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Abstract—The secure multiplex coding (SMC) is a technique leakage rate of the secret message to Eve, which is measured
to remove rate loss in the coding for wire-tap channels and py the conditional entropy of the secret message given Eve'’s
broadcast channels with confidential messages caused by thereceived signal[[9]. They called their generalized problesn
inclusion of random bits into transmitted signals. SMC replaces the broadcast ch | with fidential h fi
the random bits by other meaningful secret messages, and e “?a cast channel with confidential messages, errea_ €
a collection of secret messages serves as the random bits t@bbreviated as BCC. The secrecy of messages over the wire-
hide the rest of messages. In the previous researches, mple tap channel and the BCC is realized by including meaningless
secret messages were assumed to have independent and umifor random variable, which is called the dummy message, into
distributions, which is difficult to be ensured in practice. We Alice’s transmitted signal. This decreases the infornmtite.

remove this restrictive assumption by a generalization of he . L .
channel resolvability technique. In order to get rid of this information rate loss, Yamamoto

We also give practical construction techniques for SMC by €t al. [22] proposed the secure multiplex coding, hereafter
using an arbitrary given error-correcting code as an ingredent, abbreviated as SMC, as a generalization of the wire-tap

and channel-universal coding of SMC. By using the same channel coding. The SMC can be used, for example, in the

principle as the channel-universal SMC, we give coding forlte ¢4} 15\ying case. When a company treats a collection of peaton

broadcast channel with confidential messages universal tooth . ' o .

channel and source distributions. |pformat|on, |t_|s reqmred to keep the_ secrecy of the respec

tive personal information. However, it may not be required

'to keep the secrecy of the relation among several personal
information. For example, when all of personal information
are subject to the uniform distribution of the same length
bit sequence, the secrecy of their exclusive OR may not
be required. Consider the case when the sender Alice sends

A. Overview the collection of T persons’ personal informatio8g, ..., St

Recently, the security of personal information is demand&é the channel partially leaked to Eve. It is required that
much more. The wire-tap model is a typical secure messdfie receiver Bob can decode all &,...,Sy, and that
transmission model with the presence of an eavesdropgeye cannot obtain any information of the respective persona
Specially, there are the legitimate sender called Alicey thhformation. In order to keep the secrecy of the message
legitimate receiver called Bob, and the eavesdropper E{m Eve, Yamamoto et al. [22] proposed to use the remaining
There is also a noisy broadcast channel from Alice to Bob afitformationSy, ..., Si_1, Si.1,..., St as the dummy message
Eve. Alice wants to send secret messages reliably to Bob dfd the messages;. Then, they realized the secrecy of the
secretly from Eve. This problem was first formulated by WyndnessageS; without loss of the information rate. This type
[35]. Csiszar and Kérner generalized Wyner's original peai of coding problem is called the SMC. It is known that the
to include common messages from Alice to both Bob ar@Pplication of the channel resolvabilify [13] yields thewsgty
Eve, and determined the optimal information rate tupleef tof the wire-tap channel model [1L5]. Hence, employing this

secret message and the common message, and the informatigthod, Yamamoto et al. [22] proved the security of SMC.
On the other hand, sinc®y,...,Si_1, Si;1,..., St are per-
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information source. C. Asymptotic Conditional Uniformity

The reader might also conceive that this problem could |, Subsection[VIIIA, in order to characterize the
be solved by a straightforward combination of the codingnqomness and the, dependence of the messages
for intrinsic randomness_[33] and that for the original S€5,....,S1,Si1.....S7 on the other messagesS;
cure multiplex coding[[22],[[27]. We emphasize that this igsympotically, we introduce three asymptotic conditiona

false. We cannot recover the original secret messages fror[]rﬁ‘formity conditions. Then. we can characterize
codeword generated by an intrinsic randomness encodes anghat a conditional  distribution of the messages

new technique must be deployed to remove the independegce Si1,Sii1.....St has a similar performance to

and uniform assumption on the multiple secret messages. Q& conditionally uniform distribution when we apply SMC.
of the main contributions of this paper is to remove thafe symmarize the relations among those conditions as
assumption. In order to treat the non-uniform and depe”defrﬁeoreml__zp. In particular, in Append[X] C, we show that
case, we need a generalization of the channel resolvabilily, iniroduced asymptotic conditional uniformity conditis
Hence, this paper also studies a generalization of the ehang.o equivalent. Hence, we essentially have twéfednt
resolvability problem([183],[[15]. _.conditional uniformity conditions, namely, the weaker and
Even after we solve the above problem by a generalizaligil, stronger asymptotic conditional uniformity conditon
of the channel resolvability problem, the securitySpflepends In Subsection VIIB, we give siicient conditions for
on the randomness and the dependence of the remaining giepian-wolf compression so that the compressed data
messagessl,...,Si__l, Si+1_""’ST on S. Th|s depen_dence satisfies these asymptotic conditional uniformity cormais.
causes ano_ther fiiculty in the asym_ptot|c formulation of £ e stationary ergodic sources, we show the existenae of
SMC. That is, we need to characterize the randomness uence of Slepian-Wolf codes whose compressed data satis
the dependence in the asymptotic setting. For this purpese, o5 the weaker asymptotic conditional uniformity conditio
introduce several kinds of asymptotic conditional uniftéiym (Theoren{3D and RemaFk31). Also for the i.i.d. sources, we
conditions and study their properties. In addition to s, g4y the existence of a sequence of Slepian-Wolf codes whose
the case when the channel is unknown, we also treat unlveréd?\]lnpressed data satisfies the stronger asymptotic comalitio

coding for the secure multiplex coding [22]. Further, as Qniformity conditions (Theorefi32 and RemarH 33).
byproduct, we obtain source-channel universal codingtier t

broadcast channel with confidential messag@és [9]. We divide ) )
the introductory section to six subsections. D. Secure Multiplex Coding

Finally, we should explain the assumptions for our probabil Here, we explain the detail of our contributions to SMC.
ity spaces. In the main body, we assume that all of probgbilins is explained above, we have to realize the security of
spaces are finite sets. However, our result can be extendgavhen the remaining messag®s.. ., Si_1, Sis1...., St are
to the case of measurable spaces except for the contentsidh uniform and are dependent on the messagdn order
Sectiond VIII-A,[XIl, and[XIll. This generalization conta to solve this problem, we employ our generalized channel
the case of continuous sets. In Appenfix D, we summarizesolvability coding in Theorens 14 ahd]17. Then, we can
how to generalize our results to the case of measurablespacenstruct coding for a wire-tap channel that can ensure the
As a byproduct, we show the strong security for the Gaussigacrecy of message against the eavesdropper Eve when the

channel. dummy message used by the encoder is non-uniform and
o N statistically dependent on the secret message that has to be
B. Generalization of the Channel Resolvability kept secret from Eve. We apply our generalized channel

For a given channeW with input alphabetX and output resolvability coding to the above SMC case. Hence, we can
alphabetY, and given information sourc¥ on X, Han and remove the independence and uniform assumption on the
Verda [13] considered to find a codinfy: A — X and a multiple secret messages while the original paper [22] by
random variableA such that the distributions aiV(f(A)) is Yamamoto et al. and the previous pager| [27] by the present
close toW(X) with respect to the variational distance or th@uthors assumed the independence and the uniformity of the
normalized divergence, and evaluated the minimum reswsiutimultiple secret messages.
of A to make the variational distance or the normalized Indeed, Yamamoto et al_[22] treated only the secrecy of
divergence asymptotically zero. In their problem formidlat each messag®;, and did not evaluate the information leakage
one can choose the randomnésssed to simulate the channelof multiple messages;,, ..., Sj, to Eve, and the present
output distribution. authors analyzed such information leakagéin [27]. Thegmes

In this paper, we shall consider the situation in which we agaithors also generalized coding(in][27] so that Alice’s elgco
given a channélV, an information sourc&, and randomness can support the common mess&yeo both Bob and Eve. The
A and asked to find codinf: A — X such thaW(f(A)) is as present authors also characterized the achievable infarma
close as possible td/(X) with respect to unnormalized diver-leakage rate i [27]. Those enhancements are retainedsin thi
gence. We shall study how clo¥¥(f(A)) can be tow(X) in paper.

Theorem§ T4 arld 17 in Sectibn]VI. Hence, this problem can beln Section[VIl, we shall give two code constructions for
regarded as a generalization of channel resolvability imeza SMC. The first construction given in Subsection VII-B is a
this problem contains the original channel resolvabilisyaa simple application of channel resolvability coding in Theo
special case in the above sense. [I4. Although it achieves the capacity region when there is no



common message, it is in§icient to fully prove the capacity principle as Sectioi_XIl and[[19]. The exponent given in

region. In Subsectiol VIIIC, to overcome this defect, w8ection[XIl is also greater than that given in our earlier

propose the second construction given in Thedrem 17, whiploceeding papef [19].

is based on another type of the channel resolvability cading In Section[XIM, we compare the exponent of leaked in-

By using these constructions, we shall evaluate the degodfermation given in Sections_XlIl and_XlIl and that given in

error probability and the mutual information to Eve in Seti Subsectiof_X-B. As a result, we show that the exponent in

[VITlin single-shot setting in the sense of [34]. Sections Xl and_XIll is greater than one of exponents in
In Section[IX we formulate the capacity region of SMCSubsectioi X=B, which is the same as that[in] [19]. We also

analyze the asymptotic performance of two constructiorderive the equality condition.

and prove that the second construction achieves the cgpacit

region of SMC. T_he cap.a.city regipn is.defined. pase(_JI on the Organization of This Paper

weaker asymptotic conditional uniformity condition given . . L .

Definition [38. In Sectio X, we shall prove that the mutual The outhnel of this Paper 1S given as follows. First, we

information to Eve converges to zero when the normaliz&dcPare notq‘uons us_ed n th|§_paper " Sgcmn II..Second,

mutual information to Eve converges to zero under the stﬂ)n%e prepare information quantities and their propertiesduse

: s . o . o this paper in SectiofIll. Then, we review the formulation
asymptotic conditional uniformity given in Definitidn P8h& F Lo L
convergence is so-called the strong security [28]. In Sciixge and existing results of BCC in Subsection IV-A. We give its

: : ._reformulation for the dependent and non-uniform messages
[X=B] we also derive the exponent of the mutual informatiolt . . . S ;
P se in Subsection IVAB. This new formulation is essential

to Eve. The relation between our results and the papér [22].0% . , .
explained as[{125). in the later discussion for SMC with dependent and non-

Sectior Xl addresses a more practical issue. In Thebrém form multiple messages. In Subsection -A, we review the
. rmulation and existing results of BCD as a special case of
of Section[VIl, we show that we can have an upper bour@

: : . C, which will be used for our codes of SMC. In Subsection
of mutual information between multiple secret messages we review Komer and Sqarr&[P4]'s result for universal
Eve’s received signal, by attaching randomly chosen gro 9

: S itién] , code for BCD, which will be used for our construction of
homomorphlsms satisfying Conqm . 15 &my given error- L,niversal codes for SMC and BCC. In Sectiod VI, we proceed
correcting code for channels with single sender and sm%e eneralization of channel resolvability. which is a kdea

E y, which is a kdga

receiver or the broadcast channel with degraded messagle S . :
[23]. However, the upper bound in Theordml 22 becom(?s?r he paper and is used for codes of SMC and universal codes

difficult to be computed when the error-correcting code is not SMC and BCC. Sectiol Ml introduces SMC with the

given by the standard random coding in information theorsmgle's‘hOt setting. SectidWI! introduces three asatipt

In Section[X], we shall construct more practical codes bXondmonal uniformity conditions. Based on these codisi,

. . . . . gectionsEDKEXII treats SMC with the asymptotic setting, as
combining the construction of Sectién VIl with an arb|trar)|1S explained in Subsection D, In Sectign XIl, combining

given error-correcting code. Under these codes, we shadl g : : . 5 —
two upper bounds on the leaked mutual information that czE\fr]we discussion of Subsectiohis ¥-A ahd VII-D, we propose

be computed easily in practice. Sectiod X! gives enhancemé‘rq!versal cod_lng for SMC by using Kérner and Sgatra [24]'s
of our earlier proceeding papér]i8]. universal coding for BCD. In Sectidn X]Il, we propose source

channel universal coding for BCC. Appendices are devoted
for several additionally required discussions for asyripto
E. Universal Coding conditional uniformity conditions. This paper containsotw

Universal coding is construction of encoder and decod®PeS. Of descnpuc;nsh fofr |3a§h topics, 1.e., th? ;mglet—s(?o
that do not use the statistical knowledge on the underlyifsSCriPtion[[34] and the-fold description. Formulations an

information system (usually channel gad source) [3]. In any coding theorems are given with the single-shot descrip

Section[XI] we shall give a construction of SMC universaﬁion' 'I_'he_ definitions of capacity regions are given in thiold

to channel. The basic idea in SectionXIl is to combine th%escnpnon.

construction in Sectiof_ Ml with the universal coding using

constant-type codes for the broadcast channel with dedrade II. Noration N This Paper

messages sets (BCD) ih[24], while in Sectidns]Vll-X the X denotes the channel input alphabet aWd(resp. Z)

superposition random coding in_[23] is used as their erradenotes the channel output alphabet to Bob (resp. Eve). We

correcting mechanism. The exponent given in Sediion XIl sssume thak, YV, and Z are finite unless otherwise stated.

better than that given in our earlier proceeding paper [19]. We denote the conditional probability of the channel to Bob
Channel-universal coding for BCC had not been studiethd Eve byPyzx. Then, taking the marginal distribution, we

before [19], and coding for BCC can be regarded as a spealahote the conditional probability of the channel to Bolse

case of SMC while Muramatsu et al._[29] treat channeEve) by Py (resp.Pzx). Also, we denote the distribution of

universal coding for wire-tap channel independently ofl [1® the random variabl& by Py.

SectionXI] and[[19] we consider SMC universal to channel, We denote the uniform distribution a@ by Ppixo. When

but its universality to the source is not considered. In iBact Q is a subset oiX x Y, Pmixq is @ joint distribution for the

[XIIMIwe give a coding for BCC universal to both channetandom variableX andY. We denote the marginal distribution

and source. Its channel-universality is realized by theesamf Pnx o for the random variablX and the random variabhé



by Pxmixo and Pymixa, respectively. Further, the conditionalfor v € <V andy € Y. Given a probability transition matrix

distribution on the random variab} conditioned to the other
random variableY is denoted byPxymixq, i-€.,

Pmix,Q(X, y)

Pymix.a(Y) @)

PX\Y,mix,Q(X|y) = PXIY:y,mix,Q(X) =

W e W(U, V), we definef oW € W(U, X) by

(FoW)(Xu) = > W(viu)

ve f-1(x)

®3)

for xe X andu € U. As a special case, given a distributiQn

for x € X andy € Y. We denote the support of the distributiorPn V. f o Q is defined as a distribution oX in the following

Px by suppPx). Given a joint distributionPyxy, we define
the distributionPyxy—y on X by Pxjy-y(X) := Pxyy(Xly). When

we need to treat another distribution of the same random

variablesX andY, we denote it byQxy. This is because it is
crucial to consider several distributions on the same gritiha

space in this papﬂrln this case, we denote the marginag)u
distribution overX by Qx, and the conditional distribution

by Qxy. We also define the distributio@xy-y on X by
Qxiy=y(X) = Qxv(Xly).

When we have to treat more than two distributionson

way.

(FoQM:= > QW

ve f-1(x)

(4)

Remember thatW, denotes the output distribution on the
tput alphabety with input x. Then, Wy is the random
variable taking its values on the output distributions #n
Given a real valued functiog of distributions onY, we regard
0(Wx) as a random variable taking the valg@\y) with the
probability Px(x). Hence, we obtain

Y, and Z, the above notation is not useful. In this case, we

consider the sefP(X) of probability distributions onX or
the setW(X, ) of conditional probability distributions from

Exg(Wx) = > Px(x)9(Vk),

X to Y, which are mathematically equivalent to probability

transition matrices. When the output alphabet of the chlan

is given as a product s&f x Z, the alphabet is written by
W(X, YxZ). For any probability transition matriw/ € ‘W(X,

H@ereEx denotes the expectation concernidg

Given two random variableX and Y, for a real valued
function h on X x Y, we regardExyh(X,Y) as a random

Y x Z), W, expresses the output distribution when the inplfgiable taking the valu€&xy-yh(X,y) with the probability

X is x. When we focus on the random variablewe use the
notationW;! (y) := 3 ,cz Wi(Y, 2).

In the following, we treat an arbitrary probability transit
matrix W € W(X, V). Given a subse® c X, we define the
restrictionW|qg € W(Q, V) by Wla(yIX) = W(Y|X) for x € Q

andy € Y. We often employ another probability transition . X ,
n performances in the single-shot setting[34] when theicdps

matrix = from vV to X. We define the probability transitio
matrix fromV to Y by Wo Z,(y) := Y yex Wk(Y)ZE(X) for v e

V andy € Y. When a probability distributio® on X is given,
we define the distribution o/ by WoP(y) := ¥ yex Wx(Y)P(X)

for y e Y. When we need the joint distribution oXix Y, we

use the notatioltVx P(x,y) := Wy(y)P(x) for x € X andy € Y

as [6]. Similarly, when a distributioRxy on X x V is given,
we use the notatioW x Pxy(V, X,y) = Wy(y)Pxv(X, V) for

veV, xeX, andye V.

When a functionf : ¥V — X is given and a random
variableV taking the values inV obeys the distributiorPy,
we can define the random varialfl@/) taking the values iX.
The random variabld (V) takes the valuex with probability
Zveiix Pv(v). We also use the same symbbl: V — X
to denote the probability transition matrix frofi¥ to X, in
which, the output value is deterministically determinedtty
input. Then,W o f is a stochastic mappin® to Y/, and we
have

(Wo f)(yv) = WYIf(V)) )

1Recently, the meta converse theorem was introduced fothémene! coding
in [48], [0]. In the meta converse theorem, it is the key pam optimize
the choice of the distribution on the output alphabet and wgally denote
the distribution diferent from the marginal distribution b®[49], [50]. Also,
another recent paper [61] adopts this notation for optingizhe distribution.
This kind notation becomes more popular, recently.

Py(y). In order to identify an information quantity, e.g.,
mutual informationl (X;Y) and the Shannon entropy(X),

we sometimes need to specify the distributi®rof interest.

In such a case, we use the notatid(X; Y)[P] and H(X)[P]

for identifying what distribution is considered.

Further, in this paper, we discuss our codes and their

tions do not require their asymptotic discussions. Howewer
several parts, we need to treafold memoryless extensions
when we discuss their asymptotic performances. Hence, we
need to prepare the notations forfold independent and
identical distributions and-fold memoryless extensions of
given channels. For a given probability distributio@sand
Py of the random variableX on X, we denote thein-fold
independent and identical distributions @ and Pj.
When we consider the random variablesXdh even if they
do not obey the independent and identical distributionsgere
note the random variables b§' and denote their distributions
by Px». However, when we consider a general sequence of
random variables those take values not in the productéets
but in general setX,,, we denote the random variables Ky
and denote their distributions byy,. Similarly, for a given
probability transition matrice8V and Py;x from X to Y, we
denote theim-fold memoryless extensions W" and PQlX.
We also denote the set of positive real number&byand
denote the set of non-negative real numbers:by.

I1l. | NFORMATION QUANTITIES

In this paper, to evaluate the secrecy and the decoding error
probabilities, we employ several information quantiti€sr
distributionsPa on A and Pag on A x B, we define Rényi



entropy and conditional Rényi entropy

1
Hup (A) i= == log ) Pa(@)"™”
a

1
Hiy (AIB) = =~ log > Po(b)Pap-n(a)*.
ab

Hi(A) and Hy(A/B) are defined to beH(A) and H(AB).

Then, we have several important properties for Rényi en-

tropy and conditional Rényi entropy. Singer pHi,(A),
p +— pHy,(AB) are concave and lip,opH1.,(A)
lim,—o00H1:,(AIB) = 0, we have

Hip(A) < Hip(A),  Hipy (AB) < Hi,(AIB)
for0<p<p'.

®)

Similarly, as is shown in[[17], we have the following 2)

proposition for the function
w(eIQIP) :=log >’ Q@) P(a) . (6)

Proposition 1: [17] The function y(o|Q||P) satisfies the
following properties:

1)  p = y(plQlP) is convex.
(2)  ¢(0QIP) = 0.
3) &£ (IQIP),=o = D(QIP).
(4)  The relations
_ P@ . w(lQIP)
D(QIP) = Z P(a)log g = lim) ===
Slﬁ(,DIQIIF’) @
P

hold for 0< A2.
For a given channalV from X to , we define the function
[17]:
(8)

When the channel is written &%, ¥(o|W, P) can be rewritten
as follows.

Y(plPzL, PL) = |OQZ Z PLOPzL(@O)™P2(2)*.  (9)
z t

Y(pIW, Px) = Iogz Py (X) g/ CMHIWePx)

This quantity is extended as
Y(pIPzv, Pyu, Pu)
= |OQZ Pu(u) Z Pviu(VIu) Z Pz (2V)* Pz (2u) .
u \ z

(10)
for conditional distributionszy, Pyy and a distributiorPy.
Also, we introduce the following functions as in[17].

Eo(plPzL, P)

1-p
= |OQZ (Z PL(f)(PZ|L(Z|5)l/(lp))] ,
z t
Eo(olPzv, Pvu, Pu)

1-p
= Iogz Py (u) Z [Z Pvu(VIU)(Pzw(ZIV)l/(l_p))) - (12)

(11)

2ltem (4) was not directly given i [17]. However, it can be wioby the
combination of other items.

Observe thak, is essentially Gallager's functioly [12]. As
can be easily shown, these quantities satisfy the adgitast

follows[17], [12].

Y(oIP, P) = ny(olPzL, PL) (13)
w(elPZy, Py PO) = né(plPzy, Pyu, Pu) (14)
Eo(plPZ.. P') = nEo(olPzL, PL) (15)
Eo(elPZy» Pyus PU) = NEo(olPzv, Pyiu, Pu)  (16)

Then, we have the following proposition.

Proposition 2: [12], [17] We have the following five items
for fixed O< p < 1 and fixed conditional distributioR .

(1) The functionp — Eo(polPzL, PL) is convex for a
given distributionP_[12].
expEo(olPzL, PL)) is concave with respect 18 [17,
Lemma 1].

(3)  The relationy(p|Pz, PL) < Eo(olPzL, PL), i.e.,
expiy(olPzL, PL)) < expEo(olPzL, PL))  (17)
holds for any distributiorP_ of L[17, (16)].
(4)  The relation
Pz, P Eo(p|PzL, P
im Y(plPzL, PL) _lim o(pIPzL, PL) _ 1z L)
p—0 P p—0 P
(18)

holds for a distributiorP [17, Section 111][12].

Lemma 3:When two distributiongQ, and P_ of L satisfy
PL(¢) < C1Q(¢) for any ¢ with given constant€; > 1 and
0<p <1, we have

expEo(olPzL, Pr)) < C1expEololPzL, QL))

Proof: (I9) can be shown as follows.

(19)

1-p
expEo(pIPzL, PL)) = Z [Z PL(f)(PZL(ZIf)l/(lp))]
z t
1-p
<> [Z c1QL(f)(PZL(zw)1/<1-P>))
z t

1-p
<C;” (Z QL(f)(PZL(ZIf)l/(l_p))]
z 4

=C; 7 expEo(pIPzL, Q) < C1expEololPzL, Qu))-

[ |
As a generalization of Item (4) of Propositibh 2, we have
the following lemma.
Lemma 4:The relation

. Pzv, Py, P
im Y (olPzv, Pvu, Pu) _
o

im Eo(olPzv, Pyvju. Pu)

li
p—0 p—0 P

=1(Z; V|U) (20)

holds for a distributiorPy, and conditional distributionBzy
and PV|U-
Proof: Due to [I18), we have

/WParPauPo) = %" By ()1 + pl (Z; VIU = U) + 0(p)

=1+ pl(Z;VIU) + o(p).



Taking the logarithm, we obtain lig, w = whereD(W Y|WY|Qyy) is defined folWY, WY € W(V, Y) as
[(Z;V|U). Similarly, we can show Iir,;LoM = DOV WY o U VDY WY 31
Gz . (WIW1Qu) = 2 Quuu IDMRLIMG).  (31)
Considering the Legendre transforms, we define o
In the above definitionW” andW? are treated as elements of

EY(R Pzvu) := maxpR - y(plPzyv, Pyu. Pu). (21) W(UxV,Y) andW(U x V, Z), respectively.

O<p<1
E5(R Pzyvu) (g‘gp«’i)pr— Eo(oIPzv, Py, Pu). (22)

IV. Broapcast CHANNELS WiTH CONFIDENTIAL MESSAGES

Taking the maximum, we define A. Review of Existing Results
. First, we give a formulation of broadcast channels with
E Pzv) := maxEq(o|Pzyv, P o .
omax(pIPzy) PVX o(plPzv. Pv) confidential messages with single shot setting[34]. Letdli
. , .
=logmax > (> Py(V)Pzy(zv)T)1* Bob, and Eve be as defined in SectibiXIdenotes the channel
Py zz: z\,: | input alphabet an@/ (resp.Z) denotes the channel output
= maxEo(pIPzv, Py, Pu). (23) @alphabet to Bob (resp. Eve). We assume #ia¥/, andZ are
Pvu finite unless otherwise stated.
Lemma 5: The functionp — EqmadolPzv) is convex. We denote the conditional probability of the channel to

Proof: Given convex functionsk — fi(x), the function BOD (resp. Eve) byPyx (resp.Pzx). The purpose of broad-
X — max fi(x) is also convex. Hence, the item (1) ofc@st channels with confidential messages is the following.
PrOpOSitiorf\IIZ\/z/ieldS the desired argument. m (1) Alice reliably sends the common messageto Bob

Next. for € W(V, Z), we consider a dierent infor- and Eve. (2) Alice confidentially and reliably sends the
mation’quantityﬁ" T secret messag8 to Bob. Here, we denote the sets of the

common messages and the secret message€ baynd S.

E'(R,V_\/ZXQVU) Our code is given by Alice’s stochastic encodgr from
_ - S x & to X, Bob’s deterministic decodep, : YV —» Sx &
::wzeq/:;?(blzrlvz)(D(W W I1Quu) and Eve’s deterministic decoder : Z — &. The triple

¢ = (pa, vp, @e) is called a code for broadcast channels with
+[R—1(V; ZIU)[W” x Qvu]]+)- (24) confidential messages. Then, when the common mesSage
N and the secret messadge obey the distributionPsg, the
Due to Item (3) of Propositionl 2, we have performance is evaluated by the following quantities. (hp T

o T ~Ey o T sizes of the sets of the common messages and the secret
E (R’WZ xQuu) 2 E (R’WZ x Quu)- (25) messages, i.e&| and|S|. (2) Bob’s decoding error probability

In this paper, we will derive the following relations: Po[Pvix, ¢, Psg], which is the probability R(S, E) # ¢u(Y)}
under the distributionRyx o ¢a) X Psg. (3) Eve’s decoding
E(RW x Quu) >EB(R W x Quu) (26) error probability Pe[Pyjx. ¢, Psel, which is the probability

PHE # ¢e(Z)} under the distribution®zx oga) xPse. (4) Eve’s

and uncertainty H(S|Z)[Pzx, a, Psg], Which is the conditional
min E'(R W — minE&(R W entropyH(SlZ) under the di.stributionl-‘(z|xogoa)>< PsEe. Since
Qv (RW xQv) Q (RW > Q) these quantities are functions of the channel and the code,
= maxpR - Eo(p|Wz) (27) Such dependencies are denoted by the symBak [, Psel
pel0,1] in the above notation. Instead &f(S|Z)[Pzx, ¢a, Psg], we
as TheoremE 87 aridI80 in Sectlon X1V, respectively. sometimes treat (5) leaked informatitfS; Z)[Pzx, ¢a, Psl,
Similar to E', we introduce the following quantities for Which is the mutual informatio(S; Z) under the distribution
WY € W(V, ) andWZ € W(V, Z) (Pzix © ¢a) X Pse. -
A . We sometimes need to evaluate the error probability
EP(Ry, Re, WY x Quu) when S andor E is fixed. In such a case, we denote

it by Po[Pyix,¢, Pgs=s], Po[Pyx.¢.S = sSE = €], and

= min([l (VU; V)WY x Quv] - Ry — Rel+, Pe[Pyix, ¢, Psjge]-

) ~ v Now, we review the asymptotic formulation of broadcast
[V YIUIWE X Quv] = Rp]*)’ (28) channels with confidential messages with théold discrete
E°(Rp, Re, W' x Quu) memoryless extension when both of the common messages
- - DO WY Eb WY and the secret messages are subject tc_) unn_‘orm distritsution
erq??«b'l(v,w (WAWTIQuu) + EX(Rp Re, WEx Quu), The setS, denotes the set of the confidential message and
n does the set of the common message when the bloc
(29) &, d h f th h he block
E°(R., W2 x Qu) coding of lengthn is used. We shall define the achievability
. . o . =7 3 of a rate triple Ry, Re, Ry), whereRy and R; are the rates
'_wzeq{/w,rlq;,z) DWAIWIIQuu) + [HU; 2)IW" x Quu] - Rel+ of the common and confidential messages, &adis the

(30) entropy rate conditioned with Eve’s random variable for the



confidential message. For the notational convenience, we digterministic decodgpe,, : Z" — &, such that
the base of logarithm, including one used in entropy and

mutual information, to the base of natural logarithm. rml, Pb[PQ\X"P”’ Prmix.s,.0] = 0

Definition 6: [9] The rate triple Ry, Re, Ro) is said to be lim Pe[P7x, ¢n, Pmix.s,.&,] = 0
achievablefor the information leakage rate criterion if the I(Snf)Zo?‘)[P” P 1
following condition holds. The size of the sets of the common lim sup—— Yo #an TmxSnénl
and confidential messages &fg| = € and|S,| = €. The oo n

common and confidential messages are subject to the uniforfe capacity region with the leaked information criteridn o
and independent distribution of, and &,. There exists a the BCC is the closure of the achievable rate triples.
sequence of the codes, = (gan, ¢bn, gen), i.€., Alice’s  The capacity region with the leaked information criterion
stochastic encoder, » from Spx & to X", Bob'’s deterministic of the BCC is characterized as a corollary of Theofém 7.
decoderpyp : Y" — S x &y and Eve’s deterministic decoder  Corollary 9: The capacity region with the leaked informa-
@en : Z" — &, such that tion criterion of the BCC is given by the set Bf, R; andR,,

. n such that there exists a Markov chdain—V — X — YZand
r!'_rl]o Pb[Pyp(, ®n, Pmix,Sn,Sn] =0

. Ri+Ry < I(V;YIU)+min[l(U;Y), I(U;2)],
lim Pe[Pg‘x#Pn, Pmix.sp.e.] = 0 ' ( ) [( L1 )
e Ry < min[l(U;Y),1(U;2)],
lim inf H(Sn|Z )[PYX;]‘Pa,n, Pmix,Sn,Sn] S R > R- [| (V; Y|U) a |(V; Z|U)]+,
n—oo

. . . . . ... where K], := max(x,0). That is, wherR; + Ry < I(V; Y|U) +
The capacity region with the information leakage rate dote min[l(U:Y), 1(U:2)] and Ry < min[I(U;Y), 1(U;Z)], there
of the BCC is the closure of the achievable rate triples fer th..ic 4 séque,nce of the codes = (('pan’ %n'%n') ia

information leakage rate critgrion. . ) , . Alice’s stochastic encodep,,, from S, x &, to X", Bob’s
Theorem 7:[9] The capacity region with the information yaterministic decodernn : Y" — Sp x & and Eve's

leakage rate criterion of the BCC is given by the seR&fR1  yeterministic decodep n’: Z" = &, such that

andRe such that there exists a Markov chdih— V — X — &

YZ and lim Po[PYx, ¢n, Prixs,.e.] = 0
Ri+Ry < I(V;YU)+min[l(U;Y),1(U;Z2)], lim Pe[PZx, ¢n, Pmix.s,.é.] = 0
Ro < min[l(U;Y), 1(U;2)], and
Re < I(V;Y|U)-1(V;Z|U), imsup 1(Sni Z) [Py Pan: Prixsnén]
R < R oo n

As described in[[25]U can be regarded as the common mes- <R = HViYIV) = 1(V; ZIU)]-

sage,V the combination of the common and the confidential
messages, and the transmitted signal. B. Our Approach to BCC

In this paper, we treat the source-channel universal codingNext, we consider the BCC with the single-shot setting
for BCC, in which, we guarantee the security independeritly when the common and confidential messages do not obey
the choice of the source distribution. While the lower bounthe uniform and independent distributions Shand &, i.e.,
of the above conditional entropM(Sn|Z“)[P$‘x,goan, Ps.e,] the confidential messag® may have a correlation with the
depends on the the source distributi®g, g,, we can find common messageB. When the confidential message is
an upper bound of mutual information that does not depeirdlependent of the common messages
on the source distribution, as is shown in Secfion IXIIl. As
a preparation for the above source-channel universal godin 1(S:2) <1(5;2B) = I(S; ZIE) + I (S; ) = 1 (S; ZIE),
for BCC, we propose another type of capacity region for 1(S;Z) = H(S) - H(S|Z) > H(SIE) - H(S|2)
the uniform and independent distributed case while the non=H(S|E) - (H(S|ZE) + I(S; E|2)) = I(S; ZIE) - I(S; E|2)
unlfor-m.f.;md dependent ca§e will be treated. Iatter. >1(S; ZIE) - H(EIZ) > I(S: ZIE) - H(El¢s(2)).

Definition 8: The rate triple Ry, R, Ry) is said to be
achievabldor the leaked information criterion if the following When the error probability goes to zero, Fano’s inequality
conditions hold. In this notatiorR;, R, and Ry denote the guarantees that(E|Z) goes to zero. Hencel(S;Z) and
rates of the confidential message, the leaked informatioa, d (S; ZIE) have the same asymptotic behaviors. So, even if we
the common message, respectively. The size of the setsreplacel (S; Z) by I(S; Z|E) in Definition[8, we obtain the same
the common and confidential messages |[&¢ = €™ and capacity region. However, when the confidential message
ISnl = €R, and the common and confidential messages atependent on the common messages$(S; Z) and(S; Z|E)
subject to the uniform and independent distributiongyrand have the dierent asymptotic behavior as follows. Since
_8n. The_re ’exists a sequence of the codgs (pan, Yo.n, Yen), 1(S;2) = 1(S: ZE) - I(S: E[2)
i.e., Alice’s stochastic encodep,, from Sp X &, to X",
Bob’s deterministic decodepy,, : Y" — Sp x &, and Eve’s 21(S; E) - H(EIZ) = I(S; E) - H(Elpe(2)),



I(S;Z) is asymptotically lower bounded by(S;E) when B For an arbitrary elemeng; € S¢, O(s) is the random
the error probability goes to zero. That is, when the mutuariable taking values ifi{ and is subject to the distribution
information| (S; E) is positive, the mutual informatiol(S; Z) Py, and is independent ab.(s.) with s, # & € Sc. For an
cannot go to zero because Eve can infer the secret messagpitrary element, € Sp, ®p(s, ) is the random variable
from the common message. Thus, it is not suitable to treaking values iV, is independent oby(s;, 5,) with s #
the mutual informatiori (S; Z) as leaked information frord. and depends on the random variable(s). Under the
Hence, we adopt the conditional mutual informati¢8; Z|[E) condition®¢(s:) = u, the random variabl®p(s;, ) is subject
as leaked information frord. to the distributionPy,y-, and is conditionally independent of
Remark 10:Csiszar and Kérnef [9] treated BCC with non®p(S, Sy) With s, # s,. Bob’s decoderd, and Eve’s decoder
uniform information source. However, their formulation sva®e are defined as the maximum likelihood decoders. The
different from our formulation in the following point. In theirquartet o, @c, ®p, @) is abbreviated ad.
formulation, they fixed a correlated non-uniform distribat Here, the all values of the random variabldg(s;)}s, and
Pse on S x & and assumed that the information soug {Pp(, $H)ls.5, are disclosed to all players prior to the real
and E,, obey itsn-fold independent and identical distributioncommunication because these random variables decides our
Pge- In addition to this, their code depends on the distributiorode.
Pse. However, in our formulation, we do not assume the Lemma 12:[21, Theorem 1 and Section 1V] The above
independent and identical distributed condition for the-diensemble of code® satisfies the following inequalities.
tribution Ps, g, of the information sourc&, and E,. This is

because information source is not given as an independdnt an EoPo[Pyy, @] <|SplPeFotrIPav-Puu.Pu)

identical distribution or known, in general. Hence, we gtad T (IScllSo|) eBe#IPyuv-Puv) (33)
universal code independent of the distributfes) g, of sources Eo(—z\qu Pu)

in SectionXIIl. Thus, our code is useful for a realistic case EaPe[Pzv, @] <IScl’e o (34)

where EO(_,O|PZ|U, Pu) and Eo(—plpy‘v, PV|U, Pu) are defined
in (I1) and [IP).

Here, we should remark that Inequalities](33) dnd (34) hold
for any distribution over the messages because the proof by
[21] does not make any assumption for the distribution over

Next, we review the broadcast channel with degraded méke messages.
sage sets (abbreviated as BCD) considered by Kdrner andue to Lemmd_ 12, Markov inequality guarantees that
Marton [23] in the single-shot setting. If we sBt = 0 in
the BCC, the secrecy requirement is removed from BCC, a ) 1 PIQ, < 1
the coding problem is equivalent to BCD. In this problem, 2’ 2
we treat the private messa@g taking values inS, and the O = PolPyiv, @, Prmix.s,.s.] > 2/Spl*€Fol-rIPvv-Puu.Pu)
common messag8; taking values inS.. 1= +2(IScllSp )P eFol=pIPruv-Puy)

Corollary 11: [23] The capacity region of the BCD is given ¢, := {Pe[Pzv. @, Prix.s,.s.] > 2| S|P eFo-rIPzu-Pu)y
by the pair of the ratdr; of common message and the rate
Ry of private message such that there exists a Markov ch&@fhce PrQ, U Q,) < 1, we have PQS N QS) > 0. That is, for
U-V=X-YZand an arbitrary distributiorPs, s, over the messages, there exists

a codeyp such that

V. Broapcast CHANNELS WITH DEGRADED MESSAGE SETS

A. Capacity Region

Re < min[I(U;Y),I(U;2)],
R.+R, < I(V;Y|U)+min[I(U;Y),1(U;2)]. Po[Pyv. ¢, Ps,.s.] <2|Sp e #PnvPuu.Pu)
+ 2(Sell Sp|)peEo(—p\PY|u,v,Pu.v) (35)
Note that the statement of our Corolldry] 11 is the same as Pe[Pzv. ¢, Ps,.s.] <2|S,[PFolpIPzu.Pu) (36)

[9, Corollary 5] and diterent from [28]. However, as is stated
in [9. Remark 5], the equivalence between the two statemeR(gw, we apply the above inequalities to thefold discrete

can be easily shown by some algebra. memoryless extension. Then, for an arbitrary distribution
Here, we only consider a sequence of codes that achieygs . over the messages, there exists a sequence of codes
the rate pair R, Rp) satisfying on With the rate of common messaBe and the rate of private
Re <min[I(U;Y),1(U; 2)], Ry < I(V; Y|U). (32) 3A code ensemble and a code construction play a distinguissiedn this

paper because they give a procedure to make our codes. Heacgve them

- - _ serial numbers that are separate from other environmeh&réms, Lemmas,
For a given Markov chai) — V = X — YZ, we construct and Remarks. Although both of a code ensemble and a codeectitst give

an ensemble of codes by the following random coding Witiprocedure for our code, the procedure by a code ensemidssiptactical,
the single-shot setting, which is mathematically equivate and that by a code construction is more practical. To clatifg difference,

: : we assigned one of two environments to them dependentlyeaf pinoperties.
the construction by Kaspi and Merh21]. Code constructions will be given in SectignlX!| after code eznbles are

Code Ensemble 1 (Kaspi and Merhav][21, Section I]): presented in the previous sections.



messageR, of lengthn such that distribution W o Px with a suitable choice o\ in the sense
_ that the variational distance goes to zero. In the singt#-sh
Pb[P?(\V"P“’ PSpnSal <2eMRrEolpIPav- P Po) setting, the problem can be converted to the following way:
+ 26N PR+RI+EaolPruv-Puv) —(37)  How well the given average output distributiovio Py can be
] <2@Re+Eo(-IPzu.Py)), (38) approximated by the output distributido A oPrix 2 When the
cardinality|A| is less than a given amount. In this paper, we
The above values go to zero under the condition (32), becagsgisider this approximation problem when the mesgadees
the condition[(3R) guarantees that both exponents arei\®sitot obey the uniform distributiomix.4. Since our problem
with sufficiently smallp > 0. can be regarded as a generalization of channel resolyabilit
Indeed, Kaspi and Merhal/ [21] derived a better bound thanis called general channel resolvability, which is es@ént
(34) by employing four parameters even in the single-sh@jr the secure multiplex coding with common messages with

setting. The bound (34) can be seen as a special case of Kaglendent and non-uniform secret messages.
and Merhav [[21]'s bound. Since the bourdd](34) can derive
the capacity region of SMC, we only use the bound (34) for Now, we apply the random coding on the alphaBewith

Pe[ IDElV’ n, PSanvSQn

simplicity. the probability distributionPa. For an arbitrarya € A, A(a)
is the random variable subject to the distributiBp on X.
B. Universal Code for BCD Fora # a € A, A(a) is independent ofA(a’). Then, the

B . ) random encodeA := {A(a)}aca gives the map fromA to X
Korner and Sgarrd_[24] provided the code that attains the 5, , A@).

above rate region universally for source and channel in the

following sense. Then, we have the following theorem:
Theorem 13:[24] For an arbitrary real number> 0, there

exists an integeN satisfying the following. For an arbitrary ~Theorem 14 (General channel resolvabilityyor

integern > N, a given joint typeQyy of lengthn on the sets p € (0, 1], we have

V x U, and rateR, andR., there exists a code, with the

ratesR, and R such that

Po[W", ¥n, Spn = Spn, Sen = Sen)

< eXp(—n[Eb(Rp, R, WY % QU,V) _ E]), (39) EAeoD(WvoPAHWon) < EAeLp(p\WvoPAHWoPX)
Pe[W", ¢n, Spn = Spn, Sen = Senl <1 + e PH (A g eIWPy)
< exp-n[E%(Re, W2 x Quy) — €]) (40)

for any sy € Spn, S € Scn @and anyW € W(V, Yx 2Z),
where the exponents®(Ry, R, WY x Quy) and E¥(Re, W x
Qu.) are defined in[{29) and(B0), respectively.
By applying Jensen inequality to the function — €,
VI. GeNErRAL CHANNEL RESOLVABILITY Theoren{ 14 yields

In the wire-tap channel model, when the dummy message
obeys the uniform distribution, channel resolvabillty [£2n
be used for guaranteeing the securityl[15]. In this paper,
we consider the security of SMC with non-uniform and
dependent secret messages. For the analysis of this case,g, D(Wo A o Po|Wo Py) < Elog E \ &#PWoAoPAWoPx)
we have to consider the secrecy when the dummy message P
does not necessarily obey the uniform distribution. Hence, <}|og(1+e—pH1+p(A)e¢(p\W,Px))
the security evaluation [15] based on the original channel —p '
resolvability cannot be extended to the security of SMC with
non-uniform and dependent secret messages. Thus, we need
a generalization of channel resolvability. In this sectiore

propose a generalization of channel resolvability in tingls- o ) o )
shot setting. which is non-uniform generalization df 15, Lemma 2]. This

First, we fix a channeW from the alphabett to the theorem will be used for the proof of Theorém 20.

alphabetY. For a fixed distributionPyx on X, we focus
on an encoder\ from the message sefl to the alphabet
X. The purpose of the encoder is approximation of the
average output distributiow/ o Px by the output distribution
with input A(A). The original channel resolvability T13] treats
the minimum asymptotic rate ofA| such that the output
distributionWo A o Prix.4 Can approximate the average output PD(W o Ao PAW o Px) < ¢/(pIW o A o PallW o Px).

Proof: Due to [T), we have



The average of/(WeAPAIWePY) s evaluated as

E , @/ (?IWoASPAIWoPx)

=Ex (D Pa@Wa@)  Wo P)
y a

:EAZ

y
= > > (Er@Pa@Wa@M)Enne(Pa@Waw ()
y a

(D" Pa@Wa@®)( D Pa@)Wa) ) (W o Px)(y)™*

+ ) PA@)Wa@)¥)) (W o P)y) ™)

a'+a

< Z Z(EA(a) PA(a)WA(a) (y)(PA(a)WA(a) (y)
y a

+Ean ), Pa@)Wa@)®)) (W o P)(y) )

a+a

= > > (Er@Pa@Wa@¥)(PA@Wa@(Y)
y a

(41)

+ Y PA@)Wo P)()) (Wo Py)(y) )

a+a

<3 > (Er@Pa@Wa@M(PA@Ws@(®Y) + (W o P)()Y
y a

- (Wo Py)(y)™*) (42)
<2 > ErxaPa@Wa@()
y a
(PA) Wa@ (Y)Y + (W o Px)(y)')(W o Px)(y) " (43)

=3 > Ex@Pa@Wa@®)(L + Pa@ W@y (W o Px)(y) ™)
y a
=1+ > Ex@Pa@" " Wa@®) (W o Px)(y)”
y a

=1+ ) Pa@™"
a y
=1+ (D Pa(a)t)e/ @™,

D P(IW) (W o Px)(y)

In the above derivation[ (#1) follows from the concavity o

X — ¥, [@32) follows from ¥, .. Pa(@) < 1, (43) follows
from the inequality X+ y)* < x° + yr.

Next, in order to reduce the complexity of encoding, w

consider the case wheXi and. A are Abelian groups. We in-
troduce the following condition for the ensemble for injeet
homomorphism$ from A to X.

10

to X is defined by the multiplication a§, : x — xy. Then,
as mentioned in[44, Remark 9], when the random variable
chosen inFx subject to the uniform distribution, the function-
valued random variabldy satisfies Conditiofi 15. To realize
the function-valued random variablg, we need to choose
a finite filed Fo« with efficient multiplication. Constructions
of such a finite filedFx are given in[[45, Appendix D][]46,
Section 7.3.1].

We choose another random varial®dein X that obeys the
uniform distribution onX and is independent of the choice of
F. Then, we define a maprg(a) := F(a) + G and have the
following theorem:

Theorem 17 (Algebraic channel resolvabilitfyinder the
above choice, we obtain

EFGePD(WOAF,GOPAIIWOPmix.x) < EFGe‘//(P|W°AF.G°PAHW°PmiX.X)

<1 + e PHu(A) g (PIWPmixx) (44)

This theorem will be used for the proof of Lemind 21, which
is essential for the proof of Theordml|22.

Proof: We introduce the random variabfg := Arg(a) =
F(@) + G. The random variableZ, is independent of the
choice of F. For @ € A, Arg(@) = F@ - a) + Za.

ince (X] — 1)Erz,Ware@ () = (IX] = DEFWr@-a9z.(Y) <
x Wx(y) = |X|W o Pmix x(y) for ae A andy € Y, we obtain
Eriz.Ware@ () < {Xllif‘lw o Pmixx(y) for a € A andy € Y.
urther, sincd- is injective, we haveA| < |X|, which implies

Condition 15: Let F be a random variable that takes its val-

ues on injecti\ﬂ homomorphisms froreA to X. For arbitrary
elementsx # 0 € X anda # 0 € A, the relationF(a) = x
holds with probability at mos . o
When X and A are vector spaces over a finite fiely,
the set of all injective homomorphisms fras to X satisfies

Condition[15.

aPa(@? > ; > . Hence, sincex — ¥ is concave, we
obtain
1- Pa(a) 1- YaPa(@)? 1-1/1X]
P P < P < L —
D Oy A Gy Gy )

a

(45)

Remark 16:When X and A have the same Abelian group

structure as the vector space over a finite figldvith the the

same dimensiork, these can be regarded as the finite filed

Fa. Fory € Fx, the homomorphisniy, from A to X from A

4The condition of injectivity is not necessarily for Theorf. However,
the injectivity for F will needed in the discussion in Subsection ¥I-C. Henc
to avoid to make so many conditions, we assume the injegtikiire.

Ch

Our proof of Theorenl_14 can be applied to our proof of
Theoren1l7 by replacina\(a), A|A(a), and Px by Z,, F|Za



and Pmix.x. Then, we obtain

Er Getﬁ(p\WOAF.GOPAHWOPmix,A’)

< Z Z(EZ"" PA(a)WAF.G(a) (y)(PA(a)WAF.G(a) v)
y a

11

for any g € X, wherePy(y) := Yy Pmixx(X)Py(X - y).

Proof: Due to Th_eoremljl4L it is enough to show
Y(pIW, Prixx) = ¢(oIPylIPy). SincePy(y) = W o Pmixx(y) =
W o Pixx(X-Yy), we have

, _ e‘p(p‘VV»Pmix.X) — P P . 1+Pﬁ —-P
+Erz, Y Pa@Ware®)) Wo Pria(3)?)  (46) 2 m'x’x(x’; YY) TRYY)
a'+a
_ ) op (v 1.\ P
<37 (Ez,Pa@We, (v)(Pa(@)Wa, () = 2 P09 2 PrO)Pr(x" )
y a X Y e
X _ = ) Pmixx(X) ) Py(Y)""Py(y)™”
|X|| | 1 Z Pa(@)W o Ppix X(Y)) W o Prix x(Y) p) (47) zx: ™ Zy:
a+a _ —
- P +op = — @/ elPvlPy)
<30 3 (Ez Pa@W, 5)(Pa@W, ) 2, POy TR
y a
1-Pa(a |
+ T’;fxfw o P x®)) Wo Prx()) (48)
VII. Secure MucripLEx CopiNG witH CoMMON M ESSAGES:
< Ez Pa(@)W. Pa(@)’ Wz, (y)
Zy“za:( zPA@) za(Y)( A@f Wz, () SINGLE-SHOT SETTING
1-Pa(@,, _ " _ - In this section, we give the formulation of the secure mul-
+ (71 — 1/|X|) W o Prix x(Y) )WO Prixx () ) (49) tiplex coding with common messages. After the formulation,
: E P ()W 1-Pa(d),, we give two kinds of random construction of codes for the
Z Z 2.Pa@Wz,()(( 1- 1/|X|) secure multiplex coding with common messages and evaluate
their performance in the single-shot setting.
+ PA(8) Wz, (Y)W o Pris x(¥) ™))
_Z PA(a)(ll ZA()'"(‘)) A. Formulation and Preparation
/1] In the secure multiplex coding with common messages,
+ ZZEZaPA(a)“PWZa(y)“PWo Pmixx(y) ") Alice sends the common messa§g to Bob and Eve, and
T secret messages,, ..., St to Bob. We do not necessarily
_ Z PAa )(1 PA(a)) assume the uniformity nor independence for the distrilmstio
AT 1/1X| of messageSy, S1, . . ., St. Hence, there might exist statistical
1 1 _ _ correlations among messag&p, Si1,...,St. Even in this
+ Z Pa(@) +pZ Z Px(x)Wx(y)™"W o Pmix x(¥) ) scenario, Alice and Bob can us®,...,Si_1, Sis1,...,ST
@ ) Y pr- as random bits makings; ambiguous to Eve. When we
<1+ (Z Pa(a)")e/ (WPme), (50) focus onS; := (Si;i € I) for a non-empty proper sub-
a

set 7(# 0) ¢ {1,...,T}, the remaining informationSy.
In the above derivation[(#6) follows in the same way aserves as random bits makir; ambiguous to Eve. The
(1), [41) follows from Conditioni15,[(38) follows from messagesSy, Si,...,St are assumed to belong to the sets
YazaPa(@) < 1, (49) follows from the inequalityx(+y)’ < S, Sy,...,St. The setS; x...x St of all secret messages is
X’ +y°. The final inequality follows from[(45). B denoted byS. In order to explain the SMC model without
In the following, we assume that the input alphalles an  S;, we consider the following example. Consider the case
Abelian group, and an action & on the output alphabe¥ whenS,,..., St are personal information f6F persons. That
is given asx -y for x e X andy € Y. A channelW from X s, S; corresponds to the personal information of thth
to Y is regular in the sense of Delsarte-Pilet![10], if there igerson. Assume that it is required only to keep the secrecy of
a probability distributionPy such that the respective personal informati®, ..., St from the third
Wi(y) = Py(X-Y). party. The secrecy of the relation among respective pefrsona
informations is not required. For example, wiey. .., St are
Since a regular channiV satisfies the uniform random bits with the same size, the secrecy of the
D(W o Arg o PAlW o Prixx) = D(W o Arg o PallW o Ppjyy)  SUM S1®...® Sy is not required, where is exclusive OR.
In order to treat this secrecy problem, we give a formulation
for any g,g" € X, we obtain the following corollary. This of the SMC model as follows.
corollary implies that we do not need the additional random The purpose of the coding in the SMC model is to reliably
variableG in the regular channel case. send the messagep, S1,...,St to Bob, and to makeS;
Corollary 18: When the channeW is a regular channel ambiguous to Eve by using the remaining informat®a for
given by a distributiorPy on Y, we obtain several non-empty proper subsgts {1,...,T}). Our code is
Ep e°PWeArgoPalWoPrixx) < E - g (pIWoARgoPAlWoPrix.x) given by Alice’s stochastic encoder, from S x Sp to X,
Bob’s deterministic decodep, : Y — S x Sy and Eve’s

Haep (A) g (oW Prrix,
<1+t Be/l W = (51)  deterministic decodepe : Z — So. The tripleg = (¢a, ¢b, Pe)

=1+e¢ PH1+p(A)e‘//(P|PYHPY)
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S0 51,...,51'

[ multiple ]
common
( ) secret
message
messages
l
randomly chosen
but fixed
isomorphism
F/
l
+ <G
l
(B1, By)
v N
(So, Ba) B,
common messag private message
for BCD encoder for BCD encoder
l l
| Encoder for BCD (broadcast channel with degraded message se |
l l
D(So, B1) ~ Py Dy(So, B1, B2) ~ Py
(not sent, used only
for random selection .
of codeword
Dy(So, By, By)
artificial
channelPy,,
l
physical
| BobjY
channelPyzx
l
Z
Eve

Fig. 1. Communication structure used in Sectibng MIE-XII

is called a code for the secure multiplex coding with commdgve’s uncertaintyH(Sz|Z, So)[Pzx, ¢a, Ps, ]-
messages. Then, the performance is evaluated by the foljowi In the above formulation, we treat the leaked information

qguantities: (1) The sizes of the sets of the common messag@j_;aso)[Ple’%’ Ps, ] for several non-empty proper sub-

and'all of the secret messages, ikSal.[Sul,..-.ISTl- (2) gets7 ¢ {1,...,T). Depending on the situation, we decide
Bob’s decoding error probabilitis[Pyix. ¢, Ps, ], which is the -\ hich non-empty proper subsét is considered. Hence, in

probability P{(So, S1. ..., St) # ¢p(Y)} under the distribution 54 case  we can fix a family of non-empty proper sub-
(Pyix © ¢a) x '_D_S"r with 7~ = {0""’T_}' (3) Eve’'s decoo_ll_ng setsf of {1,...,T} for which we discuss the leaked infor-
error probability Pe[Pzx, ¢, I_DST_], WhICh is the probability mation 1(Sz; ZISo)[Pzx. ¢a Ps,]. For example, in the case
PriSo # ¢e(Z)} under the distributionRzx o ¢a) X Ps;. (4) o the above personal information, we consider the subsets

proper subsef ¢ {1,..., T}, which is the mutual information \yhen we do not specify the family, we treat the leaked in-
[(Sr; Z|So) under the distributionRzx o ¢a) X Ps, . Instead of formation | (Sz; ZISo)[Pzx. ¢a: Ps, ] for all non-empty proper
[(S1; ZISo)[Pzix, ¢a, Ps,], other researchers sometimes tre%tubsetsi of (1....T}. 4

(5) Eve’s uncertaintyH(Sz|Z, So)[Pzx, ¢a, Ps,]. which is ] o .
the conditional entropyH(S7|Z, So) under the distribution This modgl can be regarded as a general|za_1t|on of the wire-
(Pzx o ¢a) x Ps,. However, when we treat the universalit)}ap model in the following way. When there is no common
of our code, leaked informatioh(Sz; Z|So)[Pzx. ¢a, Ps,] is MeSSages andl = 2, there exist only two messagés and
used as criterion for performance of our code. That is, w& in the secure multiplex coding. In the wire-tap channel

adopt leaked informatioh(S;; Z|So)[Pzx. ¢a. Ps, ] rather than model, S; corresponds to the message to be secrgtly sent
to Bob, andS, does to the dummy message makiSg
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ambiguous to Eve. As a special case of our code, a wire-Lemma 19:Any distribution P; on Z and any non-empty
tap code is given by Alice’s stochastic encodgr from proper subsef ¢ {1,..., T} satisfy

81X Sy to X and Bob’s deterministic decodey, : V' — Ss.
Then, the performance is evaluated by the following quiastit

(1) The size of the secret messagel. (2) Bob's decoding €' @S0PavePs] < ghso Pool)2ey Perso (SIS DPzs;—or. 5012

error probability Pp[Pyix, ¢, Ps,,]. (4) Leaked information <\ pg (s0) ) Ps,is,(S7] P (Pzs s, 50-61P2) 56
; < 10 (S71%0) (56)

|(S1: D[Pz ¢a. Psy.. ; ° Z o
In order to guarantee that the leaked information is smal, \" p P Sr|5) e 1Pz =7 So-50.611P2) 57
we employ the method of generalized channel resolvabilit_yz&): SO(SO); s1iso(5r1%) . 57)

given in Sectiof MI. In order to employ this method, we have

to use the random coding method to construct a cpdm

this section, we propose two kinds of random construction fo

our code. For a simple application of TheorEm 14, which is ,

a simple generalization of channel resolvability, we prapoB- First Construction

the first construction in Subsectidn_VII-B. When there is

no common message, this construction achieves the capacitilow, we introduce the first kind of random coding for SMC.

region, as is mentioned in RemarK 39. However, it cannoyg full

achieve the capacity region that will be defined in SedtioBIX  Code Ensemble 2For a given Markov chaitd — V —

when there exists a common messége X — YZ, we give the random codin@; and @, in the same
To resolve this defect, in Subsection VII-C, we propose thgay as Code Ensemblé 1 with, = Sop andSp = S1 X -+ X

second construction, which attains the capacity regions TtS. Similar to the case of BCD, Bob’s decodgg and Eve’s

construction has two steps. In the first step, similar to thizcoderd, are defined as the maximum likelihood decoders.

BCD encoder, we use the superposition random coding. In tHence, our code is written by the quarte(®p, Op, De).

second step, as illustrated in Fig. 1, we split the confidénti As a special case of Code Ensemble 2, a wire-tap code is
message into the private messae and a partB; of the i en a5 the case whéh= 2 and we do not have the random
common message encoded by _the _BCD encoder. The _CQ@&QiableSSo. The averaged performance of the above code is
scheme for BCC mI_]Q] uses this kind (_)f message S_pl'tt'n%valuated by the following theorem. Indeed, we cannot deriv
The average leaked information under this kind of consiact capacity region from the following theorem. However,
is evaluated by Theore L7, which is an algebraic versign, fo/iowing theorem has an advantage when the conditional
of channel resolvability. However, when there is no COMMQy, ;1,5 information goes to zero. As is explained in Sedfibn X
message, the first construction realizes a better expQﬂ'er"trﬁefollowing theorem yields a better bound for the expoiaént
decreasing rate for leaked information than the second CQQiscreasing rate of the conditional mutual information than

struction. ) ) ) ~ Theoren2P in a specific case.
When we fix a code, we obtain the following observations.

Any distribution P, on Z and any non-empty proper subse
I c{l,...,T} satisfy

Theorem 20:The above ensemble of code® =
Efbc, @,, Dy, D) satisfies the following inequalities.

p1(S1;ZISo)[Pzv, ¢, Ps, ] Eo expp! (Sz; ZISo)[Pzy. @, Ps, )

=p Z Psy(80)1(S1; ZISo = S0)[Pzv, ¢, Ps, ] <1 + e PHnSreiSrSoulelPay.Pyu.Pu) (58)
® EoPb[Py\v, D, Ps, ]

=P Z Pso(a))D(PZ,SI|SDZSO"P”PZ|SOZSD»‘P X PSI\SOZSOAP) <|S|peEo(—P|PY\vPv|u,Pu) + (|So||S|)peE°(_p|PY‘U'V’PU'V) (59)
S0 - )

~ p aEo(=pIPzu.Pu)

<0 ) Psy(S0)D(Pzs, 50=506l1Pz X Ps 50-50) (52) EoPelPzy. ®.Ps, ] < I5o'e ' (50)

S

=" Psy(%) ) Psyiso(Sr1s0)pD(Pzs =, so-s61P2).  (53)
S

Sr

Theorem[2D yields the following observation. Applying
Jensen’s inequality to the convex functigm- €*, we obtain

where [52) follows from the following general inequality

D(PxyllPx x Py) < D(PxvlQx xPy)  (54) Eopl(Sz: ZIS0)Pav, ©, Ps,]
< Iog(l + e*PHup(SJC\SI,So)Jr'//(pIPzw,PV\u,Pu))

for any distributionQx over X. Due to [T), we have <@ PH1p(SrelSr.So)+¥(pIPzy.Pyu,Pu) (61)

PD(Pzis;=s; 50=50.¢IPz) < ¥(pIPzs,=s;50=50.4IPz).  (55)
The number of non-empty proper subsétss {1,...,T} is
Thus, combining Jensen inequality and the above obsengatic?” —2. Similar to [35) and(36), since 2(22)+2 =2"T1-2 <
we obtain the following lemma. 2T+1 Markov inequality guarantees that there exists a apde
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such that obeys the uniform distribution of8; x B, and is independent
of the choice ofF’ and anything else. Then, we define a

exppl(Sz: ZISo)[Pzv. ¢: Ps, 1) map Ar g (S) := F’(s) + G’. Combining the above codes, we
S2T+1(1 + e—pH1+ﬂ(Szc|Sz,So)+w(/J\Pzwv,PV|u,Pu)) construct the codé@, = DpoAp G SoXS1 X XSt =V
<2T+2~PH1(S1elSr.So) ¥ plPzv.Puu.Pu)l+ (62) as ©,S1,...,81) = Pp(S0, Ar (St ..., Sr)). Similar to the

case of BCD, Bob’s decodeb, and Eve’s decode®, are

PI(Sr; ZISo)[Pzv, ¢, Ps, ] defined as the maximum likelihood decoders. Hence, our code

<2THigrHun(SrelSrS)ripiPav Pyv.Pu), (63) s written by the triple @4, @, ®e). The structure of encoder
Po[Pyv, ¢, Ps, ] is illustrated in Fig[L.
<27 SpefolrPvPunPu) 1 2T SopeRoCrIPuPL)  (84)  as a special case of Code EnsemBble 3, a wire-tap code
Pe[Pzv, ¢, Ps,] is given as the case whefi = 2 and we do not have
<27+ 5P efol-pIPzu-Py). (65) the random variable§,. For a fix_ed _codepp, Pz|Se=s0.0p=¢p
denotes the average output distribution of the channel @f th
Taking the logarithm in[{62), we obtain transmitted codewore,(so, B, By) averaged oveBy, By. In

order to evaluate the averaged performance of the above code
(D4, Dy, D), We prepare the following lemma.

log2 1
<(T+ 2)7 + [Ew(p“:ZlV’ Pvu. Pu) = Ha.o(S7eISz. So)l.- Lemma 21:When the codeb, is fixed to ¢, in the BCD
(66) part, we have the following average performance.

1(S1; ZISo)[Pzv, ©, Ps,]

Proof of Theorenl 20:
Inequalities[(5P) and(60) can be shown by Lenima 12. The

remaining inequality[(38) can be shown as follows. Er o expp! (S1; ZISo)[Pzv» ¢p © AF s Ps, )
N ) ) N £ T
Ege!(Sri%iSe®) <Er e Z Ps,(%0) Z Ps;Is,(Sr1%0)
@ S St
<Eo Z Ps, (<o) Z PSI‘SO(SI|a))e‘//(MPzISI:SLSo:So@||Pz\u:<bc(so)) - D5, -5y 5200909 P psp)
So Sr
~pH1.p(SrelSr=57,S0=
= Z Ps,(%0) Z Ps;1s0(S7l%0) <1+ ; Ps,(s0) Z‘ Ps;5o(Sr|sp)e i (SrelSr=sr So=s)
S Sr 7

(0IPziB; B, So=s0.Pp=¢pPmix5;.5,)
. Eq)cEq)p‘q)ce//(PHDZISI:SI,SO:SO,CD”PZ\U:CDC(SO)) .ar 1B1.8.S0=50.0p=sp-Pmix5.5,) (67)

(b)
< Z Ps,(%0) Z Ps,is,(S7/%0)
S St

- Eo, (1 + e #Hu(SrelSr=sr.So=50) g (pIPay Pup-scisy) ) Further, wherPzy is a regular channel and the magis -, :
¢ (by, b2) = @p(by1, b2, 5p) is @ homomorphism from an Abelian
=Z PSo(SO)Z Ps;1s0(S71%0) group 81 x B, to an Abelian groupV for any s, € S, the
S Sr

inequalities [(6l7) hold even whe® is a constanty'.
. (1 + e—pH1+p(S]C|SI=SI,So=Q))ew(p\Pz\v,Pv\U,PU))

Lemmal[Zl will be applied for the evaluation of the per-
formance of Code EnsemHdlé 3. However, it will be also used
(a) follows from application of [57) to the case with, = for the evaluation of the performance of another type of sode
Pzu=a(s), and ) follows from Theoreni T4. m Wwithout common messages based on a specific error correcting
code in Sectioh XI. Hence, Lemrhal21 addresses the case when
the mapgp|s,-s, is @ homomorphism.

—oH1.,(S7c|S7,S Pzv,Pyu,P
=1 + @ PP (SrelS1.S0) g (pIPzv Py u),

C. Second Construction

Next, we give the second kind of random coding for SMc Lemmal2l vields the following observation. Applying
as follows. Jensen’s inequality for the convex function— €* and the

Code Ensemble 3: First StepFor a given Markov chain n€quality log(1+X) < x, we obtain
U -V > X —> YZ we introduce two random variabld3
and B, that take values in Abelian group8; and 8, and
are subject to the uniform distributions. The pair of random .
variables By, By) is used for sending the all of secret messages Br.epl(Sr: ZISo)[Pav. ¢p © AF 6, Ps/] o
in Sy x---xSt. Assuming thatS; x ... x St has an Abelian < Iog(l + Z Ps,(s0) Z Ps, s, (SrlSo)eHun(SrelSr=sr-So=5)
group structure, we give the random codifbg and @, in S s
the same way as Code Ensemble 1 with= So x B; and -elp(p‘Pz‘BIBZSO:SO“’P:‘PP’Pmixvﬂlﬁz))
Sp = Ba. ~pH14,(SrcIS7=57,S0=%)
Second Step: We choose an ensemble satisfying Condition = Z Ps, (%) Z Ps,iso(SrlSo)e™ ===
[13 of isomorphism&’ from Sy x- - -xSt to B1x B, as Abelian N S

- ‘P .B2.Sp=50.Pp=¢ vaix.' E
groups. We choose the random varial¥e € 8, x B, that - @ 1Pz S=s0 0y Py 52), (68)
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_ Proof: Applying (58) and [(5F) to the case whé?y = Then, Similar to[(3b) and(36), since 2(22)+2 = 2T"1-2<
Pz/So=5.0,=¢,» WE Obtain 2™+l Markov inequality guarantees that there exists a code

Er G,eOI(SI;Z|SO)[PZ\Vs‘Pp°AF’.G"PST] ¢ = (pas ¢b, we) such that

<Er o Z Ps,(s0) Z Ps,1s0(S71%0)
So St
. epD(PZlSIZSISOZSo-‘Dp:scp”PZISo:so.tDp:scp)

<EF G/0p=¢p Z Ps,(s0) Z Ps,is0(S71%0)
=

Sr
. @ IPzis =57 s9=50.0p=4p IPziSg=50.0p=4p) (69)

For a fixedsy, we apply Theoreri 17 to the case wh@hnis

Sre, Xis B1x By, G is G+ F’(sr,0), which is independent of

F’, andF is the mapsre — F’(0, s7<) that satisfies Condition ~ €XP@ol (S1; ZISo)[Pzv, ¢a, Ps,])

[@8. Then,Ar (1, Src) = F/(S7,87¢) + G’ = F/(0, S7c) + Zs,. <27 (1 + |Byog ot (SielSr.So)+EoleolPav-Puu.Pu))

Thus, we obtain <2T+2po10g1B1l-poH1py (SrelS1.S0)+Eo(polPzyv,Pyu,Pu).Ps; I+ (76)
P2is ;=57 .55-500p=cpIPZiSg=30.0p= .
EF,!G,e'//(PI 21 7=s7.S0=50.Pp=¢p|IPzISp=50.0p=¢p) |(SI- Z|SO)[PZ\V, Ga PST]
—PH14,(S7¢|Sr=57.S0=%0) A/ (0IPzB,.B,.50.0p=0p - Pmix81.8,) T+1
<1 + @ PHup(SrelSr=sr @/ 0IPzBy By Sp.0p=¢p:Pmix51.8,) (70) < min 2_|Bl|pe—pH1+p(SIc|SI,SO)+E0(p\PzN,PV‘U,PU) (77)
T0<1 p ’

Thus, we obtain[(87).
Further, whenPzy is a regular channel and the map Po[Pvv. ¢, Ps; ]

Pplse=s, : (b1, b2) = @p(by, by, So) is @ homomorphism from  <2™** min (1B, €5 lAP-Pvu-PU) 4 (1SS FolrIPruv-Puv)y

an Abelian groupB; x 8, to an Abelian groupV for any Osp<t (78)

S € So, the channePzy o ¢pls -5, is @ regular channel from

B1 x B, to V. Hence, due to Corollary_18, the inequalities Pe[Pzv, ¢, Ps,]

(1) hold even whe®’ is a constany’. B <2" min |Sopefo-FIPzu.Pu) (79)
Using the above lemma, we obtain the following theorem, Osp=t

which gives the averaged performance of the above code

(D4, Dp, De). By using this theorem, we will give the capacity

region in Subsection IXB.
Theorem 22:Assume that the cod@ = (®,, Oy, Og) is the

ensemble given in Code Ensemble 3. Then, the inequalities

Eo, exppl(S1; ZISo)[Pzv, @a, Ps, ])
<Eo, Z Psy(%0) Z Ps,/5, (S7lS0)€”P P21 =51 Sos00alIPaso-s.09)
S

St

<1 + By ePHr(SrelSr.So)+EolelPay.Puu.Pu)| (71) for any non-empty proper subsé&tc {1,...,T}. Taking the
and logarithm in [78), we obtain
EoPo[Pyy, ©, Ps, ] §|BglpeE°(_p|PY‘V'PV'U’PU)
+ (|SO||S|)peEo(fp\Pv|u.v,Pu,v) (72)
EoPe[Pzv. @, Ps, ] <|Sole®ol#IPau-Pu), (73)
hold.

Theorem[2P yields the following observation. Applying
Jensen’s inequality to the convex functigm- €%, we obtain

Eo.0!(S1; ZISo)[Pzyv, Pa, Ps,]
<log(1+ |$1|pe’pH1+p(SIC|SI»SO)+EO(P|PZ|V,PV\U»PU)) 1(Sr; ZISo)[Pzv, Pa, Ps, ]

—pH1.,(S7¢1S7.S0)+Eo(plPzv.Pyu.P 1
<|B; e Pt (S7¢IS7.S0)+Eo(0lPzv,Pyu U), (74) §[|Og |B1] + p—OEo(po“Dz‘w P\/|U, Pu) - H1+po(S]C|SI, SQ)L

Here, we choosgg as

P 1 +(T + 2)|0iz
po := argmir| log|B1| + =Eq(plPzv, Pyu. Pu) P 1
pelo. P loa 2 = ggq][log |B1] + =Eo(oIPzv, Pvius Pu) = H14p(S1<[S1, SO)L
- Hu(SriS Sy, + (T+220 " g

log 2
(75) '

+(T+2)— (80)
P
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Proof of Theoreni_22: We show [[711). Using[{17), we D. Group Symmetry

obtain

EcI)p (Dcé/’(P‘PZ\Bl.BZ,SO:SO,CDpstix,ﬁl.Bz)
< E(bp,rbc 50(0IPziB, B, So=59 @p-Prix 3, 3,) (81)

=Eo,.0, Z(Z Ps,.B,(01, b2)Pz8, B, S0=5.0, (41, by) ™7 )+

z bl,bg

1 1
=Eo,0, ) (), = Pzv(@®p(S0, b1, b)) 77 )7
’ zzl t;bz 1B1|B2
1 R

B 3 T3 gy Pov(@0s(bu b)) (82

zZ b

B
e Z ; |81 (Z 15 P2V (AL, br, D) T

(83)
1 1
<Eo. Zz: b ||Z;11|T (%: @E‘Dpl@cPZIV(ZIq)p(SO, by, bp)) 77 ) *
(84)
= Z Z lf;ﬂ' ‘DC(Z B3] Z Pyviu (V®¢(So, b1)) Pz (2V) ™ f’)
z b
(85)
= Z lf;ﬂ' Eo.( Z Pyju (VI@c(S0, b1))Pzv(2Vv) = ")l v
= Z Z lf;ﬂ' Z Pu (U)(Z PVIU(V|U)PZIV(ZIV)E)17/)
= Z |31|p Z PU(U)(Z PV\U(V|U)PZIV(ZIV)1%”)17p
=|B, [P eFolelPav-Puu.Pu) (86)

where [81),[(BR)(84), and (B5) follow froma {[17), the inedtyal

(x+y)¥* < xt + y'*, the concavity ofx — x**, and the

definition of the ensemble of the cods, respectively.
Summarizing the above discussion, we obtain

eO' (S1;2ZIS0)[Pzv,Pa,Ps,-]

<Eo, Z Psy(S0) ), Psyisy(Srlso)e*Peanceso-omlPeso-oan)

St

(87)
=Eo,Er o0, Z Pso(S0) . Ps,s(Sr10)
Sr
. eJD(PZ\Bl,BZ.SO:SO.le”PZ\SO:SO,CDp)

< Z Ps,(0) Z Ps;Is0(Sr1%0)

S S

. E(bp(l + e*Ple(SIC\SI:SI,SOZSO)el//(P|PZ|Bl.BZ,SO,qsp,PBLBZ)) (88)
S Z Ps,(S0) Z Ps,1s,(s71%0)

So S

S(1+ e—Ple(SICISI:SI,So:Q))|Bl|peEo(p|Pz|v,Pv|U,PU)) (89)

—pH1.,(S7<IS7.S Fo(0lPzyv.Pyu.P
=1+e” 14p(SzclSy 0)|gl|pe o(0IPzv.Pvu u),

Next, when the channel has a nice property with respect
to group action, we treat the upper bound of the leaked
information with a fixed BCD codey,. That is, we discuss
the upper bound given in Lemrhal21 under an assumption for
group action, which will be given latter. The following aysis
is required for evaluation of universal coding in Sectibd§ X
andXI and a practical code construction in SubsedfioBXI-

For simplicity, we first discuss the case with no common
message, i.e}Sol = 1 and|8B;| = 1. Assume that a groug
acts onV and Z. The action ofg € G is written asg- v and
g-zforve V¥V andze Z. Then, due to Eqs[J2)1(3), and (4),
we have

(@ o Pzv 0 g)(@V) = Pzv(g- 29+ V)
(gt o Py)(V) = Py(g- V).

Then, the sefl can be divided to orbit§V,}oco by the action

of G. The setO of indexes of the orbits is called the orbit

_Space. Given a codg, as an injective map fronB, to V,

"Recall that we denote the uniform distribution on the image

IMgp bY Priximg,, and we define the distributioR,,(0) :=

[Im ey N Vol/| IMgp| ON the orbit spac® and the distribution

Py, onV by P, (V) := |

the subsefV,. Then, we obtain the following lemma.
Lemma 23:When the relatiorg™ o Pzy o g = Pzy holds

foranyge G,ve Z, andve YV,

Y (pIPziB,0p=g,» Pmix.s,) = ¥(0IPzv, Pmiximg,)
<Eo(pIPzv, Pmiximg,) < Eo(P|PZ\v,|3¢p)-

In particular, when the image gy, is included in one orbit
Vo, Py, is the uniform distribution on the orbit/s.
Proof: Since eEO(P|971°PZ\VOg»gflopmix.‘pp) — eEO(P‘PZ\V,gilopmix.gcp),

we have

(90)

e‘l’(P\szv,Pmix.lm op) < eEO(p‘PZ\VvaiX.ImApp)

_Z EO(P‘g OPZNOQQ OPm|><|m<,cp)
|§|

96
— Z gFolelPzv.g” LoPmiximep)
e IQI
<eFoIP2v. Tgeg 519 oPmiimep) — gEololPzyv-Py) (91)
]

Next, we consider the general case. Assume that a ghoup
acts onU, vV, and Z. The code pair codegt, ¢p) is a map
from Sp x B1 X B, to U x V. For a givensy € Sp, we define

the mapspcls,=s, and (oc. ¥p)lse=5, DY

Pelse=5(P1) 1= ¢c(S0, 1) € U
(e @p)lsy=s, (b1, b2) := (@c(S0. b1), p(S0. b1, b2)) € U x V.

where [87), [8B), and[(89) follow from((56), the seconéfor simplicity, we assume that the image @k.(ep)ls;=s, is
inequality in Lemma_ 21, and (B6), respectively. Then, wigcluded in one orbit irt/xV, which is denoted by ¥’ x U),.

obtain [71).
Further, [72) and(43) follow from Lemniall2.

Hence, the image ofcls,=s, is included in one orbit int/,

m Which is denoted byi{,.



Lemma 24:Assume that the image ofp{, ¢p)ls,-, iS in-

cluded in a orbit ¢V x U)o in U x V. When the relation

g 1o Pzy og= Pzy holds for anyg € G, the relation

g (0IPz, B, So=s0 wp=ep-Prix 51 8,)
<|B1F eF0(0IPzv . Pyumix (vt Pmixtio) (92)

holds for anysy € So.

Proof: For a givenu € U,, we define the stabilizer of

u by H, = {g € Glg-u = u}, which is a subgroup 0&.
For arbitraryu € U,, we define the two subset®[,V, c V
by {u} x V, = Im(ec, ¢p)lse=s, N ({U} x V) and {u} x V, =

(Vx U)o N ({u} x V). Then, we obtain the relations
PV\U:u,mix,lm(%,tpp)\sozso = l:)Vlmix,’V[, (93)
l:)V|U =u,mix,(VxU), = l:)Vlmix Ve (94)

ons
For the definitions of the left hand sides, sk (1). We can also

show that

Uger {9 - VIV € V) = V.

Sinceg o Pyju—gumix.vxt), = Pvju=umix.(vxu),, the condition
g_l o Pzy o g = Pzy implies that
eEo(Plg’loPzw09,9’1OPV|u:g-u.mix.((vau)o)

— Eo(/J|PZ|vPwu:u,mix,(erru)o)'

(95)

We obtain the following relations. In the following deriia,
(@8) and[(98) follow from[(8B) and[ (95), respectively. Apiply

Lemmal23 to the case @& = H,, we obtain the inequality

(@) from [93) and[{94).

g/ 0lPzsy B, sp=59.9p :¢pstix.Bl.Bg)

B
< Z ||Bl:i| (Z |B | PZ|V(ZISDp(a), bl, bZ)) 1 p)l 0

=84 Z Z PU,mix,Imcpc|50:so( )
z u

2 11-
: [Z PVIU=umix Im(eenisy-s (WPZV (2V) 77 | !

(96)

Eo(0IPzyv,Pyiu=umixim@c.eplis,—g, )
=|Bllp Z PU,miXJmtpc\sO:SO (u)e | lU=umix,Im(¢c.¢p)is =5y
u

B D Puamicimisy (WP P (97)

=B, Z @ Z PUmix. I el SO(g u)eEo(/JIPzw Pyju=umix.(vx00)
9eG
(98)

=|B1) Z PU,mix,(q/x‘u)o (u)eEO(P‘PZ\V,PV\U:u,mix.(‘Vx'Zl)o)

=B 50(0IPzv-Pyiu=umix (vx1no-Pumixtio)

Remark 25:Section[VI] deals with the security when a
channel Pzy from <V to Z is given. The discussion of
Section[VI] can be extended to the case with a chanrfsincep — 1 behaves aé'og“

Pzvu from V x U to Z. In this casey(o|Pzv, Pviu, Pu) and
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Eo(pIPzv, Pviu, Pu) are modified to
Y(plPzvu, Pviu, Pu)
=log Z Py (u) Z Pvju (Vlu) Z Pzvu(@v, Uy P2y (2u)
u \Y V4

Eo(olPzvu, Pvju. Pu)
1-p

=log Z Py (u) Z Z Pyviu (Vu)Pzyu(2v, u) /@)

All of the discussions in this section are still valid everwié
replacePzy(zv) by Pzvu(zv, u) with the above modification.
These extensions to the chani®gfyy will be used in Section
[XIlas a mathematical tool for our proof.

VIII. A symproric ConpITioNAL UNIFORMITY
A Three Kinds of Asymptotic Conditional Uniformity Condi-

n SMC, we use the messag: as a dummy message. The
secrecy of the messa@ depends on the conditional entropy
of the dummy messag8;c given Sy. Then, it is not easy to
treat the asymptotic performance without fixing the coodil
entropy rate of the dummy messa§e:. Hence, we need to
characterize the randomness of the dummy mesSagender
the condition with respect t8; in the asymptotic setting. In
order to treat the capacity region and the strong securigy, w
introduce several kinds of asymptotic conditional uniféiym
conditions for a general sequence of source distributins
on the message setSi, for i = 0,1,...,T satisfying the
relations|S; | := € fori=0,1,...,T.

Definition 26: The sequence of distributiorBs, of the
dummy messageS;c, is called weak asymptotically con-
ditionally uniform (WACU) for a non-empty proper subset

I(#0)c{1,. } when
||m H(SICnlsfn, Son) = Z R. (99)
ierc
Definition 27: The sequence of distributiorBs, , of the

dummy messag8 ;< is calledsemi-weak asymptotically con-
ditionally uniform (SWACU) for a non-empty proper subset
I(#0)c {1 T} when the relation

1
I|m H1+a (SzenlSz.n Son) = Z R

iere

(100)

holds for anys > 0.

Definition 28: Fix an arbitrary fixed real number> 0. The
sequence of distributiors, = of the dummy messadg@s. is
callede-strong asymptotically conditionally unifor(a-SACU)

for for a non-empty proper subséi(= 0) ¢ {1 T} when
the relation
Hog(Z) 2 Y (R - o), (101)
ieze
where
Iog(J) = I|m lim |nf -H,, ologn(S]’cn|S]n, Son)- (102)

d—0o0 N—oo

in (I02), we use the subscript
log in (I02). In the case Off = 0, it is simply calledstrong
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asymptotically conditionally uniforflSACU) for a non-empty subsetZ ¢ {1,...,T}. Choose a sequenes, such that% -
proper subsef (# 0) ¢ {1,...,T}. In this case, the condition 1.

(107) is equivalent with Letg! : S™ — {1,...,[€"R7} be Slepian-Wolf encoders and
L, TERY X x {1, TERT]) — ST x - x ST be
ﬂlog(]c) - Z R (103) its Slepian-Wolf decoder for any positive integesuch that

ierc
because the opposite inequality holds due to the cardamlite(¢", ") := Pr{(Sp", ... ST") # @"(¢g(Sp™). - - - €7 (ST))} — O,
of respective message sets. (104)
In particular, when the sequence of distributioRs, , of

the dummy messag&r, is WACU for any non-empty Whereg" = (gg,....¢k). Then, we have
proper subsef ¢ {1,...,T}, it is simply called WACU. We 1
sometimes fix a familyd of non-empty proper subsefs of lim =H((@(S™)iezel (& (S™))ier. v5(Sg™) = Z R (105)
{1,...,T}, and treat only non-empty proper subséts J. In """ ieze
this case, we call the sequence of distributiBgs, WACU for .

' or any non-empty proper subsétc {1,...,T}. That is, the

a family J when it is WACU for any non-empty proper subse{ o .
I € J. We also apply these conventions to SWACU, SACU:,Ompressed data satisfies the WACU conditlod (99).
Remark 31:Theoren 3D gives only a flicient condition

and e-SACU. The relations among the above conditions are N -
summarized as follows. (102) for the compressed data satisfying the WACU condition

Theorem 29:The following relations hold. For construction of the compressed data satisfying the WACU
condition, it is needed to clarify the existence of a code s¢ho

SACU = SWACU & WACU the compressed data satisfying the condition104).
U In the single terminal Markovian case, under the condition
e-SACU ™ — 1, the second order asymptotic analysis[inl [16, Section

Proof: The equivalence between SWACU and WACU wilV!ll guarantees that there exists sequence of the pairs of
be shown as Lemm@D3 in Appendiz C. Other relations a@wencoder and a dec_oder satlsfyll@104) if and_ only if
trivial from their definitions. m & — - The extension to the Slepian-Wolf coding has

In fact, as is shown in SubsectibiVITI-B, even if the originabee!" done with thg i.i.d. casE[BZ]. For the boundary pf the
information does not satisfy the WACU conditidi]99) or th@tainable rate region of Slepian-Wolf data compression in
SACU condition [Z0B) withe = 0, if we apply Slepian-Wolf the sta_tlonary ergodic casg [5], we can sh_ow the eX|sten9e of
data compression [30] to the original sources so that the tof’® Pair of an encoder and a decoder satisfyingl(104) with a
compressed rate of the whole data attains the entropy rate>gftaPle choice of the sequeng under the conditiof — 1
the whole sources, the compressed data satisfies the watighe following waif.
condition [99) angbr the SACU condition[{103). Similarly, as Choose the rate® + ¢ for any 6 > 0. Let ¢j;
is shown in Subsectidn VIII3B, even if the original inforiat S| = {L,...,[€1)]} be Slepian-Wolf encoders ang *
does not satisfy the-SACU condition [Z0W), if we apply (L., [EEI o x (1, eI - S x S
Slepian-Wolf data compressioh [30] to the original sourcd¥ its Slepian-Wolf decoder such thafy], ) — 0 with
so that the error probability goes to zero exponentially and = (¢5s---»¢7,). For an arbitrary integef, we choose
the diference between the entropy rate of the whole systéifi integem; such that the inequality(¢,,$7,) <  holds
and the total compressed rate is less taathe compressed for any n > n. We definem, to be my := [3;], where
data satisfies the-SACU condition [T01). we choosd such thatn < n < n.1. Here, we can choose the

integerl for any positive integen. The construction guarantees

that R (1 + 1/I +1) > Rn> R(1+ 1/)m,. We define the
B. A_symptotic Conditional _ Uniformity Conditions andpairR'mS an ér?c(:r(;]c;er azndi'\ de;%@n,én;n::) be @mv‘;’ﬁ)-
Slepian-Wolf Data Compression That is, ¢ is chosen to bepiml“/,. Our choices guarantee that

In Subsectio_X-A, we have introduced several asymp: %1/' -1, anda(‘pn,‘;‘;n) _ 8@3@3) < 1/l - 0.
totic conditional uniformity conditions. In this subsesti |n this construction, the encodef is a map fromS™ to
we clarify which kind of data compressed by Slepian-Wolfy .. e™R@+1/M7) c (1,... [€"R]} becauseRn > mR(1 +
compression satisfies asymptotic conditional uniformdy 1/1). Hence, the pair of an encoder and a decogdr ")
ditions. For this purpose, we assume that the random vasabdatisfies the assumption of TheorEm 30.

Sy = (S§,S]....S}) are subject to then-fold stationary
ergodic joint distributionPg  over S§x 87 x ---x S3. The 5 0 Theorem[30: Assume that the code” =

z)r/]?(l;)s)l/srlgt(fso,él; 't’h Se?és?fj:{iz/’eargdn : o(rioilifi; k;jlzchgtr)z r:;enogig’ ..., ¢1) satisfies[(I04). Since the stationary ergodic source
empty proper subsef ¢ {L.....T}. The following theore tisfies the strong converse property for the data conipress

m .
treats the WACU condition for the compressed data. due to folklore source coding theorem [14, Theorem 3.1], the

Theorem 30:We choose the asymptotic compression rates o _ _ o
The following discussion does not require any property faurse distri-

T _ )
Ro,...,Rr such that},,_oR = H(So,....St) and Yic; R < pution. That is, it can be extended to Slepian-Wolf data amsgion for the
H(S7), Ro + Yicr R < H(So, Sy) for any non-empty proper general information sourcé [42] in the sense of Han-VErgji[1
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code" satisfies C. Proof of Theoreri 32

T For the proof of Theoremh B2, we prepare the following
lim }H(gog(s”h),. LQN(S™)) = Z R. lemma for treating the relation between the conditionalyRén
n—co N 0 T e entropy of the compressed data and the decoding error prob-
ability. The following lemma treats the single terminal alat
Since %H((cpi”(Si”“))iE]c|(¢,o{‘(8im“))i€], @o(Se"M) < TiercR and  compression for a random variatfieon a setS in the single-
TH((E(S™))ier. ¥3(Sg) < Ro + Yier R, We obtain[I05).m  shot setting.

In Subsectioh XA, we have introduced tastrong asymp-  Lemma 34:Any encodery : S — {1,...,M} and any
totic conditional uniformity [I01) as another kind of asympdecodery™ {1,..., M} — S for a random variablé& satisfy
totic conditional uniformity. The following theorem showrse e PH1(S) < @ PHLS) < ppaPHL(S) | X0, @), (109)
e-strong asymptotic conditional uniformity for the compmed B B
data. where &(p,¢) is the decoding error probability & #

Theorem 32:We fix a sequencey, such that% - 1. We PN ) o ) )
also fix an arbitrane > 0 and an arbitrary non-empty proper ~ Proof: First, we show the first inequality. Using the
subset? ¢ {1,...,T}. Then, we choose the asymptotic cominequality x* + y4* < (x+y)**# for x,y > 0, we obtain

pression rateBy, . .., Rr such thaf,” ;R = H(Sp, ..., St)+€ ( Z Ps(S))hp > Z Ps(91
and sep (i) sepL(i)
Z R <H(S;), Ro+ Z R < H(So, Sy). (106) foranyi=1,..., M. Hence,
i€ i€ M
iel iel eprW(g;(S)) — Z( Z Ps(S))ler
We choose a Slepian-Wolf encodgt = (¢f.....¢7) and a 1 scei()
Slepian-Wolf decodep™ as a mapy : Sim“ S {1,...,[eR]} M
and amag": {1,...,[e™x---x{L,..., [ ]} - SF'x- - -x > Z Z Ps(9 = Z Ps(9'* = e*H(S)
ST". When the decoding error probabilig(e", ") satisfies i=1 sepi(i) s

that which implies the first inequality of (109).

Next, we show the second inequality 6f (109). Given an
arbitrary element in the codebook, we have two cases: (1)
The elemens := (i) belongs tap~(i), i.e., there exists exact
one elemens € ¢~(i) such thato{p(s)) = s. (2) There exists
no elements, € ¢~1(i) such thaip{p(s)) = 5. In case (1),

( Z PS(S))ler _ (Ps(S) + Z PS(S))ler

&(¢".¢"p(n) — 0 (107)

for any polynomialp(n), the relation

minf <Ha.p, (S er IS er. €B(SD)

Z(Z R)-e= Z(R‘ - (108) o) O
ierc ierc 1 1 14p
th,  dlan . 2GRy ), Psl9)
holds withp, = 23" for any § > 0. That is, the compressed s LN B(e(S)%S
data ((Sp), - . ., ¢1(ST)) satisfies the-SACU condition[[Z011) 1 1 14p
for the non-empty proper subs&tc {1,...,T}. In particular, Szlw(éPS(S)“’J + é( Z Ps(s) )
in the case ot = 0, the compressed data](Sp). . . ., ¢7 (S})) seg 1 ():p(p()#s

satisfies the SACU condition for the non-empty proper subset _orpg(g)i + zp( Z pS(S))ler_

Irc{1,...,T}
Hence, if the relation [(106) holds for any non-empty. . ce %)
proper subset’ ¢ {1,...,T}, the compressed data ’

sep 1 (i):(p(s)#s

(@(SD), ..., ¢ (Sh)) satisfies the--SACU condition [Z0NL). (> ps(s))“” = > ps(s))“p,
Remark 33:Theorem[ 3R gives only a flicient condition sep (i) sep1():3(e(9) %S

(107) for the compressed data satisfying 4H8ACU condition Hence, we obtain

(1071). Hence, it is necessary to clarify the existence ofdeco ~ L4p

whose compressed data satisfying the condifion](107). e M) = Z( Z Ps(9))
In the i.i.d. case, for an arbitrary > 0 and an arbitrary bosee)

. . . . 1
sequencen, satisfying lim,_,« % =1, there exists a sequence <2 Z Ps(s)Y + 2¢ Z( Z Ps(s)) i
i

of Slepian-Wolf codes(", ") with any rate tuples given in T seo () B(e(9)Es

Theoreni 3R such that the decoding error probabil{ty”, ") L Lp

goes to zero exponentially with respectn{89]. That is, there <2 Z Ps(8)™ + ZP(Z Z PS(S)) (110)
exists a Slepian-Wolf code satisfying the conditibn {107) i S ' Se‘/’fl('):‘/’(‘”(s))js

Theorem3R. However, it is not so easy to give a required :292 Ps(9)'* + 2P( Z Ps(S)) "

code in the case of = 0. In Appendix[B, we give such a s s@(e(9)#s

code whemm, := anr with t > 1/2 andeo > ¢ > 0. =20ePH(S) 4 ey, §)1,
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where [11ID) follow from the inequality™* + y*** < (x+y)** IX. Secure MuttipLEx CopING witH CoMMON MESSAGES:

for x,y > 0. Hence, we obtain the second inequality. m AsymproTic PERFORMANCE

Then, we obtain the following corollary of Lemrhal34. The _ ) )
following corollary treats the single terminal data comgsien N this section, we treat the asymptotic performance for
for a general sequence of random varialSgs the secure multiplex coding with common messages when the

Corollary 35: Let ¢" be an encoder and" be a decoder for channel is given as the-fold discrete memoryless channel

a general sequence of random varialSigsWhen the decoding ©f @ given broadcast chann@zx. First, we treat what
error probabilitiess(¢", 3") and the sequendgn} of positive performance can be achieved by using Code Enseible 3 and

real numbers satisfy Theoren 2R in Subsectidn VII}C without any assumption for
the distribution of sources. In the next step, we define the ca
lim (", gM)HenernHien(Sn) = (111) pacity region under the asymptotic uniformity of infornaati
e sources. In SMC, this restriction for the sources is esaknti
we have for our definition of the capacity region. After this defioiti,

1 1 we concretely give the capacity region.
r!mo ﬁHlern (©"(Sn)) = r!mo n Hap, (Sn). (112)

A. General Sequence of Information Sources

_ Proofl of  Corollary  [35: . The  inequality  First, we treat the secure multiplex coding with common
liMnoco fH1, (0" (Sn)) < liMpoe 5H1.,,(Sn)  follows  messages with general sequence of information sources For

from the first inequality[(109). We show only the inequalityjiven set of ratesR)T ,, we give a general sequence of source

liMnoseo 5H100,(@"(Sn)) > liMnoses fH14,(Sn). Using the  distributionsPs, , on the message sef, for i = 0,1,...,T

second inequality i (109), we have satisfying the relationgS; | := €® for i = 0,1,...,T. For
1 _1 . a given Markov chaindJ - V - X — YZ we give an
Mr; HH1+pn(¢p”(Sn)) = Mr; — log e oM (¢"(Sn)) asymptotic code construction in the following way.
1 wn Code Construction 4iet ¢, be a code given in Code
> lim — log(2°re PnHm(Sn) 4 2Png(ph pyL+en) EnsembldR in Subsectidn_VII'B satisfying {66, 1(63).1(64),
e ”Pln and [B5) of lengtm with |Si := €® fori =0,1,...,T and
= lim —= log(2°re #nHr(Sn)y (113) a given Markov chaild — V — X.
o Non The performance of the code, of Code Constructioi]4
= lim E(len(gn) —log2)= lim }len(sn), is characterized as follows. The conditiois](64) ahdl (65)
noen noen guarantee[(115) an@ (116) given as follows.
where [1IB) follows from the assumptidn (111). [ | 1
Now, we show Theorem 82. “gliogf - log Pb[PQN,@n, Ps, .l
T
Proof of Theoreni32: For the proof of Theorerh 32, we > _pz R — max[Eqo(—pIPyv. Pviu» Pu). Eo(—pIPyjuvs Pvu)l,
choosepy, so thatpy(1 - pp) = pn. Since lim_. -+ = 1 and i1
p > p,, for all n, we have (115)
-1 .
H1+p(50, ey ST) < |im,i(!;]f %Hlﬂ)’n(sml, N S_fl_fh) |Irr;fllol;]f n Iog l:)e[PZIV’ (Dn’ PS’/’-N] 2 pRo EO( pleW’(Sié)

. 1
<lim supﬁth/n(Sm“, ...,ST") < H(So, ..., St).
nN—oo

with anyp € (0, 1]. Further, due td (86), the leaked information

] ] for Sy, can be evaluated as
SII’ICepF1 — 0 and |In’b_>+0 H1+p(So, Ceey ST) = H(So, Ceey ST),

1
1 Z1(Srn: Z"Son) [Pl @an P
lim ~Huy, (SM,...,S™) = H(So,..., Sr). (114) n! (1. Z1Son)[Pz. ¢an: Ps ]
| S[-¢(P|szv, Pviu, Pu) = =H1.,(SzenlSzn, So,n)]+
Sincep;, behaves a§>2", due to the relatiori{114), the quan- p n
tity €/Fs (S-S behaves aghl0aNH(Se..S1) — oH(So...S1) T4 2)Iog 2
Sinces(p", pMn < (", M), the condition[(I07) guarantees no

the condition[(1I1). Hence, Corollay]35 guarantees that We substitutep = a/n with an arbitrary reab > 0 and take

T the limitsn — co. Then, [20) of LemmBl4 leads the inequality
I 2 (ST, ST = () R) e .
= lim sup=1(S7.n; Z"Son)[PZy> Pans Ps,,]

nN—oo
Since lodgg(Sg™) x [Ticr ¢(S™) = N(Ro+ Xicr R), Corollary .1 log 2
in AppendixA imp"egmg)_ n s[l (V;ZU) - lim inf ﬁ|—|1+a,n(sfc,n|sf,n, so,n)]++(T + Z)T'
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Taking the limitsa — oo, we obtain Further, due to[(80), the leaked information 8, can be
evaluated as

. 1
lim Supﬁ I(Sz.n; Zn|SO,n)[P2‘V, Pa,n, PSTVH]

n—oo

1
n [(Srm; Zn|SO,n)[P2‘V, ®an, PS“]

1
<[1(V; Z|U) - lim liminf =H SrenlSrn, S . (117 1 1
<[1v:210) - fim lim nf ZHtsvan(SrealSroSon)], - (417 <[1Re = Rol. + % EolplPav. Puv. PU) = ~Hacy(SreaiSin San)],

So, the asymptotic performance of our code given in Code, (T . 2)Iog 2.
Constructiori ¥4 is characterized in (115), (116), dnd{117). np

In Code Constructiof]4, the paramefey is chosen to be «; . ;
. T . : Similar to [IIT), we obtain
R in BCD. However, to realize the capacity region of SMC, )
we need to choose the parameRy to be a smaller value ) 1 n N
than R. in BCD in general. To realize such a choice, we “Til}lpﬁl(sf,n,z 1Son)[Pzyy: ¢an: Ps;.,]
introduce another code construction by using Code Ensemble ]
in Subsectiof_VII-C. As is explained in Remdrk] 39, such S[(RC_ Ro) +1(V: ZIU)
a construction is crucial for achieving the capacity region _ lim liminf }H S ISr S 122
general although Code Constructibh 4 achieves the capacity asec oo N wan(SrealSro 0’”)]+' (122)

region with no common message. So, the asymptotic performance of our code in Code Construc-

Code Construction 5fFor a given set of ratesR().TZO, We  {ionM@ is characterized i (L9 (120), amd {122
introduce other parameteR, and R. satisfying I & ) )

T - .
R.+R, = Z R, R.>Ro. (118) B. Capacity Region
i=0

Next, in order to characterize the limit of the asymptotic
. T o performance of the secure multiplex coding with common
In the following, we denote the set 0R),_,, Rp, Rc) satisfying  egssages, we define the capacity region based on the WACU

the above condition bRr. In order to apply Code Ensemblecqngition [@9). For this purpose, we treat the transmission
in Subsectiof VII-C, we fix Abelian group8;, and B2n  (ate tuple R)io._ 1 = (Ro, Ry, ..., Rr) and the information

satisfying| Byl := ") and|By| := en.Fep_ Applying Code |eakage rate tupleR(1)p.rc(r..), WhereT takes every non-
Ensem_blﬂi and ;]I'heor22ntonnhréold discrete memoryless empty proper subset ¢1, . . ., T}. The latter describes the rates
extensiorJ” — V" — X" — Y"Z" of the above Markov chain of the leaked information for the message,. Combining

and the Abelian. group$:, and B,,,, we find_the codeépn =  poth tuples, we call ®)i-o...7. (R.r)esrcir..1)) the rate tuple.
(@ans ¥bns wen) With the message setS;,, fori = 0,1,...,T

satisfying [76), [(ZI7) [(28), and.{Ir9). . _ said to beachievablefor the secure rﬁﬁltiplex coding with
The performance of the cods of Code Constructiohl5 is secret messages for the chanBehy if there exist a sequence
characterized as follows. The relatiohs|(78) (79) quer of codesyy, = (©an ©bm van), i.€., Alice’s stochastic encoder

that @an from Sopn X Sip X -+ X St to X", Bob's deterministic

1 decodergpn @ Y" — Son X Sin X --- X Stn and Eve'’s

lim inf — log Po[PY,y, ¢n, Ps; ] deterministic decodese, : Z" — So satisfying the following

e n conditions: (1) The-th secret message s8{, has cardinality

> min|~pRp ~ Eo(~IPyv. Pviu. Pu), eR fori=1,...,T, and the common message i, has
- p(Ry + Re) = Eo(—pIPyu, pv’u)], (119) cardinality €®. (2) When a sequence of joint distributions

1 Ps,, on the message se§, for T = 0,1,..., T satisfies
liminf — log Pe[P3,,, ¢n, Ps, ] = —pRc — Eo(~p|Pzu, Pu) the WACU condition [[8P) for a non-empty proper subset
Noeo N (120) I(#0)c{1,...,T}, the relations

. " B
for any p € (0,1]. Hence, due to[(18) and_(R0), above ,!T;, Po[Pyjx. ¢n. Ps;,] = 0 (123)
both exponentd (119) anfl (120) are positive, i.e., bothrerro lim Pe[P}. ¢n. Ps,,] =0 (124)
probabilities go to zero exponentially when ) ”n_’°° N '

lim supl (Sz.n; Z"|So)[Pyx» ¢an: Ps,,] < Rz (125)

N—oo
Ry < I(Y;VIU), Ry+Rc<I(Y;VU) =I1(Y;U)+I(Y;VIU),
Re < 1(Z; U) hold. The capacity regionC of the secure multiplex
T coding is the closure of the achievable rate tuples
which are satisfied when Theorem 37:The capacity region of the secure multiplex
coding with common messages is given by the set of rate tu-

Re <min[l(Y;U), [(Z;U)], Rp < I(Y;VIU). (121)  ples (R)izo..7. (R.r)osrci1...m) Such that there exist a Markov
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chainU - V - X - YZ and and Q) fori=0,1,...,T,T + 1 satisfying

RS RSSO S Ro < minll(U;¥).1(U;2)], (128)
. T+1 T+1
DR < H(ViYIU) +minfl(U; Y), 1(U; 2)] YR« VYD <O R e (129)
i=0 . .
i=1 i=1
Rz = Y R-[(ViYIU) - 1(V;ZU)].  (126)
iel Then, the code, given by Code Constructidd 4 satisfies
for any non-empty proper subsé&tc {1,...,T}. _ .
Now, we define the capacity regio@, of the se- lim Po[Pyy. ¢n, Ps,, X Psq,1,] = 0 (130)
cure multiplex coding with no common messages as M!o Pe[P3ys ¢ns Ps,, X Ps;,.,] =0 (131)

with no common message is characterized as follows.
Corollary 38: Cnc is given as the set of rate tuples

and

. 1
((R)i=1...7» (R.r)o<rcn..my) such that there exist a Markov lim supﬁl(SLn; ZnISon) [Py ¢n. Ps,, X Ps,.,,]
chainV —- X — YZand n—co
T < 3R = [I(V; YIU) = 1(V; ZIU)], + e (132)
PLEEEIAY il

when the sequence of the joint distributiofg, , of informa-

Rr = Z R = [1(V;Y) = 1(V; )]+ (127)  tion source satisfies the WACU condition {99) for any non-
iel empty proper subsef ¢ {1,...,T} andPs_,, is the uniform
for any non-empty proper subsétc {1,...,T}. distribution.

Lemma 41:Choose a dficiently small real numbet > 0

AT+1 for i — Ty
Proof of Theoren[37: The converse part of this cod—and R)ip fori=0.1,....T.T +1 safisfying
ing theorem follows from that for Corollary] 9 with the

uniform distribution on the whole message sets. The di- Ro <min[I(U;Y), 1(U; Z)], (133)
rect part can be shown by Lemrhal 41. That is, for a rate T+1

tuple (R)i=1..7» (R.)o<rci...)) given in [I26) and an ar- [(V;Y|U) < (Z R) + € <I(V; Y|U) + min[I(U;Y), 1(U; 2)].
bitrary small real number > 0, the rate tuple & - i=0 (134)

the T + 1-th messageST.,; is used as the dummy message i i [
subject to the uniform distribution and its rae. is chosen Then. the codez, given by Code Construction 5 with the

to be max((V; Y|U) - X1 R — £,0). m choices

Remark 39:As is mentioned in Proof of Theorem]37, to To1
derive the capacity region, we employ Lemina 41, which Ry := I(V; Y|U) — € andR, := ZR‘ “R, (135)
is based on Code Constructidd 5 instead of Code Con- ’ e

struction[4 because the ca%—Tlei > I(V;YI|U) requires

Code Construct_i0|li|5. This is the reason why we ierdU%%\tisfieSIIEO)ﬂﬂl), and (132) when the sequence of the joi

Code Constructio]5 as well as Code Constructibn 4. Wh@istributionsPs, , of information source satisfies the WACU
LiR < 1(V; YIU), the rate tuple @)i-1...7. (R.r)orcin..m))  condition [39) for any non-empty proper subgeg (L,..., T}

given in [126) can be approximately achieved by Lenima 48nd ps__ “is the uniform distribution.

which is based on Code Construct[dn 4. That is, the rate tuple ’

""" : Proof of Lemmal40: Since the conditions[{128) and
[40 when theT + 1-th messageSr,; is used as the dummy o
message subject to the uniform distribution and its Rte %)ﬁ?ra\?\ze n:aheed ?gngﬁfxﬂoizmnjs\ge :g;i%ﬁgi
; . T . € . '
s chosen 1o be malqV; ¥IU) - 2-oR - 7) = €.0). Then | v iy " 1(v;zjU). Since |Szal = €2, we obtain
Code Constructiofil4 gives only the special rate tuple in tt{% L= o N ' hich
capacity region. 7 (S ZnlSon)[P7y. ¢n. Ps;, X Pspp,l < Zier R, whic

. o . lies [132). Hence, it is enough to consider the case

When there is no common message, it is enough to attamﬁ]é)_ YIU) > 1(V:ZJU). Since, as is shown in Lemnfal93 in

region given in Corollarj38. Hence, it isficient to consider App;endixm thé equ'ivalenc;e between the SWACU condition
the case withRy = 0, which implies thatZiT=1 R < I(V;Y|U). !

That is, if we need to show only Corollafy138, it is enougfqﬂm) and the WACU conditiorL {§9) holds, we obtain

to use Lemma 40, which is based on Code Construdilon 4 1
instead of Code Constructidn 5. lim lim =H1an(SzenlSrn, Son) = Z R. (136)

. a—oo N—oo N 4
Lemma 40:Choose a dficiently small real numbee > 0 ierc
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The relations[{117) and (1B6) yield Next, we chooseRr,; = max((V;YU) - 3 ,R,0) and

) 1 \ a small reale’ > 0 such thate’ < 5, € < I(V;YU) +
|ITHSO<l’Jpﬁ|(SI,n;ZnISo,n)[Pzw’SDam Ps,, X Psp,,,] min[1(U;Y),1(U;2)] - 314 R. The codep, given by Code
] Construction[b with the choiceR, = I(V;Y|U) - ¢ and
<I(V;Z|U) - ZI: R R; := Y H R—R, satisfies[(130)[{131), and the strong security
ierc
T+l lim 1(Szn Zn|SO,n)[P2|V"Pn, PS‘T.n] =0 (142)
=- Y R+1(V;ZU)+ YR e
i=1 ie7 for any subsef € J when the sequence of distributioRs,
<e—1(V;Y|U) + [(V; ZJU) + Z R, (137) satisfies thed— 2¢')-SACU condition [(1011) for the subsgt
7 Thanks to Theorem 42, the strong security holds at all inner
which implies [I3R) m Points of the capacity regio@ with R r = 0 for any subset

T € J under thee-SACU condition [Z01) for any subséte J.
Here, we address the relation with the paper [22]. When

and [135) guarantee the conditiofiS {121), we obtEII(13 ere is no common message, the paper [22] defined the region
. as follows.

and [I31). We need to show only (132). WhHV;Y|U) < “so =2 - ) : .

I(V: Z|U), we can show[{I32) by the same way as Lerfiia 4% Definition 43: The regionRL,, is the closure of the set of

Hence, it is enough to consider the café; Y|U) > [(V;Z|U). ~— ~ = —F 77 ¥A=0

. - quence of codes, = (¢an, ¥bn, Pen), 1.€., Alice’s stochastic
By the same way as Lemrial40, the relatidns[122) (1 encoderp,, from Syp X -+ X St to X", Bob’s deterministic

Proof of Lemmd41: Since the conditiond (I183)[(1134),

yield decodergppn : Y" — Sin X Sin X -+ X St satisfying the
lim sup}I(S]n; ZnlSon)[P3y: @ans Ps,, X Ps;..,] following conditions: (1) The-th secret message s8t, has
noeo N0 ' ’ - cardinalitye’™® fori=1,...,T, (2) When the message obeys
<(Re — Ro) + I(V; Z|U) - Z R the uniform distribution, the relations (1123) and
iere .
_ ' lim supl (Sn; Z"So)[Pyx. @an: Ps,, X Ps;..nl =0 (143)
=R.- Y R+1(V;ZU)+ 'R e
e ' id hold fort=1,...,T.

R+ 1(V;ZIU) + Z R. (138) On the other hand, we define the regiflly, as the set of
e N N T A

. o V - X —-YZand
Therefore, sinc&, = [(V; Y|U) —¢, (I38) implies[[I3R) when .

'ViVI0) > (v Z10). " NRIVY). RIVIV)-1(Vi2].  (144)
X. Secure MutripLEx Coping wiTH CoMMON MESSAGES: STRONG =1
SECURITY fort=1,...,T. Then, Theorem42 and Corolldryl38 guarantee
A. Strong Security the relation
In this section, we treat the strong security. A sequence of RLo= R (145)

codesyy is calledstrongly securdor a subsetl ¢ {1,...,T}

and a sequence of distributioRs,  when the relation which is the same as the result by the papel [22, (138)]. Here,

_ Corollary[38 impliesrl,, c RL,, and Theorenid2 doegl, >
lim 1(Sz.n; ZolSon)[Pzx. ¢ns Ps;,] = 0 (139) inn(RL,). SinceR., and k., are the closed sets, we obtain

B B o IO Subeer (]E;E)é)rder to show Theorefh #2, we prepare the following
of {1,..., T}, and consider only the security of the messages ,
Srnforall 7 el emma.

Theorem 42:Assume that the transmission rate tuple Lemma 44:We fix a subsef ¢ {1,...,T}. Assume that the

(Rico 1 = (RoR: Rr) belongs to the inner of the fransmission rate tupldR()i-o... 1, the sequence of distributions
1= - ) DI

capacity region wittR ; = O for any subsef € J, i.e., there ' Sro and a Markov chait) — V — X satisfy that

exist an information leakage rate tupl§ f)p.resc Such that

_ 7 =5 (HiglT)
((R)i=o....7> (O)zes, (R r)ozrex) € iNN(C), (140)

T
where inn() denotes the inner of the sét Then, there exists - (Z R = I(V;YU) + I(V; Z|U))) >0, (146)
a Markov chain — V — X such that i=1
) (- Y R in[l1(U;Y), 1(U;Z
e 1=min |(V; YIU) I(l\;qzw) LR oo an Ro <min[1(U; Y).1(U; 2)],
Ro <min[I(U:Y), 1(U: 2)], DR <I(V; YIU) + min[1(U; Y), 1(U; 2)].
T i=0
ZR‘ <I(V;Y|U) + min[l(U; Y), I(U; 2)]. When we choos®r,; := max((V;Y|U) - X' R.,0) and a

i=0 small reale’ > 0 such thate’ < § ande < [(V;Y|U) +



min[l(U;Y),1(U;2)] - 315 R, the codey, given by Code

Constructior[B with the choicd®, := I(V; Y|U)-€¢ andR; :=
IR~ R, satisfies[(130),[(131), and the strong security

n'ﬁl 1(Sz.n; ZnlSon)[Pgys #n, Ps,, X Ps;.in] = 0. (147)

Proof of Theorer 42: First, we fix an arbitrary subsét e
J. Hence,

T+1

G —(6—26))—(ZR. — 1(V; YIU) + 1(V; ZU))
ierc
T+1

>() R)- ICI(E—ZE)—(ZR. 1(V; YIU) + 1(V; ZIU))
jere
=1(V; YIU) - 1(V; ZU) - Za = IT°I(e - 2€)
iel
>|7%e — |T%(e — 2€') = 2|T°€ > 2¢€.

Thus, since the sequence of distributiofs, , satisfies the
€ — 2¢/-SACU condition [(T0M) for the subsét,

/ 1 C
o = E(ﬂlog (I )
T+1

- (Z R = 1(V; YIU) +1(V; Z|U)))

T+1

Z(R. (6—26))—(ZR. (V5 YIU) +1(V; ZU)))
ier¢

7

>€ .
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The condition[(146) and’ < ¢’ imply that

liminf Cn
n—oo npn
T+1
= lim inf —H1+pn(s;cn|szn, Son) ~ ) R+ Ry~ 1(ViZIU)
i=1
T+1

>H,(1°) - Z R +1(V;YU) =& - 1(V; Z|U)
i=1
T+1

1(H|og(I°) ZR. +1(V; Y|U) = I(V; Z|U))
i=1

=5’ > 0. (148)

That is, we can choose affigiently large integeN such that
G @
npn 2

for n > N. Due to [Z¥), the leaked information f&;,, can
be evaluated as

(149)

T+2

I (SI,n; Zn|SO,n)[P2|V, ®n, PS’T,H] < 0 eﬁC".
n
Since [14DB) implies that
T+2
—log( P e ) = —(T +2)log2+ C, + logpn
n

>—(T+2)log2+ %npn + logpen

=—(T +2)log 2+ loglogn - Iog% — oo,

we obtain [(14T7).

Hence, any real numbet > 0 given in Theorem 42 satisfies
the condition fore’ > 0 in Lemmd44. Thus, applying Lemma
[44, we obtain[(142) for the subsét Since the subsef is an B. Exponential Decreasing Rate

arbitrary element o8, we obtain Theoreri 42. u In this subsection, we treat the exponential decreasirg rat

of leaked information. In this subsection, we assume that th

Proof of Lemmd_44: Since€¢ > 0, we have the secondT + 1-th messag&r,1, is subject to the uniform distribution.
condition of [1Z1). Due to the choice ef > 0, We simplify Ps, ,xPs,,,, by Ps, . Forasubsel ¢ {1,...,T},
we denote the complementary set {iy..., T} by 7¢ and
simplify the set7® U {T + 1} to 7%*. Unfortunately, thee-
SACU condition [[T01) is not dficient for deriving a good
exponential decreasing rate of leaked information. Heirce,
this subsection, given a sequence of distributiélas,, we
introduce the following quantity

0=I(V;Y|U)-€¢ - R,
T+1
>1(V; YIU) = (1(V; YIU) + min[1(U; Y), 1(U; 2)] - Z R)

R
T+1

:ZR —min[I(U;Y), 1(U; 2)] - Ry
i=0

:R; —min[l(U; Y), 1(U; Z)],

(£%7) :=lim inf = H1+p(SI° ISz, Son) (150)

l+p

for any subsetf c {1,...,T} and anyp € (0, 1].

Theorem 45:For glven R.)I _o» We chooseR, and R; as
which implies the first condition of (I21). Hence, we obtaif|jows.

(I30) and [(I311).

/ T+1
Next, we define R >Ry, R.+R,= Z R.
__2logn i=0
UERY

We fix a real numbee > 0. We choose a codg, given by
Code Construction]5 with the above choid@s and R; and
a given Markov chailJ — V — X. When the sequence of
distributionsPs, , satisfies thee-SACU condition [[Z0ML) for a

Ch :=(=pnN(Re = Ro) + pnH14y,(S7eIS1.0 Son)
— NEo(onlPzv, Py, Pu))-
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non-empty proper subséi(# 0) ¢ {1,..., T}, the sequence of Taking the supremum fags € [0, 1], we obtain [I501). |

codesy, satisfies[(11]9),[({120), and When the condition{I53) holds, the exponéni {155) can be
| improved by using Theorem R0 with Code Construcfibn 4 in
lim inf —=10g 1(Sz.n; ZnlSon)[Pzy: @, Ps;.,] the following way.

> sup p(H,. (I°*) = Re + Ry) — Eo(o|Pzv. Py, Pu). (151 Theorem 46:We fix a real number > 0. Let ¢, be a
0<p<plp(_l+p( ) )~ EolplPzv- Pyu. Pu). (151) code given in Code Constructidh 4 in Subsecfion TX-A. The

In particular, when the distributioRs, , is uniform, we obtain Seduence of codes, satisfies [(115)[(116)[{156), and

-1
o Lol .
“me F |Og [ (SI,n; Zn|SO,n)[P2\V, (Dn’ PST+m.n] |Imlogf n |Og | (SI,n, Zn|SO,n)[P2\V’ (Dn, PS’T+m,n]
~ Cox) _
ZEEO(Rp _ Z Ri, PZ,V,U), (152) 2 ()Tpas)](.pﬂl*'P(I ) W(P“DZ\V, PV\U, PU)- (157)

. < In particular, when the distributioRs,., is uniform, we obtain
whereER (R, Pzyy) is defined in [(2R). 1
Theoreni 4b yields the following observation. WHe-e— liminf — log | (Srn: Zn|SO,n)[P2‘V, @, Ps,,.]
Sier R > 1(V;ZIU) andH,, (7% > (Zieze R) — € holds with e n
a smallp > 0, the exponen{{I51) is positive, i.e., the leaked ZE"’(Z R, Pzvu),

information goes to zero exponentially. In particular, whe iere
T+1 whereEY(R, Pzyy) is defined in[(2IL).
Z R < I(V;Y|U), Ry < min[I(U;Y), (U;2)], (153) Now, we compare Theoreriis145 dnd 46. Since the RHS of
i=1 (@I57) is larger than the RHS of (1155) due [01(17), Theorem
we can choos®, andR; by [44 is better than Theorem145 when the relation 1153) holds.
T Otherwise, the error ex%ent df (115) and(118) is not
o _ . positive. That is, Theorein 46 cannot yield a reliable commu-
Ro = ; R, Re=Ro (154) nication. In summary, Theorem145 has a wider applicability

Then, the inequalitied (I119) and_(120) can be simplified Qan Theoreni_46. In the special cage {153), Thedreln 46 is

. ... better than Theoreiin #5.
(ﬂ(:).ems) ;enr?)lzgxzfghgnﬁg;l’ thFeurk:ﬁg: (:Egoiﬂlgguzrror E;i?abtgl:le Proof: Relations[(116) and (11.6) have been shown in Sub-
9 P Y ’ qualily { sectiof IX-A. Due to the-SACU condition, [(11]7) guarantees

simplified to 1 (I58). Using [(6B) and the-SACU condition, we obtain
|"I’;rl>lor3f F log I (SI,I"I; Zn|SOYn)[P;‘V, (Dn’ PST+m'n] I (SI,I"I; Zn|SO,n)[P2\V, (Dn, PST+0<7.n]
> Oiuﬂpﬂ1+p(-z-c’*) - EO(.O|PZ|V, PV|U, PU) (155) < 27+2 e_thp(sIc,«V,.,|SITn,So,n)+n‘//(P|PZ|V,PV\UPu)
o S— .
P
Further, in the case of (1b3) and_(154), when the WACLIJhen
condition holds forZ, the inequality [T22) can be simplified ' L
0 . liminf — 101 (S 7.0 Zo/Sar)[Phy: @n. Ps,.]
||rr:1 supﬁ | (SI,n; Zn|SO,n)[P2‘V, (Dn, PS’rw@,n] Zpﬂ1+p(fc‘*) - lﬁ(p“:)z‘v, P\/|U, Pu) (158)
<R.— Ry +1(V;Z|U) - Z R = 1(V;Z|U) - Z R. (156) Hence, we obtaif(157). u
iezor iezer When the above discussion is applied to the wire-tap chan-

nel model, we obtain an extension of existing results to the

Proof of Theorerfid5: In SubsectiofiTX=A, we have alreadycase of the asymptotic uniform dummy message. That is, we
shown [1IP) and{120). Hence, we need ’to only sHow](15 nsider the case with no common messagesTar® when

Due to [7T), the leaked information f&7, can be evaluated 1 corresponds to the message to be secretly sent to Bob,
’ and S; does to the dummy message maki&g ambiguous

as
to Eve. For a given rat&; of secret message and a given
1(Sz.n; ZalSon)[PZys #ns Psy,..) rate R, of dummy message, the RHS 6f{115) coincides with
oT+2 o the Gallager exponents, the RHS BF (IL55) coincides with the
STG"”(RC Fol=pHlusp (SreealSaSanhtnGlelPan. P Pu). RHS of (59) in [15], and the RHS o {T57) coincides with the
Hence exponents of the RHS of (15) if [17].
|im inf __nl log 1(Sz.n; ZnlSon) XI. PracticaL Cope CONSTRUCTION
1 In SectiorX], we consider how we can construct practically
zp lim inf ﬁHl+p(SI°~*,n|SI,n, Sopn) usable encoder and decoder for the secure multiplex coding.
~ p(Re — Ro) - Eo(plPzy, Py, Pu) When the channel has additive structure, the papér [17idBect

. V] constructed a code for wire-tap channel code from an or-
2p(Hy,,(I™7) = Re + Ro) = Eo(pIPzyv, Py, Pu)- dinary linear error correcting code, and the paper [22,i8ect
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VI] did a secure multiple code without common message froim independent of the choice &f and anything else. Then, by
an ordinary linear error correcting code. Here, we constaucdefining a mapAr & () := F’(s) + G’, we obtain our encoder
secure multiple code wittvithout common message when thepp o Ar ¢/ (So, St - - -, St+1) = ¢p(S0. AF . (S1, ..., Sr+1)). The
channel does not necessarily have additive structure aad tlecoder is constructed by applying the inveﬁée,(bl, by) =
message does not necessarily obey the uniform distributien—((b, by) — G’) to the decoded message of the cade
We shall show how to convert an ordinary error correcting The average of the leaked information of the above con-
code without secrecy consideration to a code for the secwteucted code is evaluated as follows.
multiplex coding. In this section, we treat practical code Lemma 47:For a subset/ ¢ {1,...,T}, the quantity
construction in the single-shot setting unless otherwigted. Eq max(0|Pzy) defined in [2B) satisfies

It is a common practice to assume the uniform distribution

of messages when one evaluates the decoding error prafpabili Er o 1(S1; ZISo)[Pzv, ¢p © Ar s Ps, ]
and decoding error probabilities with non-uniform message <eE"ma*(p‘PZ‘V)”’H“P(SI“'S*”S") (159)
distributions are rarely considered in practice. Thus, Wwe a - o ’

ways assume the uniform message distribution because this pqof: Applying LemmaZL, we obtain
assumption is necessary for the analysis of the decodiing err
probability. However, this assumption is unnecessary fiat t Er e exppl(Sz; ZISo)[Pzv, ¢p © Ar e, Ps,])
of the leaked information to Eve. The analysis of this sectio _ ~PH1.(Sre+|1S7=57.S0=%)
holds for general channels with finite alphabets except for _1+ZSOZPS°(SO)§ Psriso(sriso)e
Lemmal[50. Only Lemm& 50 assumes the regularity of the . @/0IPze, ) So-s0.0p-Prix:51.87) (160)
channel.
Since

A. First Practical Code Construction: First Type Evaluatio  g/(olPzeyeyepso-Prixs1.5,) < gFol0IPzy.8p.p.50-Prixsy.3,)

We construct a code for the secure multiplex coding basedZ 1 R
on a given code, for BCD with the common message 8 (Z MPZ'V(ZI"DP(SO’ by, 02)) 7)™
and the private message &p. We assume that encoding and 2 bt
decoding ofp, can be #iciently executed. We shall attaétt
andG’ in the second step of Code Ensempble 3poso that St
the resulting code for SMC enableflieient encoding and we obtain
decoding. This type of construction is much more practical
than Code Ensembl@ 3 because Code Ensefible 3 uses the=F& €XPOI(S7: ZISo)[Pzv. ¢p o Ar . Ps, 1)
random coding for the error correcting cogg, which does <1+ Z Ps, (So)e (51 [S1:S0=5%)
not enable ficient encoding nor decoding. To use the code )

ith F” and G’ attached, we have to evaluate decoding error 1 1.
o oot inf on | e ' Z(Z mpzxv(ﬂsﬁp(so, b1, b2)) ™). (161)
z bl,bz

—oH14,(S7e+1S7=57,S0=%0) _ a—pH1:p(Srcx|S7.So=
ZPSI\SO(SHS))ep 14p(Srex|Sr=57,S0=%0) _ @ PH1:p(Sre+ISr 050),

probability and the amount of information leaked to Eve. The

former is less than or equal to that of the underlying error o

correcting codeg,, and the average of the latter over thdt can be simplified as follows.

ensemble of’ andG’ can be evaluated by Lemrhal21 with 1 Aip

a fixed error correcting codegy. In our code, we employ a Z(g.; 1811182 Pz (Zep(So. b1 b)) ™)
1,2

dummy message to realize the secrecy of message when the ‘

11
leaked information is very close to the mutual information S@?XZ(Z Pv(V)Pzy (2v) )"
with the normal receiver and the numberDfis fixed. Now, z v
we present a code construction. = rTg,aer‘)(”'Pz'V’PV) = gFomadplPzy),

\4

Code Construction 6First, in order to apply Lemma_21, _ _ _
we divide the common message s8¢ of the BCD code That is, using the relatior}q Ps,(So)e#Hune(SreSr-So=%0) =
¢p 10 So x By, and denote the private message Sgtof €755 we have
¢p by B>. That is, the codep, is regarded as a map from Ec, o expbl (S, ZISo)[P Aer o P
So x B1 x B, to X. Then, based on the codg, assuming F.6 eXpPI(Sr; ZISo)[Pzv. ¢p © Are, Ps,])
the Abelian group structures if%; and 8,, we choose an

ensemble of isomorphisfisF’ from 81 x --- x Sr.1 to Combining the Jensen inequality for— €, we obtain the

<1+ e*PHup(SI&* 1S7.S0) eEO.max(p‘PZ\V) ) ( 162)

B1 x B, as Abelian groups satisfying Conditidn]15 whilejesired upper boun@(T59). -
we do not assume any algebraic assumption for the coderne |ogarithm of the RHS of[{I59) has the following
¢p- In this scenario,So is common messagess, ..., St property.

are secret messages, afg., is the dummy randomness | emma 48:The functions p — Eo(olPzv) -

whose secrecy is not required. We choose the random variable  (s...|S;,So) - log d .
: noose «|Sr, p and p =  EomaxolPzv)
G’ € B1x8B, that obeys the uniform distribution @&y x8, and leig(Sfe*ISf, So) — logp are convex. e |

SRemark[I6 discusses affieient realization of an ensemble of isomor- Proof: Th? functionp - EO(pl\NZ’ QV) is convex M]
phismsF satisfying Conditiof 5. Also the functiono — pH1.,(Sre|S1, Sp) is concave. Hence,
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Eo(olPzv, Qv) = pH1,(S7e:IS1, So) — logp is convex. Sim- inf,cq 1) Eo(plPzyv, Pmixv) — p(109|ST1] + H14,(S1eIS7, So)) -

ilarly, due to Lemmdl5, the functiop — EomaxolPzv) — logp. Due to Lemmd_48Eq(olPzyv, Pmixv) — p(1091ST41] +

PH1:,(Sre ISz, So) — logp is convex. B Hi,,(Sr|Sr, Sp)) —logp is convex with respect tp, and the
As is explained latter, the bourgfer=Pz2v) is computable infimum is computable by the bisection methbd [4, Algorithm

in the discrete memoryless case. On the other hand, thé].

error probabilities can be upper bounded by the average erro

probabilities of the codey. Proof of Lemm&30: First, we choosé®, such that
Next, we determine the necessary amount of dummy ran- ,
domness so that the amounts of leaked information is below Eomax(0IPzyv) = Eo(plPzv, P). (166)

specified levels. Suppose that we are given arbitrary errgafine P, for vo eV by

correcting codep, for the broadcast chann®zy. The code Vo

¢p can be, for example, an LDPC code][40] or a Turbo code Pl (V) = PY(V + Vo).

[41] when there is no common message. Then, we assume tﬂ%n

St,1 obeys the uniform distribution on its alphak®t,; and ’

is statistically independent of all other random variablks gFollPav.) — gFolelPav- Py (167)

a corollary to Lemm&47, we have:
Lemma 49:For 7 c {1,...,T}, we have

Er o 1(S1; ZIS0)[Pzv. ¢p © A, Ps, ]
EomanlpIP2y)-p(10g ISt 11+Hu.,(S7e1S7.50) VoV

S p N (163) (SC)eEO(p‘PZ\VYZVO?'V ﬁPQvo) - eEO(P‘PZ\Vmeix,’V) (2) eEO,max(P‘PZ\V),

By using Eq. [I68B), fromg, we can construct a codewhere @), (b), (c), and €) follow from (@&8), [I6Y), the
for the secure multiplex coding as follows. For each propebncavity of Py ~— e5@P2v:Pv) (jtem (2) of Propositioril2),
nonempty setZ ¢ {1, ..., T}, & denotes the maximum and the definition[{23) oEgmaxo|Pzv), respectively. Thus,
acceptable information leakage fo(Sz;Z). Denote bye, we have [I64).
the maximum acceptable probability for a chosenG’ not Next, we show [(165). When the codg, is a homo-

Hence, we obtain

Eo.max(0lPzyv) @ Fo(plPzv.P) b) 1 Eo(pIPzyv.Py,)
e =€ v/ = —e Vo
Z (VI

making 1(Sz; Z|Se) below 7 for somer. morphism as Abelian group, as is mentioned in Lemma
Adjust the sizgSt.1| of the dummy randomness so that 21, we have Erc-q!(Sz; ZISo)[Pzv. ¢p © Arg,Ps,] =
2T [ eFomalolPav)-p(0g|St.al+Hu,(SclS1.So) Er o1(S1:ZISo)[Pzyv, p © Ar g,Ps,]. Hence, combining
€= — él&)fl) 5 ) (I63), we obtain[(185). [ |
2 \Pell,

_ When the channel is given as thefold discrete memory-
Then, due to[(183), we obtain less extensiorP},, of Pzy, EomaxoIPg,) has the following

v .
Ero1(S1: ZIS0)[Pav. ¢p 0 Arrcrs Ps, ] < —y characterization. Using [1], we obtain

%}7 17 —_— EO.max(p‘P )
Then, by the Markov inequality the probability of choosing ”S&X;(; Pun(V)Pzoyn (V) =)= = € .

F’ and G’ making I(Sz; Z|So) < €7 simultaneously for all ) )
Ic{l, ... Tlis>1-e. Thus, we can apply the above discussion to théold

When the channel is a regular channel in the sense 'Bgmoryless case br?/ replacingomax(plPzv) and Pzyv by
Delsarte-Piret[[10], the valuEqmax(p|Pzv) can be calculated F‘EO,max(P|PZ\V) and P7,,. That is, it is enough to calculate

as follows: inf,e0.1) NEomax(plPzv) = p(1091ST+1] + Hi4p(SrelS1. So)) -
Lemma 50:When the channeP,y is regular in the sense Iogp.WZSInce, as is mentioned in Propositigh Qv +
of Delsarte-Piret[10], ePlW'.Q) js concave andk |—>Wlé)gx iS monotone increas-
ing and concaveQy — Eo(plW ,Qy) is concave. Hence,
EomadelPzv) = EolpIPzv. Pmix.v) (169 Eoma(olP2y. Qu) = maxe, Eo(plPzy. Qu) can be easily com-
Further, when the code, is a homomorphism as AbelianPuted. Due to Lemm& #81Eomax(plPzv) — p(10g|St.a| +
group, the inequality H1.0(S7IS7, So)) — logp is convex concerning with respect
to p, the infimum is computable by the bisection methiod [4,
Ere=g 1 (S1: ZISo)[Pzv, ¢p © Arr g, Ps,] Algorithm 4.1]. Therefore, we can calculate the minimum
<eEo(p\Pszmix:v)—P“Og\ST+1I+H1+;)(SIC\SI,50)) 165 size |St.1| satisfying that nEygmax(olPzv) — p(1091St11] +
= P (165) H1.,(S1eIS1, Sp)) — logp is smaller than a specified level for

holds for anyg’ € G'. allof 7 c{1,....T}.

Thanks to Lemm&-380, in the regular case, when the code ) . )
¢, is @ homomorphism as Abelian group, the above procedlﬁe First Practical Construction: Second Type Evaluation
for the construction of our code (Code Construcfidn 6) can In the above discussion, we have to consider the maximum
be simplified to the following way. It is enough to choose&alue Eqmax(olPzv). However, when there is no common
F’ and to fixG" to be 0, and we can replad® maplPzv) message and the chanii®ly is not regular, one can improve
by Eo(olPzv, Pmix). That is, it is enough to calculatethe bound[(I59) in the-fold memoryless case under the same
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code construction (Code Construct[dn 6) as the following.waH1.,(Sz<|Sr, So)) — logp +logC; by the bisection method][4,

In the following, we treat then-fold memoryless extension Algorithm 4.1]. Therefore, in the above case, the method in
Pglv. Given an encodeg,, : 8, — V", we define the weight this subsection improves that in Subsecfion XI-A.
distributionP,, over the sefly(V) of types of lengtm of the

setV by
V! € Im gplthe type ofv" is Qy.}|
° (168)  In the previous construction, when the channel is not a

i
Pelu) = iy
P regular channel, we have to use an upper bolund (159), which is
for Qv € Tn(V). Using the above weight distributiod,,, we larger thane ey Prxy) oy Gre 750 ) T ST o e

define the distribution

C. Second Practical Construction

eFollPzy ~Pmixev)’PH1+p(SI°~* 1S7.S0)
upper bound even for a non-regular

P, (V) := M channel, we introduce” another practical construction when
’ ITa(QV)I there is no common message.
for v € V", whereQy is the type ofv" and Assume thatV has an Abelian group structure. Now, we

) . give a code ensemble from an arbitrary Abelian gré&pnd
To(Qv) = {v" € U'lthe type ofv" is Qv.}. an arbitrary encodep : 8, — V satisfying that the magp
We construct our code by the same way as Subsectisnan injective homomorphism. In particular, wha andV
[XT-A] We apply Lemma 2B to the case whehis then-th are vector spaces over the finite fighd, the mapy can be
permutation group’ is V", and Py is PE\V' Then, given as a linear code, such as an LDPC code [40] or a Turbo
code [41]. However, we do not necessarily need to assume any
algebraic structure in the chann@}y,y, for now. We stress
that in Code Ensembld 7 we use single encagewhile in
Code Constructiohl8 we use multiple encoders with the same

g/ IPzng, Prixs,) eEo(P\PQNYEp).

Hence, combining (160), we obtain

Er o expll! (Sr; Z)[Pglv,gop o Ap &, Ps,]) code length and étierent information rates.
<1 + eFol0IPyPep)-p(10gISraal+Husy(SrelSp)) Code Ensemble 7We modify the random code given in
- LemmalZl as follows. We choose an ensemble of isomor-
Sincee* is convex, we obtain phismsF’ from Sy x - - - x St,1 to B, satisfying Conditiof 1I5.

Er o 1(Sy: Z)[P" oA Ps ] We choose the random varial¥ e <V that obeys the uniform
Freiion Sz, #p © BF.G TSy distribution on‘V statistically independent of the choicefef.

<eE°(P'PZIV*P¢p)‘P('°g Stoal+Hao(SrelSr)) Then, we define the encod&g () := (¢o F’)(9 +G”. The

- o ' decoder is given by~\p,G~ (v) = F'Y(¢(v - G”)) by using the

However, it is not easy to calculate the weight distributiof€c0ders"of ¢. _ _
P,, for a given codep,, but it is possible to give an upper This code. ensemble can be_ undgrstood in lthe following
bound for eactP,,(Qv) in some special cases. For examplevay. We define the random variab in the quotient group
the upper bound in the case of binary BCH codes is discuss&d¢(82) that obeys the uniform distribution. Léyn) be the
in [31]. We assume that another distributiqq, over the set set of coset representatives. L&t be the random variable

Ta(‘V) and a constant; satisfy subject to the uniform distribution of8,. Then,G” is given
as ¢(G’) + yy. That is, the encoder and the decoder can be
C1Q,,(Qv) = P, (Qv) given as follows.Ar o (9 = (¢ o F)(9 + G +yn and
for any Qu € Tn(V). Similar toP,,, we define the distribution Ar V) = FH@V - G - yw)). _
Q, by In Code Ensemblel 7, the random varlable_:orresponds to
e the choice of the codebook for error correction. kgtbe the
O, (V) = Qg,(Qv) decoding error probability when we us$¢ as the codebook
LN (O V)] and the message obeys the uniform distribution. Hence, we
consider thaty expresses the decoding error probability when

for v € V", whereQy is the type ofV". Hence, Proposition _ ) !
yields we useH as the codebook in the following code construction.

For Code Ensemblg 7, we have the following lemma:

%oWlPavPee) < ¢y PolIPav Q). Lemma 51:The inequality

Therefore, we obtain

Er o Hepl(S];Z)[PZN,;\F/_G/H,Ps,]_]
Er o 1(S1: D[Pz, ¢p 0 Ar o, Ps,] <1 + e #Hun(Sre1S1) gFolelPay Prixcy) (170)
Fo(olPy .Q )=p(109 18T 1l+H1.,(SrcIS1)) .
s i (169) holds for each subsef ¢ {1, ..., T}. Thus, applying Jensen
p inequality tox — €%, we have

When C; is suficiently small and@w does not give the
maximum Eo,max(pnglv), the RHS of IfEIQ) is smaller than olP o Pracr)pHan(Sree(S5)

the RHS of [I5D). Similar to the regular case of Subsection _ gEolPav Py ity (Sre- 51 ' (171)
[XI-A] we can calculate info,1) Eo(olP3,, Q,,) —p(10g|ST-1]+ B p

Er o nl(Sr; 2)[Pzv, Ar o h, Ps, ]
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Proof: We apply [I61) to the case whe$, = 1, Proof: Markov inequality guarantees that{By < e} >
So = {0}, 181 = 1, B1 = {by}, and the mapp, is given 1- €. Hence, we obtain
asep(So, b1, b2) = ¢(be) + yn for any b, € B,. Then, we obtain -

P Er e.v1(Sr: D[Pzv, AF & H, Ps,]

EF/YG/eol(SI;Z)[PZ\V,AF’.G’.h,PST] =EF & Hisn<e | (S1; 2)[Pzvs ;\F’,G’,H, Ps, ]
- 1 e Prien < &) -
< pH1.p(S7e+1S7) _— )1 o H b . i o
<l+e€ zzl(%: i3, 2 (@e(b2) + yn) 77) < Prion < e =& Hensal (S7: DPav. Arr e . P/ ]
Prieqy > &} ] -
Hence, we obtain + mEF/,G/,H\sHXb'(SL 2)[Pzv, AF 6 H, Ps,]
N 1 .
Ep o ne’ CrdlPav.AronPs,] ==———Er e.nl(S1; )[Pzv, Ar o 1, Ps,]
iy (Sr2)[Pav.A Ps ] Prlen < &} = ™ o
=EHEF/,G’Heo 1 O)Pzv. A 6 1 Psy .
H‘ Sre-15) 1 . <o o Er o .1l (Sr; D)[Pzv. Ar e 1, Ps,]
<1+ e PrmiSrsbIg —Pzv(@e(by) + yy) > )"
E(bzz g P2V (@60 + )7 cerer/T

1 1 .
<1+ e M@ SO NYELNT _— P (Ze(y) + yu) )P for everyZ, whereEp ¢ sy <e, dEnotes the expectation under
ZZ: % |B2| the conditionsy < &,. The final inequality follows from{L171).

—1 + @ PH1(S1e+157) gEo(pIPz - Prix:v) Since the above choice &, G’ andH’ is restricted to the set

' {(f",dg,N)len < &}, due to Markov inequality, the probability

which implies [I7D). m of choosingF’, G’ and H’ making [I74) simultaneously for
In order to construct a code for the secure multiple®ll 7 < {1....,T}is not less than & e,. L

coding (with no common message), we define the notationsturther, when the channel is given as theold dis-
as follows. Lete; be the maximum acceptable informatiorfrete memoryless ?Xte.nfSIOﬁ’Q‘V of Pzy, the quantity
leakage forl(S7;Z) for eachZ ¢ {1, ..., T}. Let & be EoloIPZy, Pmixn) is simplified tonEq(olPzy, Pmix-v). Hence,
the maximum acceptable error probability. Letbe the the Similar to the regular case of Subsectibn XI-A, we can
maximum acceptab|e probabmty a Chogéh G” not making CalCUlate- the rlght hand side m73) by the bisection mgtho
1(S7;Z) below e;. These parameters, e;, and e, are the [4, Algorithm 4.1].
requirements for our code construction.
Code Construction 81n this construction, in contrast to XIlI. CHANNEL-UNIVERSAL CODING FOR SECURE M ULTIPLEX
Subsectiong XI-A and_X[-B we assume that we are given CobpiNG WiTH CoMMON MESSAGES
multiple error-correcting codes with the same code length . . . .
. 7 . In order to treat universal coding for the multiplex coding
n and diferent information rates. Using (171), we construct. . . .
. ; . with common messages, we introduce the universally attain-
a code for the secure multiplex coding (with no common : : :
i able exponents of the multiplex coding with common messages
message) as follows: . . . S
) ) ) in the n-fold discrete memoryless setting by adjusting the
1) We choose a suitable Abelian grody, a suitable griginal definition for the BCD given by Korner and Sgarro
codey, a suitable sacrifice bit length (the size Bith  [p2). Similar to Subsectiof X8, in this section, we employ
message), and a suitable real vadye (0,1) satisfying T 4 1-th messagsr,, as a dummy message subject to the

that uniform distribution, and assume that tie+ 1-th message
Enen Sti1n IS subject to the uniform distribution. We simplify
= (172) Ps,,xPs,,, by Ps, . Fora subsef ¢ {1,...,T}, we denote
Eo(pIP2 Prixy)—pH1,, (S7e+ IS7) the complementary set i, ..., T} by 7¢ and simplify the set
er > 2" mi (173) I°U{T +1} to I°*.

in
0.1 1- . . . .
PO per(l-e) In order to treat universal coding for secure multiplex cadi

2) We chooseH randomly. Then, we check that is less with common messages, we focus oh2- 2 functions to
than &. If not, we choose anothdd. We repeat this express the evaluations of the exponential decreasing cdite
process until it is successful. We denote the final choickecoding error probabilities and the asymptotic evaluatiof
of H by H’. Thanks to Markov inequality anf (1I72), theleaked information. For describing bounds of the expoménti
successful probability for one trial is at least k. decreasing rates of both decoding error probabilities, aexn

3) We chooseF’ and G’ randomly. Then, we obtain thetwo functions. For treating the asymptotic evaluations of
pair of the encogef\p,G/YH/(s) =(poF')(9 +G +yu leaked information, we need 2 — 4 functions because the
and the decodehr g i/ (V) := F/ 1@V - G — yi)). number of non-empty proper subsef$+ 0) ¢ {1,...,T}

T . .
Theorem 52:Under the above construction, the inequalit))S 2" - 2 and we treat the exponential de_creas'”g rates
and the information leakage rates of leaked information for

1(S7; 2)[Pav. Ap e i, Ps, ] < €7 (174) respective non-empty proper subsetér 0) < {1,...,T}.
Then, we need to treat™! — 2 functions. Since we do not
holds for all subsets ¢ {1,...,T} with at least with assume the uniformity, we cannot describe our bounds of

=

probability 1- e,. the exponential decreasing rate and the information lemkag
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rate of leaked information as functions of the rate tupRs ( numbersRy, R, Ro, (ﬂz(l’c’*),ﬂlog(I’C’*))I/(¢w)g{1,,_,,T}), the tu-
Re, (R)i=o1..71+1)- In the following discussion, we treat ourple of exponents and information leakage rate are given as
bound of the exponential decreasing rate of leaked infaonat b b

for a non-empty proper subsdi(z 0) ¢ {1,....,T} as a E =E’(Ry,Re,Ro,W)

function of H,(7%*), R., andRy as well as the channél. :=E°(Ry, Re, (WY 0 ) x Quu), (179)
Similarly, we treat our bound of the information leakageerat e =E%(Ry. Re. Ry, W)
of leaked information for a non-empty proper suhgét 0) ¢

._re 74 ol
{1,...,T}as afunction oﬂ,og(fc’*), R., andRy as well as the =E(R, (W7o B) x chu), . (180)
channeM. Our bounds of the exponential decreasing rates of EX =E(Ro, Re, Ro, (Ho(Z'“"), Hiog (I rz)cia,... ), W)
gstr%feco&jitr;]g errrlor p;c;&)a:ilities atlrr]e des{cribed a.:: Iﬁnsttto)f =E/(H,(I%*) = Re + Ry, (WZ 0 Z) x Quu), (181)
, R;, and the channélV. Hence, the outcomes of the above _; _; . .
2T+1_2 functions are decided by 2! -1 real numberg,, R, EZ =EZ(Ro, Re, Ro, (Ho(77™), Hiog (U N rzo)cia.... 1, W)
Ro, and H,(Z*), Hyog(Z* ) rz0)c(1...1) @s well as the channel =1(V; ZIU)[(W 0 E) x Quu] — ﬂlog(jc’*) +R.— R(Z o)
W 1

Definition 53: A set of functions E®, E®, (E, E)rc1..1))
from RZ," x W(X, ¥ x Z) to R%; 2 is said to be a
universally attainable set of exponents and informatiakage
rate for the familyW (X, Y x Z) if for any € > 0 and any
rate tuplesR,, Re, (R)i—o,1...7), there exist a dficiently large
integerN and a sequence of codgg of lengthn satisfying the

following conditions: (1) The-th secret message s8t, of the _ 11€orem 54 (Extension df [24, Theorem 1, part (a)]):
codeg, has cardinalitye™ fori =1, ..., T, and the common Egs. [I7P)-f(182) are universally attainable rates of egpts

message setSon has cardinalitye™. (2) Any sequence of and information leakage rate in the sense of Definﬁﬁh .53.
joint distributionsPs,., for all of the i-th secretS;, on Sin Proof: In the proof, since we treat the chaniwf o = :

and the common messa8g,, on Sg, satisfies the inequalities V' — Z, we abbreviate it 357_\/2 First, we give the outline
of our proof. We shall modify the constant composition code

PolW", ¢n, Ps,...] sexp(—n[Eb(Rp, Re, Ro, W) —¢]), (175) used by Kdérner and Sgarrd [24]. We do not evaluate the

PIW", ¢n, Ps, ...] <eXpEn[ES(Ry, Re, Ro, W) — e]).  (176) decoding error probability, because that of our code is not
larger than that given i [24]. Observe that our exponents in

for a non-empty proper subséi(# 0) ¢ {1,...,T}, where
EP, E, E%, and E' are given by [[29),[130)[122), anf{24),
respectively.

Hence, our quadruple of exponents and information leakage
rate depends oQyy and=.

and 5\%5. [179) and[(180) are the same [as [24] with the channel
1 W™ = WZ 0 2. We shall evaluate only the mutual information.
liminf — 10g1(Sz.n; Z"|Son)[W", ¢n, Ps,.....] For this purpose, we prepare general notations and preperti

I rCx /Ck of type and conditional type in Step (1). Next, in Steps (2)
2B (Ro, R, Ro, (Ho(77), Hiog (T Nzt W), (177) and (3), we prepare several notations and properties of type
lim sup}I(SLn;Z“|So,n)[W”,cpn, Ps,...] and conditional type that are specific to our proof. In Step
n ' (4), we apply the random coding and evaluate the leaked
sEf(Rp, R, Ro, (ﬂz(f’c’*),ﬂlog(I/c’*))f/(;t@)g{l,...,T},VV), (178) information when the channel is given by the conditional
types. Then, we choose a code whose leaked information is
hold for any channeW e W(X, Y x Z), any non-empty eyaluated for all conditional types and whose error is etait
proper subsetZ(# 0) ¢ {L....T}, and anyn > N. for all discrete memoryless channels. In Step (5), we ew@lua
Here, E°(Rp, Re, Ro, (ﬂz(f'c’*)’ﬂmg(I'C’*))I’(:t@)gll,...,Tl,W) and the leaked information under the above chosen code for all
E®(Rp, Re, Ro, (Hy(Z7%"), Hyoo (7)) 1 z0)cn.... ), W) are abbre- giscrete memoryless channels.
viated toE"(Rp, Re, Ro, , W) andE®(Ry, Re, Ro, W) because they Step (1): Preparation of general notations and propertiés o
do not depend on type and conditional type:
(Ho(Z"%"), Hiog (T N oy, .1 For the following construction of our code, we prepare
For the reason why we employ the limiting forms In_(177yeneral notations for types. These notations will be ussd al
and [I178), see Remalkl]60. Note that we do not consider hgteghe next section. For a given tyf@, of lengthn on a set
the universality for source while Kérner and Sgafral [24]who1/, we define the sefh(Qu) as
the universality for source as well as that for channel, as
reviewed in Theoreffi 13 of this paper. In order to guarantee th Tn(Qu) :={u" € U"[the type ofu" is Qu}.
secrecy forSy,, we need sfiicient randomness &< ,. That
is, the secrecy af;,, depends om,(7°) andH,,,(Z), which
depends on the source distribution. Hence, it is impossible
show the universality for source in SMC. —((1" n n ny
We fix a distributionQyy onUxV and a channet : V — To(Quu) ={(Wf’, V) € Vi Uthe type of ¢ U7) Is Quul.
X. Then, we present a universally attainable set of exponeiitse marginal distributio®y over{ of the typeQyy of length
and leaked information rate in terms @yy and E in the non the setV x U is a type of lengtm on the setl{. Given
following way. Given a broadca®V : X — ¥ xZ and the real a type Qy of length n on the setl/, we define the set of

n—oo

Hence, for a given typ&yy of lengthn on a setV x U, the
setTh(Quu) is written as



conditional types on the séf with respect toQy as

TnW(QU)
:={probability transition matriXxV/ from U to V
WX Qu is a type of lengtm on a setV x Uj}.

The cardinality|7m/(Qu)| is upper bounded a5]1[8]

[Thav(Qu)l < (n+ 1)V, (183)

In particular, given a typ&yy of lengthn on the setVxU, we
define the conditional typ&yu such thatQvu = Qvu X Qu.
We also define the sét,(Quju)un=w as

Tn(Quu)un=r :={V" € V"[the type of ¢",u") is Quu}.

We denote the uniform distributidPiy 1,(q,) 0N Tn(Qu) by
Tn(Qu)- Then, for a given typ&yy of lengthn on a setV x
U, Tn(Quu) represents the uniform distributidtix 1,(Q,y) ON
Tn(Qvu). Further, for an arbitrarWV € 71,4/(Qu), Tn(Wx Qu)
represents the uniform distribution dp(W x Qu). Then, we
define the probability transition matrig,(W) from V" to U"
such thatr' (W) x Th(Qu) = Trh(W x Qu).

When Pynyn is a distribution overV" x ¢4" and invariant
under the permutation of the indices, the distributi®pgyn
can be written as

Pyrun = " Apyaun (Quu) n(Quu) (184)
Quu

with non-negative constantyQyy). In particular, the inde-

pendent and identical distributioR], of Py can be written

as

PO = > A (QV)Tn(QV) (185)
Qv

with

Apy (Qu) = PY(Tn(Qv)) < e "IV, (186)

When the marginal distribution ovet{" of Pynyn can be
written as PmixT,q,) = Tn(Qu) with a type Qu on the set
U, we have

/lPV”Un (QV\U X QU)TH(Q\/\U X QU)
Quu €7nv(Qu)

=)

Quiu €7nv(Qu)

-( 2

Quu€Tnv(Qu)

Pvnun =
Apynyn (Quiu X Qu)(Tn(Quviu) X Tn(Qu))

Ay (Quiu X QU)Tn(Quiu)) X Tn(Qu)-

(187)

We define the channdPynyn by Pynyn = Pynun X Th(Qu)
and the real numbeip,, . (Quiu) = Ap,nn(Quu x Qu) for
Quu € Tnv(Qu). Then, we obtain

Pynjun = Apynn (Quu) Tn(Qupu)-
QuueTnv(Qu)

(188)

Now, we consider then-fold discrete memoryless channel

Pn

viu- Fora given typeQy on the setld, we apply the relation
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(187) to the joint distributiory |t (qu) X Tn(Qu)- Then, [18B)
implies that

PUulm@u) = Z Apn (Quu)Tn(Quu).  (189)
QuueTnv(Qu)
Choosingu" € T,(Qu), we have
/ 1 if Qu=Qv
Tn(Qu)(Th(Quiu)un=wU" = U") = { 0 othglltljvise. v
(190)
Combining [I8B) and{190), we obtain
Apy, (Quu)
=Py ulma@) (Tn(Quu)ur-w|U" = u")
= [ [(Puu-u)" O (T, (Quu-v))
ueu
<e” Suer NQU (WD(Qupu=ullPviu=u) (191)
:e*nD(Q\/\UIIPquQu)’ (192)

where [I911) follows from[{186).

Step (2): Preparation of notations and properties of condi-
tional types based on a joint type @ x V:

In this step, we prepare several important properties based
on a type of lengtm on the setld x V x Z. Now, we focus
on a conditional typeNV? € 7, z(Qvu), which gives a type
WZ x Quu of lengthn on the setl x V x Z. Note that in
order to make a type of lengthmon the settd x V x Z, we
need to choos&V not from 77, z(Qy) but from 77, z(Quu).
Now, we treat the chann&V/~ as a channel fromV x U to
Z while the output distribution of the chann@’ does not
depend on the choice afe U. In our codeg,,, the random
variableV"U" takes values in the subs&;(Qyy). Hence, it
is suficient to treat the channel whose input alphabet is the
subsefl,(Qvu) of V'xU". Based on{189), we make a convex
decomposition

2.

Wk 0w = Aot (WE)To(WP), (193)
WZ2eT 1 z(Quu)

with non-negative constants,(W?4). Then, due to[(192), we
have

Ly7(W2) < @ DWW IQw), (194)

For an arbitrary code,n, the joint convexity of the condi-
tional relative entropy yields that

[(Szn; Zn|SO,n)[W/Z,n, Pan, PS’T+m.n]

< D T(WA)I(Szn ZSon)[ (WA, gan. Ps, ...
WZeThz(Quu)
(195)

Next, in order to treat each chann®h(W?), we fix a
conditional typeW? e 7, z(Qvu) and study the properties of
the channelr,(W?). Under the joint typeQzyy := W x Quu,
we define the numbers

N(U) := [Ta(Qu)l, N(UZ) := [Tna((W* 0 Quuu) X Qu)l,
N(VU) = [Ta(Quu)l.  N(VUZ) := [To(W* x Quu)l.



and

N(ZJU) := N(UZ)/N(U),
N(VIU) := N(VU)/N(U),

N(VIUZ) := N(VUZ)/N(UZ),
N(Z]VU) := N(VUZ)/N(VU).

Then, due to[[8], we have

1T 2(Qu) LAV XA < N(Z|U) < HEVIWXQW]
(196)
|7'nZ(Qvu)rlenH(Z\VU)[WZXQvu] < N(ZVU) < enH(ZIVU)[WZXQvu]'
(297)

Then, we obtain the following lemma.
Lemma 55:Any conditional typeW? € 7,, z(Qvu) satisfies

Eo(ol T n(W2), Pyrjun mix To(@uu)» PmixTa(@u)

3 N(Z|U)
=pl (V; ZIU)[ (W) X Prix.T.Qu)] (199)
<npl (V; ZIU)[W? x Quu] + plog|Tnz(Quu)l  (200)

for anyp € (0, 1). HerePynun mix 1,(Qvy) IS defined as a special

case of Eq[(1).
Proof: Under the joint typeQzyvy := W? x Qyu, since
Tn(W?) = Pzovnun mix.To(Qzvu)» WE Obtain

eEO(PrY.n(WZ),PV”\U”,mix.Tn(Q\,U)»Pmix.Tn(QU )

—gFo(PIPzvun mix Ta(Qzy ) Pynun mix Ta(@yy)- Pmix Tn(ay))

_ 1 (
u"eTr(Qu) N(U) 2€Tn(Qzu)un-un)

Pynjun, mix, Ta(@uu) (VU™
VETh(Quizu)znun=z1un))

1-p
a1
* (Pzoynun mix To(Qavu) (V' UT)) =7 )
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setV, we focus on the set

Wi z(Qv) ={Tn(WH)W? € T z(Qu)}-

In our codeg,p, the random variabl&" takes values in the
subsefT,(Qv). Hence, if we focus on the s&t" as inputs, it

is suficient to treat the channel whose input alphabet is the
subsetT,(Qy) of V". Then, due to[(189), we have another
type of convex combination:

W'l = Z

OneWn z(Qv)

/ln,W((’Dn)@n, (201)

where 1,w(®,) is a non-negative constant. Then, for an
arbitrary codegp,n, the joint convexity of the conditional
relative entropy yields that
—7n
(S10: Z1S0n)[W > @an. Ps,...,]

< Z Anw(©n) (Sz.n; Z"S0n)[On, @an, Ps,...]- (202)
OneWn z(Qv)

Next, we introduce the quantity
Enp.r (W2, Quoun)
= eXH{M(Re — Ro) ~ M1, (S1e-alSn Son)

+ Eo(p W', Quun, Qu)) - (203)

for any channeW?" from V" to Z" and any distributiom®ynyn
on V" x U".

Then, we have the following lemma.

Lemma 56:Any joint type Qyy of lengthn on a setVxU
and any channad, € ‘W, z(Qy) satisfy

—7n
eXP(EO(Pl\/\/Z s Pyniun mix To(Quo)s PmixTa(@u)))

<(n+ 14V expEolpW . QY. Q1).  (204)
3 1 /ln,W(G)n)en,p(@n, Pmix,Tn(QVU))
u"eTn(Qu) N(U) 2'€Tn(Qzu)un=un) <(n+ 1)W|2W‘8n,p,f(W/z’n, Quvu)- (205)
1 1 1 \P
( )rp) We have
VETh(Quizu)znun=z1un)) N(V|U) N(Z|VU) . 1 W/Z,n n
1 1 1 - pr supa logéen,, 7 (W™, Quy)
=N(U) == N(ZIU)(N(VIUZ) ( )=) o
N(U) N(V|U) ‘N(Z|VU) . Yy B on Cn gl
NZUPNNUF  N@UY <I(V; ZU)W X Quul ~ Hpg(7%) + Re = Ro = EZ. (206)
N(VUZ)PN(U)  N(Z|VU)’ with p, = ‘5":19” for any 6 > 0. Further, wherSy..,, is the
which implies [I98). Since uniform random number and independent®f,, and Sop,
we have
logN(Z|U) — log N(Z|VU) —7n _ N
=H(ZIU)[To(W?) X PrixT,(@u0)] np (W, Q) = 21,1 (W Quu) (207)
~ HE@ZIVU)[Ta(W?) X Paix T (0] and
=1(V; ZIU)[Yn(W?) X PricTo(@uun] lo W,
" T Q) jim 10922 r W Qe 710y R, + SR, (208)
we obtain [I99). Combining (IP6) arfd (197), we obtain {200).”~° p iel

[ |
Step (3): Preparation of notations and properties concegni

conditional types based on a type n

In this step, we focus only on a convex decomposition

different from [I9B). For a given typ®y of lengthn on a

The convergence if_(208) is uniform.
Proof: First, we show [(204). For arbitrary € U and
v e V, the distributionPmix 1,(0,,) Satisfies

Pynun mix. To(Quy) (VL) < (1 + 1)VIQT, | (Viu) (209)
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by [8, Lemma 2.5, Chapter 1], and Tn(Quv), andPyyy is Tn(W?%). Note that then-th permutation
roup acts onl,(Quyv) transitively. We obtain
Paix 0o (W) < (n+ 1)™1QG (W), (210) IO (Qu) Y

by [8, Lemma 2.3, Chapter 1]. Then, due to the relation](209), ,

and [ZID), LemmAl3 witl; = (n+1)“" ! yields the relation =/ PNV Pymion micim . Pumicimp)

(203). <@P(Re=Ro)+Eo(pITn(W?). Pymun mix To@yy)-PrixTa(@u)
Next, we show[(205). We can also show that

g/ IPzn, By =59 Pmix.81.8,)

Combining Lemm&_21 and the above inequality, we obtain
/lnyw(@n)eEO(P|®nvPV"\Un.mix.Tn(Q\/U)vaix.Tn(QU))

Ea,, eXp@! (Szn; Z"Son)[Tn(W?), Dan, Ps,....])
= >, P, (V) Z(Z Pynun,mix To(@uu) (VIU) <1 4 @PRRO)H1 (S 15 IS S0n) o6l To(WA). Punun ooy PrinTaay)
u z \% -
L\1p (213)
=P
'(/ln,w(G)n)@n(ZlV)) ) Hence, we obtain the following relations. In the following
derivation, the first inequality follows from the convexity
< Z Prix To(@u) (U) Z(Z Puniun, mix To(@uu) (VIU) X — €*. The third inequality follows from[{200).
u z A"
Lyiv  eXPPEo,,| (Srai Z"1Son)Tn(W?), Pan, Ps,...])
An,w(®'n)®’n(ZIV)) ) <Ea,, expl(Sz.n; Z"Son)[Tn(W?), Pan, Ps,....])
. OneWnz(Qu) <1+ enP(Rc_RO)_PHlm(SIQ*,n|SI,nsSO,n)eEO(Prrn(Wz)sPV”\Un.mix,Tn(Q\/U)vaix.Tn(QU))
=eEo(/J\WZ SPumiun mix @y Pmixn(@u)) (211)

<1+ |7'nZ(QVU)|penp(Rc’RO)’le+p(SIQ*,n|SI.n»SO.n)enp|N;Z‘U)[WZXQ\/U]
Combining [204) and{Z11), we obtain

for anyp € (0,1). Taking the limito — 1 -0, we have
(n + 1) UFVI W " QGy.QL)

expEa,, | (Srni Z"1Son)[ (W), @an. Ps,...)
<1 + [T 2(Quu) @ReRo)Ha(Sree St Son) gl (VZIUIW xQuu]
Due to the definition okn,(W?", Qun ), the relation[(21P2) is (214)

equivalent with the relatiori (205). . . . .
By using [IB), the relatior {206) can be shown as foIIowgmce log(1+ X) < x, taking the logarithm in[{214), we have

Z/ln,w((an)eEO(P‘Gn,Pvnlun.mix,Tn(QVU)»Pmix.Tn(QU ). (212)

Ea., 1 (Sr.n; Z"1Son)[ Yn(W?), Dan, Ps, ..., ]
<log(1+ |f]‘n’Z(QVU)|en(Rc*R0)*H2(SIQ*,nls.r.n,so,n)emWiZ\U)[WZXQ\/U])
= Iirr?_)sup{(F%C -Ro) - :—I:Hhmngn (Sre- ISz Son) <|T 1.z (Quu) e ReRo)-Ha(S e alS1n.Son) gI(V:ZILIW xQuu]
B Since lodZ"| = nlog|Z| < [7Thz(Qvu)l, we have

Eway| (Sz.0; Z"S0n)[Tn(W?), @an, Ps,...,] < [Tnz(Quu)l-

) 1 Y
lim sup— l0g ey, (W ", Qlu)
NoEn

n—oo

+ piEo(mWZ, Quur )|
<R. Ry — Hog (15 +1(V; 2IU) = EZ.

(215)
The relations[(207) and (2D8) are trivial. B ence
Step (4): Evaluation of the leaked information when the ehan ’
nel is given by the uniform distribution on a fixed conditibna  Eq, 1(Sz.n; Z"Son)[Tn(W?), @an, Ps;....]
type: <7 @ [Ha(S 16+ nlS1.n.Son)~N(Re~Ro+1 (ViZIU) W xQuu])]
Recall the fixed codey, for BCD given in Theoreni 13. <ITnz(Quu) (216)

The message sets of the caglg areSonx By and By, with

|B1 0| = € and|B,,| = €. We attach the other random Next, related to the decomposition (201), we focus on a
codingAgrgn for messagéS; , ..., St given as Second Stepfixed arbitrary®, € Wy z(Qv). Similar to [2ZI8), Lemmas21
of Code Ensemblg&]3 in Subsectibn VII-C to the cagg. and[24 yield that

That is, the encoder is given BYan = (¢pn, Arcn). In the

following, Bob’s decodefy, , and Ee\L/e’s degodebe,n are given  Eo., €XppI(Szn; Z"|Son)[On, @an, Ps;....])

as the maximum mutual information decoder. We treat thel + €¥®Ro)Hu(SrovalSza-Son) golelOnPynun mix(@yy)-Prixtniau)
ensemble of code®, := (Pan, Ppn, Pen). _ )

First, related to the decompositidn (193), we focus on a fixed1 + €01 (On. P @17)
arbitrary elementW? € 7, 7(Qvu), We recall the discussion Observe that we have shown that the averages over
in Subsectior_VIED. As is mentioned in Remafk]25, th@,, of expp!(Szn; Z"Son)[Tn(W?), Dan, Ps,....]) and
discussion in Sectiol MIl can be applied the chanW&l, 1(Szn; Z"Son)[On, Pan. Ps,...,] are smaller than[{216) and
whose output distribution depends on the elemertt/ais well (2Z17) , respectively.
as the element ofi’. Then, we apply Lemm@a 24 to the case Choosingpi(n) := 2T (|71.z(Quu)l+|Whz(Qv)) +1, thanks
whenPzy = WZ, G is then-th permutation group{ xV), is  to the Markov inequality in the same &s135) and (36), given a
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fixed p € (0,1), we can see that there exists at least one codeNext, defining

¢n such that the relations
[(Srm; Zn|SO,n)[Tn(WZ), Pans Ps;..n]
<p1(n)E<I>an| (Szn; Zn|SO n)[Tn(WZ) Dan, PSrrmn]
<PL(N)|T . 2(Qu ) "ReRO-Hz(Srec alS1aSon) gl (V:ZIVIW xQuu]

(218)
exp! (Sz.n Z"1S0n)[On, ans Psg—mn])
<pi1(n) Eo,, expE! (Sz.n; Z"1S0n)[@n, Pan, PSrrm,n])
<P1(N)(L + &np.7(On, PmixT(Quu)))- (219)

hold for anyW? € 7, z(Qvu) and®, € W, z(Qv).

Step (5): Evaluation of the leaked information when the

channel is given by discrete memoryless channel:
Using [218), we obtain

(Szi Z1S0n) W ", ¢an. Ps,...,]
< D At (WAI(S1n Z1Son)[T(WA). gan. Ps, ..l

WZeT 1 z(Quu)
(220)
< >0 [ArWARUMITHZ(Qu)l
WZETn.Z(QVU)
. e—[Hz(S.rw.n\SI.n,So,n)—n(Rc—RoH(V;Z\U)[WZXQvu])L
(221)
< Z | P2 (MIT02(Quu)l
WZETn.Z(QVU)
e*nD(WZHW/Z|Q\/U)*[H2(S]C=*.n‘SI,n»So,n)*n(Rc*ROJrl(V;Z‘U)[WZXQVU])L:I
(222)
< Z pl(n)|¢n,Z(QVU)|e—Kn(WZ,QVU,RC,RO|S) (223)
WZeT 1 z(Quu)
= pl(n)|Tn,Z(QVU)|ze*Kn(WZ,Q\/U,Rc,Ro|S), (224)

whereKn(WZ,QVU, R., RolS) is defined as
Ka(W, Quu, Re, RolS)
= min| DWW 1Quu) + [Ha(S=-nlS 7.0, So)

(R Ro +1(ViZU)WE x QD] |

and [220), [[221), and(2P2) follow froni (1195], (218), anqa

(I93), respectively.
Hence,

-1 _
liminf — log 1 (S1.1; Z"ISo W gan Ps, ]

> liminf = mln[nD(Wz||WZ|QVU) + [Ha(Sre- oISz Son)

—n(Re -~ Ro +1(V; ZIWIW x Quul)| |
= min| DOV |Quu)
W
# [Hy(7%) = R+ Ro = 1(V: ZID)IWZ x Quul)] |
=E! (225)

pa(n) = pa(M(n+ D™ VW, 2(QV),  (226)

we obtain the following inequalities, in which, the first,
second, and third inequalities follow from the convexity of

function x — exp(x) and [202),[(Z2IP), and (2D5), respectively.
The final equation follows fron(226).
exp@l (Sz.; Z"1Sor)W . an. Ps,....)

< Z Anw(On) expll! (Sz.n; Zn|SO,n)[V_Vn, Pan, PSquoo_n])
OneWn z(Qv)

)

OneWnz(Qv)

2y

OneWnz(Qv)
=1 () Wa 2(QU)I(N+ YUV + &, (W, Quu))
=Do()(L+ £np s (W, Quu))-

Taking the logarithm, we have
|(S10 Z1S0n) W gan. Ps,...,]

_10g Pa(n)(L + e, (W, Quu))

- p

_1og(@p(n)) _ [I0g en,.r(W", Quu)l-

= ; .
Now, we have

im '09@p2(n) _ | 109(2p2(n)) _ deg(pz)
nooo . dlgn T nse glogn 6 ]
n

where degf,) is the degree of the polynomigl,. Due to
(208) in Lemmd 56,[(228), an (229), choosing = ‘5'°g”

we obtam
de%(oz) B!

ﬂn,w(®n) pl(n)(l + 8n,p,I(®n, Pmix,Tn(Qvu)))

1)+ 1YL+ 20, (W, Quu))

(227)

(228)

(229)

||m SUp I(SI I"I! anso n)[\Nz "Pan’ PS‘T+oon] =

N—oo

Sinced > 0 is arbitrary, we have

lim sup= L (S1m: Z1S0n) WP, gan, Ps,...] <EL.

n—oo

(230)

Therefore, usind(225) anB(230), we can see tBat E¢, EZ

E?) is a universally attainable quadruple of exponents in the
sense of Definitiofi 33. [ ]
Remark 57:0One might consider that if we apply the
ndom coding of Theoreni_RO to the uniform distri-
bution PmixT.Qw), We obtain a better exponent. How-
ever, this method vyields the same exponent because
Y(PITn(W2), Pynun mixcTy(@u)- PmixTy@) IS the same  as
Eo(p|Tn(WZ), PV"\U”,mix,Tn(QVU), Pmix,Tn(QU))' which is shown as

e‘//(fjrrn(wz)sPV”lU".mix.Tn(Q\/U)stix,Tn(QU )

ZL

UETn(QU) N(U) VETn(QVIU:u)
)l+p(

1
[N(VlU) (N(Z|VU) )’

2eTn(Qzvu=(uy)) N (Zl U)

_ N@uuy
“N@EZVUy
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XIII. Source-CuanneL UniversarL CobiNGg For BCC andE' are given as

Now, we introduce the concept of “source-channel universal E° :Eb(Rp, Re, Ro, Ry, W) = Eb(Rp, Re, (W o E) x Quu),
code for BCC” for then-fold discrete memoryless extension (234)
of a Qiscrete channel. In a realistic setting, we do not have E® =E%(Ry, Re. Ro, Ri, W) 1= ES(R., (W0 E) 0 Quu). (235)
statistical knowledge of the sources and the channel, selci | | o _
In order to treat such a case, we have to make a code whosE+ =F+(Re: Re: Ro. R, W) = E (R, — Ry, (W E) x Quu).
performance is guaranteed independently of the statistica (236)
properties of the sources and the channel. Such a kind of. =E'(Ry, Re,Ro.Ri,W) := [(V;ZlU) - Ry + Ri.  (237)
universality is called source-channel universality, andlied
for the case of BCDI[[24]. For the case of wire-tap channel,
the source universality is divided into two parts. One is the Theorem 59 (Extension df [24, Theorem 1, part (a)]):
source universality for decoding error probability and oieer EQs. [Z3#)4(237) are source-channel universally attégnab
is that for the leaked information. The paperl[26] studieel tHates of exponents and information leakage rate in the sense
latter part. Although the transmission rates are charaegr Of Definition[58.
by the pair Ry, Ry), in order to make a code achieving the Therefore, our source-channel universal code attainirgy Eq
capacity region of BCC, we employ other two paramefys (234)-{23¥) depends dRy, R, the distributionQyy onUxV,
andR, that satisfyRy < R. andRy + Ry < Rc + R,. Hence, in  and the channet : vV — X.

the following definition of a universally attainable quapii We prove TheoreniB9 by expurgating the messages in
of exponents and leaked information rate, we focus on the $gt ode given in Theorefl 4. The outline of the proof is
Race = {(Ro.Re.Ro.R1) € (R)IRy < Re, Ro+Ri < Re+ Ry} 55 follows: First, in Step (1), similar to Theoreml 54, we
Definition 58: A set of functions EP, E®, E,, E_) from evaluate the leaked information when the channel is given
Ricc X W(X, ¥ x Z) to RY; is said to be a universally by the conditional types and the source obeys the uniform
attainable quadruple of exponents and leaked informatite rdistribution. Then, for a given code in Step (1), we expuggat
for the family of channelsW(X, Y x Z) and for sources if the common messagg, in Step (2) and the secret message
for e > 0 and Ry, R, Ro, R1) € R, there exist a dticiently S, in Step (3). We evaluate the leaked information of the
large integeMN and a sequence of codés of lengthn satis- expurgated code for an arbitrary source distribution and an
fying the following conditions. (1) The confidential messagarbitrary conditional type in Step (4). Based on this evidug
set S, of the code®, has cardinalitye™ and the common we evaluate the leaked information of the expurgated code
message sef, of the code®, has cardinalitye’™. (2) The for an arbitrary source distribution and an arbitrary ciser

inequalities memoryless channel in Step (5).
In the following proof, we assume that the secret message
Po[W", @p, Ps £ ] < exp(—n[Eb(Rp, Re, Ro, R, W) — €]), Sn and the common messafg obey the uniform distributions

(231) onS, and&,. However, expurgationS; andEj, of the secret

n e messages, and the common messagg are allowed to obey
Pe[W", @n, Ps, £,] < expen[E*(Ry, Re, Ro, R, W) — 6]()é32) arbitrary distributions.
Step (1): Evaluation of the leaked information when the ehan
nel is given as the uniform distribution on a fixed conditibna
type:
Recall the fixed codey, for BCD given in Theoreni 13.
1(Sn; Z"En)[W", @, Ps, g,] The codegpn has the private message s8, x 81, and
the common message sBt,. We attach the random coding
< ma){eXp(_n[EL(va Re. Ro, R, W) —¢€]), Arcn for messag&: ... ., St given as Second Step of Code
Ensembl¢ in Subsecti¢n VII}C to the cogg, whenT = 2,
n[E'_(Rp, Re, Ro, R, W) + €] (233) Sin = Sn, Son = En, andS,, is the random number subject
to the uniform distribution, which is used as the dummy for
making S,, secret for Eve. The uniformity of the distribution
hold for any sequence of joint distributiors, g, for the guarantees that
confidential messag®, on S, and the common messagg

on &, and then-th memoryless extensio" of any channel
We nW(X, Y x Z) andn zyN. y H14p(S2nlS1n, Son) = N(Re + Ry — R — Re) (238)

and

Then, given a distributio@yy on U x <V and a channel
(probability transition matrix)= : V — X, we present a for any p € (0,1]. Then, the encoder is given b$,, =
universally attainable quadruple of exponents and leaked {¢pn, Arcn). In the following, Bob’s decode®y, and Eve’s
formation rate as follows. Given rateBy( Rc, Ry, Ry) € (RH* decode.p, are given as the maximum mutual information de-
and a broadca®l/ e W(X, ¥ x Z), the quadrupl&®, E®, E,  coder. We treat the ensemble of codgs:= (®apn, b, Pep).



For an arbitrary®, € ‘W, z(Qv) and an arbitrary € (0, 1),
the combination of Lemmds P1 ahd] 24 yields that

Eou, ) Pe,(6) ) Pse,(sle)

- eXPPD(Pznjs,=s Er=e.danllPzniE = 040) [@n])
<1 + @¥Ri=Ro) gEo(®n.Pynun mix.mm(@yy):PmixTn(@y))

(239)
where D(Pzns, —s £,—eanlIPz0lE —e.¢an) [@n] denotes the relative

entropy D(Pzns, -sE,=e¢a.lIPziE—ec.,) When the channel is

On € Wi z(Qv).
The relations[(238) and (2116) wifh = 2 yield

E[I)a.n I (SI,I"I; Zn|SO,n)[Tn(WZ)’ (Dan’ PSfrTn]
S|7“nZ(QVU)|e*n[Rp*er(V;ZIU)[WZXQvu]L_

=1+ &np1(On, Pmix.Ta@uw))s

(240)

Thanks to the Markov inequality in the same way[ad (35) and
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hold for any element® € &, W* € Thz(Quu), On €
Whnz(Qv), andn > N. Thus, there existS,|/2 elements

s e S, satisfies the above conditions. So, we denote the set of
such elements bys;,.

Step (4): Universal code that works for all sources when
the channel is given as the uniform distribution on a fixed
conditional type:

In the following discussionPs, g, is an arbitrary joint
distribution of the random variabl&, andE;, on Sy, x&;,. For
agivene € &, we consider two kinds of marginal distributions
of Z" as follows.

Pz, =egan = Z Ps,(9)Pznis,=s Er=evan

€S,

, .
P2E egan = Z Ps;iE, (S1€)Pzris,=sEp=egan-

SeSy

(38), given a fixedo € (0,1), due to [23P) and (2%0), we The former marginal distribution is discussed in Steps (@),

can see that there exists at least one cpgle such that the
relations

1(Sz.n; Zn|SO,n)[Tn(WZ), Pan, PST.,,]

<p1(N)|Tn z(Quy)le MR- RTIVZVIWSQWIL - (247)
D Pe(®) ) P e, (sle)
e S
- eXpPED(Pznis,=s Ey=e ¢anllPz0IE =0 ¢00) [On])
<P1(N(L + &nyp.(1)(On, PmixT(Qu))) (242)

hold for anyW? € 7, z(Qvu) and®, € W, z(Qv).
Step (2): Expurgation for common messagge E

We chooseps(n) := 2pi(n). When e is randomly chosen
from &, subject to the uniform distribution, the elememt
satisfies all of the following conditions at least with probiy
of 1— py(n)/ps(n) = 3. The relations

D Ps,je,(56) eXPOD(Pzns -5 Eye.gan IP20E 6100 [O1])
S

< pl(n) pS(n)(l + 8n,p,{1](®n’ Pmix,Tn(Qvu))),
D P, e, (SOD(Panis -5y IP2rE e Tr(WA)]
S

=I (Sn; Zn)[Tn(WZ), Pan, F>mix,Sn|En:e]
<p1(N) pa(N)| T z(Quu)le R RAVZIIWXQuI. (243)

hold for any element8V? € 7, z(Quvu) and®, € W, z(Qv),
andn > N. Thus, there exisiE,|/2 elements € &, satisfies

the above conditions. So, we denote the set of such elements<pi(n)Pa(M)*(L + &np.1(On, PmixTo@uy)))

by &.
Step (3): Expurgation for secret message S

and (3). Hence, usind_(b4) and (245), we obtain

1(Sp ZNEDTn(W?), @an, Ps, gl
= Z Pe,(€)D(Pzn.s1iEr=e¢anl P2y —e g X Ps;g,=e)[Tn(W5)]

<&,

< Z Pe;, (€)D(P2n s1/E1=e.0anl P27 Er =€ 00n X Psyigrze) [ Tn(W5)]

ec&y

= Z Pe; (€) Z[PSMEQ(Se)

ec&) seSn

- D(Pznsy=s Er=evanlPz0E e 0 ) [ Tn(W)]
<p1(N) Pa(N)I7n z(Quu)le MR R VZIVIWEQuUIL. (246)

for any element&V? € 7, z(Quu), O, € Wy z(Qv), andn >
N. Similarly, using the convexity ok — €, (84), [244), and

(243), we obtain
ePl (Sﬂ;zn‘Eﬁ)[Gns‘Pan:Ps’n,Eﬁ]

< Z Pg, (e)e’ D(Pzn spien-evan!IPznigy e pan < Psiiep=e) Ol

by

< Z Pe, (e)eOD(PZ".Sﬁ\Eﬁ:e%Ln”Pzn\Eﬁ:e%LnXPSﬁlE{-,:e)[Gn]
es&y

< > Pe (@) D Poyey(Sle)e P PersimssimeoanPrgy-ecan O]
ecEy S€Sh

(247)

for any element&V? € 7, z(Quu), On € Wy z(Qv), andn >

Then, whens is randomly chosen fron®, subject to the N.
uniform distribution, the elemerstsatisfies all of the following Step (5): Evaluation of leaked information for all sourcesla
conditions at least with probability of-1ps(n)/ps(n) = 3:The all discrete memoryless channels:
relations Similar to [223) and [(227),
p1(M Pa(M)?71nz(Quu)> and ps(n)
using [24%) and[{247), we obtain

defining pa(n)
p2(n)ps(n)* and

expED(Pzus,=sEq=e vanllPz0Er=e 620) [On])

<p1(MPa(N)*(1 + &np.11)(On. Pmix.To(@ue))- (244)
D(Pzn‘snzs»En:e"‘PaLn”PZH‘En:e’,‘Pam)[Tn(WZ)] | (S' : ZqE;)[W/Z’n’ ©Pans PS’ E’] Sp4(n)e_nEL(Rp:Rc:Rolea\N)’
<pa(N)pa(n)I7n 2 (Quu) e R VZIWEQu - (245) (248)
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and method brings us the source universality for BCC, it cannot
, Ja— derive the source universality for secure multiplex codin
exppI Sy Z'IEDW " gan. P 1) v P ¢

<Ps((L + £np (W, QL))

=ps(N)(1+¢ WZ, n 249
Ps(n)( _ ?’p"l}(_ _ Q\_/’U) ) (249) In this section, we compare the exponent of leaked infor-
for any sequence of joint distributiori¥%; g, andn > N. mation given in Sections Xl and XlIl and the exponents of
Using [248), for an arbitrary > 0, we can choose an integeneaked information given in Subsectibn X-B when the source
N; such that distribution Ps, , is uniform. First, in Subsection_XIVIA, we
P — compare the exponent given in Sectibns| XII &ndIXIIl with the
log1(Sy; 2 lE“)[WZ - pan: Ps,g] above mentioned exponent. Then, we clarify that the exponen

XIV. CoMPARISON OF EXPONENTS OF LEAKED |NFORMATION

<—N(E,(Ry, Re, Ro, Ri, W) — ) (250) in sectiond XNl and XIll is greater than one of exponents in
; Subsection_X-B, which is the same as that[in/ [19]. Next, in
for n> N;. Due to [249), we obtain . ) . o
! ) Subsection_XIV-B, we give equality conditions between two
}|(5;1;zn|E;1)[V_\/Z’”, @an Ps; ] exponents. In 'Fhe remain_ing subsections, we give proofs of
n o Lemmas used in Subsectidns XIV-A apd XIV-B.
_10g ps(n) +10g(1+ 1, (W, Quu)")
- no . . —
W N A. Comparison between Two Exponelﬁ'téR,\/\/Z x Quu) and
< log ps(n) + log 2+ log&x,,1(W", Quu)") EEO(R,WZ X Quu)
no

— First, we characterize the exponelfﬂ'FO(R,WZ X Quvu) =

109 2ps(n) |0981,p,:1}(VVZ,Qv,U»_ (251) SUP.o1PR — Eo(oW', Quu, Qu), which describes the ex-
No p ponent of leaked information wheR is R, — Y;i.; R and

Whenp = \/Aﬁ as is mentioned in Lemnals6, the RHS othe source distributionPs,_, is uniform, as is shown in

@51) convergef[(Rp, Re, Ro, Ri, W) uniformly. Hence, for Subsectioi_X-B. The exponent can be attained by the code
an arbitrarye > 0, we can choose an integhlp such that constructed in the second construction (Subsediion VII-C)

Since Eo(plwz,Qv‘U,QU) is convex with respect tp [12],

/. RYivv il —
1(Sh; Z"EQIW", @an, Ps; el Fo(Quu, Qu) = %Eo(m\/\/Z,QV‘U,QU) is monotonically in-
sn(E[(Rp, R., Ry, Ry, W) + ¢€) (252) creasing with respect tp. As limits, we define
for > No. F1(Quu, Qu) = lim F,(Quu, Qu) (254)
Therefore, since the original codg,, satisfies [(39) and PV 0T g VI Y

(@Q), using [Z5D) and(252), we can see tER, E% E\, E')  Eo(W’, Quu, Qu) := lim Eo(oW', Quu, Qu).  (255)
is a universally attainable quadruple of exponents in thsese p—1-0
of Definition[53. = , (R T
Remark 60:In this section, we treat the leaked informall Particular, when Quy equal Qv x Qu, E(RW  x
tion asymptotically as[{233). However, in SectibnXIl, wedvu), EBRW x Qvu), and the above values depend
have treated it non-asymptotically ds (177) ahd [178). Tiealy on Qy. Then, ERW x Qu), ERRW x Qu),
difference is caused by the condition for the sequence Iﬁf(l|WZ,QV‘U,QU), F1(Qvu, Qu), andF,(Qvu, Qu) are sim-
joint distributions Ps, . In Section[XIl, we do not assumeplified to E'(R,WZ x QV), EEO(RW/Z X Qu), Eo(1|WZ,QV),
the uniformity. However, in this section, we can use uniforrg, (Qy), and F,(Qv). Then, we obtain the following lemma.
distribution ofS; .. Hence, we can calculate the relative Rényi | emma 62:(1) Case ofR < F1(Quuu. Qu). There uniquely

entropy as[(238) non-asymptotically. exists p € (0,1) such thatR = F,(Quu,Qu). Then, the

Remark 61:Here, we remark the relation with the discus: = WZ .
. - o . exponente™° X can be characterized as
sion for secure multiplex coding in_[22, Section IV-D]. The P R Q)

preceding paper [22] showed the existence of the cgde EEO(RW/Z x Quu) = poR— Eo(poIWZ Quu.Qu).  (256)
satisfying that ’ ’

mMaxD(Pznjs,=s ¢ lIPz04,) — 0 (253) (2) Case oR > F1(Quvu, Qu). The exponerEEO(R,szvau)
S can be characterized as
when there is no common messa@g and the random

variablesS;, ..., St obey the uniform distribution. However, EE‘)(R,WZ X Qvu) = R- E0(1|V_\/Z, Qvius Qu). (257)

to show the source universality for leaked information in

secure multiplex coding we need to evaluate the above valuel he quantities appearing in Lemia 62 can be characterized
when the random variable, . .., St do not necessarily obey by Lemmée&B, which is displayed in the wide space in the next
the uniform distribution. In this section, we show the seurd?age.

universality for leaked information fo8; by assuming the  The proof of Lemma@3 will be given in Subsectlon XIV-D.
uniformity of the other random variablg,. Although this For a detail analysis for the exponeh:a%O(R,V_\/Z x Qvu), we
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Lemma 63:The quantities,(Qvu, Qu), F1(Qvu, Qu), and E0(1|WZ, Qv Qu) are calculated as
0 QuU) TSy 12 (10g W (20) Quu (MWW (2) 77)(Z,, Quiu (U)W (2v) 77)

Fo(Quu, Qu) = — n
S0 Qu(U) Zo Sy QuuMUW () 77y
_ 2 Qu(U) £, 1095 Quu(MUW (@) %)(, Quuv (UW (2) 7). (258)
S Qu(t) Zo(Sy Quu (U)W (20) 77)1
FA(Qv. Qu) = — 20 Q) Zel0gC v, Quu(iu) ma, W (a1v) 259
3, max, W (2v)
Eo(UW', Qv Qu) =106 ) Qu) )} max | W (), (260)
In particular,F,(Qv), F1(Qv), and E0(1|WZ,QV) are simplified to
SAS 1 (0gW (@) QUMW () 77)(Z, QU)W (2v) 77)*
Fp(QV) = — 1
S5y QUUW (@) T )i
_ Z109(Z, QW (@) 7)(E, QUIW @) 7).
5SSy QU)W (W) % )7
Sl (0gW (@) - log (S Qu(v)W (av") QW (2)7)(E QuvIW (@v) ) 261
S5y QUUW (@) 77 )i
F1(Qy) — - 2109y, Qul) max, W) 262
54 Qu(U) 5, max, W’ (2v)
Eo(UW', Q) =IOQZZZV€STP%V)WZ(ZIV)- (263)
Further, the may — F1(Qv) is concave.
define The proof of Lemm&_85 will be given in Subsection XIV-E.
. g — o For comparison between two exponential decreasing rates
Foi= dpEO‘maX(p|WZ)’ Fai= pl—lﬂn—oF’” (264) EE(RW x Quu) and ERW x Quu), we prepare the
—{(zV) e Z x (Vlv_\fz(zlv) _ ”LaxWZ(ZI\/)} following lemma. - N
Zo={ze Z(zVeK), V,i={veV|(zV)eK). (265) Lemma 66:Any channelW™ e ‘W(V, Z) satisfies
Due to the compactness of the $&tl(), we have min D(WZ||WZ|QVU) — pl(V: ZJU)[WZ x Quu]
lim maxEo(LW", Q) = max lim Eo(1W, Q) e |
po1-0 QYT eV > — Eo(plW’, Quu, Qu) (269)
Hence, we obtain the following lemma for characterizatién o
the quantityEo,maX(1|Wz) defined in [(2B). for anyp € (0, 1).
Lemma 64:We have The proof of Lemmd_86 will be given in Subsectibn XIV-I.

Eo,max(llwz) _ Iogz mvaxWZ(zlv) _ piqlo Eo,max(,DIWZ). Since the inequalities
z

(266)  E(RW x Quu)
Then, we have the following characterization for a special min D(WZ||WZ|QVU)+[R— 1(V: ZIU)WZ x Quull

case of Case (2) of Lemnial62. WZeW(UXV,Z)
Lemma 65:Assume thatUyesuppgyZv = £ for anyu e min D WZ||WZ| +p[R= 1(V; ZJU)[W? x
suppQu). WhenR > F1(Qyu, Qu), we have T WZeW(UxV,Z) ( Qo)+l (VizlUl Quull-

EonaW) = E(UW, O Qu)  (267) % el DOV Q) p(R= (VS ZI)IW x Quu)

and
hold for anyp € (0, 1), we obtain the following theorem, which

ES(RW x Quu) = R- Eomad W), (268) is (28).
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Theorem 67: v Q(,(v)Wz(zlv)ﬁ holds for anyz € Z. That is the value

El(RWf X Quu) ZVQV(V)V_\/Z(zlv)ﬁ does not depend on the choice @f as
_ . _ long as the distributiolQy satisfies Conditiof 70 witlp.
> sup pR— Eo(olW, Quu, Qu) = Ef(R W x Quu). The proof of Lemm& 72 will be given in Subsection XIV-F.
pe(0) (270) Lemma 73:When distributionQy andQ;, satisfy Condition

[T with p, the relation}..cq,, Qu(V’) = Xyeqr, Q,(v’) holds

for anyze Z. That is the vaIueZVQV(v)WZ(zlv)l%v does not

B. Equ.ahty Cond.|t|ons oL .0) ) N depend on the choice dy as long as the distributio®y
In this subsection, we derive equality conditions [0f 270)a+isfies Conditiof.71.

For this purpose, we prepare two lemmas. _ The proof of Lemma_ 73 will be given in Subsection XIV-G.
Lemma 68:For a fixedp € (0,1), the following three pence we can define the transition matris&é” and W21
conditions for a distributiorQy are equivalent. from V to Z by
(i) The following value does not depend a@re V. — R — 1
W (2V) ™5 VYW (2V) 55 ) W?(2V) := WZ(ZIV 7 (2 QV"’(V)WZ(Z'V) o)
1-p 1p ) ! . _ 1 _ 1 B
E (2v) (; QW)W @v)™) S W2 (5 Qv (W (29) )+
(if) The following relation holds. W2L(zv) ::{ o Q\/l(V’\’I\)IZ;er)na)v o €2y
J— J— P C
Eo(olW, Q) = Eomax(olW) = maxEo(pfW, Q). Lo o ZELw
G where the distribution®y,, and Qy; satisfy Condition[70
(271)  with p and Condition 711, respectively. These definitions do

(i) The following relations hold for any € V. not depend on the choices Q&,, and Q.

. . Lemma 74:When Qy,, satisfies Conditio 70 witlp, we

SW @) )W (@) =) have
z \4

- ] F,=F = 1(V; Z2)[W? x 273
= max Y (3 QW (@) ) e
UGG D(WXIWIQu,) = pF, — EamapW).  (274)
_ maxeBlW Q) _ gFomaloW)_ The proof of Lemma_74 will be given in Subsection XIV-F.
Q Lemma 75:When Qy; satisfies Conditioi 71, we have
The proof of .Lemm@8 will be given in _Subsect—F. F1 = F1(Qua) = I (V; 2)[WAL x Qui] (275)
Lemma 69:The following three conditions for a distribu- 1 T
tion Qy are equivalent. DOWZHW’|Qu1) = F1 — Eomax(LW), (276)
(i) The following value does not depend ere V. The proof of Lemm&_745 will be given in Subsection XIV-G.
W W Lemma 76:For anyp € (0,1), we choose the distribution
Z max,ey W (2v) _ @) Qv, satisfying Conditior 70 withp. We choose a sequence
Z Zver, Q) By, Qu(v) pn such thatp, — 0 asn — oo and the limit distribution

limnse Quyp, eXists. (Since the set of distributions ovér is

(i) The following relation holds. compact, such a sequenggexists.) Then, the limit distribu-

F1(Qv) = minF1(Q(). tion limn_, Qy,, satisfies Conditiof 71.
Q The proof of Lemma&_76 will be given in Subsection XIV-H.
(i) The following relations hold for any € V. Then, using the above lemmas, we can characterize equality
. . conditions of [[27D) for the cas®uy = Qu X Qv in the
Z max,cry W (2V) _ Z W (2v) following way.
= Svrey, Qu(v’) = Ywvey, Qu(V’) Theorem 77:(1) Case ofR < F;. We chooseo € (0,1)

_ such thatR = F,. When Qy,, satisfies Conditiol_10 withp,
=Z maxvv @v). (272)  the relations ’ ’
z

I s _
The proof of Lemm& 88 will be given in Subsection XIV-G. r&'” E (R’WZ X Qu) = r&'” EEO(R’WZ xQv)

Then, we introduce two conditions for a distributiQy. _Elp W _ FEyp _ _ vy,

Condition 70: Given a fixedp € (0, 1), the distributionQy “ERW x Que) = E RW x Que) = PR EO,max(P|(\g/§)7)
satisfies the condition given in Lemrhal 68

Condition 71: The distributionQy satisfies the condition
given in Lemmd 69

Since Conditiod_70 depends @nwe describe it by “Con-
dition[7Q with p” when we need to clarify the dependence on rg\i/n ERW xQy) = rgivn EB(RW x Q)

o

hold, which implies the equality ifi_(270).
(2) Case ofR > F1. WhenQy; satisfies Conditioh 71, the
relations

Lemma 72:When distributionQy and Q| satisfy Con- =|§'(RWZ X Q1) = EEO(R,WZ X Qu1) =R~ Eo,max(llwz)
diton 70 with p, the relation 3, Q)W (@V)™5 = (278)
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hold, which implies the equality if_(2¥0). which implies [278). [ |
Combining the discussions in both cases in Thedrem 77, weFor the general case, we prepare the generalizations of
obtain Lemmas[ ¥4 and_75. The following lemmas follow from

e o~ — Lemmad 7# anf75.
| \MZ _ Eo \NZ
an ERW xQu)= o EF(RW xQv) Lemma 78:WhenQyu-, satisfies ConditioR 70 witp, for

= mg;\XpR Eoma(oW),  (279) &WU€ suppQu),
e Fo = Fo(Quu. Qu) = [(V; ZIU)[W* x Quu]
D(W?[WIQuu) = F, — EomadoW).

Proof of Theorem[Z47: First, we show [(277). Since Lemma 79:WhenQyy-, satisfies ConditioR 71 for anye
1(V; Z)[W# x Qy,] = F, = R follows from (273), we have  suppQy),

which is [27).

ERW xQy) F1 = F1(Quu, Qu) = 1(V; ZU)[W2! x Quu]
DWW Q) + [R— 1(V; 2)[W2 x Qul. DWW Quu) = F1 — Egmax(LIW).
@pF Eomad ol W) © pR— Eo(ofW, Qv,) Then, we can characterize equality conditions for [270)
Ot R T in the general case. That is, similar to Theorenm 77, using
=EZ(R W xQu), (280) Lemmad7B anfi79, we can show the following theorem.

where ), (b), (c), and @) follow from the Definition [2#)  'neorem 80:(1) Case oR < F1. We choosg € (0,1) such
of E'(R,V\/Z x Qv,), @72), [Z71), and Item (1) of Lemnial62, thatR = F,. When Qyu-, satisfies Conditiof 70 witp for
respectively. ‘anyu e suprU) the relations

Any distribution Qy satisfies min E (R,V\/Z x Q) = m|n E (R,V\/Z x Q)
PR EomadplW') < R~ Eolp W, Q) < EXR W' x Q). =minERR W x Q) = mnE®RW x Q)
which implies Qu &

—E'R W x Quu) = ER(RW* x Quu) = pR— EgmaxplW')

PR EamafoW) < mnESRW x Q). (281) " 283)
Combining the above relations and we obtain hold, which implies the equality ifi (270).

o @ o (2) Case oR > F;. WhenQy -y, satisfies Condition 71 for

E'(R,WZ X Qup) < pR— Eo,max(pwvz) any u € suppQu), the relations

9 min ERRW x Qy) ¢ min ERW xQ), (282) min ERW x Q) = min E(RW xQ,)

where (a) (b), and €) follow from (80), [281), and Theorem — min EEO(R,V\/Z x Q) = m|n EER W x Q)
[64, respectively. Hence, the combination [of (282) ad)dof Qu

(280) leads[(Z77). =E' R,\/\/Z x Quu) = EEO(R,\/\/Z x Quu) =R- Eo,max(llwz)
Next, we show[(278). The relations (275) abhd (276) imply (284)
E'(R,WZ x Qu1) hold, which implies the equality i (270).

71,0 i 71 Then, we obtain the following two corollaries.
DWW 1Qua) + [R= 1(V; )W x Quall. Corollary 81: When the channélV? is regular andQy is
=F; - Eo,max(1|WZ) +[R-F4]+ the uniform distribution, the equality ifi_(2I70) holds.
= = Proof: When the channeW? is regular, the uniform

=F1 ~ Eona1W) + R~ F1 = R~ Eqpai(1W) distribution overV satisfies ConditioR 70 with. Hence, when
=R- Eo(llwz, Qu1) = EE"(R,WZ x Qu1). Qv is the uniform distribution, the equality il (270) holdm

Corollary 82: WhenR = F, and Qyu-, satisfies Condition
[77 for anyu € suppQu), we have

E'(R,WZ x Quu) =I§E°(R,WZ x Quvu)
which implies SE‘/’(R,WZ X Quu).
R— Eoma(1W) < min EE (R W x Qu).

Any distribution Qy satisfies
R - Eomad IW) < R— Eo(1W, Qv) < ER(R W* x Q),

In the above case of Corollaky182, the exponléhiR,Wz X

Combining the above relations and Lemmma 67, we obtain Qvu) cannotimprove the exponeft (R W x Quu), which is
o . . . the exponent of the code constructed in the first constmuctio
ERW x Qvp) <R- Eo,max(llv\/z) - ERRW x Qup)  (Subsection VII-B) and is given in Subsection X-B. However,

<min EEO(R,WZ x Qy) < min El(RWf X QV), the relation betweelE'(R,\/\/Z x Quu) and E‘”(R,WZ x Quvu)
Q Qv remains unknown up to now.
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C. Examples

In this subsection, we numerically compare 0
E(RW x Qu) 1.0¢

_ i ZI\N _ . z [

= e min DOWIWIQV) + [R~1(V; )W x Qull 0.8
and 0.65
ER(RW x Qu) = maxpR - Eo(olW , Q) :

O<p<l 0.4r

EYRW x Q) = maxpR - W, Q) :

0.2}

in the following two examples.

Example 83:In this example, we address the channel given H ‘0‘4‘ H ‘0‘5‘ H ‘0‘ 6‘ H ‘0‘7 R
by a 2x 2 general transition matrix. Consider the case when ) ) ' '
Z =V ={1,2}. Define the transition matridv’ by . _ . ,
Fig. 3. Relation betweenR and p realizing the optimal value.
=7 1-p q in Example[8B withp = 001 andq = 03. Thick line expresses
\Nz = ( p 1-q ) (285) argmax.,; PR - ¥(plW", Qy), which realizesE (R, W x Qy). Normal line
. _ _ expresses argmgx,<1 PR - Eo(pl\/\lZ Qv), which reallzesEEO(R,WZ X Qv).
with p > q € (0.1/2). WhenQv(1) = 1/2 andQv(2) = 1/2, There is no graph corresponding EXR, W~ x Qu) becauseE'(R,VVZ x Qv)
we have is not given as maximization with respect o The origin is (0.3,0).
Eo(.0|WZ Q)
Iog(( (1 P + qlp)l—P +( P+ = (1 g )L), Example 84:In this example, we consider the case when
(286) states satisfying Conditios]70 dnd 71 are not unique. densi
. the case wherniZ = V = {1,2, 3,4}. Define the transition
W(pW, Q) matrix W~ by
1 1 1 +
=loaG- )“p(ﬁ) e N f-p P d-p b
11+p1 p+q 1+p1 q+p_p WZ:: p 5—P p 5—P 288
50 () ( ) (———)7). (287) ip P I, (288)
p 5—Pp 5-Pp p

Fig.[2 suggests thaiIL”(R,V\/Z x Q) is larger tharE'(R,V_\/Z X
Qv). In Fig.[3, we numerically calculate argmax,pR - with p € (0, 1/4) WhenQy(1) = g, Qu(2) =g, Qv(3)=3-q,
Eo(,o|\/\/Z Qv) and argmay. ,.; pPR— w(pl\/\/Z Qv) which realize @ndQv(4) = 3 —q, we have

EEo(R,WZ x Qy) and EV/(R,WZ x Qy), respectively. ZV_\/Z(ZIV)H’(Z Qv(\/)V_\/Z(ZI\/)ﬁ)‘P
- SACG D)+ 5P ) = 2~ )+ )
E (289)
0.30¢ o L
; for all v eV, which implies Conditioi_70. Hence,
0.25¢ . N
0 207 EOmax(,Osz) = E()(,0|V\/Z Q\/)
015! =(1+7)I0g2+ (1-p)log(; - M + ), (290)
o F,=F
0.10/ o)
0.05: =log2-log((5 - P)™ +p™7)
: 1_ ) =
1 (3-PTlog(z - p)+p Iogp (291)

1=p 3-p) +pr

\N\/ _ 1 1+p 1+p
Fig. 2. Lower bounds of exponent in Examjile] 83 wiph= 0.01 and 1//(p|V\/Z, Qv) = (20 +1)log 2+ |Og((§ —PT A P).

g = 0.3. In this case](V; Z)[WZ x Qy] = 0.317054. Thick line, Dashed line, (292)

and Normal line plo¥ (R, W~ x Qy), E'(R W~ x Qy), and EEo(R, W x Qv) . .
as functions oR from R = 0.317054 toR = log 2 = 0.693147 with the origin Next, we check Conditioh T1. For this purpose, we check

(0.3,0). Condition (i) in Lemma 69 by treating/, given in [265).
Since V1 ={1,3}, V2 = {2,4}, V3 = {1,4}, andV4 = {2, 3},
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in the above choice d®v, we havey,,..y, Qu(v”’) = 3, which

implies o
oW 1_ 1.0
Z max, E(VVVZ(ZD/) — 22 4(_ _ p) (293) r
%Z, Zvev, Qu(V) § 0.8}
for all ve V. Thus, Conditio_71 holds. Hence, 0.65
_ 1 i
Eona(1W) = l0g4(; - p) (204) 04
F, =log2 (295) 0.2
Further, Theoreni_80 guarantees th%ﬁ(’(R,Wz X Qv) = 0.0: e R
E(RW xQy). So, we numerically compare onk/(R W’ x 6z 04 06 08 10

Qv) andEEB (R W’ x Qy) in Fig.[. SinceEER (R W x Qy) at-
tains the minimum value due to Theorgn @(RW/Z xQy) Fig.5. Relation betweeR andp realizing the optimal value in Examlel84

does not depend oq Further,E¥(R W~ x Qy) also does not With = 0.1. Normal line expresses argmay.; oR - Eo(pW". Qv), which

depend ong due to the form ofE¥(R W~ x Qy). Similar realizesE®o(R W xQy). Thick line expresses argmg..; pR-y/(oW", Qu),

to Fig 3, Fig 5 suggests that the paramq:berrealizing which rea||ze9£¢(R,VVZ><Qv) There is no graph correspondingB(R, VVZ><
=g V\/Z Qv) becauseE'(R,V\/Z x Qy) is not given as maximization with respectdo
E®(R,W x Qy) has a behavior ffierent from the parameter the origin is (0.1,0).

p realizing E¥(R, W x Qv).

holds. That is, the deerence Ef, ba™ ) -
((Z. 1 b)afp )1? behaves a®(exp( )) with a constang.

E Applying the above general dlscussmn we have
0.7¢ . L 1lp
0.6 Jim > Qu() Y[ Y QuuiW @) |
0-5 ; u z v
0.4 = lim Z QU(U)Z[ > Quuivv)
0.3¢ z lveV,(Quu-u)
02; _ 1%/] 1-p
01* ’ (vesugr])g\),fuzu)wz(zlv)) ]
[ P S S Y B S S S R ) 17'0
02 04 06 08 10 = lim > Qu(u)Z[( > Q)
u z VE(VZ(QVlU:U)
Fig. 4. Lower bounds of exponent in-Ex§m|EIEI 84 wigh= 0.1 In this ] ( max V_\/Z(ZIV))]
case,I(V;Z)[VVZ x Qv] = 0.192745. Thick line and Normal line express vesuppQuiu=u)
EY(R, W' xQv) andEEo (R W xQy) = E!(R W’ xQy) as functions oR from V_\/Z
R = 0.192745 toR = 1.0 with the origin (0.1,0). Thick line is straight when = Z Qu(v) Z( esumg\)/( ) (@v)).
R> 0.4 because argmgx,., pR-u(oW', Qv) is 1 whenR > 0.4, as in Fidb. PPEvIL=y
Normal line is stralght wheR > 0.7 because argmgy,.; )R- Eo(pl\/\/Z Qv) where (VZ(QV\U=u) = {v IS
is 1 whenR > 07, as in Fid . supr\,‘U:u)|max,esuppgwu:u)_ (2v)}. Hence, we obtain
(250).
Further, sincex — —logx is concave, the maf)y +
D. Proof of Lemma& 83 F1(Qv) is concave. The remaining task is the poof of the
Proof: We can show[(238) and [260) by direct calcygduation [(250), will be shown in the wide space style in the
lations. Now, we show[{Z260). In general, whbn> 0 and next page. u
ay=a=...=a>a>0fori=I1+1,...,k the relation
) E. Proof of Lemm&85
lim (Z b_ai%p)kp Proof: Due to [Z6D), we have
p—1-0 ! . . .
Eoma(UW) = max fim Eo(olW". Q. Q)
_ : a 1 = 1_ VU
= lim ((Z b)a;P)1 P(1+ Z b, r ~ —
S lab -meea Y Qu) )} max | W (e

= lim O((; b)) = ay (296) =log Z maxW (20,
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Proof of [259): We have
d _
$Eo(pIWZ,QV|u,QU)

20 Qu(Y) Ty 25 (0gW (@) Quu(MUW (@) 77)(Z, Quu (W (2) )7
) S0 QulW) ZoAZy Quu (VW (2v) )1+
2 Qu(b) 2, 10g(%, Quu(MUW (@) ™)(3, Quio (W (2) 7).
T QuU) Zo( Sy Quu (W (2v) T7) 1+
Whenp approaches 1y, QV\U(v|u)WZ(z|v)1Tﬂ approachesy, ., Qv (viu))(max, V\/Z(zlv’))léﬂ. Hence,

lim EEo(p|WZ Quus QU)

i (B0 o2 logmax, W (@) (Sver, Quu (W) max, W' (2v))
et 4 QuU) ZoSvey, Quu (V)L max, W' (zv)
54 Qu(W) S5 log max, W’ (2V) + 109(Ser, Quu(VIU))(Ser, Quu (Vi) max, W' (zv)
. S0 Qu(t) ZoSver, Quu () max, W (2v)
~ 24 Qu(U) 2 109(E ey, Quiu (VW) (Sver, Quu (Vi) max, W’ (v

)

poi0 S Qu(t) B Suer, Qo (V)i max, W' (2v')
i 2o Q) 22100(5 ey, Qu () max W (av) (297)
po0 4 Qu(v) 3, max, W' (2v)
which implies [258). [ |
which implies [2656). to the condmon (i) becausg—f(y) = _f(yl ..... Ya-1,1 —
Assume that the support ofQyu-, contains {v e Z.d fy.) f(y1 ..... V1,1 — ZI ; Ly). u
V| minz%\"’zw) = 1} for any u € suppQu). Due to [Z6D),
we have @ Proof of Lemmg_88: In order to apply Lemmé 85, we
_ — regard all of probabilitie®y (v) as independent parameters by
Eo(1W, Quu, Qu) = '092 m\?X\NZ(Z'V)~ (298)  removing the constraink, Qu(v) = 1. The partial derivatives
z

are calculated as
Combining [26B), we obtaif (267). Hence, as a special case

of (251), we obtain[(288). 6Q(\9/(V) Z(Z QU)W (@V) T5) -
F. Proofs of Lemma& 68172, ahd]74 =3 @-)O QW (@) =) W () .

Lemma 85:Let f be a concav&€?® function fromR¢ to R
and®P(d) be the subsef(xy, ..., Xd) € RYx > 0, Zid:l x = 1}. Hence, Lemm&385 guarantees the equivalence between (i) and
The following two conditions fox = (xy, ..., Xq) € P(d) are (ii). Condition (iii) trivially implies Condition (i).

equivalent. The remaining task is showing Condition (i)
(i) implies Condition (iii). Assume Condition (i). Since
, ZZWZ(zlv)ﬁ(ZV, QV(V')WZ(zlv')ﬁ)*P does not depend on

f(x) = max f(x). (299) " and condition (i) holds,

(i) The following relation holds for any # j. Z WZ(Z|V =7 (Z QV(\/)WZ(zh/)l )P
0 0
o 109 = 5T (300) Z 0Dy W a0 QU @) )7

Proof of Lemm&85: We choose variablg= (y1,...Yg-1) € = Z(Z Qv(V)VVZ(ZIV) £ )lr = ol Q)
R%1 and define a functiofi(y) := f(ys,..., Yd-1, 1—2?;11 Yi)- z v
Due to the concavity, the condition (i) holds if and only if — maxeB W Q) — gFomaoW)_

i o fyy=0fori=1,..., d - 1. This condition is equivalent U



Proof of Lemmd& _72: Assume that

S QUW @ £ Y QUW @)™ (301)

for any z € Z. Due to the strict concavity ok — x'*, we
have

20 QT @)= + 35 QU (@)
<D + SN (@) 7). (302)
Hence.

3 D3 QU @) 4 5 533 QW (@) )+

< DGO + ST @), (303)
Hov:evevr, Lemm&88 guarantees that

SO QW @) = Y (O] QW @) T)

— maxeEeeW Q).

304
o (304)

Since [30B) contradicts (3D4), we obtain the desired argzme™ Z

Proof of Lemmd&_74: As
(Zv Q\/,p (V)W/Z (ZlV) %p )l—p
ZZ(ZV Q\/,p (V)W/Z (ZIV) ﬁ )l—p

we can calculate the mutual informatid(V; Z)[W=* x Q]
as

W20 Qu,(2) =

1(V; Z)[W? x Qu,]
_ Z Qv (V)W/Z (2v) 27 v va(V)V_\/Z (2v) b= )P
vz Xz V_VZ(ZIV = v QVp(V)V_\/Z(Zlv = )P

| el (Y, @u 0 ]

~log|( Qw(wwv)ﬁ)“ﬂ

=> Qu W (@)™ (Zy Qup (W (@) 77) 7
vz Dz V_\/Z(Zlv) = , Q\/,p(V)V_\/Z(ZIV) ER )r
! W N/ 1
. [E IogV\/Z(Zlv) - Iog[zv: Qv,p(v)v\/z(dv) 1,,,]
:FP(QV,p)’

(305)

where the final equation follows froni (261). We obtain thélence, Lemm&385 guarantees the equivalence between (i) and

second equation of (2I73).
Since the constraint (i) in Lemnial68 f@y,, is differen-

tiable with respect te, for a givenpg € (0, 1), we can choose implies Condition  (iii).
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Qu, such that the map — Qy, is differentiable at least in
an enough small neighborhood @f. Since

d .
% EO(,OO|\NZ, Q\/,p)'p:po = 0& (306)
we have
d .
Fpo = b EO(p|WZ’ Q\Ap)|p:po
lo
d

v d _
:? Eo(P|V\/Z, Q\/,po)'p:po + d_p Eo(p0|WZ, Q\/,p)|p=po
% Eo(ofW, Qo) lp=po = Fpo(Quipo)- (307)

Hence, we obtain the first equation 6f (273).
The conditional divergencB(WZ||WZ|QV,p) is calculated to

DWW IWIQu,)
s Qu W (@) 77 (5, Qup (W (2) )7
7 W @) (S QW @)T7) "

(106725 (3" (W )] - log W (e
-3 Quv) Iog[z W@ () Qv,p(\/)Wz(zv)ﬁ)"]

QV,/J(V)V_VZ (av ﬁ v Q\/,p(V)V_\/Z(zlv = )P
7 X W (@) (D QuuW (@) )

: (ﬁ logW’ (2V) - p Iog[z\/: Qv,p(V)V_\/Z(ZIV)%*’])
- 3’ Quwog YW@ (Y Qu W @) |

=pF,(Qv,) - Z Qup(v) Iog[Z(Z Qv,p(\/)v_\fz(zw 1%7)1—;1]

=pF, - E(IW', Qu,).
We obtain [271). [ |

G. Proofs of Lemmds 6P.173, ahd 75

Proof of Lemmd_@9: In order to apply Lemm#& 85, we
regard all of probabilitie®y (v) as independent parameters by
removing the constraint, Qv(v) = 1. The partial derivatives
are calculated as

9 2:109(Suey, Quv) max W (zv)
Q) 3, max, W’ (2v)
_ N\ Mmaxey W (@v)
22, Zv”e(VzQV(VH) .

(ii). Condition (iii) trivially implies Condition (i).
The remaining task is showing Condition (i)
Assume Condition (i). Since
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ZZWZ(zlv)ﬁ(ZV, QV(V')WZ(zlv')ﬁ)*P does not depend om H. Proof of Lemm& 46

and Condition (ii) holds, we have

3 W (@) -y maxycy W (2V)
2, Zv eV, QV(V//) 2, Zv eV, QV(VN

ma)@eerZ(Zl\/)
_ZQV( )ZEZZ: Zv eV, QV(V”

- 3 v
(ZV)ek Vv'eV,

B max,cy W (2V) vy,
=22 W o L@

Proof of Lemmd 76: Due to Conditior_70 withp, we can
choose a constaiii, in the following way: the relation

¢, = YW@ s (Y QW @)™ )* (310

holds for allv. Due to the general relation ds (296), we have

C:=lim C,
p—1-0

=l 3 W @) (3 Quiv )W @) )
=pﬁrﬂo Z( Z Qup(V'))™” rnvaxWZ(z|\/)

m zeZy V'€V,
B max, W’ (2v))
Proof of Lemmal[43: We focus on the function = Svey,(IMnsee Quyp, (V7))
Zver, QuV)lz = —Zzlog(zg;x\%),znzj\xww)a which is  sinceC does not depend ow the distribution lim .. Qy,,
strictly concave. Hence, when there exists an elermentZ satisfies Conditiof 71. [ |

such that, cq,, Qu(vV’) # Xy, Qv(v’ ) for two distributions
Qv and Q(,, the convex comblnatlon— gives a strictly

I. Proof of Lemmd& 66

greater value for the above function, which contradicisei ~ We show the inequality in[{269). First, we obtain the
LemmalB9. HenceSy ey, Qu(v’) = Loy, Q,(v*) for all inequality [31#), which is displayed in the wide space in the

ze L.

Proof of Lemmd&_45: Since

m next page
hSlnce 5+ 1 = 1, the reverse Hdlder inequality yields
that

Z (Z Quiuv u)Wz(zw) )6, ()™

QuWW @) 2¢Z
W5 X Qua(V,2) =1 Surew, Qulv)) S max, W (zv) ! L
0 zez(s, | >(Z(Z Quu (UW (@) 7)) ™ (Z(Qz(z)l_ ) )
308

the mutual informatiort (V; Z)[W%! x Q4] is calculated as = _min (Z(Z QuuVIWW (2v) 7)) T ”(Z Qz(2)™

1(V; Z)[W?L x Qua] = —

QzeP(2)

2.z max, WZ(ZIV’)

2z |Og(Zve’Vz Qv.1(v)) max, WZ(ZIV) :(Z(Z Quu (V|U)VVZ(Z|V) o )l—p) =l

=F1(Qua), (309) The equality holds only when3], Quiu (UW (@) 7)1 =
where the final equation follows frofi{262). Hence, we obtafn@z(2) with a constanC. Hence,

the second equation if_(275). The first equation [In_{275) min Z(Z Q\/|U(V|U)VVZ(Z|V)1!)QZ(Z)1f

follows from the limitp — 1 -0 at [307).
When Qy satisfies Conditiofi 71,

DWZHW’IQy)

=— ZWZl X Qui(V,2) Iog Z Qu(v") Z max\/\/z(z'|\/)]

Vv'eV,

- Iog Z rr]/gx\/\/Z(Zh/)]
- Z log] >’ QU)W e Qv(@)
v’eV,
- Iog[z n]/gx\l\lz(z'h/)]

109 Zey, Quv) | max W (2v)
>, max, W (zv)

=F1 - Eo,max(llwz),
which implies [276).

QzeP(2)
=0 Qw (v|u)vvz(z|v) )
Thus,

~@-9) Y, Qu(wog

min Z Quu W ()7 )&z ()™ }

QzeP(Z)
=-(1-p) Z Qu(u) Iog[(z (> QuuMuW @) )_]
=- Z Q) Iog(g(; vau(Vlu)WZ(ZIV) =)H)
~1og > QW . QuuUW @) *)  (315)
a - Eo<p|uWZ, Quu. z?u)\,/ (316)
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min  DWZIW’1Quu) - pl (V; ZIU)IWZ x Quu]

wEeNY.2)
® el 2 QU Q) 3 W v log Wif:v)v)

R Z Quult) ZWZ(Z'u Vo C(QZ(“; V)))
el S, 2 Q00 T QT W log S 5 W o )
=N e max Z Qu(u) Z Quu(Vlu) Z W2 (2u, V) log WZ(au,W\;)Zl(;\l/)\/Z(zu)p
X, D Q) Y] Q) Y W oo WZ(Z'”’WV/’;;;VZ(”“V (311)
o) max 3 Y Qe i 3 Pilog oz f)f\(/\zl)z(ju)l - (312
== @-p), min Z Q) Z Quu(vIu) logz W’ (2) 77 WP (2u) =

~(-p) min _ Z Q(1)leg 3 Quu () Z W (20) % W (@) (313)
== (=p) Y Qu(log min 530} QYW @) %) Q@) ™. (314)

The above derivation can be shown in the following way. Theatity (312) follows from the minimax theorerh [11, Chap.

IV Prop. 2.3] because the function is concave W and is convex foW?. The equality[[312) holds because the minimum
~ — 1~ - — 1~ P

is attained withPz(2) = V\/Z(zlv rpWZ(zlu)fﬂ/ZZ\I\lz(zlv T WZ4(Zu)™ . The inequality [313) follows from the concavity of

X — logx.

where [3IF) follows from the concavity of — logx. The apply superposition random coding. In the second step, as is

combination of [(314) and (316) yields (269). illustrated in Fig[l, we split the confidential message iht®
The equality in [(3IB) holds if and only if private messag®, and a partB; of the common message

for an arbitrary fixed u, \/\/z(zlv)lﬂwz(zlu)lp encoded by the BCD encoder. Employing the second type

does not depend on v W.m Wz(zlu) = of channel resolvability, we have derived a non-asymptotic

>, Q\/‘U(Vlu)v_vz(zlv)ﬁ)l—p/ S5, Q\/‘U(Vlu)vvz(zlv)lp)l—p, formula for the average leaked information under this kifd o

ie., the quantity Wz(zlv)léﬂ(z QV|u(V|u)WZ(ZIV)1%’)’p code construction. On the other hand, in the first constiocti
doés not depend ow fcz)r an arbitrar\;/ fixedu. The condition the confidential message is simply sent as the private messag

: . — encoded by the BCD encoder. Hence, it has only one step.
holds when Qyuu=y is argmin, Eo(p|VVZ Qv) because of . ) -
LemmalB8. Further, the equailty iR {315) holds in this CasEmploymg the first type of channel resolvability, we have

V\/Z erived a non-asymptotic formula for the average leaked
Hence, whemQuu-u is argminy, Eo(lW , Qv), the equality jntormation under this kind of code construction.
holds in the inequality[{289).

For asymptotic treatment for the non-uniform and depen-
dent sources, we have introduced three kinds of asymptotic
conditional uniformity conditions. Then, we have clarified

In order to treat the secure multiplex coding with dependetite relation among three conditions, especially, that tfo o
and non-uniform multiple messages and common messageem are equivalent. Further, we have shown that these con-
we have generalized resolvability to the case when inpditions can be satisfied by data compressed by Slepian-Wolf
random variable is subject to a non-uniform distributiorcompression, in the respective senses. Extending the above
Two kinds of generalization have been given. The first offermula for the second construction to the asymptotic case,
(TheorenIK) is a simple extension of Han-Verdd's channeke have derived the capacity region of SMC defined in
resolvability coding([1B] with the non-uniform inputs. Thec- our general setting, in which, the message is allowed to be
ond one (Theoremn17) uses randomly chosgime mapping dependent and non-uniform while it has to satisfy the weaker
satisfying Conditiod 15 with the non-uniform inputs. asymptotic conditional uniformity condition. We have shmow

We have constructed two kinds of codes for the above tyfiee strong security when the the leaked information rateiie z
of SMC. Similar to BCC in[[9], the second construction haand the message satisfies the stronger asymptotic coradition
two steps. In the first step, similar to the BCD encoder, waniformity condition. Using the both formulas, we have also

XV. CoNCLUSION
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derived the exponential decreasing rate of leaked infdomat which implies

While the first formula gives an upper bound in any case, the

second one gives a better upper bound in some specific cases. log|X] + Hiipa-p)(YIX) = Hiip (X Y). (319)
We have also given two kinds of practical constructions for

SMC by using ordinary linear codes. Following our construc-

tions, we can make a code satisfying a required security.leve Proof of Lemma [86: Applying

Further, we have given a universal code for SMC, which doé®lder inequality >« Px(X)]AX)B(X)| <

not depend on the channel. Extending this result, we hagg, Px(x)|A(x)|ﬁ)1*P(ZX Px(x)|B(x)|El)P, to the case

derived a source-channel universal code for BCC, which doggx) = Px (X Qx(¥)*(Zy pY‘X(y|X)l+p(1fp)QY‘X(y|X)fp(l—p))1%,

not depend on the channel or the source distribution. and B(x) = Px(X)Qx(X)’, we obtain the following. In the
following derivation, we employ the above Hélder inequalit
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APPENDIX A X
INEQUALITY BETWEEN RENYI ENTROPY AND CONDITIONAL RENYT (1-p) (1) TR L
Exrrors (3 Pux0(Pr 1S Qux(yin707) S0
In this appendix, we derive a useful inequality between g
Rényi entropy and conditional Rényi entropy, which WassZPx(x)Px(x)PQx(x)‘P[
used in Subsection VIITIB. For this purpose, we prepare the “x
following lemma.
Lemma 86:Any two distributionsPyxy and Qxy over X x Y Z PY|x(Y|X)(PY\x(Y|X)p L) Qypx (ylx) ))]
satisfy y

UoIPxIQ) > T (oL~ IPxIQux < Py) - (317)

for p > 0, wherePx is the marginal distribution oPxy
on X, and Qvx is the conditional distribution oQxy on Y
conditioned withX.

When Qxy is the uniform distribution,;l)zp(p|PX,Y||QX,Y) =

1
=

(322)
< 3 PP Qut |

3 PPty #0) 7| (329
y

log(XIIY1) - Hi, (X, Y) and —Z=u(p(1—-p) PxvllQux xPx) = = D PROIPX ()P Qx(¥) "[
l0g1Y| = H14p1-)(YIX), which implies the following corollary X
of the above lemma as an inequality between Rényi entropy Z Pv\x(yIX)(Pv\x(yIX)”Qy\x(yIX)’p)]
and conditional Rényi entropy. y
Corollary 87: For p > 0, arbitrary random variable$ and ~ _ Z Pyy(X, y)l+pQXY(X’ y)* = @ (PIPxylIQxy) (324)

Y over X andY satisfy S
log(XIIY1) — Hip(X.Y) 2 l0g|Y] - Haspa)(YIX),  (318) ]
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g™ 8™ - {1,...,[e"7) and the Slepian-Wolf decoder
™ L., [€R]) x {1,...,[eR]} - S™ x S™. Us-

In this appendix, we show the existence of Slepian-Wofig the code, we define the Slepian-Wolf encodef :

data compression code satisfying the conditon)107) requi S — {L....Te"1)

and the Slepian-Wolf decodes! :

in Theoren{ 3R withe = 0 in the two-terminal and i.i.d. case.(L -, [€" T} x (1,....[€"]} - ST" x 7" by

For this purpose, we assume that the random variaBlgS[)

are subject to then-fold i.i.d. distribution of a given non-
uniform joint distribution ofS; andS,. For this purpose, we

@hu(s™) = g™(s™)

Gu(x1, X2) i= @™ (X1, X2).

(329)
(330)

recall the definition of achievable rate pair for SlepianfWoThen, due to Lemm&389, sinae(R; + Ri5) = nRy and

compression.

Definition 88: A rate pair Ry, Ry) is calledachievablevhen
there exists a sequence of encodefs = (¢}, ¢5) (¢ :
S" — {1,...,7e"R)) and decoderg™ (¢" : {1,...,[€"]} x

my(Rz + Re5) = nR,, the code 7 - ¥5,). 1) satisfies the
condition [107) in Theoreim 32 with = 0. Theoreni 32 guar-

antees that the compressed data satisfies the SACU condition

Now, in order to show Lemm&a_89, we prepare several

1,....[e)y - S x 87) such that the decoding errorlemmas.

probability e(¢", ¢") satisfies
I!im g(", @™ = 0. (325)

Then, we prepare the following lemma.

Lemma 89:Let (R, Ry) be a pair of achievable rates for

Slepian-Wolf compression satisfying; + R, = H(S1, S2).
When the compression rate paii, Rzn) behaves a®y , =
Ri+% and Ry = Ro+ 2 with 0 < t < 1/2 and

nt nt

c1 >,C; > 0, there exists a sequence of Slepian-Wolf codes

Lemma 90 ([36], [37], [38]): For a given compression rate
R, > 0, there exists a pair of the encodg€Y and the decoder
¢" of the random variablé&s) with the side informatiorS}
such that the decoding error probabilify", ¢") satisfies

(", §") < g PR—Eo(-pIS2IS1)) (331)

for anyp € (0, 1], where
Eo(plS2IS1) =109 ) () Ps, s,(s1, %) 77)'7.  (332)
S

(0", @") = (¢, ¥5). 9" for any positive integen such that Note that when there is no side information, we have

¢ is a map fromS} to {1,...,[€"R]} for i = 1,2 and the
decoding error probabilitg(¢", ¢") satisfies

liminf —n?tloge(e, M
N—oo

>min(/l Ci A C%

a 2V(S1)" 2V(S2ISy)’
1 /l—cg 1 A—i 326
(1- )2V(Sg)’( - )2V(51|SZ), (326)

where V(S2[S1) = X s Psis,(S1, 2)(I0g Psys, (S2181) -
H(S2/S1))? and A € [0, 1] is the real number satisfying that

(R1, R2) = A(H(S1), H(S21S1)) + (1 = )Y(H(S1IS2), H(S2)).
(327)
Further, whenR; = H(S;) and R, = H(SyS;) and the
compression ratesR{», R2n) behaves asin = H(S1) + %
andRyp = H(S2ISy) + 2 with 0 < t < 1/2 andc; >,¢; > 0,
there exists a sequence of Slepian-Wolf codgs&") such
that the decoding error probabilig(e", ") satisfies

ci ¢
2V(S1)" 2V(SaISy) )
(328)

liminf —n?tloge(e", ¢") > min
Nn—oo

Eo(-pIS2) = pH 1 (S2)- (333)
Lemma 91:The quantityEq(—p|S2|S1) has the expansion

2
Eo(-pISalS1) = pH(SalS1) + SV(SAS)  (334)

with small p. In particular, the quantit;oH%(Sl) has the
. +p
expansion
2

PH.L(S1) = pH(S1) + S V() (335)

with smallp andV(Sy) := X Ps,(s1)(logPs, (s1) — H(S1))?.
Proof: Take the Taylor expansion @®/S2S) as
gFo(=pIS2IS1)

=1+ pH(SzlSl)
P’ 2 2
+% ) Ps.s, (51 )(0gPs,s, (salsn))? + 0(p).  (336)
S1.%

Taking the logarithm, we obtaif (334). [ |

Lemma 92:Let (Ry, Ry) belong to the Slepian-Wolf com-
pression region ofg], S%). We choose the rateR|, R, R/,
andR} and the real numbet € [0, 1] such that

(R, R) = AR, R) + (L - )(R/,RY). (337)

We will prove Lemmd_89 after preparing several lemmas. . . .
Using Lemmal89, we make a Slepian-Wolf compressioH'e": there exists a pair of the Slepian-Wolf encogér
whose compressed data satisfies the SACU condition. 1B the decodep™such that the decoding error probability

(R1, Ry) be a pair of achievable rates for Slepian-Wolf conf (¥ ¢

pression satisfyin@® + R, = H(S1, S2). Then, lety" = (¢, ¢})

and ¢" be the Slepian-Wolf encoders and the Slepian-Wolf

decoder given in Lemm&_B9 with the case @f = RiC

and ¢, = R,c. We choose the integem, := Lﬁj =
Rin _ R:n _ Rin _ Ron " 1
|'R1+1RIECTJ - LRZJFZRZﬁch = Lij = Léj for 0 <t < 5

and ¢ > 0. Then, we obtain the Slepian-Wolf encoders

M) satisfies

(g™, ¢")
e*/ln(pR;*pHﬁ(Sl)) + inf e N(eR~Eo(-pIS21S1)
pe(0.1]

pe(0.1]

+oinf e @GR -Eo(-pISiSD) 4 jng g - OMRETAH L (5
pe0.1] pe01] ’

(338)
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Also, there exists a pair of the Slepian-Wolf encog&and the Then, similar to[(340) and (3%#1), we can show that

decoderg" such that the decoding error probabilig", ") )

satisfies : 21 . ~n(pR,,—pH 1 (S1)) cl
lim —n“"*log inf e Top =2 344
o 9.0 2V(S) (344)
~ 2
g(@", ") i 2-1 e (R, ~Eo(—plS2ISy)) )
im —n?"tlog inf e MR B(AISAS)) = 2
< inf e—n(PRl_PHﬁ(Sl)) + inf e_n(PRZ_EO(_Plsﬂsl))’. (339) n—oo pe(0,1] 2V(82|S]_) 345
pe(0,1] p<€(0,1] ( )
2
C
. . im —n&-1 i —(1-)Nn(eRY . —Eo(-pIS1IS2)) _ (1 _ 2
Proof: First, we show the existence of a sequence of codéggo n logpe'(r(])fl] € == 2V(Sy)
satisfying [(33P). We apply the usual data compressiorsipr (346)
and the data compression given in Lemma 90 $qr The et DR, H () 2
decoder is given by combination of the respective decodeddn —n“"~log inf e e =1-Vogrees-
. . - . n—co pe(0,1] 2V(S;|_|Sz)
Since the decoding error probability is bounded by the sum (347)
of the decoding error probabilities @] and SJ, we obtain
(339). We apply the evaluatiof (388) for the decoding error proba-

Next, we show the existence of a sequence of codes saligity in Lemma[92 to the case wheR{, R,, R}, R, areR; ,
fying (338). We dividen symbols into two partsin symbols R, R/, R . Combining the relationd (344)_(345]._(346)
and (1- 2)n symbols. We apply the construction given in thend [34Y), we obtairl (326). |
previous paragraph with the rate® (R’) to the first part,
and apply the same construction with the ratg$, R)) to

the second part. Due to Lemral 90, the decoding error proba- Appenpix C

. . . . —anR —pH 1 (S
bility of the first part is less than ipfo. e n(pR;-p %ﬂ( 1) + EQUIVALENCE BETWEEN THE gOWACt)J ConpiTioN AND THE WACU
NDITION

inf pe(o,1) € "PR~Eo(=0IS2IS) | and the decoding error probability

of the second part is less than jgf 1 e IR ~Eo(ISiIS2)
. —~(1-Yn(eR;—pH 1 (S2))
inf e,y € L

In Subsectiof VITI-A, we have introduced three asymptotic
. Then, we obtain[{338). B conditional uniformity conditions. The aim of this appexnd
to show the equivalence between the SWACU condition and
Proof of Lemm&89: First, we consider the case whBp the WACU condition, which was used in our proof of Theorem
H(S1) andR, = H(SzISy). SinceRy, = H(S)+ % andRy, = B2 _ .
H(S2ISy) + % we can show that Lemma 93:Let A, be a random variable on the séf, with
the cardinalitye’® and B, be another random variable for any
positive intern. Then, the relation

lim —n?tlog inf e MO G (340)
W pee 2V(§21) fim %H(An|Bn) R (348)
||m _n2t_l IO |nf e_n(PRZ.n_EO(_Plsz‘Sl)) — 2 . e
o0 9 e 2V(S2lSy) (341 holds, if and only if
Since the proof of[{340) is similar to those 6f (341), we show 1 B
only (340). Whenp is suficiently small, due to Lemma®1, lim HH“"/”(A"'B") =R (349)
we have
for anya > 0.
P Lemma& 9B will be shown after Lemnial94, which is used in
PRin—pH 1 (S1) = P~ EV(Sl) the proof of Lemm&93. Thanks to Lemind 93, we can replace
V(S1) o 2 the WACU condition [[90) by the SWACU conditioi (100).
__ _ 2 1 - :
= > (o V(Sl)nt) + NEIE (342) Indeed, in order to apply our results in Section]VIl to the

proof of Theoreni_ 37, we need evaluation conditional Rényi
entropy instead of conditional entropy, as is discussedrato
Hence, infuo1, e—n(/JRin_PHﬁ_p(Sl)) N e_nZV(Si)"m, which implies (122). Lemma& 9B provides the_ evaluation_ (_)f conditional Rény
(340). Then, we apply the evaluatidn (339) for the decodirﬁ‘tmpy@) from the evaluation of conditional entrdpgR
error probability in Lemm4& 92 to the case whBn, R, are €Nce, Lemm&93 is useful for the application of our results

Rin, Ron. Combining the relation$ (3#0) arld (341), we obtailft SectionlVI] to the asymptotic settipg. .
@28). Lemma 94:Let A be a random variable on the s@twith

the cardinality M and B be another random variable. For
arbitrarye; > 0 and 1> & > 0, we define the subset of
joint distributions forA and B as

2

Next, we show the general case. We choge:= H(S1) +
3, R, = H(SaIS)+ 3, Ry, i= H(S1S2)+ 3, R), i= H(S2)+

?l g nt n
%. Then, we obtain

P 1 = (PaslPas{(a b)l — log Pag(alb) < logM - &1} < e}
(Run Ren) = AR Ro) + (L= DRI, Ry, (343) @M (350)
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Then, which implies [35R). [ |
max H(AB) <logM — (e - 1 + 351
PasEPl, A8 9 2 @) (351) Proof of Lemmd_93: Since [34D) implies[{348), we only
1 et show [349) from[(348). For an arbitrary small numlaer 0,
. mm H1:p(AIB) > - 5 log((1- ) e €). (352) we define the probability

elezM
1
Here, since the regloﬁA'B v is compact, the above maximum n = Panan{(a, b)l - - log Panen(alb) < R—€}.

and the above minimum exist. Applying Eq. [351) of Lemm& 34 to the case whaen= ne

ande, = 65, we obtain
Proof of Lemma&94: For an arbitrary integek, we define

H(AnIBp) < NR—6,(e™™ — 1 + ne).

the set
PA P Pa{al — logPa(a) < logM — €1} < e, That is,
Mk = | TA| (3 - log Pa(@) < logM - er}] = k LH(AYB,)
P2 v = (PalPafal — logPa(a) < logM - &1} < €3}, n < 7€m T, (353)
and define the function Thus, lim_ dn = 0. Hence, Eq.II332) of Lemnial94 guaran-
f(X) := ex(logx — loge) + (1 - &)(log(M — X) — log(l-e)) tees that
n _
for e € (0,1). The setP” _ |, is a non-empty set only when Hita/n(AnlBrn) = - log((1- 6n)e" ™ + 5p). (354)

the integerk belongs to [OezMe €], Under the above choice Thus

of k, we have

max  H(A) = f(K)
Pas g,sz.M.k

and

max H(A) =
PAEPA

f (k).

max
ke[0,e;Me 1]

Nt ~Ha.n(AdBr) 2 minf — log((1- 0" + o)
— 00 — 00 o
=R-e.

Sincee > 0 is arbitrary,

o1
Imn inf ﬁHlm/n(A,JBn) >R

wherek is restricted to an integer in the maximum. Taking the

derivative, we have

€2 1- €2
f'(x) = = -
() M =X’
which is positive wherx < Me,. Hence,
max H(A)
PAEp

<f(eMe)

=e(logM - ) + (1 - &)(logM+log(1-ee ™) — log(1-e))
—logM — &6, + (1 — &) log[1 + 62(%2)]

<logM - e + (1 - 52)@

=logM - e(e™® - 1 + €).

Since logM — e;(e¢ — 1 + ¢) is an dfine function ofe,, we

obtain [351).
On the other hand, using the s@t := {a

logM - &}, we have

max e PHm® = Z(PA(a))ler + Z(PA(a))hp

PacP? acQe acQ

—logPa(a) <

€1.62.M
e)e ejel
<(1-e)ps + 6" <(l-e) i

+ éo.

Since (1- )% M/, + & is a linear function of,, we obtain

€

max e PH1+p(A|B) < (1 EZ)
PA‘BEPA‘

..M

+ €2,

Since the cardinality ofA, is &R, we have%Hlm/n(Anan) <
R. Hence,

1
r!mo ﬁHl+a/n(An|Bn) =R

Combining relation[(5), we obtain the desired argumenm

AppPENDIX D
EXTENSION TO GENERAL MEASURABLE SPACES

A. Information quantities

Our results has been obtained based on discrete sets, i.e.,
sets with countable elements. Here, we explain how ourtesul
are extended to the case of measurable spaces, which contain
continuous sets. Firstly, we state the assumptions used in
AppendixD. As beforeX is the input alphabet of the channel
andZ is the output alphabet to Eve. In general, a channel from
X to Z is described as a collection of conditional probability
measurefizx-x on Z for all inputsx € X, anduzx-x might not
have a probability density for somee X. In this appendix,
however, we assume that there exists a finite measgren
Z such that for allx € X, uzx=x is absolutely continuous
with respectz. In the following Pzx(:|x) denotes the Radon-
Nikodym derivative duzx-x/dvz. We also make the same
assumption on the channel from Alice to Bob.

In addition, as before, we consider probability measures
on U x V x X. We assume that there exist finite mesures
v on U, vy on V and vy on X such thaty is absolutely
continuous with respect to the product measuyyex v, X vx.
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Under this assumption we can denote Byyx the Radon-  The above quantities can be defined for a channel. When

Nikodym derivativedrn/d(ves X vy X vx), and marginal prob- the input and output systenid and“V are measurable spaces,

ability densitiesPy, etc. and conditional probability densitiesa channeW is defined as a set of probability density functions

Py, etc. can be computed froRyyx. In the following,dv, {Whey oOn Z. That is, substitutingW into a conditional

dz etc. denotalvy, dvz, etc. assumed above. probability density functionPzy as Pzv(Zv) = Wy (2), we
Firstly, we give the definition of the information quantttie define the above information quantities for the chaiieSo,

in the general measurable case. Althougio|Pzy, Pv) and when the channelg/* and WY satisfy the above conditions,

Eo(olPzv, Pviu, Pu) are defined for distribution®, and Py  the code construction and security evaluation given in the

and conditional distribution®zy and Py,y with discrete sets next subsection work well. Note that the above generatinati

in (I7), they can be defined as follows even whenV, and works well even wheriV is a finite set because a finite set is

U are measurable spaces in the sensé df [47, Theorem 32alo a measurable space.

Then, we define

Eo(o|Pzyv. Pv) B. Code construction and security evaluation
_ 1/(1p) 1-p Under the above extension, our results can be extended as
'=|ngzdz(j; dvR,(V)(Pzv(2V) )) , (355)  follows. Firstly, we focus on Theorem114. Assume thitis

Eo(olP2v. Py, Pu) a channel from a measurable spateo a measurable space
VAT 2, VI, T 1y Y and thatA is a discrete random variable on a finite sét

—lo d d d = 1/(1-p) . subject to the distributiofPa. Theoren{I¥ holds even under
g[u UL Z(j:v VR (M) (P () ) this assumption, whose proof can be done by replaging

The above definition formally depends on the choices of t d Zhy |3y ,thdx alndhf d&% TheorerrEI]? and CoroIIaHrEIw
measureslz du, dv. But in the next paragraph we will explain®<© nold with a slightly dferent extension. Assume thef

the above values are independent of the choice of measyfe&@ channel from a finite-dimensional vector spaceover
dz du dv. Fq to a measurable spad¢ and thatA is a discrete random

variable on a finite-dimensional vector spag@verF, subject

Now, suppose that we choose other measdzgdu, dv
so that the measuredz,du,dv and the original measurestO_PA‘ Then,_TheorerEl? and Corollaiy]18 hold even under
is assumption, whose proof can be done by replagipgy

dz du, dvare absolutely continuous with respect to each oth&!ﬁ}j
respectively. As is shown in the left hand side|of|[43, p.7740)y dy. ) .

even when these information quantities are defined with theNOW: We consider the extension of Code Ensenfhie 1.
measuresiZ, du, dv, these information quantities have thé‘SSume thal' =V, Y, Z, and/ are measurable, and that
same values as those defined with the original measufBg Private and common messaggsand S. take values in

dz du dv. So, these information quantities do not depend diflit€ Sets. Then, we can apply Code Enseriible 1 to the above
the choice of the measures du, dv whenever the measuresSituation. Hence, Lemniall2 holds even under this assumption
and the original measures are absolutely continuous wRfCause the proof by Kaspi and Merhavi[21, Section I1] i$ stil
respect to each other. valid under this assumption.

When Q and P are probability density functions on a Next, we proceed to the extension of Code Enserhble 2.

measurable spacg with respect to a common finite measuré'SSume thaX, Y, Z, v, and U are measurable, and that

dz, y(p|QIIP) is defined as all messagesS,, Ss, ..., St take values in finite sets. Then,
we can apply Code Ensemljle 2 to the above situation. Hence,
w(pQIP) := |ogf dzQ2)**P@) . Theorem2D holds even under this assumption becduse (57)
z holds under this assumption.
Further,y(pPzy. Pv) andy(olPzv, Py, Pu) are defined as Then, we extend the contents of Section]VIl. We consider
follows. the extension of Code Ensemble 3. Assume MaV, Z, V,
andU are measurable, and th&; and B, are finite Abelian
¥ (plPzv, Pvu, Pu) groups. In this case, all messag®sS;, ..., St take values in
_ finite sets. Then, we can apply Code Enserible 3 to the above
- Ingq,dVR’(V) deZPZV(Z'V)hpPZ(Z) ’ (356) situation. First, notice that Theordm]12 still holds in tiheee
(oIPzv, Py, Pu) situation. Hence, LemnfaR1 and Theoileth 22 hold even under

this assumption, whose proof can be done by applying the

:Iogf duPU(u)f dVPv\u(VIU)f dzPyy (2v)¥*Pzu(Zu) . extension of Theoren(s 112 ahd]17. Lemma 24 holds with a
u v < (357) slightly different extension. That is, Lemrfial 24 holds when

the setsl{ and<V are finite set, i.e., only the s&f is allowed
Similar to the information quantitie€Ey(o|Pzv, Py) and to be a general measurable space. This is because we need to
Eo(olPzv, Pviu, Pu), we can show that the information quanticonsider the cardinalities of the subsetsZihand V. Since
tiesy(plPzyv, Pyiu, Pu) andy(polPzy, Pyju, Pu) do not depend the contents of Sections V and VI are extended to the case of
on the choice of the measureg du, dv whenever the mea- measurable spaces in the above way, the contents of Sections
sures and the original measures are absolutely continuibus Wlll and 1X also can be extended to the case of measurable
respect to each other. spaces in the same way.
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In Section[X], we have proposed several types of practtummy messagé has the Rényi entropii.,(A), Theorem
cal code constructions. Code Constructibhs 6 @nd 7 canZi®guarantees that

applied to the channdbzy from a measurable spack to a
measurable spacg. In these constructions, since the cage
is given, we can restrict the sét to the finite subset given ;
as the image of the map,. Hence, we can apply Lemnial24
with the above extension in this context.

When the above discussion is applied to the wire-tap chan-
nel model, we obtain an extension of existing results to ther

Eo[e'S9)] <1 + o PHLp+N(5 109(1+32)-3 10g(1- 53 7)

l.e.,

(362)

Eo[l(S; E)] S}e*PHuern(% log(1+ %)’% log(1- \,;73\,3/72)) (363)

p € (0,1]. Since there is no common messages, the

case of the asymptotic uniform dummy message. That is, wardinality of 8; is 1 in Code Ensembl&] 3. Theorem] 22
consider the case with no common messagesiaad® when guarantees that

S; corresponds to the message to be secretly sent to Bob,

and S, does to the dummy message maki&g ambiguous
to Eve. For a given rat®&®; of secret message and a given

rate R, of dummy message, the RHS &f (115) coincides with

the Gallager exponents, the RHS Bf (IL55) coincides with the
RHS of (59) in [15], and the RHS of (157) coincides with the
exponents of the RHS of (15) ih [17].

Eqle/SO0] <1 4 #M@miloliis) - (364)

Eo[l(S; E)] < Lot (yeng oot 1255) (365)
P

for p € (0, 1]. When the dummy messadeis uniform, [365)

and [368) are simplified as follows

C. Gaussian case

Finally, when the channePyzx is a degraded Gaussian

channel as[(358), we demonstrate how the strong security can g[|(s; E)] S}efn(pRz*% log(1+ )
P

be shown for the wire-tap channel, which is given as the case

with no common messages ad= 2 whenS; corresponds to gjnce |i

the messag® to be secretly sent to Bob, ar@ does to the 3
dummy messag@ makingS ambiguous to Eve. Assume thattzh
X, Y, and Z are the set of real numbers. So, we choose the
measuresix, dy, anddz to be the Lebesgue measure. Then,
we assume that the conditional probability density funwio

corresponding to the channels are [1]

_&x?
e 2vp S

(358)

_ %2
e 2vy s

Pyix(YIX) := Pzx(2x) := 2]

V1

. . 3
where v, > v;. Since the channel is degraded, we do no{]
need to introduce random variabldsandV. Now, we chogse [4]

the probability density functioPy to be Px(x) = ﬁe’gﬁ. [5]
Then,
V3

Eo(olPzx, Px) =g log(1+ m),

(1+p)p 2_P
B 2(V2 + (1 + p)V3) 2

(6]
(7]
(8]

(359)

Y (olPzx=x, Pz) logvz

+ 1+p log(Vva + v3) — - log(v2 + (1 + p)va),
2 2 9]

(360)

1+ (10]
Y(plPzx, Px) =Tp log(vz + va)
- 2 tog(vz + (1 p?)vs) ~ £ logv, 11
P V3 1 V3 2 [12]
==log(1l+ —) - =log(1- .

5 o( v2) 5 o( v ) 3]

(361)
[14]

Hereafter, we denote the average leaked information under
our code®d by I(S; E)[®]. Assume that we use the Gaussiaft®!
channelPyzx n times, and that the rates of secret message
and dummy messagk areR; andR;, respectively. When the

log(1-
e

Eo[I(S; E)] S}e—n(PRz—(% log(1+32)-3 |°g(1—v2VT3V3P2))). (366)
o

(367)

Mo 5(5109(1 + =37)) = im0 2(5log(1+ 2) -

Vz‘fv3p2)) = $log(1+ ), both [366) and[(367) yield
strong security wheR, > 5 log(1+ x—z).
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