proper subsetI ( {1, . . . ,T}. That is, the
compressed data satisfies the WACU condition (99).

Remark 31:Theorem 30 gives only a sufficient condition
(104) for the compressed data satisfying the WACU condition.
For construction of the compressed data satisfying the WACU
condition, it is needed to clarify the existence of a code whose
the compressed data satisfying the condition (104).

In the single terminal Markovian case, under the condition
mn
n → 1, the second order asymptotic analysis in [16, Section

VII] guarantees that there exists sequence of the pairs of
an encoder and a decoder satisfying (104) if and only if
n−mn√

n
→ ∞. The extension to the Slepian-Wolf coding has

been done with the i.i.d. case [32]. For the boundary of the
attainable rate region of Slepian-Wolf data compression in
the stationary ergodic case [5], we can show the existence of
the pair of an encoder and a decoder satisfying (104) with a
suitable choice of the sequencemn under the conditionmn

n → 1
in the following way5.

Choose the ratesRi + δ for any δ > 0. Let ϕn
i,δ :

Sn
i → {1, . . . , ⌈enRi(1+δ)⌉} be Slepian-Wolf encoders and ˆϕn

δ
:

{1, . . . , ⌈enR0(1+δ)⌉} × · · · × {1, . . . , ⌈enRT(1+δ)⌉} → Sn
0 × · · · × Sn

T
be its Slepian-Wolf decoder such thatε(ϕn

δ
, ϕ̂n

δ
) → 0 with

ϕn
δ := (ϕn

0,δ, . . . , ϕ
n
T,δ). For an arbitrary integerl, we choose

an integernl such that the inequalityε(ϕn
1/l , ϕ̂

n
1/l) ≤

1
l holds

for any n ≥ nl . We definemn to be mn := ⌊ n
1+1/l ⌋, where

we choosel such thatnl ≤ n < nl+1. Here, we can choose the
integerl for any positive integern. The construction guarantees
that Ri(1+ 1/l)(mn + 1) ≥ Rin ≥ Ri(1+ 1/l)mn. We define the
pair of an encoder and a decoder (ϕn, ϕ̂n) to be (ϕmn

1/l , ϕ̂
mn

1/l).
That is,ϕn

i is chosen to beϕmn

i,1/l . Our choices guarantee that
mn
n �

1
1+1/l → 1, and ε(ϕn, ϕ̂n) = ε(ϕmn

1/l , ϕ̂
mn

1/l) ≤ 1/l → 0.
In this construction, the encoderϕn

i is a map fromSmn
i to

{1, . . . , ⌈emnRi(1+1/l)⌉} ⊂ {1, . . . , ⌈enRi ⌉} becauseRin ≥ mnRi(1+
1/l). Hence, the pair of an encoder and a decoder (ϕn, ϕ̂n)
satisfies the assumption of Theorem 30.

Proof of Theorem 30: Assume that the codeϕn =

(ϕn
0, . . . , ϕ

n
T) satisfies (104). Since the stationary ergodic source

satisfies the strong converse property for the data compression,
due to folklore source coding theorem [14, Theorem 3.1], the

5The following discussion does not require any property for source distri-
bution. That is, it can be extended to Slepian-Wolf data compression for the
general information source [42] in the sense of Han-Verdú[13].
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codeϕn satisfies

lim
n→∞

1
n

H(ϕn
0(Smn

0 ), . . . , ϕn
T(Smn

T )) =
T

∑

i=0

Ri .

Since 1
nH((ϕn

i (Smn
i ))i∈Ic |(ϕn

i (Smn
i ))i∈I, ϕ

n
0(Smn

0 )) ≤ ∑

i∈Ic Ri and
1
nH((ϕn

i (S
mn
i ))i∈I, ϕ

n
0(Smn

0 )) ≤ R0+
∑

i∈I Ri , we obtain (105).
In Subsection X-A, we have introduced theǫ-strong asymp-

totic conditional uniformity (101) as another kind of asymp-
totic conditional uniformity. The following theorem showsthe
ǫ-strong asymptotic conditional uniformity for the compressed
data.

Theorem 32:We fix a sequencemn such thatmn
n → 1. We

also fix an arbitraryǫ ≥ 0 and an arbitrary non-empty proper
subsetI ( {1, . . . ,T}. Then, we choose the asymptotic com-
pression ratesR0, . . . ,RT such that

∑T
i=0 Ri = H(S0, . . . ,ST)+ǫ

and
∑

i∈I
Ri ≤ H(SI), R0 +

∑

i∈I
Ri ≤ H(S0,SI). (106)

We choose a Slepian-Wolf encoderϕn = (ϕn
0, . . . , ϕ

n
T) and a

Slepian-Wolf decoder ˆϕn as a mapϕn
i : Smn

i → {1, . . . , ⌈enRi ⌉}
and a map ˆϕn : {1, . . . , ⌈enR0⌉}×· · ·×{1, . . . , ⌈enRT ⌉} → Smn

0 ×· · ·×
Smn

T . When the decoding error probabilityε(ϕn, ϕ̂n) satisfies
that

ε(ϕn, ϕ̂n)p(n)→ 0 (107)

for any polynomialp(n), the relation

lim inf
n→∞

1
n

H1+ρn((ϕ
n
i (Sn

i ))i∈Ic |(ϕn
i (S

n
i ))i∈I, ϕ

n
0(Sn

0))

≥(
∑

i∈Ic

Ri) − ǫ ≥
∑

i∈Ic

(Ri − ǫ) (108)

holds withρn =
δ logn

n for any δ > 0. That is, the compressed
data (ϕn

0(Sn
0), . . . , ϕn

T(Sn
T)) satisfies theǫ-SACU condition (101)

for the non-empty proper subsetI ( {1, . . . ,T}. In particular,
in the case ofǫ = 0, the compressed data (ϕn

0(Sn
0), . . . , ϕn

T(Sn
T))

satisfies the SACU condition for the non-empty proper subset
I ( {1, . . . ,T}.

Hence, if the relation (106) holds for any non-empty
proper subsetI ( {1, . . . ,T}, the compressed data
(ϕn

0(Sn
0), . . . , ϕn

T(Sn
T)) satisfies theǫ-SACU condition (101).

Remark 33:Theorem 32 gives only a sufficient condition
(107) for the compressed data satisfying theǫ-SACU condition
(101). Hence, it is necessary to clarify the existence of a code
whose compressed data satisfying the condition (107).

In the i.i.d. case, for an arbitraryǫ > 0 and an arbitrary
sequencemn satisfying limn→∞

mn
n = 1, there exists a sequence

of Slepian-Wolf codes (ϕn, ϕ̂n) with any rate tuples given in
Theorem 32 such that the decoding error probabilityε(ϕn, ϕ̂n)
goes to zero exponentially with respect ton[39]. That is, there
exists a Slepian-Wolf code satisfying the condition (107) in
Theorem 32. However, it is not so easy to give a required
code in the case ofǫ = 0. In Appendix B, we give such a
code whenmn := n

1+ c
nt

with t > 1/2 and∞ > c > 0.

C. Proof of Theorem 32

For the proof of Theorem 32, we prepare the following
lemma for treating the relation between the conditional Rényi
entropy of the compressed data and the decoding error prob-
ability. The following lemma treats the single terminal data
compression for a random variableS on a setS in the single-
shot setting.

Lemma 34:Any encoderϕ : S → {1, . . . ,M} and any
decoder ˆϕ : {1, . . . ,M} → S for a random variableS satisfy

e−ρH1+ρ(S) ≤ e−ρH1+ρ(ϕ(S)) ≤ 2ρe−ρH1+ρ(S) + 2ρε(ϕ, ϕ̂)1+ρ, (109)

where ε(ϕ, ϕ̂) is the decoding error probability Pr{S ,

ϕ̂(ϕ(S))}.
Proof: First, we show the first inequality. Using the

inequality x1+ρ + y1+ρ ≤ (x+ y)1+ρ for x, y ≥ 0, we obtain
(

∑

s∈ϕ−1(i)

PS(s)
)1+ρ
≥

∑

s∈ϕ−1(i)

PS(s)1+ρ

for any i = 1, . . . ,M. Hence,

e−ρH1+ρ(ϕ(S)) =

M
∑

i=1

(
∑

s∈ϕ−1(i)

PS(s)
)1+ρ

≥
M
∑

i=1

∑

s∈ϕ−1(i)

PS(s)1+ρ =
∑

s

PS(s)1+ρ = e−ρH1+ρ(S),

which implies the first inequality of (109).
Next, we show the second inequality of (109). Given an

arbitrary elementi in the codebook, we have two cases: (1)
The elementsi := ϕ̂(i) belongs toϕ−1(i), i.e., there exists exact
one elementsi ∈ ϕ−1(i) such that ˆϕ(ϕ(si)) = si . (2) There exists
no elementsi ∈ ϕ−1(i) such that ˆϕ(ϕ(si)) = si . In case (1),

(
∑

s∈ϕ−1(i)

PS(s)
)1+ρ
=

(

PS(si) +
∑

s∈ϕ−1(i):ϕ̂(ϕ(s)),s

PS(s)
)1+ρ

=21+ρ
(1
2

PS(si) +
1
2

∑

s∈ϕ−1(i):ϕ̂(ϕ(s)),s

PS(s)
)1+ρ

≤21+ρ
(1
2

PS(si)1+ρ +
1
2

(
∑

s∈ϕ−1(i):ϕ̂(ϕ(s)),s

PS(s)
)1+ρ)

=2ρPS(si)1+ρ + 2ρ
(

∑

s∈ϕ−1(i):ϕ̂(ϕ(s)),s

PS(s)
)1+ρ

.

In case (2),
(

∑

s∈ϕ−1(i)

PS(s)
)1+ρ
=

(
∑

s∈ϕ−1(i):ϕ̂(ϕ(s)),s

PS(s)
)1+ρ

.

Hence, we obtain

e−ρH1+ρ(ϕ(S)) =
∑

i

(
∑

s∈ϕ−1(i)

PS(s)
)1+ρ

≤2ρ
∑

i

PS(si)1+ρ + 2ρ
∑

i

(
∑

s∈ϕ−1(i):ϕ̂(ϕ(s)),s

PS(s)
)1+ρ

≤2ρ
∑

s

PS(s)1+ρ + 2ρ
(
∑

i

∑

s∈ϕ−1(i):ϕ̂(ϕ(s)),s

PS(s)
)1+ρ

(110)

=2ρ
∑

s

PS(s)1+ρ + 2ρ
(

∑

s:ϕ̂(ϕ(s)),s

PS(s)
)1+ρ

=2ρe−ρH1+ρ(S) + 2ρε(ϕ, ϕ̂)1+ρ,
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where (110) follow from the inequalityx1+ρ+y1+ρ ≤ (x+y)1+ρ

for x, y ≥ 0. Hence, we obtain the second inequality.
Then, we obtain the following corollary of Lemma 34. The

following corollary treats the single terminal data compression
for a general sequence of random variablesSn.

Corollary 35: Let ϕn be an encoder and ˆϕn be a decoder for
a general sequence of random variablesSn. When the decoding
error probabilitiesε(ϕn, ϕ̂n) and the sequence{ρn} of positive
real numbers satisfy

lim
n→∞

ε(ϕn, ϕ̂n)1+ρneρnH1+ρn (Sn) = 0, (111)

we have

lim
n→∞

1
n

H1+ρn(ϕ
n(Sn)) = lim

n→∞

1
n

H1+ρn(Sn). (112)

Proof of Corollary 35: The inequality
limn→∞

1
nH1+ρn(ϕ

n(Sn)) ≤ limn→∞
1
nH1+ρn(Sn) follows

from the first inequality (109). We show only the inequality
limn→∞

1
nH1+ρn(ϕ

n(Sn)) ≥ limn→∞
1
nH1+ρn(Sn). Using the

second inequality in (109), we have

lim
n→∞

1
n

H1+ρn(ϕ
n(Sn)) = lim

n→∞

−1
nρn

loge−ρnH1+ρn (ϕn(Sn))

≥ lim
n→∞

−1
nρn

log(2ρne−ρnH1+ρn (Sn) + 2ρnε(ϕn, ϕ̂n)1+ρn)

= lim
n→∞

−1
nρn

log(2ρne−ρnH1+ρn (Sn)) (113)

= lim
n→∞

1
n

(H1+ρn(Sn) − log 2)= lim
n→∞

1
n

H1+ρn(Sn),

where (113) follows from the assumption (111).
Now, we show Theorem 32.

Proof of Theorem 32: For the proof of Theorem 32, we
chooseρ′n so thatρ′n(1 − ρ′n) = ρn. Since limn→∞

mn
n = 1 and

ρ ≥ ρ′n for all n, we have

H1+ρ(S0, . . . ,ST) ≤ lim inf
n→∞

1
n

H1+ρ′n(S
mn
0 , . . . ,Smn

T )

≤ lim sup
n→∞

1
n

H1+ρ′n(S
mn

0 , . . . ,Smn
T ) ≤ H(S0, . . . ,ST).

Sinceρ′n→ 0 and limρ→+0 H1+ρ(S0, . . . ,ST) = H(S0, . . . ,ST),

lim
n→∞

1
n

H1+ρ′n(S
mn
0 , . . . ,Smn

T ) = H(S0, . . . ,ST). (114)

Sinceρ′n behaves asδ logn
n , due to the relation (114), the quan-

tity eρ
′
nH1+ρ′n (Smn

0 ,...Smn
T ) behaves aseδ(logn)H(S0,...,ST ) = nδH(S0,...,ST ).

Sinceε(ϕn, ϕ̂n)1+ρ′n ≤ ε(ϕn, ϕ̂n), the condition (107) guarantees
the condition (111). Hence, Corollary 35 guarantees that

lim
n→∞

1
n

H1+ρ′n(ϕ
n
0(Smn

0 ), . . . , ϕn
T(Smn

T )) = (
T

∑

i=0

Ri) − ǫ.

Since log|ϕn
0(Smn

0 )×∏

i∈I ϕ
n
i (Smn

i )| = n(R0+
∑

i∈I Ri), Corollary
87 in Appendix A implies (108).

IX. Secure Multiplex Coding with CommonMessages:
Asymptotic Performance

In this section, we treat the asymptotic performance for
the secure multiplex coding with common messages when the
channel is given as then-fold discrete memoryless channel
of a given broadcast channelPYZ|X. First, we treat what
performance can be achieved by using Code Ensemble 3 and
Theorem 22 in Subsection VII-C without any assumption for
the distribution of sources. In the next step, we define the ca-
pacity region under the asymptotic uniformity of information
sources. In SMC, this restriction for the sources is essential
for our definition of the capacity region. After this definition,
we concretely give the capacity region.

A. General Sequence of Information Sources

First, we treat the secure multiplex coding with common
messages with general sequence of information sources. Fora
given set of rates (Ri)T

i=0, we give a general sequence of source
distributionsPST ,n on the message setsSi,n for i = 0, 1, . . . ,T
satisfying the relations|Si,n| := enRi for i = 0, 1, . . . ,T. For
a given Markov chainsU → V → X → YZ, we give an
asymptotic code construction in the following way.

Code Construction 4:Let ϕn be a code given in Code
Ensemble 2 in Subsection VII-B satisfying (66), (63), (64),
and (65) of lengthn with |Si,n| := enRi for i = 0, 1, . . . ,T and
a given Markov chainU → V → X.
The performance of the codeϕn of Code Construction 4
is characterized as follows. The conditions (64) and (65)
guarantee (115) and (116) given as follows.

lim inf
n→∞

−1
n

logPb[Pn
Y|V,Φn,PST ,n]

≥ − ρ
T

∑

i=1

Ri −max[E0(−ρ|PY|V,PV|U ,PU),E0(−ρ|PY|U,V,PV,U)],

(115)

lim inf
n→∞

−1
n

logPe[P
n
Z|V,Φn,PST ,n] ≥ −ρR0 − E0(−ρ|PZ|U ,PU)

(116)

with anyρ ∈ (0, 1]. Further, due to (66), the leaked information
for SI,n can be evaluated as

1
n

I (SI,n; Zn|S0,n)[P
n
Z|V, ϕa,n,PST ,n]

≤
[1
ρ
ψ(ρ|PZ|V,PV|U ,PU) − 1

n
H1+ρ(SIc,n|SI,n,S0,n)

]

+

+ (T + 2)
log 2
nρ

.

We substituteρ = a/n with an arbitrary reala > 0 and take
the limitsn→ ∞. Then, (20) of Lemma 4 leads the inequality

lim sup
n→∞

1
n

I (SI,n; Zn|S0,n)[Pn
Z|V, ϕa,n,PST ,n]

≤
[

I (V; Z|U) − lim inf
n→∞

1
n

H1+a/n(SIc,n|SI,n,S0,n)
]

+
+(T + 2)

log 2
a

.
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Taking the limitsa→ ∞, we obtain

lim sup
n→∞

1
n

I (SI,n; Zn|S0,n)[Pn
Z|V, ϕa,n,PST ,n]

≤
[

I (V; Z|U) − lim
a→∞

lim inf
n→∞

1
n

H1+a/n(SIc,n|SI,n,S0,n)
]

+
. (117)

So, the asymptotic performance of our code given in Code
Construction 4 is characterized in (115), (116), and (117).

In Code Construction 4, the parameterR0 is chosen to be
Rc in BCD. However, to realize the capacity region of SMC,
we need to choose the parameterR0 to be a smaller value
than Rc in BCD in general. To realize such a choice, we
introduce another code construction by using Code Ensemble
3 in Subsection VII-C. As is explained in Remark 39, such
a construction is crucial for achieving the capacity regionin
general although Code Construction 4 achieves the capacity
region with no common message.

Code Construction 5:For a given set of rates (Ri)T
i=0, we

introduce other parametersRp andRc satisfying

Rc + Rp =

T
∑

i=0

Ri , Rc ≥ R0. (118)

In the following, we denote the set of ((Ri)T
i=0,Rp,Rc) satisfying

the above condition byRT . In order to apply Code Ensemble
3 in Subsection VII-C, we fix Abelian groupsB1,n andB2,n

satisfying |B1,n| := en(Rc−R0) and |B2,n| := enRp. Applying Code
Ensemble 3 and Theorem 22 to then-fold discrete memoryless
extensionUn→ Vn→ Xn→ YnZn of the above Markov chain
and the Abelian groupsB1,n andB2,n, we find the codeϕn =

(ϕa,n, ϕb,n, ϕe,n) with the message setsSi,n for i = 0, 1, . . . ,T
satisfying (76), (77), (78), and (79).

The performance of the codeϕn of Code Construction 5 is
characterized as follows. The relations (78) and (79) guarantee
that

lim inf
n→∞

−1
n

logPb[Pn
Y|V, ϕn,PST ,n]

≥min
[

−ρRp − E0(−ρ|PY|V,PV|U ,PU),

− ρ(Rp + Rc) − E0(−ρ|PY|U,V ,PV,U)
]

, (119)

lim inf
n→∞

−1
n

logPe[Pn
Z|V, ϕn,PST ,n] ≥ −ρRc − E0(−ρ|PZ|U ,PU)

(120)

for any ρ ∈ (0, 1]. Hence, due to (18) and (20), above
both exponents (119) and (120) are positive, i.e., both error
probabilities go to zero exponentially when

Rp < I (Y; V|U), Rp + Rc < I (Y; VU) = I (Y; U) + I (Y; V|U),

Rc < I (Z; U),

which are satisfied when

Rc < min[I (Y; U), I (Z; U)], Rp < I (Y; V|U). (121)

Further, due to (80), the leaked information forSI,n can be
evaluated as

1
n

I (SI,n; Zn|S0,n)[Pn
Z|V, ϕa,n,PST ,n]

≤
[

[Rc − R0]+ +
1
ρ

E0(ρ|PZ|V,PV|U ,PU) − 1
n

H1+ρ(SIc,n|SI,n,S0,n)
]

+

+ (T + 2)
log 2
nρ

.

Similar to (117), we obtain

lim sup
n→∞

1
n

I (SI,n; Zn|S0,n)[Pn
Z|V, ϕa,n,PST ,n]

≤
[

(Rc − R0) + I (V; Z|U)

− lim
a→∞

lim inf
n→∞

1
n

H1+a/n(SIc,n|SI,n,S0,n)
]

+
. (122)

So, the asymptotic performance of our code in Code Construc-
tion 5 is characterized in (119), (120), and (122).

B. Capacity Region

Next, in order to characterize the limit of the asymptotic
performance of the secure multiplex coding with common
messages, we define the capacity region based on the WACU
condition (99). For this purpose, we treat the transmission
rate tuple (Ri)i=0,...,T = (R0, R1, . . . , RT) and the information
leakage rate tuple (Rl,I)∅,I({1,...,T}, whereI takes every non-
empty proper subset of{1, . . . ,T}. The latter describes the rates
of the leaked information for the messageSI,n. Combining
both tuples, we call ((Ri)i=0,...,T , (Rl,I)∅,I({1,...,T}) the rate tuple.

Definition 36: The rate tuple ((Ri)i=0,...,T , (Rl,I)∅,I({1,...,T}) is
said to beachievablefor the secure multiplex coding withT
secret messages for the channelPYZ|X if there exist a sequence
of codesϕn = (ϕa,n, ϕb,n, ϕe,n), i.e., Alice’s stochastic encoder
ϕa,n from S0,n × S1,n × · · · × ST,n to Xn, Bob’s deterministic
decoderϕb,n : Yn → S0,n × S1,n × · · · × ST,n and Eve’s
deterministic decoderϕe,n : Zn→ S0,n satisfying the following
conditions: (1) Thei-th secret message setSi,n has cardinality
enRi for i = 1, . . . , T, and the common message setS0,n has
cardinality enR0. (2) When a sequence of joint distributions
PST ,n on the message setsSi,n for T = 0, 1, . . . ,T satisfies
the WACU condition (99) for a non-empty proper subset
I(, ∅) ( {1, . . . ,T}, the relations

lim
n→∞

Pb[Pn
Y|X, ϕn,PST ,n] = 0 (123)

lim
n→∞

Pe[Pn
Z|X, ϕn,PST ,n] = 0 (124)

lim sup
n→∞

I (SI,n; Zn|S0)[Pn
Z|X, ϕa,n,PST ,n] ≤ Rl,I (125)

hold. The capacity regionC of the secure multiplex
coding is the closure of the achievable rate tuples
((Ri)i=0,...,T , (Rl,I)∅,I({1,...,T}).

Theorem 37:The capacity region of the secure multiplex
coding with common messages is given by the set of rate tu-
ples ((Ri)i=0,...,T , (Rl,I)∅,I({1,...,T}) such that there exist a Markov
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chainU → V → X→ YZ and

R0 ≤ min[I (U; Y), I (U; Z)],
T

∑

i=0

Ri ≤ I (V; Y|U) +min[I (U; Y), I (U; Z)]

Rl,I ≥
∑

i∈I
Ri − [ I (V; Y|U) − I (V; Z|U)]+ (126)

for any non-empty proper subsetI ( {1, . . . ,T}.
Now, we define the capacity regionCnc of the se-

cure multiplex coding with no common messages as
the set of rate tuples ((Ri)i=1,...,T , (Rl,I)∅,I({1,...,T}) satisfying
(0, (Ri)i=1,...,T , (Rl,I)∅,I({1,...,T}) ∈ C. As a corollary, the case
with no common message is characterized as follows.

Corollary 38: Cnc is given as the set of rate tuples
((Ri)i=1,...,T , (Rl,I)∅,I({1,...,T}) such that there exist a Markov
chainV → X→ YZ and

T
∑

i=1

Ri ≤ I (V; Y)

Rl,I ≥
∑

i∈I
Ri − [ I (V; Y) − I (V; Z)]+ (127)

for any non-empty proper subsetI ( {1, . . . ,T}.

Proof of Theorem 37: The converse part of this cod-
ing theorem follows from that for Corollary 9 with the
uniform distribution on the whole message sets. The di-
rect part can be shown by Lemma 41. That is, for a rate
tuple ((Ri)i=1,...,T , (Rl,I)∅,I({1,...,T}) given in (126) and an ar-
bitrary small real numberε > 0, the rate tuple ((Ri −
ǫ
T )i=1,...,T , (Rl,I)∅,I({1,...,T}) can be achieved by Lemma 41 when
the T + 1-th messageST+1 is used as the dummy message
subject to the uniform distribution and its rateRT+1 is chosen
to be max(I (V; Y|U) −∑T

i=0 Ri − ǫ
T , 0).

Remark 39:As is mentioned in Proof of Theorem 37, to
derive the capacity region, we employ Lemma 41, which
is based on Code Construction 5 instead of Code Con-
struction 4 because the case

∑T
i=1 Ri > I (V; Y|U) requires

Code Construction 5. This is the reason why we introduce
Code Construction 5 as well as Code Construction 4. When
∑T

i=1 Ri ≤ I (V; Y|U), the rate tuple ((Ri)i=1,...,T , (Rl,I)∅,I({1,...,T})
given in (126) can be approximately achieved by Lemma 40,
which is based on Code Construction 4. That is, the rate tuple
((Ri − ǫ

T )i=1,...,T , (Rl,I)∅,I({1,...,T}) can be achieved by Lemma
40 when theT + 1-th messageST+1 is used as the dummy
message subject to the uniform distribution and its rateRT+1

is chosen to be max(I (V; Y|U) − ∑T
i=0(Ri − ǫ

T ) − ǫ, 0). Then,
Code Construction 4 gives only the special rate tuple in the
capacity region.

When there is no common message, it is enough to attain the
region given in Corollary 38. Hence, it is sufficient to consider
the case withR0 = 0, which implies that

∑T
i=1 Ri ≤ I (V; Y|U).

That is, if we need to show only Corollary 38, it is enough
to use Lemma 40, which is based on Code Construction 4
instead of Code Construction 5.

Lemma 40:Choose a sufficiently small real numberǫ > 0

and (Ri)T+1
i=0 for i = 0, 1, . . . ,T,T + 1 satisfying

R0 < min[I (U; Y), I (U; Z)], (128)
T+1
∑

i=1

Ri < I (V; Y|U) ≤ (
T+1
∑

i=1

Ri) + ǫ. (129)

Then, the codeϕn given by Code Construction 4 satisfies

lim
n→∞

Pb[Pn
Y|V, ϕn,PST ,n × PST+1,n] = 0 (130)

lim
n→∞

Pe[Pn
Z|V, ϕn,PST ,n × PST+1,n] = 0 (131)

and

lim sup
n→∞

1
n

I (SI,n; Zn|S0,n)[P
n
Z|V, ϕn,PST ,n × PST+1,n]

≤
∑

i∈I
Ri − [ I (V; Y|U) − I (V; Z|U)]+ + ǫ (132)

when the sequence of the joint distributionsPST ,n of informa-
tion source satisfies the WACU condition (99) for any non-
empty proper subsetI ( {1, . . . ,T} and PST+1,n is the uniform
distribution.

Lemma 41:Choose a sufficiently small real numberǫ > 0
and (Ri)T+1

i=0 for i = 0, 1, . . . ,T,T + 1 satisfying

R0 <min[I (U; Y), I (U; Z)], (133)

I (V; Y|U) ≤ (
T+1
∑

i=0

Ri) + ǫ <I (V; Y|U) +min[I (U; Y), I (U; Z)].

(134)

Then, the codeϕn given by Code Construction 5 with the
choices

Rp := I (V; Y|U) − ǫ andRc :=
T+1
∑

i=0

Ri − Rp (135)

satisfies (130), (131), and (132) when the sequence of the joint
distributionsPST ,n of information source satisfies the WACU
condition (99) for any non-empty proper subsetI ( {1, . . . ,T}
and PST+1,n is the uniform distribution.

Proof of Lemma 40: Since the conditions (128) and
(129) guarantee the conditions (121), we obtain (130)
and (131). We need to show only (132). Assume that
I (V; Y|U) ≤ I (V; Z|U). Since |SI,n| = en

∑

i∈I Ri , we obtain
1
n I (SI,n; Zn|S0,n)[Pn

Z|V, ϕn,PST ,n × PST+1,n] ≤
∑

i∈I Ri , which
implies (132). Hence, it is enough to consider the case
I (V; Y|U) > I (V; Z|U). Since, as is shown in Lemma 93 in
Appendix C, the equivalence between the SWACU condition
(100) and the WACU condition (99) holds, we obtain

lim
a→∞

lim
n→∞

1
n

H1+a/n(SIc,n|SI,n,S0,n) =
∑

i∈Ic

Ri . (136)
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The relations (117) and (136) yield

lim sup
n→∞

1
n

I (SI,n; Zn|S0,n)[Pn
Z|V, ϕa,n,PST ,n × PST+1,n]

≤I (V; Z|U) −
∑

i∈Ic

Ri

= −
T+1
∑

i=1

Ri + I (V; Z|U) +
∑

i∈I
Ri

≤ǫ − I (V; Y|U) + I (V; Z|U) +
∑

i∈I
Ri , (137)

which implies (132)

Proof of Lemma 41: Since the conditions (133), (134),
and (135) guarantee the conditions (121), we obtain (130)
and (131). We need to show only (132). WhenI (V; Y|U) ≤
I (V; Z|U), we can show (132) by the same way as Lemma 40.
Hence, it is enough to consider the caseI (V; Y|U) > I (V; Z|U).
By the same way as Lemma 40, the relations (122) and (136)
yield

lim sup
n→∞

1
n

I (SI,n; Zn|S0,n)[Pn
Z|V, ϕa,n,PST ,n × PST+1,n]

≤(Rc − R0) + I (V; Z|U) −
∑

i∈Ic

Ri

=Rc −
T+1
∑

i=0

Ri + I (V; Z|U) +
∑

i∈I
Ri

= − Rp + I (V; Z|U) +
∑

i∈I
Ri . (138)

Therefore, sinceRp = I (V; Y|U)− ǫ, (138) implies (132) when
I (V; Y|U) > I (V; Z|U).

X. Secure Multiplex Coding with Common Messages: Strong
Security

A. Strong Security

In this section, we treat the strong security. A sequence of
codesϕn is calledstrongly securefor a subsetI ( {1, . . . ,T}
and a sequence of distributionsPST ,n when the relation

lim
n→∞

I (SI,n; Zn|S0,n)[P
n
Z|X, ϕn,PST ,n] = 0 (139)

holds. Now, we fix a familyJ of non-empty proper subsetsI
of {1, . . . ,T}, and consider only the security of the messages
SI,n for all I ∈ J.

Theorem 42:Assume that the transmission rate tuple
(Ri)i=0,...,T = (R0,R1, . . . ,RT) belongs to the inner of the
capacity region withRl,I = 0 for any subsetI ∈ J, i.e., there
exist an information leakage rate tuple (Rl,I)∅,I∈Jc such that

((Ri)i=0,...,T , (0)I∈J, (Rl,I)∅,I∈Jc) ∈ inn(C), (140)

where inn(C) denotes the inner of the setC. Then, there exists
a Markov chainU → V → X such that

ǫ :=min
I∈J

I (V; Y|U) − I (V; Z|U) −∑

i∈I Ri

|Ic| > 0, (141)

R0 <min[I (U; Y), I (U; Z)],
T

∑

i=0

Ri <I (V; Y|U) +min[I (U; Y), I (U; Z)].

Next, we chooseRT+1 := max(I (V; Y|U) − ∑T
i=0 Ri , 0) and

a small realǫ′ > 0 such thatǫ′ < ǫ
2, ǫ′ < I (V; Y|U) +

min[I (U; Y), I (U; Z)] − ∑T+1
i=0 Ri . The codeϕn given by Code

Construction 5 with the choicesRp := I (V; Y|U) − ǫ′ and
Rc :=

∑T+1
i=0 Ri−Rp satisfies (130), (131), and the strong security

lim
n→∞

I (SI,n; Zn|S0,n)[Pn
Z|V, ϕn,PST ,n] = 0 (142)

for any subsetI ∈ J when the sequence of distributionsPST ,n
satisfies the (ǫ − 2ǫ′)-SACU condition (101) for the subsetI.

Thanks to Theorem 42, the strong security holds at all inner
points of the capacity regionC with Rl,I = 0 for any subset
I ∈ J under theǫ-SACU condition (101) for any subsetI ∈ J.

Here, we address the relation with the paper [22]. When
there is no common message, the paper [22] defined the region
RI

sto as follows.
Definition 43: The regionRI

sto is the closure of the set of
the rate tuples (Ri)i=1,...,T satisfying the following. There exist a
sequence of codesϕn = (ϕa,n, ϕb,n, ϕe,n), i.e., Alice’s stochastic
encoderϕa,n from S1,n × · · · × ST,n to Xn, Bob’s deterministic
decoderϕb,n : Yn → S1,n × S1,n × · · · × ST,n satisfying the
following conditions: (1) Thei-th secret message setSi,n has
cardinalityenRi for i = 1, . . . ,T, (2) When the message obeys
the uniform distribution, the relations (123) and

lim sup
n→∞

I (St,n; Zn|S0)[Pn
Z|X, ϕa,n,PST ,n × PST+1,n] = 0 (143)

hold for t = 1, . . . ,T.
On the other hand, we define the regionR̃I

sto as the set of
rate tuples (Ri)i=1,...,T such that there exists a Markov chain
V → X→ YZ and

T
∑

i=1

Ri ≤ I (V; Y), Rt ≤ [ I (V; Y) − I (V; Z)]+ (144)

for t = 1, . . . ,T. Then, Theorem 42 and Corollary 38 guarantee
the relation

RI
sto = R̃I

sto, (145)

which is the same as the result by the paper [22, (138)]. Here,
Corollary 38 impliesRI

sto ⊂ R̃I
sto and Theorem 42 doesRI

sto ⊃
inn(R̃I

sto). SinceRI
sto and R̃I

sto are the closed sets, we obtain
(145).

In order to show Theorem 42, we prepare the following
lemma.

Lemma 44:We fix a subsetI ( {1, . . . ,T}. Assume that the
transmission rate tuple (Ri)i=0,...,T , the sequence of distributions
PST ,n, and a Markov chainU → V → X satisfy that

δ′ :=
1
2

(

H log(Ic)

− (
T

∑

i=1

Ri − I (V; Y|U) + I (V; Z|U))
)

> 0, (146)

R0 <min[I (U; Y), I (U; Z)],
T

∑

i=0

Ri <I (V; Y|U) +min[I (U; Y), I (U; Z)].

When we chooseRT+1 := max(I (V; Y|U) − ∑T
i=0 Ri , 0) and a

small real ǫ′ > 0 such thatǫ′ ≤ δ′ and ǫ′ < I (V; Y|U) +
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min[I (U; Y), I (U; Z)] − ∑T+1
i=0 Ri , the codeϕn given by Code

Construction 5 with the choicesRp := I (V; Y|U)−ǫ′ andRc :=
∑T+1

i=0 Ri − Rp satisfies (130), (131), and the strong security

lim
n→∞

I (SI,n; Zn|S0,n)[Pn
Z|V, ϕn,PST ,n × PST+1,n] = 0. (147)

Proof of Theorem 42: First, we fix an arbitrary subsetI ∈
J. Hence,

∑

i∈Ic

(Ri − (ǫ − 2ǫ′)) − (
T+1
∑

i=1

Ri − I (V; Y|U) + I (V; Z|U))

≥(
∑

i∈Ic

Ri) − |Ic|(ǫ − 2ǫ′) − (
T+1
∑

i=1

Ri − I (V; Y|U) + I (V; Z|U))

=I (V; Y|U) − I (V; Z|U) −
∑

i∈I
Ri − |Ic|(ǫ − 2ǫ′)

≥|Ic|ǫ − |Ic|(ǫ − 2ǫ′) = 2|Ic|ǫ′ ≥ 2ǫ′.

Thus, since the sequence of distributionsPST ,n satisfies the
ǫ − 2ǫ′-SACU condition (101) for the subsetI,

δ′ :=
1
2

(

Hlog(Ic)

− (
T+1
∑

i=1

Ri − I (V; Y|U) + I (V; Z|U))
)

≥1
2

(
∑

i∈Ic

(Ri − (ǫ − 2ǫ′)) − (
T+1
∑

i=1

Ri − I (V; Y|U) + I (V; Z|U))
)

≥ǫ′.

Hence, any real numberǫ′ > 0 given in Theorem 42 satisfies
the condition forǫ′ > 0 in Lemma 44. Thus, applying Lemma
44, we obtain (142) for the subsetI. Since the subsetI is an
arbitrary element ofJ, we obtain Theorem 42.

Proof of Lemma 44: Since ǫ′ > 0, we have the second
condition of (121). Due to the choice ofǫ′ > 0,

0 =I (V; Y|U) − ǫ′ − Rp

>I (V; Y|U) −
(

I (V; Y|U) +min[I (U; Y), I (U; Z)] −
T+1
∑

i=0

Ri

)

− Rp

=

T+1
∑

i=0

Ri −min[I (U; Y), I (U; Z)] − Rp

=Rc −min[I (U; Y), I (U; Z)],

which implies the first condition of (121). Hence, we obtain
(130) and (131).

Next, we define

ρn :=
2 logn

nδ′
,

Cn :=
(

−ρnn(Rc − R0) + ρnH1+ρn(SIc,n|SI,n,S0,n)

− nE0(ρn|PZ|V,PV|U ,PU)
)

.

The condition (146) andǫ′ ≤ δ′ imply that

lim inf
n→∞

Cn

nρn

= lim inf
n→∞

1
n

H1+ρn(SIc,n|SI,n,S0,n) −
T+1
∑

i=1

Ri + Rp − I (V; Z|U)

≥Hlog(Ic) −
T+1
∑

i=1

Ri + I (V; Y|U) − δ′ − I (V; Z|U)

=
1
2

(

Hlog(Ic) −
T+1
∑

i=1

Ri + I (V; Y|U) − I (V; Z|U)
)

=δ′ > 0. (148)

That is, we can choose a sufficiently large integerN such that

Cn

nρn
≥ δ′

2
(149)

for n ≥ N. Due to (77), the leaked information forSI,n can
be evaluated as

I (SI,n; Zn|S0,n)[Pn
Z|V, ϕn,PST ,n] ≤

2T+2

ρn
e−Cn .

Since (149) implies that

− log(
2T+2

ρn
e−Cn) = −(T + 2) log 2+Cn + logρn

≥ − (T + 2) log 2+
δ′

2
nρn + logρn

= − (T + 2) log 2+ log logn− log
δ′

2
→ ∞,

we obtain (147).

B. Exponential Decreasing Rate

In this subsection, we treat the exponential decreasing rate
of leaked information. In this subsection, we assume that the
T +1-th messageST+1,n is subject to the uniform distribution.
We simplifyPST ,n×PST+1,n by PST ,n. For a subsetI ( {1, . . . ,T},
we denote the complementary set in{1, . . . ,T} by Ic and
simplify the setIc ∪ {T + 1} to Ic,∗. Unfortunately, theǫ-
SACU condition (101) is not sufficient for deriving a good
exponential decreasing rate of leaked information. Hence,in
this subsection, given a sequence of distributionsPST ,n, we
introduce the following quantity

H1+ρ(I
c,∗) := lim inf

n→∞

1
n

H1+ρ(SIc,∗ ,n|SI,n,S0,n) (150)

for any subsetI ⊂ {1, . . . ,T} and anyρ ∈ (0, 1].
Theorem 45:For given (Ri)T

i=0, we chooseRp and Rc as
follows.

Rc ≥ R0, Rc + Rp =

T+1
∑

i=0

Ri .

We fix a real numberǫ > 0. We choose a codeϕn given by
Code Construction 5 with the above choicesRp and Rc and
a given Markov chainU → V → X. When the sequence of
distributionsPST ,n satisfies theǫ-SACU condition (101) for a
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non-empty proper subsetI(, ∅) ( {1, . . . ,T}, the sequence of
codesϕn satisfies (119), (120), and

lim inf
n→∞

−1
n

log I (SI,n; Zn|S0,n)[Pn
Z|V,Φn,PST ,n]

≥ sup
0<ρ<1

ρ(H1+ρ(I
c,∗) − Rc + R0) − E0(ρ|PZ|V,PV|U ,PU). (151)

In particular, when the distributionPST ,n is uniform, we obtain

lim inf
n→∞

−1
n

log I (SI,n; Zn|S0,n)[Pn
Z|V,Φn,PST+∞,n]

≥ẼE0(Rp −
∑

i∈I
Ri ,PZ,V,U), (152)

whereẼE0(R,PZ,V,U) is defined in (22).
Theorem 45 yields the following observation. WhenRp−ǫ−

∑

i∈I Ri > I (V; Z|U) and H1+ρ(Ic) ≥ (
∑

i∈Ic Ri) − ǫ holds with
a smallρ > 0, the exponent (151) is positive, i.e., the leaked
information goes to zero exponentially. In particular, when

T+1
∑

i=1

Ri < I (V; Y|U), R0 < min[I (U; Y), I (U; Z)], (153)

we can chooseRp andRc by

Rp :=
T+1
∑

i=1

Ri , Rc := R0. (154)

Then, the inequalities (119) and (120) can be simplified to
(115) and (116). Then, the both decoding error probabilities
goes zero exponentially. Further, the inequality (151) canbe
simplified to

lim inf
n→∞

−1
n

log I (SI,n; Zn|S0,n)[Pn
Z|V,Φn,PST+∞,n]

≥ sup
0<ρ<1

ρH1+ρ(I
c,∗) − E0(ρ|PZ|V,PV|U ,PU). (155)

Further, in the case of (153) and (154), when the WACU
condition holds forI, the inequality (122) can be simplified
to

lim sup
n→∞

1
n

I (SI,n; Zn|S0,n)[Pn
Z|V,Φn,PST+∞,n]

≤Rc − R0 + I (V; Z|U) −
∑

i∈Ic,∗

Ri = I (V; Z|U) −
∑

i∈Ic,∗

Ri . (156)

Proof of Theorem 45: In Subsection IX-A, we have already
shown (119) and (120). Hence, we need to only show (151).
Due to (77), the leaked information forSI,n can be evaluated
as

I (SI,n; Zn|S0,n)[Pn
Z|V, ϕn,PST+∞,n]

≤2T+2

ρ
eρn(Rc−R0)−ρH1+ρ(SIc,∗ ,n|SI,n,S0,n)+nE0(ρ|PZ|V ,PV|U ,PU ).

Hence,

lim inf
n→∞

−1
n

log I (SI,n; Zn|S0,n)

≥ρ lim inf
n→∞

1
n

H1+ρ(SIc,∗ ,n|SI,n,S0,n)

− ρ(Rc − R0) − E0(ρ|PZ|V,PV|U ,PU)

≥ρ(H1+ρ(I
c,∗) − Rc + R0) − E0(ρ|PZ|V,PV|U ,PU).

Taking the supremum forρ ∈ [0, 1], we obtain (151).
When the condition (153) holds, the exponent (155) can be

improved by using Theorem 20 with Code Construction 4 in
the following way.

Theorem 46:We fix a real numberǫ ≥ 0. Let ϕn be a
code given in Code Construction 4 in Subsection IX-A. The
sequence of codesϕn satisfies (115), (116), (156), and

lim inf
n→∞

−1
n

log I (SI,n; Zn|S0,n)[Pn
Z|V,Φn,PST+∞,n]

≥ max
0≤ρ≤1

ρH1+ρ(I
c,∗) − ψ(ρ|PZ|V,PV|U ,PU). (157)

In particular, when the distributionPST ,n is uniform, we obtain

lim inf
n→∞

−1
n

log I (SI,n; Zn|S0,n)[Pn
Z|V,Φn,PST+∞,n]

≥Ẽψ(
∑

i∈Ic,∗

Ri ,PZ,V,U),

whereẼψ(R,PZ,V,U) is defined in (21).
Now, we compare Theorems 45 and 46. Since the RHS of

(157) is larger than the RHS of (155) due to (17), Theorem
46 is better than Theorem 45 when the relation (153) holds.
Otherwise, the error exponent of (115) and/or (116) is not
positive. That is, Theorem 46 cannot yield a reliable commu-
nication. In summary, Theorem 45 has a wider applicability
than Theorem 46. In the special case (153), Theorem 46 is
better than Theorem 45.

Proof: Relations (115) and (116) have been shown in Sub-
section IX-A. Due to theǫ-SACU condition, (117) guarantees
(156). Using (63) and theǫ-SACU condition, we obtain

I (SI,n; Zn|S0,n)[Pn
Z|V,Φn,PST+∞,n]

≤2T+2

ρ
e−ρH1+ρ(SIc,∗ ,n|SI,n,S0,n)+nψ(ρ|PZ|V ,PV|U ,PU ).

Then,

lim inf
n→∞

−1
n

log I (SI,n; Zn|S0,n)[Pn
Z|V,Φn,PST ,n]

≥ρH1+ρ(I
c,∗) − ψ(ρ|PZ|V,PV|U ,PU). (158)

Hence, we obtain (157).
When the above discussion is applied to the wire-tap chan-

nel model, we obtain an extension of existing results to the
case of the asymptotic uniform dummy message. That is, we
consider the case with no common messages andT = 2 when
S1 corresponds to the message to be secretly sent to Bob,
and S2 does to the dummy message makingS1 ambiguous
to Eve. For a given rateR1 of secret message and a given
rateR2 of dummy message, the RHS of (115) coincides with
the Gallager exponents, the RHS of (155) coincides with the
RHS of (59) in [15], and the RHS of (157) coincides with the
exponents of the RHS of (15) in [17].

XI. Practical Code Construction

In Section XI, we consider how we can construct practically
usable encoder and decoder for the secure multiplex coding.
When the channel has additive structure, the paper [17, Section
V] constructed a code for wire-tap channel code from an or-
dinary linear error correcting code, and the paper [22, Section
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VI] did a secure multiple code without common message from
an ordinary linear error correcting code. Here, we construct a
secure multiple code with/without common message when the
channel does not necessarily have additive structure and the
message does not necessarily obey the uniform distribution.
We shall show how to convert an ordinary error correcting
code without secrecy consideration to a code for the secure
multiplex coding. In this section, we treat practical code
construction in the single-shot setting unless otherwise stated.

It is a common practice to assume the uniform distribution
of messages when one evaluates the decoding error probability,
and decoding error probabilities with non-uniform message
distributions are rarely considered in practice. Thus, we al-
ways assume the uniform message distribution because this
assumption is necessary for the analysis of the decoding error
probability. However, this assumption is unnecessary for that
of the leaked information to Eve. The analysis of this section
holds for general channels with finite alphabets except for
Lemma 50. Only Lemma 50 assumes the regularity of the
channel.

A. First Practical Code Construction: First Type Evaluation

We construct a code for the secure multiplex coding based
on a given codeϕp for BCD with the common message inSc

and the private message inSp. We assume that encoding and
decoding ofϕp can be efficiently executed. We shall attachF′

andG′ in the second step of Code Ensemble 3 toϕp so that
the resulting code for SMC enables efficient encoding and
decoding. This type of construction is much more practical
than Code Ensemble 3 because Code Ensemble 3 uses the
random coding for the error correcting codeϕp, which does
not enable efficient encoding nor decoding. To use the code
with F′ andG′ attached, we have to evaluate decoding error
probability and the amount of information leaked to Eve. The
former is less than or equal to that of the underlying error
correcting codeϕp, and the average of the latter over the
ensemble ofF′ andG′ can be evaluated by Lemma 21 with
a fixed error correcting codeϕp. In our code, we employ a
dummy message to realize the secrecy of message when the
leaked information is very close to the mutual information
with the normal receiver and the number ofT is fixed. Now,
we present a code construction.

Code Construction 6:First, in order to apply Lemma 21,
we divide the common message setSc of the BCD code
ϕp to S0 × B1, and denote the private message setSp of
ϕp by B2. That is, the codeϕp is regarded as a map from
S0 × B1 × B2 to X. Then, based on the codeϕp, assuming
the Abelian group structures inB1 and B2, we choose an
ensemble of isomorphisms6 F′ from S1 × · · · × ST+1 to
B1 × B2 as Abelian groups satisfying Condition 15 while
we do not assume any algebraic assumption for the code
ϕp. In this scenario,S0 is common message,S1, . . . , ST

are secret messages, andST+1 is the dummy randomness
whose secrecy is not required. We choose the random variable
G′ ∈ B1×B2 that obeys the uniform distribution onB1×B2 and

6Remark 16 discusses an efficient realization of an ensemble of isomor-
phismsF satisfying Condition 15.

is independent of the choice ofF′ and anything else. Then, by
defining a mapΛF′ ,G′ (s) := F′(s)+G′, we obtain our encoder
ϕp ◦ ΛF′ ,G′ (s0, s1, . . . , sT+1) = ϕp(s0,ΛF′ ,G′ (s1, . . . , sT+1)). The
decoder is constructed by applying the inverseΛ−1

F′ ,G′ (b1, b2) =
F′−1((b1, b2) −G′) to the decoded message of the codeϕp.

The average of the leaked information of the above con-
structed code is evaluated as follows.

Lemma 47:For a subsetI ( {1, . . . ,T}, the quantity
E0,max(ρ|PZ|V) defined in (23) satisfies

EF′ ,G′ I (SI; Z|S0)[PZ|V, ϕp ◦ ΛF′ ,G′ ,PST ]

≤eE0,max(ρ|PZ|V)−ρH1+ρ(SIc,∗ |SI,S0)

ρ
. (159)

Proof: Applying Lemma 21, we obtain

EF′ ,G′ exp(ρI (SI; Z|S0)[PZ|V, ϕp ◦ΛF′ ,G′ ,PST ])

≤1+
∑

s0

PS0(s0)
∑

sI

PSI|S0(sI|s0)e−ρH1+ρ(SIc,∗ |SI=sI,S0=s0)

· eψ(ρ|PZ|B1,B2,S0=s0,ϕp ,Pmix,B1,B2 ). (160)

Since

eψ(ρ|PZ|B1,B2,ϕp,S0 ,Pmix,B1,B2 ) ≤ eE0(ρ|PZ|B1,B2,ϕp,S0 ,Pmix,B1,B2 )

=
∑

z

(
∑

b1,b2

1
|B1||B2|

PZ|V(z|ϕp(s0, b1, b2))
1

1−ρ )1−ρ,

∑

sI

PSI|S0(sI|s0)e−ρH1+ρ(SIc,∗ |SI=sI,S0=s0) = e−ρH1+ρ(SIc,∗ |SI,S0=s0),

we obtain

EF′ ,G′ exp(ρI (SI; Z|S0)[PZ|V, ϕp ◦ ΛF′ ,G′ ,PST ])

≤1+
∑

s0

PS0(s0)e−ρH1+ρ(SIc,∗ |SI,S0=s0)

·
∑

z

(
∑

b1,b2

1
|B1||B2|

PZ|V(z|ϕp(s0, b1, b2))
1

1−ρ )1−ρ. (161)

It can be simplified as follows.
∑

z

(
∑

b1,b2

1
|B1||B2|

PZ|V(z|ϕp(s0, b1, b2))
1

1−ρ )1−ρ

≤max
PV

∑

z

(
∑

v

PV(v)PZ|V(z|v)
1

1−ρ )1−ρ

=max
PV

eE0(ρ|PZ|V ,PV) = eE0,max(ρ|PZ|V).

That is, using the relation
∑

s0
PS0(s0)e−ρH1+ρ(SIc,∗ |SI,S0=s0) =

e−ρH1+ρ(SIc,∗ |SI,S0), we have

EF′ ,G′ exp(ρI (SI; Z|S0)[PZ|V, ϕp ◦ ΛF′ ,G′ ,PST ])

≤1+ e−ρH1+ρ(SIc,∗ |SI,S0)eE0,max(ρ|PZ|V). (162)

Combining the Jensen inequality forx 7→ ex, we obtain the
desired upper bound (159).

The logarithm of the RHS of (159) has the following
property.

Lemma 48:The functions ρ 7→ E0(ρ|PZ|V) −
ρH1+ρ(SIc,∗ |SI,S0) − logρ and ρ 7→ E0,max(ρ|PZ|V) −
ρH1+ρ(SIc,∗ |SI,S0) − logρ are convex.

Proof: The functionρ 7→ E0(ρ|WZ
,QV) is convex [12].

Also the functionρ 7→ ρH1+ρ(SIc,∗ |SI,S0) is concave. Hence,
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E0(ρ|PZ|V,QV) − ρH1+ρ(SIc,∗ |SI,S0) − logρ is convex. Sim-
ilarly, due to Lemma 5, the functionρ 7→ E0,max(ρ|PZ|V) −
ρH1+ρ(SIc,∗ |SI,S0) − logρ is convex.

As is explained latter, the boundeE0,max(ρ|PZ|V) is computable
in the discrete memoryless case. On the other hand, the
error probabilities can be upper bounded by the average error
probabilities of the codeϕp.

Next, we determine the necessary amount of dummy ran-
domness so that the amounts of leaked information is below
specified levels. Suppose that we are given arbitrary error-
correcting codeϕp for the broadcast channelPYZ|V. The code
ϕp can be, for example, an LDPC code [40] or a Turbo code
[41] when there is no common message. Then, we assume that
ST+1 obeys the uniform distribution on its alphabetST+1 and
is statistically independent of all other random variables. As
a corollary to Lemma 47, we have:

Lemma 49:For I ⊂ {1, . . . ,T}, we have

EF′ ,G′ I (SI; Z|S0)[PZ|V, ϕp ◦ ΛF′ ,G′ ,PST ]

≤eE0,max(ρ|PZ|V)−ρ(log |ST+1|+H1+ρ(SIc |SI,S0))

ρ
. (163)

By using Eq. (163), fromϕp we can construct a code
for the secure multiplex coding as follows. For each proper
nonempty setI ( {1, . . . , T}, ǫI denotes the maximum
acceptable information leakage forI (SI; Z). Denote by ǫ2
the maximum acceptable probability for a chosenF′,G′ not
making I (SI; Z|S0) below ǫI for someI.

Adjust the size|ST+1| of the dummy randomness so that

ǫI :=
2T

ǫ2

(

inf
ρ∈(0,1)

eE0,max(ρ|PZ|V)−ρ(log |ST+1|+H1+ρ(SIc |SI,S0))

ρ

)

.

Then, due to (163), we obtain

EF′ ,G′ I (SI; Z|S0)[PZ|V, ϕp ◦ΛF′ ,G′ ,PST ] ≤ ǫ2ǫI/2T

Then, by the Markov inequality the probability of choosing
F′ and G′ making I (SI; Z|S0) ≤ ǫI simultaneously for all
I ( {1, . . . , T} is ≥ 1− ǫ2.

When the channel is a regular channel in the sense of
Delsarte-Piret [10], the valueE0,max(ρ|PZ|V) can be calculated
as follows:

Lemma 50:When the channelPZ|V is regular in the sense
of Delsarte-Piret [10],

E0,max(ρ|PZ|V) = E0(ρ|PZ|V,Pmix,V). (164)

Further, when the codeϕp is a homomorphism as Abelian
group, the inequality

EF′ |G′=g′ I (SI; Z|S0)[PZ|V, ϕp ◦ ΛF′ ,g′ ,PST ]

≤eE0(ρ|PZ|V ,Pmix,V)−ρ(log |ST+1|+H1+ρ(SIc |SI,S0))

ρ
(165)

holds for anyg′ ∈ G′.
Thanks to Lemma 50, in the regular case, when the code

ϕp is a homomorphism as Abelian group, the above procedure
for the construction of our code (Code Construction 6) can
be simplified to the following way. It is enough to choose
F′ and to fix G′ to be 0, and we can replaceE0,max(ρ|PZ|V)
by E0(ρ|PZ|V,Pmix,V). That is, it is enough to calculate

infρ∈(0,1) E0(ρ|PZ|V,Pmix,V)− ρ(log |ST+1|+H1+ρ(SIc |SI,S0))−
logρ. Due to Lemma 48,E0(ρ|PZ|V,Pmix,V) − ρ(log |ST+1| +
H1+ρ(SIc |SI,S0)) − logρ is convex with respect toρ, and the
infimum is computable by the bisection method [4, Algorithm
4.1].

Proof of Lemma 50: First, we chooseP′V such that

E0,max(ρ|PZ|V) = E0(ρ|PZ|V,P
′
V). (166)

DefineP′V,v0
for v0 ∈ V by

P′V,v0
(v) = P′V(v+ v0).

Then,

eE0(ρ|PZ|V ,P′V) = eE0(ρ|PZ|V,P′V,v0
)
. (167)

Hence, we obtain

eE0,max(ρ|PZ|V) (a)
= eE0(ρ|PZ|V ,P′V) (b)

=
∑

v0∈V

1
|V|e

E0(ρ|PZ|V ,P′V,v0
)

(c)
≤eE0(ρ|PZ|V ,

∑

v0∈V
1
|V|P

′
V,v0

)
= eE0(ρ|PZ|V,Pmix,V)

(d)
≤ eE0,max(ρ|PZ|V),

where (a), (b), (c), and (d) follow from (166), (167), the
concavity of PV 7→ eE0(ρ|PZ|V ,PV) (Item (2) of Proposition 2),
and the definition (23) ofE0,max(ρ|PZ|V), respectively. Thus,
we have (164).

Next, we show (165). When the codeϕp is a homo-
morphism as Abelian group, as is mentioned in Lemma
21, we have EF′ |G′=g′ I (SI; Z|S0)[PZ|V, ϕp ◦ ΛF′ ,g′ ,PST ] =
EF′ ,G′ I (SI; Z|S0)[PZ|V, ϕp ◦ ΛF′ ,g′ ,PST ]. Hence, combining
(163), we obtain (165).

When the channel is given as then-fold discrete memory-
less extensionPn

Z|V of PZ|V, E0,max(ρ|Pn
Z|V) has the following

characterization. Using [1], we obtain

max
PVn

∑

zn

(
∑

vn

PVn(vn)PZn|Vn(zn|vn)
1

1−ρ )1−ρ = enE0,max(ρ|PZ|V).

Thus, we can apply the above discussion to then-fold
memoryless case by replacingE0,max(ρ|PZ|V) and PZ|V by
nE0,max(ρ|PZ|V) and Pn

Z|V. That is, it is enough to calculate
infρ∈(0,1) nE0,max(ρ|PZ|V) − ρ(log |ST+1| + H1+ρ(SIc |SI,S0)) −
logρ. Since, as is mentioned in Proposition 2,QV 7→
eE0(ρ|WZ

,QV) is concave andx 7→ log x is monotone increas-
ing and concave,QV 7→ E0(ρ|WZ

,QV) is concave. Hence,
E0,max(ρ|PZ|V,QV) = maxQV E0(ρ|PZ|V,QV) can be easily com-
puted. Due to Lemma 48,nE0,max(ρ|PZ|V) − ρ(log |ST+1| +
H1+ρ(SIc |SI,S0)) − logρ is convex concerning with respect
to ρ, the infimum is computable by the bisection method [4,
Algorithm 4.1]. Therefore, we can calculate the minimum
size |ST+1| satisfying that nE0,max(ρ|PZ|V) − ρ(log |ST+1| +
H1+ρ(SIc |SI,S0)) − logρ is smaller than a specified level for
all of I ( {1, . . . ,T}.

B. First Practical Construction: Second Type Evaluation

In the above discussion, we have to consider the maximum
value E0,max(ρ|PZ|V). However, when there is no common
message and the channelPZ|V is not regular, one can improve
the bound (159) in then-fold memoryless case under the same
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code construction (Code Construction 6) as the following way.
In the following, we treat then-fold memoryless extension
Pn

Z|V. Given an encoderϕp : B2 → Vn, we define the weight
distributionPϕp over the setTn(V) of types of lengthn of the
setV by

Pϕp(QV) :=
|{vn ∈ Imϕp|the type ofvn is QV.}|

| Imϕp|
(168)

for QV ∈ Tn(V). Using the above weight distributionPϕp, we
define the distribution

Pϕp(v
n) :=

Pϕp(QV)

|Tn(QV)|
for vn ∈ Vn, whereQV is the type ofvn and

Tn(QV) := {vn ∈ Un|the type ofvn is QV.}.

We construct our code by the same way as Subsection
XI-A. We apply Lemma 23 to the case whenG is the n-th
permutation group,V is Vn, andPZ|V is Pn

Z|V. Then,

eψ(ρ|PZn|B1 ,Pmix,B2 ) ≤ eE0(ρ|Pn
Z|V ,Pϕp ).

Hence, combining (160), we obtain

EF′ ,G′ exp(ρI (SI; Z)[Pn
Z|V, ϕp ◦ ΛF′ ,G′ ,PST ])

≤1+ eE0(ρ|Pn
Z|V,Pϕp )−ρ(log |ST+1|+H1+ρ(SIc |SI)).

Sinceex is convex, we obtain

EF′ ,G′ I (SI; Z)[Pn
Z|V, ϕp ◦ ΛF′ ,G′ ,PST ]

≤eE0(ρ|Pn
Z|V,Pϕp)−ρ(log |ST+1|+H1+ρ(SIc |SI))

ρ
.

However, it is not easy to calculate the weight distribution
Pϕp for a given codeϕp, but it is possible to give an upper
bound for eachPϕp(QV) in some special cases. For example,
the upper bound in the case of binary BCH codes is discussed
in [31]. We assume that another distributionQϕp over the set
Tn(V) and a constantC1 satisfy

C1Qϕp(QV) ≥ Pϕp(QV)

for anyQV ∈ Tn(V). Similar toPϕp, we define the distribution
Qϕp

by

Qϕp
(vn) :=

Qϕp(QV)

|Tn(QV)|
for vn ∈ Vn, whereQV is the type ofvn. Hence, Proposition
2 yields

eE0(ρ|Pn
Z|V ,Pϕp) ≤ C1eE0(ρ|Pn

Z|V ,Qϕp ).

Therefore, we obtain

EF′ ,G′ I (SI; Z)[Pn
Z|V, ϕp ◦ ΛF′ ,G′ ,PST ]

≤C1
eE0(ρ|Pn

Z|V ,Qϕp)−ρ(log |ST+1|+H1+ρ(SIc |SI))

ρ
. (169)

When C1 is sufficiently small andQϕp
does not give the

maximum E0,max(ρ|Pn
Z|V), the RHS of (169) is smaller than

the RHS of (159). Similar to the regular case of Subsection
XI-A, we can calculate infρ∈(0,1) E0(ρ|Pn

Z|V,Qϕp
)−ρ(log |ST+1|+

H1+ρ(SIc |SI,S0))− logρ+ logC1 by the bisection method [4,
Algorithm 4.1]. Therefore, in the above case, the method in
this subsection improves that in Subsection XI-A.

C. Second Practical Construction

In the previous construction, when the channel is not a
regular channel, we have to use an upper bound (159), which is
larger thaneE0(ρ|PZ|V ,Pmix,V )−ρH1+ρ (SIc,∗ |SI ,S0)

ρ
. In order to use a smaller

upper boundeE0(ρ|PZ|V ,Pmix,V )−ρH1+ρ (SIc,∗ |SI ,S0)

ρ
even for a non-regular

channel, we introduce another practical construction when
there is no common message.

Assume thatV has an Abelian group structure. Now, we
give a code ensemble from an arbitrary Abelian groupB and
an arbitrary encoderϕ : B2 → V satisfying that the mapϕ
is an injective homomorphism. In particular, whenB2 andV
are vector spaces over the finite fieldF2, the mapϕ can be
given as a linear code, such as an LDPC code [40] or a Turbo
code [41]. However, we do not necessarily need to assume any
algebraic structure in the channelPZ,Y|V, for now. We stress
that in Code Ensemble 7 we use single encoderϕ, while in
Code Construction 8 we use multiple encoders with the same
code length and different information rates.

Code Ensemble 7:We modify the random code given in
Lemma 21 as follows. We choose an ensemble of isomor-
phismsF′ from S1× · · ·×ST+1 to B2 satisfying Condition 15.
We choose the random variableG′′ ∈ V that obeys the uniform
distribution onV statistically independent of the choice ofF′.
Then, we define the encoderΛ̃F′ ,G′′ (s) := (ϕ◦F′)(s)+G′′. The
decoder is given bŷ̃ΛF′ ,G′′ (v) = F′−1(ϕ̂(v−G′′)) by using the
decoder ˆϕ of ϕ.

This code ensemble can be understood in the following
way. We define the random variableH in the quotient group
V/ϕ(B2) that obeys the uniform distribution. Let{yh} be the
set of coset representatives. LetG′ be the random variable
subject to the uniform distribution onB2. Then,G′′ is given
as ϕ(G′) + yH . That is, the encoder and the decoder can be
given as follows.Λ̃F′ ,G′ ,H(s) := (ϕ ◦ F′)(s) + G′ + yH and
ˆ̃ΛF′ ,G′ ,H(v) := F′−1(ϕ̂(v−G′ − yH)).

In Code Ensemble 7, the random variableH corresponds to
the choice of the codebook for error correction. LetεH be the
decoding error probability when we useH as the codebook
and the message obeys the uniform distribution. Hence, we
consider thatεH expresses the decoding error probability when
we useH as the codebook in the following code construction.

For Code Ensemble 7, we have the following lemma:
Lemma 51:The inequality

EF′ ,G′ ,HeρI (SI;Z)[PZ|V ,Λ̃F′ ,G′ ,H ,PST ]

≤1+ e−ρH1+ρ(SIc,∗ |SI)eE0(ρ|PZ|V ,Pmix,V) (170)

holds for each subsetI ( {1, . . . , T}. Thus, applying Jensen
inequality tox 7→ ex, we have

EF′ ,G′ ,H I (SI; Z)[PZ|V, Λ̃F′ ,G′ ,H ,PST ]

≤eE0(ρ|PZ|V ,Pmix,V)−ρH1+ρ(SIc,∗ |SI)

ρ
. (171)
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Proof: We apply (161) to the case when|S0| = 1,
S0 = {s0}, |B1| = 1, B1 = {b1}, and the mapϕp is given
asϕp(s0, b1, b2) = ϕ(b2)+ yh for anyb2 ∈ B2. Then, we obtain

EF′ ,G′e
ρI (SI ;Z)[PZ|V ,Λ̃F′ ,G′ ,h,PST ]

≤1+ e−ρH1+ρ(SIc,∗ |SI)
∑

z

(
∑

b2

1
|B2|

PZ|V(z|ϕ(b2) + yh)
1

1−ρ )1−ρ.

Hence, we obtain

EF′ ,G′ ,HeρI (SI;Z)[PZ|V ,Λ̃F′ ,G′ ,H ,PST ]

=EHEF′ ,G′ |HeρI (SI;Z)[PZ|V ,Λ̃F′ ,G′ ,H ,PST ]

≤1+ e−ρH1+ρ(SIc,∗ |SI)EH

∑

z

(
∑

b2

1
|B2|

PZ|V(z|ϕ(b2) + yH)
1

1−ρ )1−ρ

≤1+ e−ρH1+ρ(SIc,∗ |SI)
∑

z

(EH

∑

b2

1
|B2|

PZ|V(z|ϕ(b2) + yH)
1

1−ρ )1−ρ

=1+ e−ρH1+ρ(SIc,∗ |SI)eE0(ρ|PZ|V ,Pmix,V),

which implies (170).
In order to construct a code for the secure multiplex

coding (with no common message), we define the notations
as follows. LetǫI be the maximum acceptable information
leakage for I (SI; Z) for eachI ( {1, . . . , T}. Let ǫb be
the maximum acceptable error probability. Letǫ2 be the the
maximum acceptable probability a chosenF′,G′′ not making
I (SI; Z) below ǫI. These parametersǫb, ǫI, and ǫ2 are the
requirements for our code construction.

Code Construction 8:In this construction, in contrast to
Subsections XI-A and XI-B we assume that we are given
multiple error-correcting codes with the same code length
n and different information rates. Using (171), we construct
a code for the secure multiplex coding (with no common
message) as follows:

1) We choose a suitable Abelian groupB2, a suitable
codeϕ, a suitable sacrifice bit length (the size ofT-th
message), and a suitable real valueǫ1 ∈ (0, 1) satisfying
that

ǫb ≥
EHεH

ǫ1
(172)

ǫI ≥ 2T min
ρ∈(0,1)

eE0(ρ|PZ|V,Pmix,V)−ρH1+ρ(SIc,∗ |SI)

ρǫ2(1− ǫ1)
. (173)

2) We chooseH randomly. Then, we check thatεH is less
than ǫb. If not, we choose anotherH. We repeat this
process until it is successful. We denote the final choice
of H by H′. Thanks to Markov inequality and (172), the
successful probability for one trial is at least 1− ǫ1.

3) We chooseF′ and G′ randomly. Then, we obtain the
pair of the encoder̃ΛF′ ,G′ ,H′(s) := (ϕ ◦ F′)(s) +G′ + yH′

and the decoder̂̃ΛF′ ,G′ ,H′(v) := F′−1(ϕ̂(v−G′ − yH′)).

Theorem 52:Under the above construction, the inequality

I (SI; Z)[PZ|V, Λ̃F′ ,G′ ,H′ ,PST ] ≤ ǫI (174)

holds for all subsetsI ( {1, . . . ,T} with at least with
probability 1− ǫ2.

Proof: Markov inequality guarantees that Pr{εH ≤ ǫb} ≥
1− ǫ1. Hence, we obtain

EF′ ,G′ ,H′ I (SI; Z)[PZ|V, Λ̃F′ ,G′ ,H ,PST ]

=EF′ ,G′ ,H|εH≤ǫbI (SI; Z)[PZ|V, Λ̃F′ ,G′ ,H,PST ]

≤Pr{εH ≤ ǫb}
Pr{εH ≤ ǫb}

EF′ ,G′ ,H|εH≤ǫbI (SI; Z)[PZ|V, Λ̃F′ ,G′ ,H ,PST ]

+
Pr{εH > ǫb}
Pr{εH ≤ ǫb}

EF′ ,G′ ,H|εH>ǫb I (SI; Z)[PZ|V, Λ̃F′ ,G′ ,H ,PST ]

=
1

Pr{εH ≤ ǫb}
EF′ ,G′ ,H I (SI; Z)[PZ|V, Λ̃F′ ,G′ ,H ,PST ]

≤ 1
1− ǫ1

EF′ ,G′ ,H I (SI; Z)[PZ|V, Λ̃F′ ,G′ ,H ,PST ]

≤ǫ2ǫI/2T

for everyI, whereEF′ ,G′ ,H|εH≤ǫb denotes the expectation under
the conditionεH ≤ ǫb. The final inequality follows from (171).
Since the above choice ofF′, G′ andH′ is restricted to the set
{( f ′, g′, h′)|εh ≤ ǫb}, due to Markov inequality, the probability
of choosingF′, G′ and H′ making (174) simultaneously for
all I ( {1, . . . ,T} is not less than 1− ǫ2.

Further, when the channel is given as then-fold dis-
crete memoryless extensionPn

Z|V of PZ|V, the quantity
E0(ρ|Pn

Z|V,Pmix,Vn) is simplified tonE0(ρ|PZ|V,Pmix,V). Hence,
similar to the regular case of Subsection XI-A, we can
calculate the right hand side of (173) by the bisection method
[4, Algorithm 4.1].

XII. Channel-Universal Coding for Secure Multiplex
Coding with CommonMessages

In order to treat universal coding for the multiplex coding
with common messages, we introduce the universally attain-
able exponents of the multiplex coding with common messages
in the n-fold discrete memoryless setting by adjusting the
original definition for the BCD given by Körner and Sgarro
[24]. Similar to Subsection X-B, in this section, we employ
T + 1-th messageST+1 as a dummy message subject to the
uniform distribution, and assume that theT + 1-th message
ST+1,n is subject to the uniform distribution. We simplify
PST ,n ×PST+1,n by PST ,n. For a subsetI ( {1, . . . ,T}, we denote
the complementary set in{1, . . . ,T} by Ic and simplify the set
Ic ∪ {T + 1} to Ic,∗.

In order to treat universal coding for secure multiplex coding
with common messages, we focus on 2T+1 − 2 functions to
express the evaluations of the exponential decreasing rates of
decoding error probabilities and the asymptotic evaluations of
leaked information. For describing bounds of the exponential
decreasing rates of both decoding error probabilities, we need
two functions. For treating the asymptotic evaluations of
leaked information, we need 2T+1 − 4 functions because the
number of non-empty proper subsetsI(, ∅) ( {1, . . . ,T}
is 2T − 2 and we treat the exponential decreasing rates
and the information leakage rates of leaked information for
respective non-empty proper subsetsI(, ∅) ( {1, . . . ,T}.
Then, we need to treat 2T+1 − 2 functions. Since we do not
assume the uniformity, we cannot describe our bounds of
the exponential decreasing rate and the information leakage
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rate of leaked information as functions of the rate tuples (Rp,
Rc, (Ri)i=0,1,...,T,T+1). In the following discussion, we treat our
bound of the exponential decreasing rate of leaked information
for a non-empty proper subsetI(, ∅) ( {1, . . . ,T} as a
function of H2(Ic,∗), Rc, and R0 as well as the channelW.
Similarly, we treat our bound of the information leakage rate
of leaked information for a non-empty proper subsetI(, ∅) (
{1, . . . ,T} as a function ofH log(Ic,∗), Rc, andR0 as well as the
channelW. Our bounds of the exponential decreasing rates of
both decoding error probabilities are described as functions of
Rp, Rc, and the channelW. Hence, the outcomes of the above
2T+1−2 functions are decided by 2T+1−1 real numbersRp, Rc,
R0, and (H2(Ic,∗),Hlog(Ic,∗))I(,∅)({1,...,T} as well as the channel
W.

Definition 53: A set of functions (Eb, Ee, (EI+ , EI−)I({1,...,T})
from R2T+1−1

≥0 × W(X, Y × Z) to R2T+1−2
≥0 is said to be a

universally attainable set of exponents and information leakage
rate for the familyW(X, Y × Z) if for any ǫ > 0 and any
rate tuples (Rp, Rc, (Ri)i=0,1,...,T), there exist a sufficiently large
integerN and a sequence of codesϕn of lengthn satisfying the
following conditions: (1) Thei-th secret message setSi,n of the
codeϕn has cardinalityenRi for i = 1, . . . ,T, and the common
message setsS0,n has cardinalityenR0. (2) Any sequence of
joint distributionsPST ,n for all of the i-th secretSi,n on Si,n

and the common messageS0,n onS0,n satisfies the inequalities

Pb[Wn, ϕn,PST+∞,n] ≤ exp(−n[Eb(Rp,Rc,R0,W) − ǫ]), (175)

Pe[Wn, ϕn,PST+∞,n] ≤ exp(−n[Ee(Rp,Rc,R0,W) − ǫ]), (176)

and

lim inf
n→∞

−1
n

log I (SI,n; Zn|S0,n)[Wn, ϕn,PST+∞,n]

≥EI+(Rp,Rc,R0, (H2(I′c,∗),Hlog(I′c,∗))I′(,∅)({1,...,T},W), (177)

lim sup
n→∞

1
n

I (SI,n; Zn|S0,n)[W
n, ϕn,PST+∞,n]

≤EI−(Rp,Rc,R0, (H2(I′c,∗),Hlog(I′c,∗))I′(,∅)({1,...,T},W), (178)

hold for any channelW ∈ W(X, Y × Z), any non-empty
proper subsetI(, ∅) ( {1, . . . ,T}, and any n ≥ N.
Here,Eb(Rp,Rc,R0, (H2(I′c,∗),Hlog(I′c,∗))I′(,∅)({1,...,T},W) and
Ee(Rp,Rc,R0, (H2(I′c,∗),Hlog(I′c,∗))I′(,∅)({1,...,T},W) are abbre-
viated toEb(Rp,Rc,R0, ,W) andEe(Rp,Rc,R0,W) because they
do not depend on
(H2(I′c,∗),Hlog(I′c,∗))I′(,∅)({1,...,T}.

For the reason why we employ the limiting forms in (177)
and (178), see Remark 60. Note that we do not consider here
the universality for source while Körner and Sgarro [24] show
the universality for source as well as that for channel, as
reviewed in Theorem 13 of this paper. In order to guarantee the
secrecy forSI,n, we need sufficient randomness ofSIc,n. That
is, the secrecy ofSI,n depends onH2(Ic) andHlog(Ic), which
depends on the source distribution. Hence, it is impossibleto
show the universality for source in SMC.

We fix a distributionQVU onU×V and a channelΞ : V →
X. Then, we present a universally attainable set of exponents
and leaked information rate in terms ofQVU and Ξ in the
following way. Given a broadcastW : X → Y×Z and the real

numbers (Rp,Rc,R0, (H2(I′c,∗),Hlog(I′c,∗))I′(,∅)({1,...,T}), the tu-
ple of exponents and information leakage rate are given as

Eb =Eb(Rp,Rc,R0,W)

:=Ẽb(Rp,Rc, (W
Y ◦ Ξ) × QVU), (179)

Ee =Ee(Rp,Rc,R0,W)

:=Ẽe(Rc, (WZ ◦ Ξ) × QVU), (180)

EI+ =EI+(Rp,Rc,R0, (H2(I′c,∗),Hlog(I′c,∗))I′(,∅)({1,...,T},W)

:=Ẽl(H2(Ic,∗) − Rc + R0, (WZ ◦ Ξ) × QVU), (181)

EI− =EI−(Rp,Rc,R0, (H2(I′c,∗),Hlog(I′c,∗))I′(,∅)({1,...,T},W)

:=I (V; Z|U)[(WZ ◦ Ξ) × QVU] − Hlog(Ic,∗) + Rc − R0

(182)

for a non-empty proper subsetI(, ∅) ( {1, . . . ,T}, where
Ẽb, Ẽe, ẼE0 , and Ẽl are given by (29), (30), (22), and (24),
respectively.

Hence, our quadruple of exponents and information leakage
rate depends onQVU andΞ.

Theorem 54 (Extension of [24, Theorem 1, part (a)]):
Eqs. (179)–(182) are universally attainable rates of exponents
and information leakage rate in the sense of Definition 53.

Proof: In the proof, since we treat the channelWZ ◦ Ξ :
V → Z, we abbreviate it asW

Z
. First, we give the outline

of our proof. We shall modify the constant composition code
used by Körner and Sgarro [24]. We do not evaluate the
decoding error probability, because that of our code is not
larger than that given in [24]. Observe that our exponents in
Eqs. (179) and (180) are the same as [24] with the channel
W

Z
=WZ ◦Ξ. We shall evaluate only the mutual information.

For this purpose, we prepare general notations and properties
of type and conditional type in Step (1). Next, in Steps (2)
and (3), we prepare several notations and properties of type
and conditional type that are specific to our proof. In Step
(4), we apply the random coding and evaluate the leaked
information when the channel is given by the conditional
types. Then, we choose a code whose leaked information is
evaluated for all conditional types and whose error is evaluated
for all discrete memoryless channels. In Step (5), we evaluate
the leaked information under the above chosen code for all
discrete memoryless channels.
Step (1): Preparation of general notations and properties of
type and conditional type:

For the following construction of our code, we prepare
general notations for types. These notations will be used also
in the next section. For a given typeQU of lengthn on a set
U, we define the setTn(QU) as

Tn(QU) :={un ∈ Un|the type ofun is QU}.

Hence, for a given typeQVU of lengthn on a setV×U, the
setTn(QVU) is written as

Tn(QVU) ={(un, vn) ∈ Vn ×Un|the type of (vn, un) is QVU}.

The marginal distributionQU overU of the typeQVU of length
n on the setV×U is a type of lengthn on the setU. Given
a type QV of length n on the setU, we define the set of
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conditional types on the setV with respect toQV as

Tn,V(QU)

:={probability transition matrixW from U to V
|W× QU is a type of lengthn on a setV×U}.

The cardinality|Tn,V(QU)| is upper bounded as [8]

|Tn,V(QU)| ≤ (n+ 1)|V×U|. (183)

In particular, given a typeQVU of lengthn on the setV×U, we
define the conditional typeQV|U such thatQVU = QV|U ×QU .
We also define the setTn(QV|U)Un=un as

Tn(QV|U)Un=un :={vn ∈ Vn|the type of (vn, un) is QVU}.

We denote the uniform distributionPmix,Tn(QU ) onTn(QU) by
Υn(QU). Then, for a given typeQVU of lengthn on a setV×
U, Υn(QVU) represents the uniform distributionPmix,Tn(QVU) on
Tn(QVU). Further, for an arbitraryW ∈ Tn,V(QU), Υn(W×QU)
represents the uniform distribution onTn(W×QU). Then, we
define the probability transition matrixΥn(W) fromVn toUn

such thatΥn(W) × Υn(QU) = Υn(W× QU).
When PVnUn is a distribution overVn × Un and invariant

under the permutation of the indices, the distributionPVnUn

can be written as

PVnUn =
∑

QVU

λPVnUn (QVU)Υn(QVU) (184)

with non-negative constantsλ(QVU). In particular, the inde-
pendent and identical distributionPn

V of PV can be written
as

Pn
V =

∑

QV

λPn
V
(QV)Υn(QV) (185)

with

λPn
V
(QV) = Pn

V(Tn(QV)) ≤ e−nD(QV‖PV). (186)

When the marginal distribution overUn of PVnUn can be
written as Pmix,Tn(QU ) = Υn(QU) with a type QU on the set
U, we have

PVnUn =
∑

QV|U∈Tn,V(QU )

λPVnUn (QV|U × QU)Υn(QV|U × QU )

=
∑

QV|U∈Tn,V(QU )

λPVnUn (QV|U × QU)(Υn(QV|U) × Υn(QU))

=
(

∑

QV|U∈Tn,V (QU )

λPVnUn (QV|U × QU)Υn(QV|U)
)

× Υn(QU).

(187)

We define the channelPVn|Un by PVnUn = PVn|Un × Υn(QU)
and the real numberλPVn|Un (QV|U) := λPVnUn (QV|U × QU) for
QV|U ∈ Tn,V(QU). Then, we obtain

PVn|Un =
∑

QV|U∈Tn,V(QU )

λPVn |Un (QV|U)Υn(QV|U). (188)

Now, we consider then-fold discrete memoryless channel
Pn

V|U . For a given typeQU on the setU, we apply the relation

(187) to the joint distributionPn
V|U |Tn(QU )×Υn(QU). Then, (188)

implies that

Pn
V|U |Tn(QU ) =

∑

QV|U∈Tn,V (QU )

λPn
V|U

(QV|U)Υn(QV|U). (189)

Choosingun ∈ Tn(QU), we have

Υn(Q′V|U)(Tn(QV|U)Un=un |Un = un) =

{

1 if Q′V|U = QV|U
0 otherwise.

(190)

Combining (189) and (190), we obtain

λPn
V|U

(QV|U)

=Pn
V|U |Tn(QU )(Tn(QV|U)Un=un |Un = un)

=
∏

u∈U
(PV|U=u)nQU (u)(Tnu(QV|U=u))

≤e−
∑

u∈U nQU (u)D(QV|U=u‖PV|U=u) (191)

=e−nD(QV|U ‖PV|U |QU ), (192)

where (191) follows from (186).
Step (2): Preparation of notations and properties of condi-
tional types based on a joint type onU ×V:

In this step, we prepare several important properties based
on a type of lengthn on the setU ×V ×Z. Now, we focus
on a conditional typeWZ ∈ Tn,Z(QVU), which gives a type
WZ × QVU of length n on the setU × V × Z. Note that in
order to make a type of lengthn on the setU ×V × Z, we
need to chooseWZ not from Tn,Z(QV) but from Tn,Z(QVU).
Now, we treat the channelW

Z
as a channel fromV × U to

Z while the output distribution of the channelW
Z

does not
depend on the choice ofu ∈ U. In our codeϕa,n, the random
variableVnUn takes values in the subsetTn(QVU). Hence, it
is sufficient to treat the channel whose input alphabet is the
subsetTn(QVU) ofVn×Un. Based on (189), we make a convex
decomposition

W
Z,n|Tn(QVU) =

∑

WZ∈Tn,Z(QVU )

λn,T(WZ)Υn(WZ), (193)

with non-negative constantsλn,T(WZ). Then, due to (192), we
have

λn,T(WZ) ≤ e−nD(WZ‖WZ |QVU). (194)

For an arbitrary codeϕa,n, the joint convexity of the condi-
tional relative entropy yields that

I (SI,n; Zn|S0,n)[W
Z,n
, ϕa,n,PST+∞,n]

≤
∑

WZ∈Tn,Z(QVU )

λn,T(WZ)I (SI,n; Zn|S0,n)[Υn(WZ), ϕa,n,PST+∞,n].

(195)

Next, in order to treat each channelΥn(WZ), we fix a
conditional typeWZ ∈ Tn,Z(QVU) and study the properties of
the channelΥn(WZ). Under the joint typeQZVU :=WZ×QVU,
we define the numbers

N(U) := |Tn(QU)|, N(UZ) := |Tn((WZ ◦ QV|U) × QU)|,
N(VU) := |Tn(QVU)|, N(VUZ) := |Tn(WZ × QVU)|,
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and

N(Z|U) := N(UZ)/N(U), N(V|UZ) := N(VUZ)/N(UZ),

N(V|U) := N(VU)/N(U), N(Z|VU) := N(VUZ)/N(VU).

Then, due to [8], we have

|Tn,Z(QU)|−1enH(Z|U)[WZ×QVU ] ≤ N(Z|U) ≤ enH(Z|U)[WZ×QVU ]

(196)

|Tn,Z(QVU)|−1enH(Z|VU)[WZ×QVU ] ≤ N(Z|VU) ≤ enH(Z|VU)[WZ×QVU ] .

(197)

Then, we obtain the following lemma.
Lemma 55:Any conditional typeWZ ∈ Tn,Z(QVU) satisfies

E0(ρ|Υn(WZ),PVn|Un,mix,Tn(QVU),Pmix,Tn(QU ))

=ρ log
N(Z|U)

N(Z|VU)
(198)

=ρI (V; Z|U)[Υn(WZ) × Pmix,Tn(QVU )] (199)

≤nρI (V; Z|U)[WZ × QVU] + ρ log |Tn,Z(QVU)| (200)

for anyρ ∈ (0, 1). HerePVn|Un,mix,Tn(QVU) is defined as a special
case of Eq.(1).

Proof: Under the joint typeQZVU := WZ × QVU, since
Υn(WZ) = PZn|VnUn,mix,Tn(QZVU), we obtain

eE0(ρ|Υn(WZ),PVn |Un,mix,Tn(QVU ),Pmix,Tn(QU ))

=eE0(ρ|PZn|VnUn,mix,Tn(QZVU),PVn|Un,mix,Tn(QVU ),Pmix,Tn(QU ))

=
∑

un∈Tn(QU )

1
N(U)

∑

zn∈Tn(QZ|U )Un=un )

(

∑

v∈Tn(QV|ZU )ZnUn=(zn,un))

PVn|Un,mix,Tn(QVU)(vn|un)

· (PZn|VnUn,mix,Tn(QZVU)(zn|vn, un)
)

1
1−ρ

)1−ρ

=
∑

un∈Tn(QU )

1
N(U)

∑

zn∈Tn(QZ|U )Un=un )

(

∑

v∈Tn(QV|ZU )ZnUn=(zn,un))

1
N(V|U)

(
1

N(Z|VU)
)

1
1−ρ

)1−ρ

=N(U)
1

N(U)
N(Z|U)(N(V|UZ)

1
N(V|U)

(
1

N(Z|VU)
)

1
1−ρ )1−ρ

=
N(ZU)ρN(VU)ρ

N(VUZ)ρN(U)ρ
=

N(Z|U)ρ

N(Z|VU)ρ
,

which implies (198). Since

logN(Z|U) − logN(Z|VU)

=H(Z|U)[Υn(W
Z) × Pmix,Tn(QVU)]

− H(Z|VU)[Υn(W
Z) × Pmix,Tn(QVU)]

=I (V; Z|U)[Υn(W
Z) × Pmix,Tn(QVU)],

we obtain (199). Combining (196) and (197), we obtain (200).

Step (3): Preparation of notations and properties concerning
conditional types based on a type onV:

In this step, we focus only on a convex decomposition
different from (193). For a given typeQV of length n on a

setV, we focus on the set

Wn,Z(QV) :={Υn(WZ)|WZ ∈ Tn,Z(QV)}.

In our codeϕa,n, the random variableVn takes values in the
subsetTn(QV). Hence, if we focus on the setVn as inputs, it
is sufficient to treat the channel whose input alphabet is the
subsetTn(QV) of Vn. Then, due to (189), we have another
type of convex combination:

W
Z,n|Tn(QV ) =

∑

Θn∈Wn,Z(QV )

λn,W(Θn)Θn, (201)

where λn,W(Θn) is a non-negative constant. Then, for an
arbitrary codeϕa,n, the joint convexity of the conditional
relative entropy yields that

I (SI,n; Zn|S0,n)[W
Z,n
, ϕa,n,PST+∞,n]

≤
∑

Θn∈Wn,Z(QV )

λn,W(Θn)I (SI,n; Zn|S0,n)[Θn, ϕa,n,PST+∞,n]. (202)

Next, we introduce the quantity

εn,ρ,I(WZn
,QVn,Un)

:= exp
(

nρ(Rc − R0) − ρH1+ρ(SIc,∗ ,n|SI,n,S0,n)

+ E0(ρ|WZn
,QVn|Un ,QUn)

)

(203)

for any channelWZn
fromVn toZn and any distributionQVnUn

onVn ×Un.
Then, we have the following lemma.
Lemma 56:Any joint typeQVU of lengthn on a setV×U

and any channelΘn ∈ Wn,Z(QV) satisfy

exp(E0(ρ|WZ,n
,PVn|Un,mix,Tn(QVU),Pmix,Tn(QU )))

≤(n+ 1)|U|
2|V| exp(E0(ρ|W

Z,n
,Qn

V|U ,Q
n
U)), (204)

λn,W(Θn)εn,ρ(Θn,Pmix,Tn(QVU))

≤(n+ 1)|U|
2|V|εn,ρ,I(W

Z,n
,QV,U). (205)

We have

lim sup
n→∞

1
nρn

logεn,ρn,I(W
Z,n
,Qn

V,U)

≤I (V; Z|U)[W
Z × QVU] − H log(Ic,∗) + Rc − R0 = EI− . (206)

with ρn =
δ logn

n for any δ > 0. Further, whenSIc,∗ ,n is the
uniform random number and independent ofSI,n and S0,n,
we have

εn,ρ,I(W
Z,n
,Qn

V,U) = ε1,ρ,I(W
Z
,QV,U)n (207)

and

lim
ρ→0

[log ε1,ρ,I(W
Z
,QV,U)]+

ρ
= I (V; Z|U) − Rp +

∑

i∈I
Ri . (208)

The convergence in (208) is uniform.
Proof: First, we show (204). For arbitraryu ∈ U and

v ∈ V, the distributionPmix,Tn(QVU) satisfies

PVn|Un,mix,Tn(QVU )(v|u) ≤ (n+ 1)|U×V|Qn
V|U(v|u) (209)
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by [8, Lemma 2.5, Chapter 1], and

Pmix,Tn(QU )(u) ≤ (n+ 1)|U|Qn
U (u), (210)

by [8, Lemma 2.3, Chapter 1]. Then, due to the relation (209),
and (210), Lemma 3 withC1 = (n+1)|U|

2|V| yields the relation
(204).

Next, we show (205). We can also show that

λn,W(Θn)eE0(ρ|Θn,PVn|Un,mix,Tn(QVU ),Pmix,Tn(QU ))

=
∑

u

Pmix,Tn(QU )(u)
∑

z

(

∑

v

PVn|Un,mix,Tn(QVU)(v|u)

·
(

λn,W(Θn)Θn(z|v)
)

1
1−ρ

)1−ρ

≤
∑

u

Pmix,Tn(QU )(u)
∑

z

(

∑

v

PVn|Un,mix,Tn(QVU)(v|u)

·
(

∑

Θ′n∈Wn,Z(QV )

λn,W(Θ′n)Θ′n(z|v)
)

1
1−ρ

)1−ρ

=eE0(ρ|WZ,n
,PVn|Un,mix,Tn(QVU ),Pmix,Tn(QU )). (211)

Combining (204) and (211), we obtain

(n+ 1)|U|
2|V|eE0(ρ|WZ,n

,Qn
V|U ,Q

n
U )

≥λn,W(Θn)eE0(ρ|Θn,PVn|Un,mix,Tn(QVU ),Pmix,Tn(QU )). (212)

Due to the definition ofεn,ρ(WZn
,QVn,Un), the relation (212) is

equivalent with the relation (205).
By using (16), the relation (206) can be shown as follows.

lim sup
n→∞

1
nρn

logεn,ρn,I(W
Z,n
,Qn

V,U)

= lim sup
n→∞

[

(Rc − R0) − 1
n

H1+ δ logn
n

(SIc,∗ ,n|SI,n,S0,n)

+
1
ρn

E0(ρn|W
Z
,QV|U ,QU)

]

≤Rc − R0 − H log(Ic,∗) + I (V; Z|U) = EI− .

The relations (207) and (208) are trivial.
Step (4): Evaluation of the leaked information when the chan-
nel is given by the uniform distribution on a fixed conditional
type:

Recall the fixed codeϕp,n for BCD given in Theorem 13.
The message sets of the codeϕp,n areS0,n×B1,n andB2,n with
|B1,n| = en(Rc−R0) and |B2,n| = enRp. We attach the other random
codingΛF,G,n for messageS1,n, . . . ,ST,n given as Second Step
of Code Ensemble 3 in Subsection VII-C to the codeϕp,n.
That is, the encoder is given byΦa,n = (ϕp,n,ΛF,G,n). In the
following, Bob’s decoderΦb,n and Eve’s decoderΦe,n are given
as the maximum mutual information decoder. We treat the
ensemble of codesΦn := (Φa,n,Φb,n,Φe,n).

First, related to the decomposition (193), we focus on a fixed
arbitrary elementWZ ∈ Tn,Z(QVU), We recall the discussion
in Subsection VII-D. As is mentioned in Remark 25, the
discussion in Section VII can be applied the channelWZ,
whose output distribution depends on the element ofU as well
as the element ofV. Then, we apply Lemma 24 to the case
whenPZ|V =WZ, G is then-th permutation group, (U×V)o is

Tn(QUV), andPV|U is Υn(WZ). Note that then-th permutation
group acts onTn(QUV) transitively. We obtain

eψ(ρ|PZn|B1,B2,S0=s0 ,Pmix,B1,B2 )

=eψ(ρ|Υn(WZ),PVn|Un,mix,Imϕp ,PU,mix,Imϕp )

≤enρ(Rc−R0)+E0(ρ|Υn(WZ),PVn|Un,mix,Tn(QVU ),Pmix,Tn(QU )).

Combining Lemma 21 and the above inequality, we obtain

EΦa,n exp(ρI (SI,n; Zn|S0,n)[Υn(WZ),Φa,n,PST+∞,n])

≤1+ enρ(Rc−R0)−ρH1+ρ(SIc,∗ ,n|SI,n,S0,n)eE0(ρ|Υn(WZ),PVn |Un,mix,Tn(QVU ),Pmix,Tn(QU )).

(213)

Hence, we obtain the following relations. In the following
derivation, the first inequality follows from the convexityof
x 7→ ex. The third inequality follows from (200).

exp(ρEΦa,n I (SI,n; Zn|S0,n)[Υn(WZ),Φa,n,PST+∞,n])

≤EΦa,n exp(ρI (SI,n; Zn|S0,n)[Υn(WZ),Φa,n,PST+∞,n])

≤1+ enρ(Rc−R0)−ρH1+ρ(SIc,∗ ,n|SI,n,S0,n)eE0(ρ|Υn(WZ),PVn |Un,mix,Tn(QVU ),Pmix,Tn(QU ))

≤1+ |Tn,Z(QVU)|ρenρ(Rc−R0)−ρH1+ρ(SIc,∗ ,n|SI,n,S0,n)enρI (V;Z|U)[WZ×QVU ]

for any ρ ∈ (0, 1). Taking the limitρ→ 1− 0, we have

exp(EΦa,n I (SI,n; Zn|S0,n)[Υn(WZ),Φa,n,PST+∞,n])

≤1+ |Tn,Z(QVU)|en(Rc−R0)−H2(SIc,∗ ,n|SI,n,S0,n)enI(V;Z|U)[WZ×QVU ] .

(214)

Since log(1+ x) ≤ x, taking the logarithm in (214), we have

EΦa,n I (SI,n; Zn|S0,n)[Υn(WZ),Φa,n,PST+∞,n]

≤ log(1+ |Tn,Z(QVU)|en(Rc−R0)−H2(SIc,∗ ,n|SI,n,S0,n)enI(V;Z|U)[WZ×QVU ])

≤|Tn,Z(QVU)|en(Rc−R0)−H2(SIc,∗ ,n|SI,n,S0,n)enI(V;Z|U)[WZ×QVU ] .

Since log|Zn| = n log |Z| ≤ |Tn,Z(QVU)|, we have

EΦa,n I (SI,n; Zn|S0,n)[Υn(WZ),Φa,n,PST+∞,n] ≤ |Tn,Z(QVU)|.
(215)

Hence,

EΦa,n I (SI,n; Zn|S0,n)[Υn(WZ),Φa,n,PST+∞,n]

≤|Tn,Z(QVU)|e−[H2(SIc,∗ ,n|SI,n,S0,n)−n(Rc−R0+I (V;Z|U)[WZ×QVU ])]+ .

(216)

Next, related to the decomposition (201), we focus on a
fixed arbitraryΘn ∈ Wn,Z(QV). Similar to (213), Lemmas 21
and 24 yield that

EΦa,n exp(ρI (SI,n; Zn|S0,n)[Θn,Φa,n,PST+∞,n])

≤1+ enρ(Rc−R0)−ρH1+ρ(SIc,∗ ,n|SI,n,S0,n)eE0(ρ|Θn,PVn|Un,mix,Tn(QVU ),Pmix,Tn(QU ))

=1+ εn,ρ,I(Θn,Pmix,Tn(QVU)). (217)

Observe that we have shown that the averages over
Φa,n of exp(ρI (SI,n; Zn|S0,n)[Υn(WZ),Φa,n,PST+∞,n]) and
I (SI,n; Zn|S0,n)[Θn,Φa,n,PST+∞,n] are smaller than (216) and
(217) , respectively.

Choosingp1(n) := 2T(|Tn,Z(QVU)|+ |Wn,Z(QV)|)+1, thanks
to the Markov inequality in the same as (35) and (36), given a
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fixed ρ ∈ (0, 1), we can see that there exists at least one code
ϕn such that the relations

I (SI,n; Zn|S0,n)[Υn(WZ), ϕa,n,PST+∞,n]

≤p1(n)EΦa,n I (SI,n; Zn|S0,n)[Υn(WZ),Φa,n,PST+∞,n]

≤p1(n)|Tn,Z(QVU)|en(Rc−R0)−H2(SIc,∗ ,n|SI,n,S0,n)enI(V;Z|U)[WZ×QVU ]

(218)

exp(ρI (SI,n; Zn|S0,n)[Θn, ϕa,n,PST+∞,n])

≤p1(n)EΦa,n exp(ρI (SI,n; Zn|S0,n)[Θn,Φa,n,PST+∞,n])

≤p1(n)(1+ εn,ρ,I(Θn,Pmix,Tn(QVU))). (219)

hold for anyWZ ∈ Tn,Z(QVU) andΘn ∈ Wn,Z(QV).
Step (5): Evaluation of the leaked information when the
channel is given by discrete memoryless channel:

Using (218), we obtain

I (SI,n; Zn|S0,n)[W
Z,n
, ϕa,n,PST+∞,n]

≤
∑

WZ∈Tn,Z(QVU)

λn,T(WZ)I (SI,n; Zn|S0,n)[Υn(WZ), ϕa,n,PST+∞,n]

(220)

≤
∑

WZ∈Tn,Z(QVU)

[

λn,T(WZ)p1(n)|Tn,Z(QVU)|

· e−[H2(SIc,∗ ,n|SI,n,S0,n)−n(Rc−R0+I (V;Z|U)[WZ×QVU ])]+
]

(221)

≤
∑

WZ∈Tn,Z(QVU)

[

p1(n)|Tn,Z(QVU)|

· e−nD(WZ‖WZ |QVU)−[H2(SIc,∗ ,n|SI,n,S0,n)−n(Rc−R0+I (V;Z|U)[WZ×QVU ])]+
]

(222)

≤
∑

WZ∈Tn,Z(QVU)

p1(n)|Tn,Z(QVU)|e−Kn(W
Z
,QVU ,Rc,R0|S) (223)

=p1(n)|Tn,Z(QVU)|2e−Kn(W
Z
,QVU ,Rc,R0|S), (224)

whereKn(W
Z
,QVU,Rc,R0|S) is defined as

Kn(W
Z
,QVU,Rc,R0|S)

:=min
WZ

[

nD(WZ‖WZ|QVU) +
[

H2(SIc,∗ ,n|SI,n,S0,n)

− n(Rc − R0 + I (V; Z|U)[WZ × QVU])
]

+

]

,

and (220), (221), and (222) follow from (195), (218), and
(194), respectively.

Hence,

lim inf
n→∞

−1
n

log I (SI,n; Zn|S0,n)[W
Z,n
, ϕa,n,PST+∞,n]

≥ lim inf
n→∞

1
n

min
WZ

[

nD(WZ‖WZ|QVU) +
[

H2(SIc,∗,n|SI,n,S0,n)

− n(Rc − R0 + I (V; Z|U)[WZ × QVU])
]

+

]

=min
WZ

[

D(WZ‖WZ|QVU)

+
[

H2(Ic,∗) − Rc + R0 − I (V; Z|U)[WZ × QVU])
]

+

]

=EI+ (225)

Next, defining

p2(n) := p1(n)(n+ 1)|U|
2|V||Wn,Z(QV)|, (226)

we obtain the following inequalities, in which, the first,
second, and third inequalities follow from the convexity of
function x 7→ exp(x) and (202), (219), and (205), respectively.
The final equation follows from (226).

exp(ρI (SI,n; Zn|S0,n)[W
Z,n
, ϕa,n,PST+∞,n])

≤
∑

Θn∈Wn,Z(QV )

λn,W(Θn) exp(ρI (SI,n; Zn|S0,n)[Wn, ϕa,n,PST+∞,n])

≤
∑

Θn∈Wn,Z(QV )

λn,W(Θn)p1(n)(1+ εn,ρ,I(Θn,Pmix,Tn(QVU )))

≤
∑

Θn∈Wn,Z(QV )

p1(n)(n+ 1)|U|
2|V|(1+ εn,ρ,I(W

Z,n
,QV,U))

=p1(n)|Wn,Z(QV)|(n+ 1)|U|
2|V|(1+ εn,ρ,I(W

Z,n
,QV,U))

=p2(n)(1+ εn,ρ,I(W
Z,n
,QV,U)). (227)

Taking the logarithm, we have

I (SI,n; Zn|S0,n)[W
Z,n
, ϕa,n,PST+∞,n]

≤
log p2(n)(1+ εn,ρ,I(W

Z,n
,QV,U))

ρ

≤ log(2p2(n))
ρ

+
[log εn,ρ,I(W

Z,n
,QV,U)]+

ρ
. (228)

Now, we have

lim
n→∞

log(2p2(n))

n · δ logn
n

= lim
n→∞

log(2p2(n))
δ logn

=
deg(p2)

δ
, (229)

where deg(p2) is the degree of the polynomialp2. Due to
(206) in Lemma 56, (228), and (229), choosingρn =

δ logn
n ,

we obtain

lim sup
n→∞

1
n

I (SI,n; Zn|S0,n)[W
Z,n
, ϕa,n,PST+∞,n] ≤

deg(p2)
δ

+ EI−.

Sinceδ > 0 is arbitrary, we have

lim sup
n→∞

1
n

I (SI,n; Zn|S0,n)[W
Z,n
, ϕa,n,PST+∞,n] ≤ EI− . (230)

Therefore, using (225) and (230), we can see that (Eb, Ee, EI+ ,
EI−) is a universally attainable quadruple of exponents in the
sense of Definition 53.

Remark 57:One might consider that if we apply the
random coding of Theorem 20 to the uniform distri-
bution Pmix,Tn(QVU), we obtain a better exponent. How-
ever, this method yields the same exponent because
ψ(ρ|Υn(WZ),PVn|Un,mix,Tn(QVU),Pmix,Tn(QU )) is the same as
E0(ρ|Υn(WZ),PVn|Un,mix,Tn(QVU),Pmix,Tn(QU )), which is shown as

eψ(ρ|Υn(WZ),PVn|Un,mix,Tn(QVU ),Pmix,Tn(QU ))

=
∑

u∈Tn(QU )

1
N(U)

∑

v∈Tn(QV|U=u)
[

1
N(V|U)

∑

z∈Tn(QZ|VU=(u,v) )

(
1

N(Z|VU)
)1+ρ(

1
N(Z|U)

)−ρ
]

=
N(Z|U)ρ

N(Z|VU)ρ
.
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XIII. Source-Channel Universal Coding for BCC

Now, we introduce the concept of “source-channel universal
code for BCC” for then-fold discrete memoryless extension
of a discrete channel. In a realistic setting, we do not have
statistical knowledge of the sources and the channel, precisely.
In order to treat such a case, we have to make a code whose
performance is guaranteed independently of the statistical
properties of the sources and the channel. Such a kind of
universality is called source-channel universality, and studied
for the case of BCD [24]. For the case of wire-tap channel,
the source universality is divided into two parts. One is the
source universality for decoding error probability and theother
is that for the leaked information. The paper [26] studied the
latter part. Although the transmission rates are characterized
by the pair (R0,R1), in order to make a code achieving the
capacity region of BCC, we employ other two parametersRc

andRp that satisfyR0 ≤ Rc andR0 + R1 ≤ Rc + Rp. Hence, in
the following definition of a universally attainable quadruple
of exponents and leaked information rate, we focus on the set
R4

BCC := {(Rp,Rc,R0,R1) ∈ (R+)4|R0 ≤ Rc, R0 +R1 ≤ Rc +Rp}.
Definition 58: A set of functions (Eb, Ee, E+, E−) from

R4
BCC × W(X, Y × Z) to R4

≥0 is said to be a universally
attainable quadruple of exponents and leaked information rate
for the family of channelsW(X, Y × Z) and for sources if
for ǫ > 0 and (Rp,Rc,R0,R1) ∈ R4

BCC, there exist a sufficiently
large integerN and a sequence of codesΦn of lengthn satis-
fying the following conditions. (1) The confidential message
setSn of the codeΦn has cardinalityenR1 and the common
message setEn of the codeΦn has cardinalityenR0. (2) The
inequalities

Pb[Wn,Φn,PSn,En] ≤ exp(−n[Eb(Rp,Rc,R0,R1,W) − ǫ]),
(231)

Pe[Wn,Φn,PSn,En] ≤ exp(−n[Ee(Rp,Rc,R0,R1,W) − ǫ]),
(232)

and

I (Sn; Zn|En)[Wn,Φn,PSn,En]

≤max

[

exp(−n[El
+(Rp,Rc,R0,R1,W) − ǫ]),

n[El
−(Rp,Rc,R0,R1,W) + ǫ]

]

(233)

hold for any sequence of joint distributionsPSn,En for the
confidential messageSn on Sn and the common messageEn

on En, and then-th memoryless extensionWn of any channel
W ∈ W(X, Y ×Z) andn ≥ N.

Then, given a distributionQVU on U × V and a channel
(probability transition matrix)Ξ : V → X, we present a
universally attainable quadruple of exponents and leaked in-
formation rate as follows. Given rates (Rp,Rc,R0,R1) ∈ (R+)4

and a broadcastW ∈ W(X, Y×Z), the quadrupleEb, Ee, El
+

and El
− are given as

Eb =Eb(Rp,Rc,R0,R1,W) := Ẽb(Rp,Rc, (W ◦ Ξ) × QVU),
(234)

Ee =Ee(Rp,Rc,R0,R1,W) := Ẽe(Rc, (W ◦ Ξ) ◦ QVU), (235)

El
+ =El

+(Rp,Rc,R0,R1,W) := Ẽl(Rp − R1, (W ◦ Ξ) × QVU),
(236)

El
− =El

−(Rp,Rc,R0,R1,W) := I (V; Z|U) − Rp + R1. (237)

Theorem 59 (Extension of [24, Theorem 1, part (a)]):
Eqs. (234)–(237) are source-channel universally attainable
rates of exponents and information leakage rate in the sense
of Definition 58.

Therefore, our source-channel universal code attaining Eqs.
(234)–(237) depends onRp, Rc, the distributionQVU onU×V,
and the channelΞ : V → X.

We prove Theorem 59 by expurgating the messages in
the code given in Theorem 54. The outline of the proof is
as follows: First, in Step (1), similar to Theorem 54, we
evaluate the leaked information when the channel is given
by the conditional types and the source obeys the uniform
distribution. Then, for a given code in Step (1), we expurgate
the common messageEn in Step (2) and the secret message
Sn in Step (3). We evaluate the leaked information of the
expurgated code for an arbitrary source distribution and an
arbitrary conditional type in Step (4). Based on this evaluation,
we evaluate the leaked information of the expurgated code
for an arbitrary source distribution and an arbitrary discrete
memoryless channel in Step (5).

In the following proof, we assume that the secret message
Sn and the common messageEn obey the uniform distributions
onSn andEn. However, expurgationsS′n andE′n of the secret
messageSn and the common messageEn are allowed to obey
arbitrary distributions.

Step (1): Evaluation of the leaked information when the chan-
nel is given as the uniform distribution on a fixed conditional
type:

Recall the fixed codeϕp,n for BCD given in Theorem 13.
The codeϕp,n has the private message setS0,n × B1,n and
the common message setB2,n. We attach the random coding
ΛF,G,n for messageS1,n, . . . ,ST,n given as Second Step of Code
Ensemble 3 in Subsection VII-C to the codeϕp,n whenT = 2,
S1,n = Sn, S0,n = En, andS2,n is the random number subject
to the uniform distribution, which is used as the dummy for
makingSn secret for Eve. The uniformity of the distribution
guarantees that

H1+ρ(S2,n|S1,n,S0,n) = n(Rc + Rp − R1 − R2) (238)

for any ρ ∈ (0, 1]. Then, the encoder is given byΦa,n =

(ϕp,n,ΛF,G,n). In the following, Bob’s decoderΦb,n and Eve’s
decoderΦe,n are given as the maximum mutual information de-
coder. We treat the ensemble of codesΦn := (Φa,n,Φb,n,Φe,n).
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For an arbitraryΘn ∈ Wn,Z(QV) and an arbitraryρ ∈ (0, 1),
the combination of Lemmas 21 and 24 yields that

EΦa,n

∑

e

PEn(e)
∑

s

PSn|En(s|e)

· exp(ρD(PZn|Sn=s,En=e,Φa,n‖PZn|En=e,Φa,n)[Θn])

≤1+ enρ(R1−Rp)eE0(Θn,PVn|Un,mix,Tn(QVU ),Pmix,Tn(QU ))

=1+ εn,ρ,{1}(Θn,Pmix,Tn(QVU)), (239)

whereD(PZn|Sn=s,En=e,ϕa,n‖PZn|En=e,ϕa,n)[Θn] denotes the relative
entropy D(PZn|Sn=s,En=e,ϕa,n‖PZn|En=e,ϕa,n) when the channel is
Θn ∈ Wn,Z(QV).

The relations (238) and (216) withT = 2 yield

EΦa,n I (SI,n; Zn|S0,n)[Υn(WZ),Φa,n,PST ,n]

≤|Tn,Z(QVU)|e−n[Rp−R1−I (V;Z|U)[WZ×QVU ]]+ . (240)

Thanks to the Markov inequality in the same way as (35) and
(36), given a fixedρ ∈ (0, 1), due to (239) and (240), we
can see that there exists at least one codeϕa,n such that the
relations

I (SI,n; Zn|S0,n)[Υn(WZ), ϕa,n,PST ,n]

≤p1(n)|Tn,Z(QVU)|e−n[Rp−R1−I (V;Z|U)[WZ×QVU ]]+ , (241)
∑

e

PEn(e)
∑

s

PSn|En(s|e)

· exp(ρD(PZn|Sn=s,En=e,ϕa,n‖PZn|En=e,ϕa,n)[Θn])

≤p1(n)(1+ εn,ρ,{1}(Θn,Pmix,Tn(QVU))) (242)

hold for anyWZ ∈ Tn,Z(QVU) andΘn ∈ Wn,Z(QV).
Step (2): Expurgation for common message En:

We choosep3(n) := 2p1(n). When e is randomly chosen
from En subject to the uniform distribution, the elemente
satisfies all of the following conditions at least with probability
of 1− p1(n)/p3(n) = 1

2. The relations
∑

s

PSn|En(s|e) exp(ρD(PZn|Sn=s,En=e,ϕa,n‖PZn|En=e,ϕa,n)[Θn])

≤p1(n)p3(n)(1+ εn,ρ,{1}(Θn,Pmix,Tn(QVU))),
∑

s

PSn|En(s|e)D(PZn|Sn=s,En=e,ϕa,n‖PZn|En=e,ϕa,n)[Υn(WZ)]

=I (Sn; Zn)[Υn(WZ), ϕa,n,Pmix,Sn|En=e]

≤p1(n)p3(n)|Tn,Z(QVU)|e−n[Rp−R1−I (V;Z|U)[WZ×QVU ]]+ (243)

hold for any elementsWZ ∈ Tn,Z(QVU) andΘn ∈ Wn,Z(QV),
and n ≥ N. Thus, there exist|En|/2 elementse ∈ En satisfies
the above conditions. So, we denote the set of such elements
by E′n.
Step (3): Expurgation for secret message Sn:

Then, whens is randomly chosen fromSn subject to the
uniform distribution, the elementssatisfies all of the following
conditions at least with probability of 1−p1(n)/p3(n) ≥ 1

2: The
relations

exp(ρD(PZn|Sn=s,En=e′,ϕa,n‖PZn|En=e′,ϕa,n)[Θn])

≤p1(n)p3(n)2(1+ εn,ρ,{1}(Θn,Pmix,Tn(QVU )), (244)

D(PZn|Sn=s,En=e′ ,ϕa,n‖PZn|En=e′,ϕa,n)[Υn(WZ)]

≤p1(n)p3(n)2|Tn,Z(QVU)|e−n[Rp−R1−I (V;Z|U)[WZ×QVU]]+ (245)

hold for any elementse′ ∈ E′n, WZ ∈ Tn,Z(QVU), Θn ∈
Wn,Z(QV), and n ≥ N. Thus, there exist|Sn|/2 elements
s ∈ Sn satisfies the above conditions. So, we denote the set of
such elements byS′n.
Step (4): Universal code that works for all sources when
the channel is given as the uniform distribution on a fixed
conditional type:

In the following discussion,PS′n,E′n is an arbitrary joint
distribution of the random variablesS′n andE′n onS′n×E′n. For
a givene ∈ E′n, we consider two kinds of marginal distributions
of Zn as follows.

PZn|E′n=e,ϕa,n =
∑

s∈Sn

PSn(s)PZn|Sn=s,E′n=e,ϕa,n

P′Zn|E′n=e,ϕa,n
:=

∑

s′∈Sn

PS′n|E′n(s
′|e)PZn|Sn=s,E′n=e,ϕa,n.

The former marginal distribution is discussed in Steps (1),(2),
and (3). Hence, using (54) and (245), we obtain

I (S′n; Zn|E′n)[Υn(WZ), ϕa,n,PS′n,E
′
n
]

=
∑

e∈E′n

PE′n(e)D(PZn,S′n|E′n=e,ϕa,n‖P′Zn|E′n=e,ϕa,n
× PS′n|E′n=e)[Υn(WZ)]

≤
∑

e∈E′n

PE′n(e)D(PZn,S′n|E′n=e,ϕa,n‖PZn|E′n=e,ϕa,n × PS′n|E′n=e)[Υn(W
Z)]

=
∑

e∈E′n

PE′n(e)
∑

s∈Sn

[

PS′n|E′n(s|e)

· D(PZn|S′n=s,E′n=e,ϕa,n‖PZn|E′n=e,ϕa,n)[Υn(WZ)]
]

≤p1(n)p3(n)2|Tn,Z(QVU)|e−n[Rp−R1−I (V;Z|U)[WZ×QVU ]]+ , (246)

for any elementsWZ ∈ Tn,Z(QVU), Θn ∈ Wn,Z(QV), andn ≥
N. Similarly, using the convexity ofx 7→ ex, (54), (244), and
(245), we obtain

eρI (S′n;Zn|E′n)[Θn,ϕa,n,PS′n,E′n ]

≤
∑

e∈E′n

PE′n(e)e
ρD(PZn,S′n |E′n=e,ϕa,n‖P

′
Zn |E′n=e,ϕa,n

×PS′n|E′n=e)[Θn]

≤
∑

e∈E′n

PE′n(e)eρD(PZn,S′n |E′n=e,ϕa,n‖PZn |E′n=e,ϕa,n×PS′n|E′n=e)[Θn]

≤
∑

e∈E′n

PE′n(e)
∑

s∈Sn

PS′n|E′n(s|e)eρD(PZn|S′n=s,E′n=e,ϕa,n‖PZn |E′n=e,ϕa,n )[Θn]

≤p1(n)p3(n)2(1+ εn,ρ,{1}(Θn,Pmix,Tn(QVU ))) (247)

for any elementsWZ ∈ Tn,Z(QVU), Θn ∈ Wn,Z(QV), andn ≥
N.
Step (5): Evaluation of leaked information for all sources and
all discrete memoryless channels:

Similar to (224) and (227), defining p4(n) :=
p1(n)p3(n)2|Tn,Z(QVU)|2 and p5(n) := p2(n)p3(n)2 and
using (246) and (247), we obtain

I (S′n; Zn|E′n)[W
Z,n
, ϕa,n,PS′n,E′n] ≤p4(n)e−nEl

+(Rp,Rc,R0,R1,W),

(248)
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and

exp(ρI (S′n; Zn|E′n)[W
Z,n
, ϕa,n,PS′n,E′n])

≤p5(n)(1+ εn,ρ,{1}(W
Z,n
,Qn

V,U))

=p5(n)(1+ ε1,ρ,{1}(W
Z
,QV,U)n) (249)

for any sequence of joint distributionsPS′n,E
′
n

andn ≥ N.
Using (248), for an arbitraryǫ > 0, we can choose an integer

N1 such that

log I (S′n; Zn|E′n)[W
Z,n
, ϕa,n,PS′n,E′n]

≤ − n(El
+(Rp,Rc,R0,R1,W) − ǫ) (250)

for n ≥ N1. Due to (249), we obtain

1
n

I (S′n; Zn|E′n)[W
Z,n
, ϕa,n,PS′n,E′n]

≤
log p5(n) + log(1+ ε1,ρ,{1}(W

Z
,QV,U)n)

nρ

≤
log p5(n) + log 2+ logε1,ρ,{1}(W

Z
,QV,U)n)

nρ

≤ log 2p5(n)
nρ

+
logε1,ρ,{1}(W

Z
,QV,U))

ρ
. (251)

When ρ = 1√
n
, as is mentioned in Lemma 56, the RHS of

(251) convergesEl
−(Rp,Rc,R0,R1,W) uniformly. Hence, for

an arbitraryǫ > 0, we can choose an integerN2 such that

I (S′n; Zn|E′n)[W
Z,n
, ϕa,n,PS′n,E′n]

≤n(El
−(Rp,Rc,R0,R1,W) + ǫ) (252)

for n ≥ N2.
Therefore, since the original codeϕp,n satisfies (39) and

(40), using (250) and (252), we can see that (Eb, Ee, El
+, El

−)
is a universally attainable quadruple of exponents in the sense
of Definition 58.

Remark 60:In this section, we treat the leaked informa-
tion asymptotically as (233). However, in Section XII, we
have treated it non-asymptotically as (177) and (178). The
difference is caused by the condition for the sequence of
joint distributions PST ,n. In Section XII, we do not assume
the uniformity. However, in this section, we can use uniform
distribution ofS2,n. Hence, we can calculate the relative Rényi
entropy as (238) non-asymptotically.

Remark 61:Here, we remark the relation with the discus-
sion for secure multiplex coding in [22, Section IV-D]. The
preceding paper [22] showed the existence of the codeϕn

satisfying that

max
s

D(PZn|Si=si ,ϕn‖PZn,ϕn)→ 0 (253)

when there is no common messageEn and the random
variablesS1, . . . ,ST obey the uniform distribution. However,
to show the source universality for leaked information in
secure multiplex coding we need to evaluate the above value
when the random variablesS1, . . . ,ST do not necessarily obey
the uniform distribution. In this section, we show the source
universality for leaked information forS1 by assuming the
uniformity of the other random variableS2. Although this

method brings us the source universality for BCC, it cannot
derive the source universality for secure multiplex coding.

XIV. Comparison of Exponents of Leaked Information

In this section, we compare the exponent of leaked infor-
mation given in Sections XII and XIII and the exponents of
leaked information given in Subsection X-B when the source
distribution PST ,n is uniform. First, in Subsection XIV-A, we
compare the exponent given in Sections XII and XIII with the
above mentioned exponent. Then, we clarify that the exponent
in Sections XII and XIII is greater than one of exponents in
Subsection X-B, which is the same as that in [19]. Next, in
Subsection XIV-B, we give equality conditions between two
exponents. In the remaining subsections, we give proofs of
Lemmas used in Subsections XIV-A and XIV-B.

A. Comparison between Two ExponentsẼl(R,W
Z×QVU) and

ẼE0(R,W
Z × QVU)

First, we characterize the exponentẼE0(R,W
Z × QVU) =

supρ∈(0,1) ρR − E0(ρ|WZ
,QV|U ,QU), which describes the ex-

ponent of leaked information whenR is Rp −
∑

i∈I Ri and
the source distributionPST ,n is uniform, as is shown in
Subsection X-B. The exponent can be attained by the code
constructed in the second construction (Subsection VII-C).
Since E0(ρ|WZ

,QV|U ,QU) is convex with respect toρ [12],
Fρ(QV|U ,QU) := d

dρE0(ρ|WZ
,QV|U ,QU) is monotonically in-

creasing with respect toρ. As limits, we define

F1(QV|U ,QU) := lim
ρ→1−0

Fρ(QV|U ,QU) (254)

E0(1|WZ
,QV|U ,QU) := lim

ρ→1−0
E0(ρ|WZ

,QV|U ,QU). (255)

In particular, when QVU equal QV × QU , Ẽl(R,W
Z ×

QVU), ẼE0(R,W
Z × QVU), and the above values depend

only on QV. Then, Ẽl(R,W
Z × QVU), ẼE0(R,W

Z × QVU),
E0(1|WZ

,QV|U ,QU), F1(QV|U ,QU), andFρ(QV|U ,QU) are sim-

plified to Ẽl(R,W
Z × QV), ẼE0(R,W

Z × QV), E0(1|WZ
,QV),

F1(QV), andFρ(QV). Then, we obtain the following lemma.
Lemma 62:(1) Case ofR< F1(QV|U ,QU). There uniquely

exists ρ ∈ (0, 1) such thatR = Fρ(QV|U ,QU). Then, the

exponentẼE0(R,W
Z × QVU) can be characterized as

ẼE0(R,W
Z × QVU) = ρ0R− E0(ρ0|W

Z
,QV|U ,QU). (256)

(2) Case ofR≥ F1(QV|U ,QU). The exponent̃EE0(R,W
Z×QVU)

can be characterized as

ẼE0(R,W
Z × QVU) = R− E0(1|WZ

,QV|U ,QU). (257)

The quantities appearing in Lemma 62 can be characterized
by Lemma 63, which is displayed in the wide space in the next
page.

The proof of Lemma 63 will be given in Subsection XIV-D.
For a detail analysis for the exponentẼE0(R,W

Z × QVU), we
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Lemma 63:The quantitiesFρ(QV|U ,QU), F1(QV|U ,QU), andE0(1|WZ
,QV|U ,QU) are calculated as

Fρ(QV|U ,QU) =

∑

u QU(u)
∑

z(
∑

v
1

1−ρ (logW
Z
(z|v))QV|U(v|u)W

Z
(z|v)

1
1−ρ )(

∑

v QV|U(v|u)W
Z
(z|v)

1
1−ρ )−ρ

∑

u QU(u)
∑

z(
∑

v QV|U(v|u)W
Z
(z|v)

1
1−ρ )1−ρ

−
∑

u QU(u)
∑

z log(
∑

v QV|U(v|u)W
Z
(z|v)

1
1−ρ )(

∑

v QV|U(v|u)W
Z
(z|v)

1
1−ρ )1−ρ

∑

u QU(u)
∑

z(
∑

v QV|U(v|u)W
Z
(z|v)

1
1−ρ )1−ρ

. (258)

F1(QV|U ,QU) = −
∑

u QU(u)
∑

z log(
∑

v∈Vz
QV|U(v|u)) maxv′ W

Z
(z|v′)

∑

z maxv′ W
Z
(z|v′)

(259)

E0(1|WZ
,QV|U ,QU) = log

∑

u

QU(u)
∑

z

max
v∈supp(QV|U=u)

W
Z
(z|v). (260)

In particular,Fρ(QV), F1(QV), andE0(1|WZ
,QV) are simplified to

Fρ(QV) =

∑

z(
∑

v
1

1−ρ (logW
Z
(z|v))QV(v)W

Z
(z|v)

1
1−ρ )(

∑

v QV(v)W
Z
(z|v)

1
1−ρ )−ρ

∑

z(
∑

v QV(v)W
Z
(z|v)

1
1−ρ )1−ρ

−
∑

z log(
∑

v QV(v)W
Z
(z|v)

1
1−ρ )(

∑

v QV(v)W
Z
(z|v)

1
1−ρ )1−ρ

∑

z(
∑

v QV(v)W
Z
(z|v)

1
1−ρ )1−ρ

.

=

∑

z,v(
1

1−ρ (logW
Z
(z|v)) − log(

∑

v′′ QV(v′′)W
Z
(z|v′′)

1
1−ρ ))(QV(v)W

Z
(z|v)

1
1−ρ )(

∑

v′ QV(v′)W
Z
(z|v′)

1
1−ρ )−ρ

∑

z(
∑

v QV(v)W
Z
(z|v)

1
1−ρ )1−ρ

(261)

F1(QV) = −
∑

z log(
∑

v∈Vz
QV(v)) maxv′ W

Z
(z|v′)

∑

u QU(u)
∑

z maxv′ W
Z
(z|v′)

(262)

E0(1|WZ
,QV) = log

∑

z

max
v∈supp(QV)

W
Z
(z|v). (263)

Further, the mapQV 7→ F1(QV) is concave.

define

Fρ :=
d
dρ

E0,max(ρ|W
Z
), F1 := lim

ρ→1−0
Fρ, (264)

K := {(z, v) ∈ Z ×V|WZ
(z|v) = max

v′
W

Z
(z|v′)}

Zv := {z ∈ Z|(z, v) ∈ K}, Vz := {v ∈ V|(z, v) ∈ K}. (265)

Due to the compactness of the setP(U), we have

lim
ρ→1−0

max
Q′V

E0(1|WZ
,Q′V) = max

Q′V
lim
ρ→1−0

E0(1|WZ
,Q′V).

Hence, we obtain the following lemma for characterization of
the quantityE0,max(1|W

Z
) defined in (23).

Lemma 64:We have

E0,max(1|W
Z
) = log

∑

z

max
v

W
Z
(z|v) = lim

ρ→1−0
E0,max(ρ|W

Z
).

(266)

Then, we have the following characterization for a special
case of Case (2) of Lemma 62.

Lemma 65:Assume that∪v∈supp(Qu)Zv = Z for any u ∈
supp(QU). WhenR≥ F1(QV|U ,QU), we have

E0,max(1|W
Z
) = E0(1|WZ

,QV|U ,QU) (267)

and

ẼE0(R,W
Z × QVU) = R− E0,max(1|W

Z
). (268)

The proof of Lemma 65 will be given in Subsection XIV-E.

For comparison between two exponential decreasing rates
ẼE0(R,W

Z × QVU) and Ẽl(R,W
Z × QVU), we prepare the

following lemma.

Lemma 66:Any channelW
Z ∈ W(V,Z) satisfies

min
WZ∈W(U×V,Z)

D(WZ‖WZ|QVU) − ρI (V; Z|U)[WZ × QVU]

≥ − E0(ρ|WZ
,QV|U ,QU) (269)

for any ρ ∈ (0, 1).

The proof of Lemma 66 will be given in Subsection XIV-I.
Since the inequalities

Ẽl(R,W
Z × QVU)

= min
WZ∈W(U×V,Z)

D(WZ‖WZ|QVU)+[R− I (V; Z|U)[WZ × QVU]]+

≥ min
WZ∈W(U×V,Z)

D(WZ‖WZ|QVU)+ρ[R− I (V; Z|U)[WZ × QVU]]+

≥ min
WZ∈W(U×V,Z)

D(WZ‖WZ|QVU)+ρ(R− I (V; Z|U)[WZ × QVU])

hold for anyρ ∈ (0, 1), we obtain the following theorem, which
is (26).
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Theorem 67:

Ẽl(R,W
Z × QVU)

≥ sup
ρ∈(0,1)

ρR− E0(ρ|WZ
,QV|U ,QU) = ẼE0(R,W

Z × QVU).

(270)

B. Equality Conditions of (270)

In this subsection, we derive equality conditions of (270).
For this purpose, we prepare two lemmas.

Lemma 68:For a fixed ρ ∈ (0, 1), the following three
conditions for a distributionQV are equivalent.

(i) The following value does not depend onv ∈ V.
∑

z

W
Z
(z|v)

1
1−ρ (

∑

v′
QV(v′)W

Z
(z|v′)

1
1−ρ )−ρ

(ii) The following relation holds.

E0(ρ|WZ
,QV) = E0,max(ρ|W

Z
) = max

Q′V
E0(ρ|WZ

,Q′V).

(271)

(iii) The following relations hold for anyv ∈ V.
∑

z

W
Z
(z|v)

1
1−ρ (

∑

v′
QV(v′)W

Z
(z|v′)

1
1−ρ )−ρ

=max
Q′V

∑

z

(
∑

v′
Q′V(v′)W

Z
(z|v′)

1
1−ρ )1−ρ

=max
Q′V

eE0(ρ|WZ
,Q′V) = eE0,max(ρ|W

Z
).

The proof of Lemma 68 will be given in Subsection XIV-F.
Lemma 69:The following three conditions for a distribu-

tion QV are equivalent.

(i) The following value does not depend onv ∈ V.

∑

z∈Zv

maxv′∈VW
Z
(z|v′)

∑

v′′∈Vz
QV(v′′)

=
∑

z∈Zv

W
Z
(z|v)

∑

v′′∈Vz
QV(v′′)

.

(ii) The following relation holds.

F1(QV) = min
Q′V

F1(Q′V).

(iii) The following relations hold for anyv ∈ V.

∑

z∈Zv

maxv′∈VW
Z
(z|v′)

∑

v′′∈Vz
QV(v′′)

=
∑

z∈Zv

W
Z
(z|v)

∑

v′′∈Vz
QV(v′′)

=
∑

z

max
v′

W
Z
(z|v′). (272)

The proof of Lemma 68 will be given in Subsection XIV-G.
Then, we introduce two conditions for a distributionQV.
Condition 70: Given a fixedρ ∈ (0, 1), the distributionQV

satisfies the condition given in Lemma 68
Condition 71: The distributionQV satisfies the condition

given in Lemma 69
Since Condition 70 depends onρ, we describe it by “Con-

dition 70 with ρ” when we need to clarify the dependence on
ρ.

Lemma 72:When distributionQV and Q′V satisfy Con-

dition 70 with ρ, the relation
∑

v QV(v)W
Z
(z|v)

1
1−ρ =

∑

v Q′V(v)W
Z
(z|v)

1
1−ρ holds for anyz ∈ Z. That is the value

∑

v QV(v)W
Z
(z|v)

1
1−ρ does not depend on the choice ofQV as

long as the distributionQV satisfies Condition 70 withρ.
The proof of Lemma 72 will be given in Subsection XIV-F.

Lemma 73:When distributionQV andQ′V satisfy Condition
71 with ρ, the relation

∑

v′′∈Vz
QV(v′′) =

∑

v′′∈Vz
Q′V(v′′) holds

for any z ∈ Z. That is the value
∑

v QV(v)W
Z
(z|v)

1
1−ρ does not

depend on the choice ofQV as long as the distributionQV

satisfies Condition 71.
The proof of Lemma 73 will be given in Subsection XIV-G.
Hence, we can define the transition matricesWZ,ρ and WZ,1

from V to Z by

WZ,ρ(z|v) :=
W

Z
(z|v)

1
1−ρ (

∑

v QV,ρ(v)W
Z
(z|v)

1
1−ρ )−ρ

∑

z W
Z
(z|v)

1
1−ρ (

∑

v QV,ρ(v)W
Z
(z|v)

1
1−ρ )−ρ

,

WZ,1(z|v) :=



















W
Z
(z|v)

∑

v′′∈Vz QV,1(v′′)
∑

z′ maxv′ W
Z
(z′ |v′)

z ∈ Zv

0 z ∈ Zc
v,

where the distributionsQV,ρ and QV,1 satisfy Condition 70
with ρ and Condition 71, respectively. These definitions do
not depend on the choices ofQV,ρ and QV,1.

Lemma 74:When QV,ρ satisfies Condition 70 withρ, we
have

Fρ = Fρ(QV,ρ) = I (V; Z)[WZ,ρ × QV,ρ] (273)

D(WZ,ρ‖WZ|QV,ρ) = ρFρ − E0,max(ρ|W
Z
). (274)

The proof of Lemma 74 will be given in Subsection XIV-F.
Lemma 75:When QV,1 satisfies Condition 71, we have

F1 = F1(QV,1) = I (V; Z)[WZ,1 × QV,1] (275)

D(WZ,1‖WZ|QV,1) = F1 − E0,max(1|W
Z
). (276)

The proof of Lemma 75 will be given in Subsection XIV-G.
Lemma 76:For anyρ ∈ (0, 1), we choose the distribution

QV,ρ satisfying Condition 70 withρ. We choose a sequence
ρn such thatρn → 0 as n → ∞ and the limit distribution
limn→∞ QV,ρn exists. (Since the set of distributions overV is
compact, such a sequenceρn exists.) Then, the limit distribu-
tion limn→∞ QV,ρn satisfies Condition 71.
The proof of Lemma 76 will be given in Subsection XIV-H.

Then, using the above lemmas, we can characterize equality
conditions of (270) for the caseQUV = QU × QV in the
following way.

Theorem 77:(1) Case ofR < F1. We chooseρ ∈ (0, 1)
such thatR = Fρ. When QV,ρ satisfies Condition 70 withρ,
the relations

min
QV

Ẽl(R,W
Z × QV) = min

QV

ẼE0(R,W
Z × QV)

=Ẽl(R,W
Z × QV,ρ) = ẼE0(R,W

Z × QV,ρ) = ρR− E0,max(ρ|W
Z
)

(277)

hold, which implies the equality in (270).
(2) Case ofR ≥ F1. When QV,1 satisfies Condition 71, the

relations

min
QV

Ẽl(R,W
Z × QV) = min

QV

ẼE0(R,W
Z × QV)

=Ẽl(R,W
Z × QV,1) = ẼE0(R,W

Z × QV,1) = R− E0,max(1|W
Z
)

(278)
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hold, which implies the equality in (270).
Combining the discussions in both cases in Theorem 77, we

obtain

min
QV

Ẽl(R,W
Z × QV) =min

QV

ẼE0(R,W
Z × QV)

= max
ρ∈[0,1]

ρR− E0,max(ρ|W
Z
), (279)

which is (27).

Proof of Theorem 77: First, we show (277). Since
I (V; Z)[WZ,ρ × QV,ρ] = Fρ = R follows from (273), we have

Ẽl(R,W
Z × QV,ρ)

(a)
≤D(WZ,ρ‖WZ|QV,ρ) + [R− I (V; Z)[WZ,ρ × QV,ρ]]+
(b)
=ρFρ − E0,max(ρ|W

Z
)

(c)
= ρR− E0(ρ|WZ

,QV,ρ)
(d)
= ẼE0(R,W

Z × QV,ρ), (280)

where (a), (b), (c), and (d) follow from the Definition (24)
of Ẽl(R,W

Z ×QV,ρ), (274), (271), and Item (1) of Lemma 62,
respectively.

Any distributionQV satisfies

ρR− E0,max(ρ|W
Z
) ≤ ρR− E0(ρ|WZ

,QV) ≤ ẼE0(R,W
Z × QV),

which implies

ρR− E0,max(ρ|W
Z
) ≤ min

QV

ẼE0(R,W
Z × QV). (281)

Combining the above relations and we obtain

Ẽl(R,W
Z × QV,ρ)

(a)
≤ ρR− E0,max(ρ|W

Z
)

(b)
≤ min

QV

ẼE0(R,W
Z × QV)

(c)
≤ min

QV

Ẽl(R,W
Z × QV), (282)

where (a), (b), and (c) follow from (280), (281), and Theorem
67, respectively. Hence, the combination of (282) and (d) of
(280) leads (277).

Next, we show (278). The relations (275) and (276) imply

Ẽl(R,W
Z × QV,1)

≤D(WZ,1‖WZ|QV,1) + [R− I (V; Z)[WZ,1 × QV,1]]+

=F1 − E0,max(1|W
Z
) + [R− F1]+

=F1 − E0,max(1|W
Z
) + R− F1 = R− E0,max(1|W

Z
)

=R− E0(1|WZ
,QV,1) = ẼE0(R,W

Z × QV,1).

Any distributionQV satisfies

R− E0,max(1|W
Z
) ≤ R− E0(1|WZ

,QV) ≤ ẼE0(R,W
Z × QV),

which implies

R− E0,max(1|W
Z
) ≤ min

QV

ẼE0(R,W
Z × QV,ρ).

Combining the above relations and Lemma 67, we obtain

Ẽl(R,W
Z × QV,ρ) ≤ R− E0,max(1|W

Z
) = ẼE0(R,W

Z × QV,ρ)

≤min
QV

ẼE0(R,W
Z × QV) ≤ min

QV

Ẽl(R,W
Z × QV),

which implies (278).
For the general case, we prepare the generalizations of

Lemmas 74 and 75. The following lemmas follow from
Lemmas 74 and 75.

Lemma 78:WhenQV|U=u satisfies Condition 70 withρ, for
any u ∈ supp(QU),

Fρ = Fρ(QV|U ,QU) = I (V; Z|U)[WZ,ρ × QVU]

D(WZ,ρ‖WZ|QVU) = Fρ − E0,max(ρ|W
Z
).

Lemma 79:WhenQV|U=u satisfies Condition 71 for anyu ∈
supp(QU),

F1 = F1(QV|U ,QU) = I (V; Z|U)[WZ,1 × QVU]

D(WZ,1‖WZ|QVU) = F1 − E0,max(1|W
Z
).

Then, we can characterize equality conditions for (270)
in the general case. That is, similar to Theorem 77, using
Lemmas 78 and 79, we can show the following theorem.

Theorem 80:(1) Case ofR< F1. We chooseρ ∈ (0, 1) such
that R = Fρ. When QV|U=u satisfies Condition 70 withρ for
any u ∈ supp(QU), the relations

min
Q′VU

Ẽl(R,W
Z × Q′VU) = min

Q′V
Ẽl(R,W

Z × Q′V)

=min
Q′VU

ẼE0(R,W
Z × Q′VU) = min

Q′V
ẼE0(R,W

Z × Q′V)

=Ẽl(R,W
Z × QVU) = ẼE0(R,W

Z × QVU) = ρR− E0,max(ρ|W
Z
)

(283)

hold, which implies the equality in (270).
(2) Case ofR≥ F1. WhenQV|U=u satisfies Condition 71 for

any u ∈ supp(QU), the relations

min
Q′VU

Ẽl(R,W
Z × Q′VU) = min

Q′V
Ẽl(R,W

Z × Q′V)

=min
Q′VU

ẼE0(R,W
Z × Q′VU) = min

Q′V
ẼE0(R,W

Z × Q′V)

=Ẽl(R,W
Z × QVU) = ẼE0(R,W

Z × QVU) = R− E0,max(1|W
Z
)

(284)

hold, which implies the equality in (270).
Then, we obtain the following two corollaries.

Corollary 81: When the channelWZ is regular andQV is
the uniform distribution, the equality in (270) holds.

Proof: When the channelWZ is regular, the uniform
distribution overV satisfies Condition 70 withρ. Hence, when
QV is the uniform distribution, the equality in (270) holds.

Corollary 82: WhenR= Fρ andQV|U=u satisfies Condition
71 for anyu ∈ supp(QU), we have

Ẽl(R,W
Z × QVU) =ẼE0(R,W

Z × QVU)

≤Ẽψ(R,W
Z × QVU).

In the above case of Corollary 82, the exponentẼl(R,W
Z ×

QVU) cannot improve the exponentẼψ(R,W
Z×QVU), which is

the exponent of the code constructed in the first construction
(Subsection VII-B) and is given in Subsection X-B. However,
the relation betweeñEl(R,W

Z × QVU) and Ẽψ(R,W
Z × QVU)

remains unknown up to now.
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C. Examples

In this subsection, we numerically compare

Ẽl(R,W
Z × QV)

= min
WZ∈W(V,Z)

D(WZ‖WZ|QV) + [R− I (V; Z)[WZ × QV]]+

and

ẼE0(R,W
Z × QV) = max

0≤ρ≤1
ρR− E0(ρ|WZ

,QV)

Ẽψ(R,W
Z × QV) = max

0≤ρ≤1
ρR− ψ(ρ|WZ

,QV)

in the following two examples.
Example 83:In this example, we address the channel given

by a 2× 2 general transition matrix. Consider the case when
Z = V = {1, 2}. Define the transition matrixW

Z
by

W
Z

:=

(

1− p q
p 1− q

)

(285)

with p > q ∈ (0, 1/2). WhenQV(1) = 1/2 andQV(2) = 1/2,
we have

E0(ρ|WZ
,QV)

= log((
1
2

(1− p)
1

1−ρ +
1
2

q
1

1−ρ )1−ρ + (
1
2

p
1

1−ρ +
1
2

(1− q)
1

1−ρ )1−ρ),

(286)

ψ(ρ|WZ
,QV)

= log(
1
2

(1− p)1+ρ(
1− p+ q

2
)−ρ +

1
2

p1+ρ(
1− q+ p

2
)−ρ

+
1
2

q1+ρ(
1− p+ q

2
)−ρ +

1
2

(1− q)1+ρ(
1− q+ p

2
)−ρ). (287)

Fig. 2 suggests that̃Eψ(R,W
Z ×QV) is larger thanẼl(R,W

Z ×
QV). In Fig. 3, we numerically calculate argmax0≤ρ≤1 ρR −
E0(ρ|WZ

,QV) and argmax0≤ρ≤1 ρR−ψ(ρ|WZ
,QV) which realize

ẼE0(R,W
Z × QV) and Ẽψ(R,W

Z × QV), respectively.

0.4 0.5 0.6 0.7
R

0.05

0.10

0.15

0.20

0.25

0.30

E
�

Fig. 2. Lower bounds of exponent in Example 83 withp = 0.01 and
q = 0.3. In this case,I(V; Z)[W

Z × QV] = 0.317054. Thick line, Dashed line,
and Normal line plotẼψ(R,W

Z ×QV), Ẽl (R,W
Z ×QV), andẼE0(R,W

Z×QV)
as functions ofR from R= 0.317054 toR= log 2= 0.693147 with the origin
(0.3,0).
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Fig. 3. Relation betweenR and ρ realizing the optimal value.
in Example 83 with p = 0.01 and q = 0.3. Thick line expresses
argmax0≤ρ≤1 ρR− ψ(ρ|WZ

,QV), which realizesẼψ(R,W
Z ×QV). Normal line

expresses argmax0≤ρ≤1 ρR− E0(ρ|WZ
,QV), which realizesẼE0(R,W

Z × QV).

There is no graph corresponding tõEl (R,W
Z × QV) becauseẼl (R,W

Z × QV)
is not given as maximization with respect toρ. The origin is (0.3,0).

Example 84:In this example, we consider the case when
states satisfying Conditions 70 and 71 are not unique. Consider
the case whenZ = V = {1, 2, 3, 4}. Define the transition
matrix W

Z
by

W
Z

:=































1
2 − p p 1

2 − p p
p 1

2 − p p 1
2 − p

1
2 − p p p 1

2 − p
p 1

2 − p 1
2 − p p































(288)

with p ∈ (0, 1/4). WhenQV(1) = q, QV(2) = q, QV(3) = 1
2 −q,

and QV(4) = 1
2 − q, we have

∑

z

W
Z
(z|v)

1
1−ρ (

∑

v′
QV(v′)W

Z
(z|v′)

1
1−ρ )−ρ

=4(
1
2

(
1
2
− p)

1
1−ρ +

1
2

p
1

1−ρ )1−ρ = 21+ρ((
1
2
− p)

1
1−ρ + p

1
1−ρ )1−ρ.

(289)

for all v ∈ V, which implies Condition 70. Hence,

E0,max(ρ|W
Z
) = E0(ρ|WZ

,QV)

=(1+ ρ) log 2+ (1− ρ) log((
1
2
− p)

1
1−ρ + p

1
1−ρ ), (290)

Fρ = Fρ(QV)

= log 2− log((
1
2
− p)

1
1−ρ + p

1
1−ρ )

+
1

1− ρ
( 1

2 − p)
1

1−ρ log(1
2 − p) + p

1
1−ρ log p

( 1
2 − p)

1
1−ρ + p

1
1−ρ

, (291)

ψ(ρ|WZ
,QV) = (2ρ + 1) log 2+ log((

1
2
− p)1+ρ + p1+ρ).

(292)

Next, we check Condition 71. For this purpose, we check
Condition (i) in Lemma 69 by treatingVz given in (265).
SinceV1 = {1, 3}, V2 = {2, 4}, V3 = {1, 4}, andV4 = {2, 3},
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in the above choice ofQV, we have
∑

v′′∈Vz
QV(v′′) = 1

2, which
implies

∑

z∈Zv

maxv′∈VW
Z
(z|v′)

∑

v′′∈Vz
QV(v′′)

= 2
1
2 − p

1
2

= 4(
1
2
− p) (293)

for all v ∈ V. Thus, Condition 71 holds. Hence,

E0,max(1|W
Z
) = log 4(

1
2
− p) (294)

F1 = log 2. (295)

Further, Theorem 80 guarantees thatẼE0(R,W
Z × QV) =

Ẽl(R,W
Z×QV). So, we numerically compare onlỹEψ(R,W

Z×
QV) andẼE0(R,W

Z×QV) in Fig. 4. SinceẼE0(R,W
Z×QV) at-

tains the minimum value due to Theorem 80,ẼE0(R,W
Z×QV)

does not depend onq. Further,Ẽψ(R,W
Z ×QV) also does not

depend onq due to the form ofẼψ(R,W
Z × QV). Similar

to Fig. 3, Fig. 5 suggests that the parameterρ realizing
ẼE0(R,W

Z × QV) has a behavior different from the parameter
ρ realizing Ẽψ(R,W

Z × QV).
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Fig. 4. Lower bounds of exponent in Example 84 withp = 0.1. In this
case, I(V; Z)[W

Z × QV] = 0.192745. Thick line and Normal line express
Ẽψ(R,W

Z×QV) andẼE0 (R,W
Z×QV) = Ẽl (R,W

Z×QV) as functions ofR from
R = 0.192745 toR = 1.0 with the origin (0.1,0). Thick line is straight when
R≥ 0.4 because argmax0≤ρ≤1 ρR−ψ(ρ|WZ

,QV) is 1 whenR≥ 0.4, as in Fig 5.

Normal line is straight whenR≥ 0.7 because argmax0≤ρ≤1 ρR−E0(ρ|WZ
,QV)

is 1 whenR≥ 0.7, as in Fig 5.

D. Proof of Lemma 63

Proof: We can show (258) and (260) by direct calcu-
lations. Now, we show (260). In general, whenbi > 0 and
a1 = a2 = . . . = al > ai > 0 for i = l + 1, . . . , k, the relation

lim
ρ→1−0

(
k

∑

i=1

bia
1

1−ρ
i )1−ρ

= lim
ρ→1−0

((
l

∑

i=1

bi)a
1

1−ρ
1 )1−ρ(1+

k
∑

i=l+1

bi
∑l

i=1 bi

ai

a1

1
1−ρ

)1−ρ

= lim
ρ→1−0

((
l

∑

i=1

bi)a
1

1−ρ
1 )1−ρ = a1 (296)
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Fig. 5. Relation betweenR andρ realizing the optimal value in Example 84
with p = 0.1. Normal line expresses argmax0≤ρ≤1 ρR− E0(ρ|WZ

,QV), which

realizesẼE0 (R,W
Z×QV). Thick line expresses argmax0≤ρ≤1 ρR−ψ(ρ|WZ

,QV),

which realizesẼψ(R,W
Z×QV). There is no graph corresponding toẼl (R,W

Z×
QV) becauseẼl (R,W

Z ×QV) is not given as maximization with respect toρ.
The origin is (0.1,0).

holds. That is, the difference (
∑k

i=1 bia
1

1−ρ
i )1−ρ −

((
∑l

i=1 bi)a
1

1−ρ
1 )1−ρ behaves asO(exp(− a

1−ρ )) with a constanta.
Applying the above general discussion, we have

lim
ρ→1−0

∑

u

QU(u)
∑

z

[

∑

v

QV|U(v|u)W
Z
(z|v)

1
1−ρ

]1−ρ

= lim
ρ→1−0

∑

u

QU(u)
∑

z

[

∑

v∈Vz(QV|U=u)

QV|U(v|u)

·
(

max
v∈supp(QV|U=u)

W
Z
(z|v)

)
1

1−ρ
]1−ρ

= lim
ρ→1−0

∑

u

QU(u)
∑

z

[

(

∑

v∈Vz(QV|U=u)

QV|U(v|u)
)1−ρ

·
(

max
v∈supp(QV|U=u)

W
Z
(z|v)

)

]

=
∑

u

QU(u)
∑

z

( max
v∈supp(QV|U=u)

W
Z
(z|v)).

where Vz(QV|U=u) := {v ∈
supp(QV|U=u)|maxv∈supp(QV|U=u) W

Z
(z|v)}. Hence, we obtain

(260).
Further, sincex 7→ − log x is concave, the mapQV 7→

F1(QV) is concave. The remaining task is the poof of the
equation (259), will be shown in the wide space style in the
next page.

E. Proof of Lemma 65

Proof: Due to (260), we have

E0,max(1|W
Z
) =max

Q′VU

lim
ρ→1−0

E0(ρ|WZ
,Q′V|U ,Q

′
U)

=max
QVU

log
∑

u

QU (u)
∑

z

max
v∈supp(QV|U=u)

W
Z
(z|v)

= log
∑

z

max
v

W
Z
(z|v),
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Proof of (259): We have

d
dρ

E0(ρ|WZ
,QV|U ,QU)

=

∑

u QU (u)
∑

z(
∑

v
1

1−ρ (logW
Z
(z|v))QV|U(v|u)W

Z
(z|v)

1
1−ρ )(

∑

v QV|U(v|u)W
Z
(z|v)

1
1−ρ )−ρ

∑

u QU(u)
∑

z(
∑

v QV|U(v|u)W
Z
(z|v)

1
1−ρ )1−ρ

−
∑

u QU(u)
∑

z log(
∑

v QV|U(v|u)W
Z
(z|v)

1
1−ρ )(

∑

v QV|U(v|u)W
Z
(z|v)

1
1−ρ )1−ρ

∑

u QU(u)
∑

z(
∑

v QV|U(v|u)W
Z
(z|v)

1
1−ρ )1−ρ

.

Whenρ approaches 1,
∑

v QV|U(v|u)W
Z
(z|v)

1
1−ρ approaches (

∑

v∈Vz
QV|U(v|u))(maxv′ W

Z
(z|v′))

1
1−ρ . Hence,

lim
ρ→1−0

d
dρ

E0(ρ|WZ
,QV|U ,QU)

= lim
ρ→1−0

(

∑

u QU(u)
∑

z(
1

1−ρ log maxv′ W
Z
(z|v′)(∑v∈Vz

QV|U(v|u))1−ρ maxv′ W
Z
(z|v′))

∑

u QU(u)
∑

z(
∑

v∈Vz
QV|U(v|u))1−ρ maxv′ W

Z
(z|v′)

−
∑

u QU (u)
∑

z(
1

1−ρ log maxv′ W
Z
(z|v′) + log(

∑

v∈Vz
QV|U(v|u)))(

∑

v∈Vz
QV|U(v|u))1−ρ maxv′ W

Z
(z|v′)

∑

u QU(u)
∑

z(
∑

v∈Vz
QV|U(v|u))1−ρ maxv′ W

Z
(z|v′)

)

= lim
ρ→1−0

−∑

u QU(u)
∑

z log(
∑

v∈Vz
QV|U(v|u))(

∑

v∈Vz
QV|U(v|u))1−ρ maxv′ W

Z
(z|v′)

∑

u QU(u)
∑

z(
∑

v∈Vz
QV|U(v|u))1−ρ maxv′ W

Z
(z|v′)

= lim
ρ→1−0

−
∑

u QU(u)
∑

z log(
∑

v∈Vz
QV|U(v|u)) maxv′ W

Z
(z|v′)

∑

u QU(u)
∑

z maxv′ W
Z
(z|v′)

, (297)

which implies (259).

which implies (266).
Assume that the support ofQV|U=u contains {v ∈

V|minz
maxv′ W

Z
(z|v′)

W
Z
(z|v)

= 1} for any u ∈ supp(QU). Due to (260),

we have

E0(1|WZ
,QV|U ,QU) = log

∑

z

max
v

W
Z
(z|v). (298)

Combining (266), we obtain (267). Hence, as a special case
of (257), we obtain (268).

F. Proofs of Lemmas 68, 72, and 74

Lemma 85:Let f be a concaveC1 function fromRd to R
andP(d) be the subset{(x1, . . . , xd) ∈ Rd|xi ≥ 0,

∑d
i=1 xi = 1}.

The following two conditions forx = (x1, . . . , xd) ∈ P(d) are
equivalent.
(i)

f (x) = max
x′∈P(d)

f (x′). (299)

(ii) The following relation holds for anyi , j.

∂

∂xi
f (x) =

∂

∂xi
f (x). (300)

Proof of Lemma 85: We choose variabley = (y1, . . .yd−1) ∈
Rd−1, and define a functioñf (y) := f (y1, . . . , yd−1, 1−

∑d−1
i=1 yi).

Due to the concavity, the condition (i) holds if and only if
∂
∂yi

f̃ (y) = 0 for i = 1, . . . , d − 1. This condition is equivalent

to the condition (ii) because∂
∂yi

f̃ (y) = ∂
∂xi

f (y1, . . . , yd−1, 1 −
∑d−1

i=1 yi) − ∂
∂xd

f (y1, . . . , yd−1, 1−
∑d−1

i=1 yi).

Proof of Lemma 68: In order to apply Lemma 85, we
regard all of probabilitiesQV(v) as independent parameters by
removing the constraint

∑

v QV(v) = 1. The partial derivatives
are calculated as

∂

∂QV(v)

∑

z

(
∑

v′
QV(v′)W

Z
(z|v′)

1
1−ρ )1−ρ

=
∑

z

(1− ρ)(
∑

v′
QV(v′)W

Z
(z|v′)

1
1−ρ )−ρW

Z
(z|v)

1
1−ρ .

Hence, Lemma 85 guarantees the equivalence between (i) and
(ii). Condition (iii) trivially implies Condition (i).

The remaining task is showing Condition (i)
implies Condition (iii). Assume Condition (i). Since
∑

z W
Z
(z|v)

1
1−ρ (

∑

v′ QV(v′)W
Z
(z|v′)

1
1−ρ )−ρ does not depend onv

and Condition (ii) holds,
∑

z

W
Z
(z|v)

1
1−ρ (

∑

v′
QV(v′)W

Z
(z|v′)

1
1−ρ )−ρ

=
∑

v

QV(v)
∑

z

W
Z
(z|v)

1
1−ρ (

∑

v′
QV(v′)W

Z
(z|v′)

1
1−ρ )−ρ

=
∑

z

(
∑

v

QV(v)W
Z
(z|v)

1
1−ρ )1−ρ = eE0(ρ|WZ

,QV)

=max
Q′V

eE0(ρ|WZ
,Q′V) = eE0,max(ρ|W

Z
).
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Proof of Lemma 72: Assume that
∑

v

QV(v)W
Z
(z|v)

1
1−ρ ,

∑

v

Q′V(v)W
Z
(z|v)

1
1−ρ (301)

for any z ∈ Z. Due to the strict concavity ofx 7→ x1−ρ, we
have

1
2

(
∑

v

QV(v)W
Z
(z|v)

1
1−ρ )1−ρ +

1
2

(
∑

v

Q′V(v)W
Z
(z|v)

1
1−ρ )1−ρ

<(
∑

v

(
1
2

QV(v) +
1
2

Q′V(v))W
Z
(z|v)

1
1−ρ )1−ρ. (302)

Hence,

1
2

∑

z

(
∑

v

QV(v)W
Z
(z|v)

1
1−ρ )1−ρ +

1
2

∑

z

(
∑

v

Q′V(v)W
Z
(z|v)

1
1−ρ )1−ρ

<
∑

z

(
∑

v

(
1
2

QV(v) +
1
2

Q′V(v))W
Z
(z|v)

1
1−ρ )1−ρ. (303)

However, Lemma 68 guarantees that
∑

z

(
∑

v

QV(v)W
Z
(z|v)

1
1−ρ )1−ρ =

∑

z

(
∑

v

Q′V(v)W
Z
(z|v)

1
1−ρ )1−ρ

= max
Q′V

eE0(ρ|WZ
,Q′V). (304)

Since (303) contradicts (304), we obtain the desired argument.

Proof of Lemma 74: As

WZ,ρ ◦ QV,ρ(z) =
(
∑

v QV,ρ(v)W
Z
(z|v)

1
1−ρ )1−ρ

∑

z(
∑

v QV,ρ(v)W
Z
(z|v)

1
1−ρ )1−ρ

,

we can calculate the mutual informationI (V; Z)[WZ,ρ × QV,ρ]
as

I (V; Z)[WZ,ρ × QV,ρ]

=
∑

v,z

QV,ρ(v)W
Z
(z|v)

1
1−ρ (

∑

v QV,ρ(v)W
Z
(z|v)

1
1−ρ )−ρ

∑

z W
Z
(z|v)

1
1−ρ (

∑

v QV,ρ(v)W
Z
(z|v)

1
1−ρ )−ρ

·
[

log
[

W
Z
(z|v)

1
1−ρ

(

∑

v

QV,ρ(v)W
Z
(z|v)

1
1−ρ

)−ρ]

− log
[(
∑

v

QV,ρ(v)W
Z
(z|v)

1
1−ρ

)1−ρ]
]

=
∑

v,z

QV,ρ(v)W
Z
(z|v)

1
1−ρ (

∑

v QV,ρ(v)W
Z
(z|v)

1
1−ρ )−ρ

∑

z W
Z
(z|v)

1
1−ρ (

∑

v QV,ρ(v)W
Z
(z|v)

1
1−ρ )−ρ

·
[

1
1− ρ logW

Z
(z|v) − log

[
∑

v

QV,ρ(v)W
Z
(z|v)

1
1−ρ

]

]

=Fρ(QV,ρ), (305)

where the final equation follows from (261). We obtain the
second equation of (273).

Since the constraint (i) in Lemma 68 forQV,ρ is differen-
tiable with respect toρ, for a givenρ0 ∈ (0, 1), we can choose

QV,ρ such that the mapρ 7→ QV,ρ is differentiable at least in
an enough small neighborhood ofρ0. Since

d
dρ

E0(ρ0|W
Z
,QV,ρ)|ρ=ρ0 = 0, (306)

we have

Fρ0 =
d
dρ

E0(ρ|WZ
,QV,ρ)|ρ=ρ0

=
d
dρ

E0(ρ|WZ
,QV,ρ0)|ρ=ρ0 +

d
dρ

E0(ρ0|W
Z
,QV,ρ)|ρ=ρ0

=
d
dρ

E0(ρ|WZ
,QV,ρ0)|ρ=ρ0 = Fρ0(QV,ρ0). (307)

Hence, we obtain the first equation of (273).
The conditional divergenceD(WZ‖WZ|QV,ρ) is calculated to

D(WV,ρ‖WZ|QV,ρ)

=
∑

v,z

QV,ρ(v)W
Z
(z|v)

1
1−ρ (

∑

v QV,ρ(v)W
Z
(z|v)

1
1−ρ )−ρ

∑

z W
Z
(z|v)

1
1−ρ (

∑

v′ QV,ρ(v′)W
Z
(z|v)

1
1−ρ )−ρ

·
(

log
[

W
Z
(z|v)

1
1−ρ (

∑

v

QV,ρ(v)W
Z
(z|v)

1
1−ρ )−ρ

]

− logW
Z
(z|v)

)

−
∑

v

QV,ρ(v) log

[

∑

z

W
Z
(z|v)

1
1−ρ

(
∑

v′
QV,ρ(v′)W

Z
(z|v)

1
1−ρ

)−ρ
]

=
∑

v,z

QV,ρ(v)W
Z
(z|v)

1
1−ρ (

∑

v QV,ρ(v)W
Z
(z|v)

1
1−ρ )−ρ

∑

z W
Z
(z|v)

1
1−ρ (

∑

v QV,ρ(v)W
Z
(z|v)

1
1−ρ )−ρ

·
(

ρ

1− ρ logW
Z
(z|v) − ρ log

[
∑

v

QV,ρ(v)W
Z
(z|v)

1
1−ρ

]

)

−
∑

v

QV,ρ(v) log

[

∑

z

W
Z
(z|v)

1
1−ρ

(
∑

v′
QV,ρ(v′)W

Z
(z|v)

1
1−ρ

)−ρ
]

=ρFρ(QV,ρ) −
∑

v

QV,ρ(v) log

[

∑

z

(
∑

v′
QV,ρ(v′)W

Z
(z|v)

1
1−ρ

)1−ρ
]

=ρFρ − E(ρ|WZ
,QV,ρ).

We obtain (274).

G. Proofs of Lemmas 69, 73, and 75

Proof of Lemma 69: In order to apply Lemma 85, we
regard all of probabilitiesQV(v) as independent parameters by
removing the constraint

∑

v QV(v) = 1. The partial derivatives
are calculated as

∂

∂QV(v)
−

∑

z log(
∑

v∈Vz
QV(v)) maxv′ W

Z
(z|v′)

∑

z maxv′ W
Z
(z|v′)

= −
∑

z∈Zv

maxv′∈VW
Z
(z|v′)

∑

v′′∈Vz
QV(v′′)

.

Hence, Lemma 85 guarantees the equivalence between (i) and
(ii). Condition (iii) trivially implies Condition (i).

The remaining task is showing Condition (i)
implies Condition (iii). Assume Condition (i). Since
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∑

z W
Z
(z|v)

1
1−ρ (

∑

v′ QV(v′)W
Z
(z|v′)

1
1−ρ )−ρ does not depend onv

and Condition (ii) holds, we have

∑

z∈Zv

W
Z
(z|v)

∑

v′′∈Vz
QV(v′′)

=
∑

z∈Zv

maxv′∈VW
Z
(z|v′)

∑

v′′∈Vz
QV(v′′)

=
∑

v

QV(v)
∑

z∈Zv

maxv′∈VW
Z
(z|v′)

∑

v′′∈Vz
QV(v′′)

=
∑

(z,v)∈K
QV(v)

maxv′∈VW
Z
(z|v′)

∑

v′′∈Vz
QV(v′′)

=
∑

z

∑

v∈Vz

QV(v)
maxv′∈VW

Z
(z|v′)

∑

v′′∈Vz
QV(v′′)

=
∑

z

max
v′

W
Z
(z|v′).

Proof of Lemma 73: We focus on the function

{∑v′′∈Vz
QV(v′′)}z 7→ −

∑

z log(
∑

v∈Vz QV(v)) maxv′ W
Z
(z|v′)

∑

z maxv′ W
Z
(z|v′)

, which is

strictly concave. Hence, when there exists an elementz ∈ Z
such that

∑

v′′∈Vz
QV(v′′) ,

∑

v′′∈Vz
Q′V(v′′) for two distributions

QV and Q′V, the convex combination
QV+Q′V

2 gives a strictly
greater value for the above function, which contradicts (ii) of
Lemma 69. Hence,

∑

v′′∈Vz
QV(v′′) =

∑

v′′∈Vz
Q′V(v′′) for all

z ∈ Z.

Proof of Lemma 75: Since

WZ,1 × QV,1(v, z) =



















QV,1(v)W
Z
(z|v)

∑

v′′∈Vz QV,1(v′′)
∑

z′ maxv′ W
Z
(z′ |v′)

z ∈ Zv

0 z ∈ Zc
v,

(308)

the mutual informationI (V; Z)[WZ,1 × QV,1] is calculated as

I (V; Z)[WZ,1 × QV,1] = −
∑

z log(
∑

v∈Vz
QV,1(v)) maxv′ W

Z
(z|v′)

∑

z maxv′ W
Z
(z|v′)

=F1(QV,1), (309)

where the final equation follows from (262). Hence, we obtain
the second equation in (275). The first equation in (275)
follows from the limit ρ→ 1− 0 at (307).

When QV satisfies Condition 71,

D(WZ,1‖WZ|QV)

= −
∑

z,v

WZ,1 × QV,1(v, z) log
[
∑

v′′∈Vz

QV(v′′)
∑

z′
max

v′
W

Z
(z′|v′)

]

= − log
[
∑

z′
max

v′
W

Z
(z′|v′)

]

−
∑

z

log
[
∑

v′′∈Vz

QV(v′′)
]

WZ,1 ◦ QV(z)

= − log
[
∑

z′
max

v′
W

Z
(z′|v′)

]

−
∑

z log
[

∑

v∈Vz
QV(v)

]

maxv′ W
Z
(z|v′)

∑

z maxv′ W
Z
(z|v′)

=F1 − E0,max(1|W
Z
),

which implies (276).

H. Proof of Lemma 76

Proof of Lemma 76: Due to Condition 70 withρ, we can
choose a constantCρ in the following way: the relation

Cρ =
∑

z

W
Z
(z|v)

1
1−ρ (

∑

v′
QV,ρ(v′)W

Z
(z|v′)

1
1−ρ )−ρ (310)

holds for allv. Due to the general relation as (296), we have

C := lim
ρ→1−0

Cρ

= lim
ρ→1−0

∑

z

W
Z
(z|v)

1
1−ρ (

∑

v′
QV,ρ(v

′)W
Z
(z|v′)

1
1−ρ )−ρ

= lim
ρ→1−0

∑

z∈Zv

(
∑

v′′∈Vz

QV,ρ(v′′))−ρ max
v′

W
Z
(z|v′)

=
∑

z∈Zv

maxv′ W
Z
(z|v′)

∑

v′′∈Vz
(limn→∞ QV,ρn(v′′))

.

SinceC does not depend onv, the distribution limn→∞ QV,ρn

satisfies Condition 71.

I. Proof of Lemma 66

We show the inequality in (269). First, we obtain the
inequality (314), which is displayed in the wide space in the
next page.

Since 1
1−ρ +

−ρ
1−ρ = 1, the reverse Hölder inequality yields

that
∑

z

(
∑

v

QV|U(v|u)W
Z
(z|v)

1
1−ρ )Q̃Z(z)

−ρ
1−ρ

≥(
∑

z

(
∑

v

QV|U(v|u)W
Z
(z|v)

1
1−ρ )1−ρ)

1
1−ρ (

∑

z

(Q̃Z(z)
−ρ
1−ρ )−

1−ρ
ρ )

−ρ
1−ρ

≥ min
Q̃Z∈P(Z)

(
∑

z

(
∑

v

QV|U(v|u)W
Z
(z|v)

1
1−ρ )1−ρ)

1
1−ρ (

∑

z

Q̃Z(z))
−ρ
1−ρ

=(
∑

z

(
∑

v

QV|U(v|u)W
Z
(z|v)

1
1−ρ )1−ρ)

1
1−ρ .

The equality holds only when (
∑

v QV|U(v|u)W
Z
(z|v)

1
1−ρ )1−ρ =

CQ̃Z(z) with a constantC. Hence,

min
Q̃Z∈P(Z)

∑

z

(
∑

v

QV|U(v|u)W
Z
(z|v)

1
1−ρ )Q̃Z(z)

−ρ
1−ρ

=(
∑

z

(
∑

v

QV|U(v|u)W
Z
(z|v)

1
1−ρ )1−ρ)

1
1−ρ .

Thus,

− (1− ρ)
∑

u

QU(u) log

[

min
Q̃Z∈P(Z)

∑

z

(
∑

v

QV|U(v|u)W
Z
(z|v)

1
1−ρ

)

Q̃Z(z)
−ρ
1−ρ

]

= − (1− ρ)
∑

u

QU(u) log

[(

∑

z

(
∑

v

QV|U(v|u)W
Z
(z|v)

1
1−ρ

)1−ρ
)

1
1−ρ

]

= −
∑

u

QU(u) log(
∑

z

(
∑

v

QV|U(v|u)W
Z
(z|v)

1
1−ρ )1−ρ)

≥ − log
∑

u

QU(u)(
∑

z

(
∑

v

QV|U(v|u)W
Z
(z|v)

1
1−ρ )1−ρ) (315)

= − E0(ρ|WZ
,QV|U ,QU), (316)
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min
WZ∈W(U×V,Z)

D(WZ‖WZ|QVU) − ρI (V; Z|U)[WZ × QVU]

= min
WZ∈W(U×V,Z)

(
∑

u

QU(u)(
∑

v

QV|U(v|u)
∑

z

WZ(z|u, v) log
WZ(z|u, v)

W
Z
(z|v)

− ρ min
Q̃∈P(Z)

∑

v

QV|U(v|u)
∑

z

WZ(z|u, v) log
WZ(z|u, v)

Q̃(z)
)
)

= min
WZ∈W(U×V,Z)

max
W̃Z∈W(U,Z)

∑

u

QU(u)
∑

v

QV|U(v|u)(
∑

z

WZ(z|u, v) log
WZ(z|u, v)

W
Z
(z|v)

− ρ
∑

z

WZ(z|u, v) log
WZ(z|u, v)

W̃Z(z|u)
)

= min
WZ∈W(U×V,Z)

max
W̃Z∈W(U,Z)

∑

u

QU(u)
∑

v

QV|U(v|u)
∑

z

WZ(z|u, v) log
WZ(z|u, v)1−ρW̃Z(z|u)ρ

W
Z
(z|v)

= max
W̃Z∈W(U,Z)

min
WZ∈W(U×V,Z)

∑

u

QU(u)
∑

v

QV|U(v|u)
∑

z

WZ(z|u, v) log
WZ(z|u, v)1−ρW̃Z(z|u)ρ

W
Z
(z|v)

(311)

=(1− ρ) max
W̃Z∈W(U,Z)

∑

u

QU (u)
∑

v

QV|U(v|u) min
P̃Z∈P(Z)

∑

z

P̃Z(z) log
P̃Z(z)

W
Z
(z|v)

1
1−ρ W̃Z(z|u)

−ρ
1−ρ

(312)

= − (1− ρ) min
W̃Z∈W(U,Z)

∑

u

QU(u)
∑

v

QV|U(v|u) log
∑

z

W
Z
(z|v)

1
1−ρ W̃Z(z|u)

−ρ
1−ρ

≥ − (1− ρ) min
W̃Z∈W(U,Z)

∑

u

QU(u) log
∑

v

QV|U(v|u)
∑

z

W
Z
(z|v)

1
1−ρ W̃Z(z|u)

−ρ
1−ρ (313)

= − (1− ρ)
∑

u

QU(u) log min
Q̃Z∈P(Z)

∑

z

(
∑

v

QV|U(v|u)W
Z
(z|v)

1
1−ρ )Q̃Z(z)

−ρ
1−ρ . (314)

The above derivation can be shown in the following way. The equality (311) follows from the minimax theorem [11, Chap.
IV Prop. 2.3] because the function is concave forW̃Z and is convex forWZ. The equality (312) holds because the minimum
is attained withP̃Z(z) = W

Z
(z|v)

1
1−ρ W̃Z(z|u)

−ρ
1−ρ /

∑

z W
Z
(z|v)

1
1−ρ W̃Z(z|u)

−ρ
1−ρ . The inequality (313) follows from the concavity of

x 7→ log x.

where (315) follows from the concavity ofx 7→ log x. The
combination of (314) and (316) yields (269).

The equality in (313) holds if and only if
for an arbitrary fixed u,

∑

z W
Z
(z|v)

1
1−ρ W̃Z(z|u)

−ρ
1−ρ

does not depend on v with W̃Z(z|u) =

(
∑

v QV|U(v|u)W
Z
(z|v)

1
1−ρ )1−ρ/

∑

z(
∑

v QV|U(v|u)W
Z
(z|v)

1
1−ρ )1−ρ,

i.e., the quantity
∑

z W
Z
(z|v)

1
1−ρ (

∑

v QV|U(v|u)W
Z
(z|v)

1
1−ρ )−ρ

does not depend onv for an arbitrary fixedu. The condition
holds when QV|U=u is argminQV

E0(ρ|WZ
,QV) because of

Lemma 68. Further, the equality in (315) holds in this case.
Hence, whenQV|U=u is argminQV

E0(ρ|WZ
,QV), the equality

holds in the inequality (269).

XV. Conclusion

In order to treat the secure multiplex coding with dependent
and non-uniform multiple messages and common messages,
we have generalized resolvability to the case when input
random variable is subject to a non-uniform distribution.
Two kinds of generalization have been given. The first one
(Theorem 14) is a simple extension of Han-Verdú’s channel
resolvability coding [13] with the non-uniform inputs. Thesec-
ond one (Theorem 17) uses randomly chosen affine mapping
satisfying Condition 15 with the non-uniform inputs.

We have constructed two kinds of codes for the above type
of SMC. Similar to BCC in [9], the second construction has
two steps. In the first step, similar to the BCD encoder, we

apply superposition random coding. In the second step, as is
illustrated in Fig. 1, we split the confidential message intothe
private messageB2 and a partB1 of the common message
encoded by the BCD encoder. Employing the second type
of channel resolvability, we have derived a non-asymptotic
formula for the average leaked information under this kind of
code construction. On the other hand, in the first construction,
the confidential message is simply sent as the private message
encoded by the BCD encoder. Hence, it has only one step.
Employing the first type of channel resolvability, we have
derived a non-asymptotic formula for the average leaked
information under this kind of code construction.

For asymptotic treatment for the non-uniform and depen-
dent sources, we have introduced three kinds of asymptotic
conditional uniformity conditions. Then, we have clarified
the relation among three conditions, especially, that two of
them are equivalent. Further, we have shown that these con-
ditions can be satisfied by data compressed by Slepian-Wolf
compression, in the respective senses. Extending the above
formula for the second construction to the asymptotic case,
we have derived the capacity region of SMC defined in
our general setting, in which, the message is allowed to be
dependent and non-uniform while it has to satisfy the weaker
asymptotic conditional uniformity condition. We have shown
the strong security when the the leaked information rate is zero
and the message satisfies the stronger asymptotic conditional
uniformity condition. Using the both formulas, we have also
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derived the exponential decreasing rate of leaked information.
While the first formula gives an upper bound in any case, the
second one gives a better upper bound in some specific cases.

We have also given two kinds of practical constructions for
SMC by using ordinary linear codes. Following our construc-
tions, we can make a code satisfying a required security level.
Further, we have given a universal code for SMC, which does
not depend on the channel. Extending this result, we have
derived a source-channel universal code for BCC, which does
not depend on the channel or the source distribution.
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Appendix A
Inequality between Rényi Entropy and Conditional Rényi

Entropy

In this appendix, we derive a useful inequality between
Rényi entropy and conditional Rényi entropy, which was
used in Subsection VIII-B. For this purpose, we prepare the
following lemma.

Lemma 86:Any two distributionsPXY andQXY overX×Y
satisfy

ψ(ρ|PX,Y‖QX,Y) ≥ 1
1− ρψ(ρ(1− ρ)|PX,Y‖QY|X × PX) (317)

for ρ > 0, where PX is the marginal distribution ofPX,Y

on X, and QY|X is the conditional distribution ofQX|Y on Y
conditioned withX.

When QXY is the uniform distribution,1
ρ
ψ(ρ|PX,Y‖QX,Y) =

log(|X||Y|)−H1+ρ(X,Y) and 1
ρ(1−ρ)ψ(ρ(1−ρ)|PX,Y‖QY|X×PX) =

log |Y| −H1+ρ(1−ρ)(Y|X), which implies the following corollary
of the above lemma as an inequality between Rényi entropy
and conditional Rényi entropy.

Corollary 87: For ρ > 0, arbitrary random variablesX and
Y overX andY satisfy

log(|X||Y|) − H1+ρ(X,Y) ≥ log |Y| − H1+ρ(1−ρ)(Y|X), (318)

which implies

log |X| + H1+ρ(1−ρ)(Y|X) ≥ H1+ρ(X,Y). (319)

Proof of Lemma 86: Applying
Hölder inequality

∑

x PX(x)|A(x)B(x)| ≤
(
∑

x PX(x)|A(x)|
1

1−ρ )1−ρ(
∑

x PX(x)|B(x)|
1
ρ )ρ, to the case

A(x) = PX(x)ρQX(x)−ρ(
∑

y PY|X(y|x)1+ρ(1−ρ)QY|X(y|x)−ρ(1−ρ))
1

1−ρ

and B(x) = PX(x)−ρQX(x)ρ, we obtain the following. In the
following derivation, we employ the above Hölder inequality
in (321), and the Jensen inequality for the convex function
x 7→ x

1
1−ρ in (320), (322), and (323).

e
1

1−ρψ(ρ(1−ρ)|PX,Y‖QY|X×PX)

=(
∑

x

PX(x)
∑

y

PY|X(y|x)1+ρ(1−ρ)QY|X(y|x)−ρ(1−ρ))
1

1−ρ

≤
∑

x

PX(x)(
∑

y

PY|X(y|x)1+ρ(1−ρ)QY|X(y|x)−ρ(1−ρ))
1

1−ρ (320)

=
∑

x

PX(x)

[

(PX(x)ρQX(x)−ρ

·
∑

y

(

PY|X(y|x)1+ρ(1−ρ)QY|X(y|x)−ρ(1−ρ)
)

1
1−ρ

(

PX(x)−ρQX(x)ρ
)

]

≤
[

∑

x

PX(x)PX(x)
ρ

1−ρ QX(x)−
ρ

1−ρ

·
(
∑

y

PY|X(y|x)1+ρ(1−ρ)QY|X(y|x)−ρ(1−ρ)
)

1
(1−ρ)2

]1−ρ

·
(
∑

x

PX(x)PX(x)−1QX(x)
)ρ

(321)

=

[

∑

x

PX(x)PX(x)
ρ

1−ρ QX(x)−
ρ

1−ρ

·
(

∑

y

PY|X(y|x)
(

PY|X(y|x)ρ(1−ρ)QY|X(y|x)−ρ(1−ρ)
)

)
1

(1−ρ)2
]1−ρ

· 1ρ

≤
∑

x

PX(x)PX(x)ρQX(x)−ρ
[

∑

y

PY|X(y|x)
(

PY|X(y|x)ρ(1−ρ)QY|X(y|x)−ρ(1−ρ)
)

]
1

1−ρ

(322)

≤
∑

x

PX(x)PX(x)ρQX(x)−ρ
[

∑

y

PY|X(y|x)
(

PY|X(y|x)ρ(1−ρ)QY|X(y|x)−ρ(1−ρ)
)

1
1−ρ

]

(323)

=
∑

x

PX(x)PX(x)ρQX(x)−ρ
[

∑

y

PY|X(y|x)
(

PY|X(y|x)ρQY|X(y|x)−ρ
)

]

=
∑

x,y

PX,Y(x, y)1+ρQX,Y(x, y)−ρ = eψ(ρ|PX,Y‖QX,Y). (324)
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Appendix B
Existence of Code Required in Theorem 32with ǫ = 0

In this appendix, we show the existence of Slepian-Wolf
data compression code satisfying the condition (107) required
in Theorem 32 withǫ = 0 in the two-terminal and i.i.d. case.
For this purpose, we assume that the random variables (Sn

1,S
n
2)

are subject to then-fold i.i.d. distribution of a given non-
uniform joint distribution ofS1 andS2. For this purpose, we
recall the definition of achievable rate pair for Slepian-Wolf
compression.

Definition 88: A rate pair (R1,R2) is calledachievablewhen
there exists a sequence of encodersϕn = (ϕn

1, ϕ
n
2) (ϕn

i :
Sn

i → {1, . . . , ⌈enRi ⌉}) and decoders ˆϕn (ϕ̂n : {1, . . . , ⌈enR1⌉} ×
{1, . . . , ⌈enR2⌉} → Sn

1 × Sn
2) such that the decoding error

probability ε(ϕn, ϕ̂n) satisfies

lim
n→∞

ε(ϕn, ϕ̂n) = 0. (325)

Then, we prepare the following lemma.
Lemma 89:Let (R1,R2) be a pair of achievable rates for

Slepian-Wolf compression satisfyingR1 + R2 = H(S1,S2).
When the compression rate pair (R1,n,R2,n) behaves asR1,n =

R1 +
c1
nt and R2,n = R2 +

c2
nt with 0 < t < 1/2 and

c1 >, c2 > 0, there exists a sequence of Slepian-Wolf codes
(ϕn, ϕ̂n) = ((ϕn

1, ϕ
n
2), ϕ̂n) for any positive integern such that

ϕn
i is a map fromSn

i to {1, . . . , ⌈enRi,n⌉} for i = 1, 2 and the
decoding error probabilityε(ϕn, ϕ̂n) satisfies

lim inf
n→∞

−n2t−1 logε(ϕn, ϕ̂n)

≥min

(

λ
c2

1

2V(S1)
, λ

c2
2

2V(S2|S1)
,

(1− λ)
c2

2

2V(S2)
, (1− λ)

c2
1

2V(S1|S2)

)

, (326)

where V(S2|S1) :=
∑

s1,s2
PS1,S2(s1, s2)(logPS2|S1(s2|s1) −

H(S2|S1))2 andλ ∈ [0, 1] is the real number satisfying that

(R1,R2) = λ(H(S1),H(S2|S1)) + (1− λ)(H(S1|S2),H(S2)).
(327)

Further, whenR1 = H(S1) and R2 = H(S2|S1) and the
compression rates (R1,n,R2,n) behaves asR1,n = H(S1) +

c1
nt

and R2,n = H(S2|S1) + c2
nt with 0 < t < 1/2 andc1 >, c2 > 0,

there exists a sequence of Slepian-Wolf codes (ϕn, ϕ̂n) such
that the decoding error probabilityε(ϕn, ϕ̂n) satisfies

lim inf
n→∞

−n2t−1 logε(ϕn, ϕ̂n) ≥ min

(

c2
1

2V(S1)
,

c2
2

2V(S2|S1)

)

.

(328)

We will prove Lemma 89 after preparing several lemmas.
Using Lemma 89, we make a Slepian-Wolf compression
whose compressed data satisfies the SACU condition. Let
(R1,R2) be a pair of achievable rates for Slepian-Wolf com-
pression satisfyingR1+R2 = H(S1,S2). Then, letϕn = (ϕn

1, ϕ
n
2)

and ϕ̂n be the Slepian-Wolf encoders and the Slepian-Wolf
decoder given in Lemma 89 with the case ofc1 = R1c
and c2 = R2c. We choose the integermn := ⌊ n

1+ c
nt
⌋ =

⌊ R1n
R1+R1

c
nt
⌋ = ⌊ R2n

R2+R2
c
nt
⌋ = ⌊R1n

R1,n
⌋ = ⌊R2n

R2,n
⌋ for 0 < t < 1

2
and c > 0. Then, we obtain the Slepian-Wolf encoders

ϕ
mn
i : Smn

i → {1, . . . , ⌈enRi⌉} and the Slepian-Wolf decoder
ϕ̂mn : {1, . . . , ⌈enR1⌉} × {1, . . . , ⌈enR2⌉} → Smn

1 × Smn
2 . Us-

ing the code, we define the Slepian-Wolf encodersϕn
i,u :

Smn
i → {1, . . . , ⌈enRi ⌉} and the Slepian-Wolf decoder ˆϕn

u :
{1, . . . , ⌈enR1⌉} × {1, . . . , ⌈enR2⌉} → Smn

1 × S
mn

2 by

ϕn
i,u(smn) := ϕmn

i (smn) (329)

ϕ̂n
u(x1, x2) := ϕ̂mn(x1, x2). (330)

Then, due to Lemma 89, sincemn(R1 + R1
c
nt ) = nR1 and

mn(R2 + R2
c
nt ) = nR2, the code ((ϕn

1,u, ϕ
n
2,u), ϕ̂n

u) satisfies the
condition (107) in Theorem 32 withǫ = 0. Theorem 32 guar-
antees that the compressed data satisfies the SACU condition.

Now, in order to show Lemma 89, we prepare several
lemmas.

Lemma 90 ([36], [37], [38]): For a given compression rate
R2 > 0, there exists a pair of the encoderϕn and the decoder
ϕ̂n of the random variableSn

2 with the side informationSn
1

such that the decoding error probabilityε(ϕn, ϕ̂n) satisfies

ε(ϕn, ϕ̂n) ≤ e−n(ρR2−E0(−ρ|S2|S1)) (331)

for any ρ ∈ (0, 1], where

E0(ρ|S2|S1) := log
∑

s1

(
∑

s2

PS1,S2(s1, s2)
1

1−ρ )1−ρ. (332)

Note that when there is no side information, we have

E0(−ρ|S2) = ρH 1
1+ρ

(S2). (333)

Lemma 91:The quantityE0(−ρ|S2|S1) has the expansion

E0(−ρ|S2|S1) = ρH(S2|S1) +
ρ2

2
V(S2|S1) (334)

with small ρ. In particular, the quantityρH 1
1+ρ

(S1) has the
expansion

ρH 1
1+ρ

(S1) = ρH(S1) +
ρ2

2
V(S1) (335)

with small ρ andV(S1) :=
∑

s1
PS1(s1)(logPS1(s1) − H(S1))2.

Proof: Take the Taylor expansion ofeE0(ρ|S2|S1) as

eE0(−ρ|S2|S1)

=1+ ρH(S2|S1)

+
ρ2

2

∑

s1,s2

PS1,S2(s1, s2)(logPS2|S1(s2|s1))2 + o(ρ2). (336)

Taking the logarithm, we obtain (334).
Lemma 92:Let (R1,R2) belong to the Slepian-Wolf com-

pression region of (Sn
1,S

n
2). We choose the ratesR′1, R′2, R′′1 ,

andR′′2 and the real numberλ ∈ [0, 1] such that

(R1,R2) = λ(R′1,R
′
2) + (1− λ)(R′′1 ,R

′′
2 ). (337)

Then, there exists a pair of the Slepian-Wolf encoderϕn

and the decoder ˆϕn such that the decoding error probability
ε(ϕn, ϕ̂n) satisfies

ε(ϕn, ϕ̂n)

≤ inf
ρ∈(0,1]

e
−λn(ρR′1−ρH 1

1+ρ
(S1))
+ inf

ρ∈(0,1]
e−λn(ρR′2−E0(−ρ|S2|S1))

+ inf
ρ∈(0,1]

e−(1−λ)n(ρR′′1−E0(−ρ|S1|S2)) + inf
ρ∈(0,1]

e
−(1−λ)n(ρR′′2−ρH 1

1+ρ
(S2))

,

(338)
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Also, there exists a pair of the Slepian-Wolf encoderϕn and the
decoder ˆϕn such that the decoding error probabilityε(ϕn, ϕ̂n)
satisfies

ε(ϕn, ϕ̂n)

≤ inf
ρ∈(0,1]

e
−n(ρR1−ρH 1

1+ρ
(S1))
+ inf
ρ∈(0,1]

e−n(ρR2−E0(−ρ|S2|S1)), . (339)

Proof: First, we show the existence of a sequence of codes
satisfying (339). We apply the usual data compression forSn

2,
and the data compression given in Lemma 90 forSn

1. The
decoder is given by combination of the respective decoders.
Since the decoding error probability is bounded by the sum
of the decoding error probabilities ofSn

1 and Sn
2, we obtain

(339).
Next, we show the existence of a sequence of codes satis-

fying (338). We dividen symbols into two parts,λn symbols
and (1− λ)n symbols. We apply the construction given in the
previous paragraph with the rates (R′1,R

′
2) to the first part,

and apply the same construction with the rates (R′′1 ,R
′′
2 ) to

the second part. Due to Lemma 90, the decoding error proba-

bility of the first part is less than infρ∈(0,1] e
−λn(ρR′1−ρH 1

1+ρ
(S1))
+

infρ∈(0,1] e−λn(ρR′2−E0(−ρ|S2|S1)), and the decoding error probability
of the second part is less than infρ∈(0,1] e−(1−λ)n(ρR′′1−E0(−ρ|S1|S2))+

infρ∈(0,1] e
−(1−λ)n(ρR′′2−ρH 1

1+ρ
(S2))

. Then, we obtain (338).

Proof of Lemma 89: First, we consider the case whenR1 =

H(S1) andR2 = H(S2|S1). SinceR1,n = H(S1)+
c1
nt andR2,n :=

H(S2|S1) +
c2
nt , we can show that

lim
n→∞
−n2t−1 log inf

ρ∈(0,1]
e
−n(ρR1,n−ρH 1

1+ρ
(S1))
=

c2
1

2V(S1)
(340)

lim
n→∞
−n2t−1 log inf

ρ∈(0,1]
e−n(ρR2,n−E0(−ρ|S2|S1)) =

c2
2

2V(S2|S1)
. (341)

Since the proof of (340) is similar to those of (341), we show
only (340). Whenρ is sufficiently small, due to Lemma 91,
we have

ρR1,n − ρH 1
1+ρ

(S1) � ρ
c1

nt
− ρ

2

2
V(S1)

= − V(S1)
2

(ρ − c1

V(S1)nt
)2 +

c2
1

2V(S1)n2t
. (342)

Hence, infρ∈(0,1] e
−n(ρR′1,n−ρH 1

1+ρ
(S1))
� e

−n
c2
1

2V(S1)n2t , which implies
(340). Then, we apply the evaluation (339) for the decoding
error probability in Lemma 92 to the case whenR1, R2 are
R1,n, R2,n. Combining the relations (340) and (341), we obtain
(328).

Next, we show the general case. We chooseR′1,n := H(S1)+
c1
nt , R′2,n := H(S2|S1)+ c2

nt , R′′1,n := H(S1|S2)+ c1
nt , R′′2,n := H(S2)+

c2
nt . Then, we obtain

(R1,n,R2,n) = λ(R′1,n,R
′
2,n) + (1− λ)(R′′1,n,R

′′
2,n). (343)

Then, similar to (340) and (341), we can show that

lim
n→∞
−n2t−1 log inf

ρ∈(0,1]
e
−λn(ρR′1,n−ρH 1

1+ρ
(S1))
= λ

c2
1

2V(S1)
(344)

lim
n→∞
−n2t−1 log inf

ρ∈(0,1]
e−λn(ρR′2,n−E0(−ρ|S2|S1)) = λ

c2
2

2V(S2|S1)
(345)

lim
n→∞
−n2t−1 log inf

ρ∈(0,1]
e−(1−λ)n(ρR′′1,n−E0(−ρ|S1|S2)) = (1− λ)

c2
2

2V(S2)
(346)

lim
n→∞
−n2t−1 log inf

ρ∈(0,1]
e
−(1−λ)n(ρR′′2,n−ρH 1

1+ρ
(S2))
= (1− λ)

c2
1

2V(S1|S2)
.

(347)

We apply the evaluation (338) for the decoding error proba-
bility in Lemma 92 to the case whenR′1, R′2, R′′1 , R′′2 , areR′1,n,
R′2,n, R′′1,n, R′′2,n. Combining the relations (344), (345), (346)
and (347), we obtain (326).

Appendix C
Equivalence between the SWACU Condition and theWACU

Condition

In Subsection VIII-A, we have introduced three asymptotic
conditional uniformity conditions. The aim of this appendix is
to show the equivalence between the SWACU condition and
the WACU condition, which was used in our proof of Theorem
37.

Lemma 93:Let An be a random variable on the setAn with
the cardinalityenR andBn be another random variable for any
positive intern. Then, the relation

lim
n→∞

1
n

H(An|Bn) = R (348)

holds, if and only if

lim
n→∞

1
n

H1+α/n(An|Bn) = R (349)

for anyα > 0.
Lemma 93 will be shown after Lemma 94, which is used in

the proof of Lemma 93. Thanks to Lemma 93, we can replace
the WACU condition (99) by the SWACU condition (100).
Indeed, in order to apply our results in Section VII to the
proof of Theorem 37, we need evaluation conditional Rényi
entropy instead of conditional entropy, as is discussed around
(122). Lemma 93 provides the evaluation of conditional Rényi
entropy (349) from the evaluation of conditional entropy (348).
Hence, Lemma 93 is useful for the application of our results
in Section VII to the asymptotic setting.

Lemma 94:Let A be a random variable on the setA with
the cardinality M and B be another random variable. For
arbitrary ǫ1 > 0 and 1≥ ǫ2 > 0, we define the subset of
joint distributions forA and B as

PA|B
ǫ1,ǫ2,M

:= {PA,B|PA,B{(a, b)| − logPA|B(a|b) ≤ log M − ǫ1} ≤ ǫ2}.
(350)
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Then,

max
PA,B∈PA|B

ǫ1,ǫ2,M

H(A|B) ≤ log M − ǫ2(e−ǫ1 − 1+ ǫ1) (351)

min
PA,B∈PA|B

ǫ1,ǫ2,M

H1+ρ(A|B) ≥ − 1
ρ

log((1− ǫ2)
eρǫ1

Mρ
+ ǫ2). (352)

Here, since the regionPA|B
ǫ1,ǫ2,M

is compact, the above maximum
and the above minimum exist.

Proof of Lemma 94: For an arbitrary integerk, we define
the set

PA
ǫ1,ǫ2,M,k

:=

{

PA

∣

∣

∣

∣

∣

∣

PA{a| − logPA(a) ≤ log M − ǫ1} ≤ ǫ2,
|{a| − logPA(a) ≤ log M − ǫ1}| = k

}

PA
ǫ1,ǫ2,M := {PA|PA{a| − logPA(a) ≤ log M − ǫ1} ≤ ǫ2},

and define the function

f (x) := ǫ2(log x− logǫ2) + (1− ǫ2)(log(M − x) − log(1− ǫ2))

for ǫ2 ∈ (0, 1). The setPA
ǫ1,ǫ2,M,k

is a non-empty set only when
the integerk belongs to [0, ǫ2Me−ǫ1]. Under the above choice
of k, we have

max
PA∈PA

ǫ1,ǫ2,M,k

H(A) = f (k)

and

max
PA∈PA

ǫ1,ǫ2,M

H(A) = max
k∈[0,ǫ2Me−ǫ1 ]

f (k),

wherek is restricted to an integer in the maximum. Taking the
derivative, we have

f ′(x) =
ǫ2

x
− 1− ǫ2

M − x
,

which is positive whenx < Mǫ2. Hence,

max
PA∈PA

ǫ1,ǫ2,M

H(A)

≤ f (ǫ2Me−ǫ1)

=ǫ2(log M − ǫ1) + (1− ǫ2)(log M+log(1−ǫ2e−ǫ1) − log(1−ǫ2))

= log M − ǫ2ǫ1 + (1− ǫ2) log[1+
ǫ2(1− e−ǫ1)

1− ǫ2
]

≤ log M − ǫ2ǫ1 + (1− ǫ2)
ǫ2(1− e−ǫ1)

1− ǫ2
= log M − ǫ2(e−ǫ1 − 1+ ǫ1).

Since logM − ǫ2(e−ǫ1 − 1+ ǫ1) is an affine function ofǫ2, we
obtain (351).

On the other hand, using the setΩ := {a| − logPA(a) ≤
log M − ǫ1}, we have

max
PA∈PA

ǫ1,ǫ2,M

e−ρH1+ρ(A) =
∑

a∈Ωc

(PA(a))1+ρ +
∑

a∈Ω
(PA(a))1+ρ

≤(1− ǫ2)
eρǫ1

Mρ
+ ǫ

1+ρ
2 ≤ (1− ǫ2)

eρǫ1

Mρ
+ ǫ2.

Since (1− ǫ2) eρǫ1
Mρ + ǫ2 is a linear function ofǫ2, we obtain

max
PA|B∈PA|B

ǫ1,ǫ2,M

e−ρH1+ρ(A|B) ≤ (1− ǫ2)
eρǫ1

Mρ
+ ǫ2,

which implies (352).

Proof of Lemma 93: Since (349) implies (348), we only
show (349) from (348). For an arbitrary small numberǫ > 0,
we define the probability

δn := PAn,Bn{(a, b)| − 1
n

logPAn|Bn(a|b) ≤ R− ǫ}.

Applying Eq. (351) of Lemma 94 to the case whenǫ1 = nǫ
and ǫ2 = δn, we obtain

H(An|Bn) ≤ nR− δn(e−nǫ − 1+ nǫ).

That is,

δn ≤
R− 1

nH(An|Bn)
e−nǫ−1

n + ǫ
. (353)

Thus, limn→∞ δn = 0. Hence, Eq. (352) of Lemma 94 guaran-
tees that

H1+α/n(An|Bn) ≥ −
n
α

log((1− δn)eα(ǫ−R) + δn). (354)

Thus,

lim inf
n→∞

1
n

H1+α/n(An|Bn) ≥ lim inf
n→∞

− 1
α

log((1− δn)eα(ǫ−R) + δn)

=R− ǫ.

Sinceǫ > 0 is arbitrary,

lim inf
n→∞

1
n

H1+α/n(An|Bn) ≥ R.

Since the cardinality ofAn is enR, we have1
nH1+α/n(An|Bn) ≤

R. Hence,

lim
n→∞

1
n

H1+α/n(An|Bn) = R.

Combining relation (5), we obtain the desired argument.

Appendix D
Extension to general measurable spaces

A. Information quantities

Our results has been obtained based on discrete sets, i.e.,
sets with countable elements. Here, we explain how our results
are extended to the case of measurable spaces, which contain
continuous sets. Firstly, we state the assumptions used in
Appendix D. As before,X is the input alphabet of the channel
andZ is the output alphabet to Eve. In general, a channel from
X to Z is described as a collection of conditional probability
measuresµZ|X=x onZ for all inputsx ∈ X, andµZ|X=x might not
have a probability density for somex ∈ X. In this appendix,
however, we assume that there exists a finite measureνZ on
Z such that for allx ∈ X, µZ|X=x is absolutely continuous
with respectνZ. In the followingPZ|X(·|x) denotes the Radon-
Nikodym derivativedµZ|X=x/dνZ. We also make the same
assumption on the channel from Alice to Bob.

In addition, as before, we consider probability measuresη

on U × V × X. We assume that there exist finite mesures
νU on U, νV on V and νX on X such thatη is absolutely
continuous with respect to the product measureνU × νV × νX.
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Under this assumption we can denote byPUVX the Radon-
Nikodym derivativedη/d(νU × νV × νX), and marginal prob-
ability densitiesPU , etc. and conditional probability densities
PV|U , etc. can be computed fromPUVX. In the following,dv,
dz, etc. denotedνV, dνZ, etc. assumed above.

Firstly, we give the definition of the information quantities
in the general measurable case. AlthoughE0(ρ|PZ|V,PV) and
E0(ρ|PZ|V,PV|U ,PU) are defined for distributionsPV and PU

and conditional distributionsPZ|V and PV|U with discrete sets
in (11), they can be defined as follows even whenZ, V, and
U are measurable spaces in the sense of [47, Theorem 32.2].
Then, we define

E0(ρ|PZ|V,PV)

:= log
∫

Z
dz

(
∫

V
dvPV(v)(PZ|V(z|v)1/(1−ρ))

)1−ρ
, (355)

E0(ρ|PZ|V,PV|U ,PU)

:= log
∫

U
du

∫

Z
dz

(∫

V
dvPV|U(v|u)(PZ|V(z|v)1/(1−ρ))

)1−ρ
.

The above definition formally depends on the choices of the
measuresdz, du, dv. But in the next paragraph we will explain
the above values are independent of the choice of measures
dz, du, dv.

Now, suppose that we choose other measuresdz′, du′, dv′

so that the measuresdz′, du′, dv′ and the original measures
dz, du, dv are absolutely continuous with respect to each other,
respectively. As is shown in the left hand side of [43, p.7740],
even when these information quantities are defined with the
measuresdz′, du′, dv′, these information quantities have the
same values as those defined with the original measures
dz, du, dv. So, these information quantities do not depend on
the choice of the measuresdz, du, dv whenever the measures
and the original measures are absolutely continuous with
respect to each other.

When Q and P are probability density functions on a
measurable spaceZ with respect to a common finite measure
dz, ψ(ρ|Q‖P) is defined as

ψ(ρ|Q‖P) := log
∫

Z
dzQ(z)1+ρP(z)−ρ.

Further,ψ(ρ|PZ|V,PV) andψ(ρ|PZ|V,PV|U ,PU) are defined as
follows.

ψ(ρ|PZ|V,PV|U ,PU)

= log
∫

V
dvPV(v)

∫

Z
dzPZ|V(z|v)1+ρPZ(z)−ρ, (356)

ψ(ρ|PZ|V,PV|U ,PU)

= log
∫

U
duPU(u)

∫

V
dvPV|U(v|u)

∫

Z
dzPZ|V(z|v)1+ρPZ|U(z|u)−ρ.

(357)

Similar to the information quantitiesE0(ρ|PZ|V,PV) and
E0(ρ|PZ|V,PV|U ,PU), we can show that the information quanti-
tiesψ(ρ|PZ|V,PV|U ,PU) andψ(ρ|PZ|V,PV|U ,PU) do not depend
on the choice of the measuresdz, du, dv whenever the mea-
sures and the original measures are absolutely continuous with
respect to each other.

The above quantities can be defined for a channel. When
the input and output systemsZ andV are measurable spaces,
a channelW is defined as a set of probability density functions
{Wv}v∈V on Z. That is, substitutingW into a conditional
probability density functionPZ|V as PZ|V(z|v) = Wv(z), we
define the above information quantities for the channelW. So,
when the channelsWZ and WY satisfy the above conditions,
the code construction and security evaluation given in the
next subsection work well. Note that the above generalization
works well even whenV is a finite set because a finite set is
also a measurable space.

B. Code construction and security evaluation

Under the above extension, our results can be extended as
follows. Firstly, we focus on Theorem 14. Assume thatW is
a channel from a measurable spaceX to a measurable space
Y and thatA is a discrete random variable on a finite setA
subject to the distributionPA. Theorem 14 holds even under
this assumption, whose proof can be done by replacing

∑

x

and
∑

y by
∫

X dx and
∫

Y dy. Theorem 17 and Corollary 18
also hold with a slightly different extension. Assume thatW
is a channel from a finite-dimensional vector spaceX over
Fq to a measurable spaceY and thatA is a discrete random
variable on a finite-dimensional vector spaceA overFq subject
to PA. Then, Theorem 17 and Corollary 18 hold even under
this assumption, whose proof can be done by replacing

∑

y by
∫

Y dy.
Now, we consider the extension of Code Ensemble 1.

Assume thatX = V, Y, Z, andU are measurable, and that
the private and common messagesSp and Sc take values in
finite sets. Then, we can apply Code Ensemble 1 to the above
situation. Hence, Lemma 12 holds even under this assumption
because the proof by Kaspi and Merhav [21, Section II] is still
valid under this assumption.

Next, we proceed to the extension of Code Ensemble 2.
Assume thatX, Y, Z, V, andU are measurable, and that
all messagesS0,S1, . . . ,ST take values in finite sets. Then,
we can apply Code Ensemble 2 to the above situation. Hence,
Theorem 20 holds even under this assumption because (57)
holds under this assumption.

Then, we extend the contents of Section VII. We consider
the extension of Code Ensemble 3. Assume thatX, Y, Z, V,
andU are measurable, and thatB1 andB2 are finite Abelian
groups. In this case, all messagesS0,S1, . . . ,ST take values in
finite sets. Then, we can apply Code Ensemble 3 to the above
situation. First, notice that Theorem 12 still holds in the above
situation. Hence, Lemma 21 and Theorem 22 hold even under
this assumption, whose proof can be done by applying the
extension of Theorems 12 and 17. Lemma 24 holds with a
slightly different extension. That is, Lemma 24 holds when
the setsU andV are finite set, i.e., only the setZ is allowed
to be a general measurable space. This is because we need to
consider the cardinalities of the subsets inU andV. Since
the contents of Sections V and VI are extended to the case of
measurable spaces in the above way, the contents of Sections
VIII and IX also can be extended to the case of measurable
spaces in the same way.
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In Section XI, we have proposed several types of practi-
cal code constructions. Code Constructions 6 and 7 can be
applied to the channelPZ|V from a measurable spaceV to a
measurable spaceZ. In these constructions, since the codeϕp

is given, we can restrict the setV to the finite subset given
as the image of the mapϕp. Hence, we can apply Lemma 24
with the above extension in this context.

When the above discussion is applied to the wire-tap chan-
nel model, we obtain an extension of existing results to the
case of the asymptotic uniform dummy message. That is, we
consider the case with no common messages andT = 2 when
S1 corresponds to the message to be secretly sent to Bob,
and S2 does to the dummy message makingS1 ambiguous
to Eve. For a given rateR1 of secret message and a given
rateR2 of dummy message, the RHS of (115) coincides with
the Gallager exponents, the RHS of (155) coincides with the
RHS of (59) in [15], and the RHS of (157) coincides with the
exponents of the RHS of (15) in [17].

C. Gaussian case

Finally, when the channelPYZ|X is a degraded Gaussian
channel as (358), we demonstrate how the strong security can
be shown for the wire-tap channel, which is given as the case
with no common messages andT = 2 whenS1 corresponds to
the messageS to be secretly sent to Bob, andS2 does to the
dummy messageA makingS ambiguous to Eve. Assume that
X, Y, andZ are the set of real numbers. So, we choose the
measuresdx, dy, anddz to be the Lebesgue measure. Then,
we assume that the conditional probability density functions
corresponding to the channels are

PY|X(y|x) :=
1
√

2πv1
e−

(y−x)2

2v1 , PZ|X(z|x) :=
1
√

2πv2
e−

(z−x)2

2v2 ,

(358)

where v2 > v1. Since the channel is degraded, we do not
need to introduce random variablesU andV. Now, we choose

the probability density functionPX to be PX(x) = 1√
2πv3

e−
x2

2v3 .
Then,

E0(ρ|PZ|X,PX) =
ρ

2
log(1+

v3

(1− ρ)v2
), (359)

ψ(ρ|PZ|X=x,PZ) =
(1+ ρ)ρ

2(v2 + (1+ ρ)v3)
x2 − ρ

2
logv2

+
1+ ρ

2
log(v2 + v3) − 1

2
log(v2 + (1+ ρ)v3),

(360)

ψ(ρ|PZ|X,PX) =
1+ ρ

2
log(v2 + v3)

− 1
2

log(v2 + (1− ρ2)v3) − ρ
2

logv2

=
ρ

2
log(1+

v3

v2
) − 1

2
log(1− v3

v2 + v3
ρ2).

(361)

Hereafter, we denote the average leaked information under
our codeΦ by I (S; E)[Φ]. Assume that we use the Gaussian
channelPYZ|X n times, and that the rates of secret messageS
and dummy messageA areR1 andR2, respectively. When the

dummy messageA has the Rényi entropyH1+ρ(A), Theorem
20 guarantees that

EΦ[eρI (S;E)] ≤1+ e−ρH1+ρ+n( ρ2 log(1+
v3
v2

)− 1
2 log(1− v3

v2+v3
ρ2)) (362)

i.e.,

EΦ[ I (S; E)] ≤1
ρ

e−ρH1+ρ+n( ρ2 log(1+
v3
v2

)− 1
2 log(1− v3

v2+v3
ρ2)) (363)

for ρ ∈ (0, 1]. Since there is no common messages, the
cardinality of B1 is 1 in Code Ensemble 3. Theorem 22
guarantees that

EΦ[eρI (S;E)[Φ] ] ≤1+ e−ρH1+ρ(A)+n ρ

2 log(1+
v3

(1−ρ)v2
)
, (364)

i.e.,

EΦ[ I (S; E)] ≤1
ρ

e−ρH1+ρ(A)+n ρ

2 log(1+
v3

(1−ρ)v2
) (365)

for ρ ∈ (0, 1]. When the dummy messageA is uniform, (365)
and (363) are simplified as follows

EΦ[ I (S; E)] ≤1
ρ

e−n(ρR2−( ρ2 log(1+
v3
v2

)− 1
2 log(1− v3

v2+v3
ρ2)))

. (366)

EΦ[ I (S; E)] ≤1
ρ

e−n(ρR2− ρ

2 log(1+
v3

(1−ρ)v2
))
. (367)

Since limρ→0
1
ρ
( ρ2 log(1+ v3

(1−ρ)v2
)) = limρ→0

1
ρ
( ρ2 log(1+ v3

v2
) −

1
2 log(1− v3

v2+v3
ρ2)) = 1

2 log(1+ v3

v2
), both (366) and (367) yield

the strong security whenR2 >
1
2 log(1+ v3

v2
).
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