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Abstract—We consider networks of noisy degraded wiretap time, for which case we provide upper and lower bounding
channels in the presence of an eavesdropper. For the case whe noiseless networks. Our results bring together and gereral
the eavesdropper can wiretap at most one channel at a time, e \yiretap channel and secure network coding literature,

we show that the secrecy capacity region, for a broad class of . S T
channels and any given network topology and communication allowing application of existing results on secure network

demands, is equivalent to that of a corresponding network ware ~ coding capacity to characterize or bound the secure cgpacit
each noisy wiretap channel is replaced by a noiseless wirgta of networks of such wiretap channels. Our work builds on and

channel. Thus in this case there is a separation between wis® generalizes the techniques developed by Koetter, Effrod, a
channel coding on each channel and secure network coding on Medard in [4], [5], which show similar capacity bounds in the

the resulting noiseless network. We show with an example tha b f traints. Wk ide bel Hifi
such separation does not hold when the eavesdropper can asse absence or secrecy constraints. Ve provide below outlines o

multiple channels at the same time, for which case we provide all proofs, details of which are given in the full version bfg
upper and lower bounding noiseless networks. paper [6].

|. INTRODUCTION II. M ODEL AND PRELIMINARIES

Information theoretically secure (secret) communication Consider a networ = (V, &), where) is the set of nodes
the presence of an eavesdropper has been studied undem/a%dg CVxVxNis a set 0]’: directed edges between pairs of

models. One body of literature studies the wiretap chann%deS in the network. Edge, j, k) represents thé™ wiretap
introduced by Wyner[]1], where the intended receiver a annel through which nodé communicates to nodg and

the eavesdropper observe outputs of a physical layer Chan%ough which an eavesdropper may or may not be listening.
Another body of literature investigates the secure capaxit The total number of nodes in the networksis The channel

net.works of noisfe—free links. Under this model, introdubgd inPuts and outputs for nodeat time are given by
Cai and Yeung in[[2], an eavesdropper perfectly observes al

information traversing a restricted but unknown subseinds| Xt(i) = (Xt(e) re€ Eout(i)) and Yt(i) = (Yt(e) : Ein(z'))
The first paper on the secure capacity of a network of noisy
channels is[[3], which finds upper and lower bounds on tIvehereXt(e) andYt(e) denote the input to and the output from
unicast capacity of a network of independent broadcastiezasedgee respectively, andr(¢) and)(¢) denote their alphabets,
channels when the output observed by the eavesdroppeisequdlich may be discrete or continuous. We define
that of the intended receiver on all wiretapped channels. ) )

Our work considers the problem of secure communication Ein(1) = {(w,v,w) € £ v =1}
over a network of independent wiretap channels which are Eou(i) = {(u,v,w) € £ 1 u=i}
physically degraded and “simultaneously maximizable'e(se
Definition [1 in Sectionl), and broadens consideration to x® — H x© and YW = H ye
gen_eral capacity regions s_peC|fy|ng ve<_:tors of sw_ngltns@p € Eanli) cen(i)
achievable rates. We require asymptotically negligibleodie
ing error probability and information leakage to the eaves- L€t P(€) denote the power set of the set of all edges. In a
dropper, as defined formally in Sectibh II. In the case wheRgCUre communication problem, an adversarialset P(€)
the eavesdropper has access to only one link, the identity'%fSpeC'f_'ed' Each sel € A describes a sub_set of channels_
which is unknown to the code designer, we show that 1y er which an eavesdroppe_r may be I|sten|_ng. The code is
secrecy capacity region is identical to that of a correspand designed to be secure against eavesdropping on_the set of
noiseless network, for any network topology and connectiGh@nnelse for everyEl € A. When the eavesdropper listens to
types. Thus in this case capacity can be achieved by sepaffg€¢ = (i:7,%), th(i)eavesdropper recewes, ?et)eaCh tmee
design of wiretap channel codes converting each channeld@graded versiorZ; of the channel outpuk, ™ observed
a pair of public and confidential noiseless links, and a seclty the intended recipient, which is the output nofleof
network code on the resulting noiseless network. We sh&fl9€e = (i,J,k). If the eavesdropper has eavesdropping
with an example that such separation does not hold wheft £ € A, then at timet it receives the set of random

. e . . E
the eavesdropper can access multiple channels at the sé{ﬁf@mes(zt( Jiee E) which we compactly write ag;".
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The vector(ZfE), e Z,(ZE)) of observations from all edges R X @ y®
e € E over time steps € {1,...,n} is denoted by(Z())". ) /

imi - B X, (E) XO=—"R
Similarly we define (X(")" = (x;7,...,x;") and X@w

(yEN" = (v v) wherex P = (Xt(e) e E)
andv,?) = (Y(e) ec E)
For eache € &£, channele is a memoryless, time-invariant,

physically degraded wiretap channel described by a condi- Y = (Y(é)’cay(é)’p)

tional distribution y(@se — x(@).c
Y(e)’P X(e)p

Py, 29 [2) = p(y']2(?) - p(z9|y()). 7@ —y@w»

7@
X©@ = (x@e x@r)

All wiretap channels are independent by assumption, givingig. 1. A noiseless degraded broadcast channel with coniédlente R.
and public rateR,.
p(y(g), z(£)|x(£)) — l_Ip(y(E)7 29| z(e))

ec&
= Hp(y(e)|x(e) (). for secrecy, where
ec&
We further restrict our attention to channels that are “$iaau Cc = Z mé}g I(X(e); Y(e)) 1)
neously maximizable,” as defined below. ectouti) ")
Definition 1: Wiretap channek is called simultaneously is the sum of the outgoing channel capacities from node
maximizable if i. Each T is uniformly distributed on its alphabet and
©. ] ©). () independent of all messages and channel noise.
are h}i;‘f(X Y )} e [I,?(%(I(X 12 )} Definition 2: Let a network
and Nd:ef(H 2] (p(y<e>|x<e>)p (z<e>|y<e>) )
max [I(X(e);y(e)) —I(X©); Z(e))} ecE e€e
(=) I1 (y(e) % Z(e)))
= max I(X©;Y©)) — max I(X©);Z2(). iy
(z<e>) p(z(*)

be given corresponding to a gragh= (), £). A blocklength
The about maximization is subject to any constraints on tesolutionS(\) is defined as a set of encoding functions

channel input €.g, an input power constraint for a Gaus- . N1 _ _ _
. T h . (@) . —B

sian channel) associated with the communication network <t (y(l) x H WEPE s 70— 20
of interest. Examples of simultaneously maximizable vaipet BeB®

channels include weakly symmetric channels and Gaussj . (i) (i) (i—B) i i
channels [[I7], [[B]. Intuitively, restriction to simultanasly mgppmg (Y1 Y (W 1B e BY), T ) to
maximizable channels simplifies our analysis since the samfe  for eachi € V andt € {1,...,n}, and a set of decoding
input distribution maximizes both the total and secure cipa functions

A code of blocklengthn operates ovem time steps to yj/(i—K.i) . (y(i))" o H W=B) o () Y(i—K)

reliably communicate message BeB®

(i—B) (i—1B) def nRGE) ) i i .
wi=s) e yle— —{1,...72 } mapping (Yl()7"'7 75)’0}[/ (i—B) . BeBz)) T(z)) to

from each source nodec V to each nonempty sé&& C V\{i} W ~K9 for eachj € V, K € BY, andi € K. The

of sink nodes in a manner that guarantees information thieoresolution S(A) is called a (), e, A, R)-solution, denoted

security in the presence of any eavesdroppee A. This (A e, A, R)-S(\), if Pr (W(j—ﬂc,i) £WU=K)) < A for

constitutes a unicast connection || = 1 and a multicast _ ) . N4

connection if|5| > 1. ConstantR—5) is called the trans- SVerYJ € V, k € B andi € K, and/ ((Z5)";W) < ne

mission rate from sourcé to sink setB. The vector of all for every £ € A. _

ratesR(—5) is denoted byR = (R(HB) ieV,BeB z)) Def|n|t|on 3: The A-secure rate regiorR(N,A) C

where setB®) = {B: B C V\{i}, B+ ()} is the set of non- R ™™= of a network/ is the closure of all rate vectors

empty receiver sets to which nodemay wish to transmit. R SUCh that for anyA > 0 ande > 0, a solution(\, ¢, A4, R)—

Similarly, the vector of all messages is denoted By = S(N) exists.

(W(HB) iceV,BeB i)) Given a networkN and a channek € &, the model
Each node; € V aIso has access to a random variabl&’z(R., R,) replacese with noiseless bit pipes as defined
7@ e 7O LYy . 27C"Y for use in randomized coding below and illustrated in Figurd 1.



Definition 4: Given a network RU=B) for a stacked network to b8og, W P)|)/(nN)
since any solution of blocklength for N-fold stacked net-

dZEf(H X, H (p (y(e)|x(e)) p (Z(e)|y(e)) )’ work N can be operated as a rafesolution of blocklength
ees e€s nN for network A under this definition[[4, Theoren].
H (y<e> X Z(e>)) A similar argument, given in Theorefl 1 below, justifies
e€€ the security constraint imposed below. Definitidd§l5-7 are

and some € &, the model\,(R., R,) replaces the degraded@"@/0gous to Definitions 4-6 inl[4].

wiretap channel Definition 5: Let a network

Ce = (X® p(y®|2@)p(2@]y(@), Y@ x 2 def . O (e o1 (e
( p(y' 2 )p(z' 9 y'), Y ) N:e(HX()vH(Pe (y<>|x< >)pe (z<>|y< >))
with the noiseless degraded wiretap channel e€€ e€€
C(Re, Ry) = ({0, 1}F+Fn §(y® — (4@ 4(@p)) 11 (y(e) x Z(e)))
ecé&

5(2(5) _ y(é)-,p)7 {0, 1} » {0, 1} 7%) . -
be given corresponding to a gragh= (V,€£), and let an
that delivers the ratde. confidential portionz(®)-¢ of channel eavesdropper set C P(€) be defined on network/. Let
input 2(9) = (2(®)¢, 2(9P) to the intended receiver and thex” be the N-fold stacked network for\'. A blocklengths
rateR,, public portionz(®) of that input to both the intended solutionS() to this network is defined as a set of encoding
receiver and eavesdropper. The resulting network is given functions

. A\ t—1 . . .
Nz(R., Ry) d:ef({()’ 1}Rc+Rp % H ‘)(‘(6)7 &gl) . (2(1)) ~ H wl=B) o 7 __ x()
ec&\{e} BeB®)
(@ _ (@ L(@)p @ _ ,@p . .
Sy (v ( ;517( : ))5((2) ( )y ) mapping (Xgl)’ . ,Y(Z) (W(zaB) BeB z)) I(l)) to
yﬁ (p(y™ )Py ™), &Ei) for eachi € V andt € {1,...,n}, and decoding
°c \1{:}+R . T functions
0,1} x {0, 1} x Y x Z9). o (i o\ n
{0,1} USELI | ) WO ()" x

(i—B) (i) (j—=K)
cee\{e} H w x T — WY

BeB®
As in [4], [5], we allow non-integer values ak. and R,, to mapplng Y(i) YD) (W (i~B) . B c B 7,)) ) to

denote noiseless bit pipes that require multiple chanmast us_ GKd)
to deliver some integer number of bits. w for eachj € V, K € BY, andi € K. The

Many of the subsequent proofs use the notion of a “stack&@lution S(\V) is called a(A,e, A, R)—solution for stacked
network” introduced in [[4], [[5], extended here by addingetwork\, denoted ), e, A, R)-S(N), if (1og2 ‘E(Hm‘)/
an eavesdropper. Informally, th&¥-fold stacked network\ i B\".
containsN copies of network\". The N copies of each node( nN) = R0O70), I ((Z( )) ’E) < nieforeveryE € 4,

i € V use the outgoing messages and channel outputs framd Pr W(ﬁm #+ wU=K) < X for the specified
all N layers of the network to form the channel inputs iRncoding and decoding functions.

each layer of the stack. Likewise, each node uses the channel

outputs and messages from all layers in the stack in buiiting ~ Definition 6: The A-secure rate regionR(A, 4) <
message reconstructions. An eavesdropper A overhears Rm(2 =Y of stacked network\ is the closure of all rate
all copies of channel for eache € E. vectorsR such that for any\ > 0 and anys > 0, a solution

As defined formally below following[]4],[5], a solution (A€, A, R)-S(A) exists for sufficiently largeV.
for N-fold stacked network\. must securely and reliably

transmit, for eachi € V and B € B®, N independent Definition 7: Let a network

message$V =5 (1),..., W=B)(N) from nodei to all the Nd:ef(H X, I] (pe (y(e)|$(e)) D (Z(e)|y(e)) )’
receivers in set3. We underline the variable names from s iy

N tp denote yanat;lfs for_ the s]tvacked netwmfcljs fTherefgre H PO « H 2()

W=B) ¢ yi—B) (W(HB)) LT ¢ e (T z)) e ot

X0 ¢ pl0) % X(l))N, y (0 g pti) &f (y(i ) andz\® ¢ be given corresponding to a gragh= (V, ). Fix positive
integersn and N as the blocklength and stack size, respec-
2L ()" denoteN-dimensional vectors of messagesiively. For eachi € V and B € B, let R(~5) and i (i-8)
channel inputs, channel outputs, and eavesdropper outpbts constants withR(i—5) > RU-B). Define W8 —
respectively, in network/. The variables in thé" layer of the {1,...,2"E"”"'} and B — {1,..., 2R Let
stack are denoted by an arguménkinally, we define the rate be theN fold stacked network faiV'. A blocklengthn stacked



solutionS()) to this network is defined as a set of mappings [1l. M AIN RESULTS

W= B gy=B) i = B) In Theoreni®, we show that for any netwokk of wiretap
T N o . . channels and any edgee &, replacing channel; with a
X0 (3}(1)) x [ Wi x 70 — 20 noiseless degraded wiretap channel of appropriate cigmcit
BeB() R.andR,, as shown in Figurlgl 1, yields a netwokk (R, R,)
W=k L (y@)" W(i=B) (@) WU—K) (Def|n!t|onIZ)_ whose secure capacity region contains thargec
(y ) . Bel_[B(“ T capacity region ofV'. Theoreni 2 extends][5, Theorgtfrom
_y N , traditional to secure capacity.
(4= K, 1) gy — K) (G—K) - .
we W = W Theorem 2:Consider a network\" and an adversarial set
where the other channel encod@f(i - B)(-) encodes mes- 4 & P(E). RN, A) © R(Ne(Re, Ry), A) for

sage W) to W' 7B (w(=8) encoderx () in- R.> max I(X®;Y®) = max I(X©®; 2
dependently encodes each dimensién € {1,...,N} p(z() p(=()

of ‘outgoin?‘ messagesi’" 7, received channel outputs R, > max I(X©®; 7@,

v ...¥"  and random keyg to channel input p(a®)

Xt(i)(Xgi)(ﬁ),---,Xgijl(f),(E(i%B)(ﬁ) : BEB(“),I@M)), Sketch of the proofBy Theorem[l it suffices to prove
5 RN, A) C R(N (R, R,),A). We employ a channel code
node decodefd’V—%X-9)(.) independently decodes each diacross layers of the stack to emulate a secure code for retwor
mension of the reconstruction N on network\ . (R., R,). Typical inputsX, to e are mapped
2 ik i i < i i », 1o jointly typical outputs from a random codebook. It can be
W=k )(Kg )(ﬂ), e ,Xﬁ)(f), (E( o (6):B e B ))’I( )(é)s?hown that the induced probability distributigh is close to
of WU %) at nodei, and channel decodai’V ~* IC,i)(.) the probability distri_butionp (_)f the original secure code fqr_
- S K N, and that mutual information values under both probability
distributions are similar. The bits transmitted over thesakess
The following theorem extend5][4, Theorethfrom tradi- channel correspond to the codeword index, and thus reveal
tional to secure capacity. a similar amount of information to the wiretapper as its
observations of the original noisy channel. O
Theorem 1:The rate regionsR(N, A) and R(\, A) are  Theoren(B shows cases where the upper bound shown in
identical. Further, for any? € int(R(N, A)), there exists a Theoren{® is tight.

sequence of2~ %, ¢, A, R)=S(N\) stacked solutions for the  Theorem 3:Consider a network/, an adversarial set C

reconstructs message vectdt? = 9 (U = K0y

stacked network\" for somed > 0. P(&), and a single linke € &. Let

Sketch of the proofThe argument to shoviR(A,A) C R, = max I[(X@;Y®)) — max I1(X®); 2®)
R(N,A) follows [4, Theorem 1]: given any R € p(z®) p(z®)

int(R(N, A)), a blocklengthn (A, e, 4, R) — S(A) solu- R, = max I(X®); 2(9),

tion for network A/ is unraveled across time to achieve a p(z()

blocklengthn IV solution for network\. Since the given code |f ¢ is invulnerable to wiretappinge(¢ E for all E € A)
satisfies the causality constraints and precisely implésrtte or is not simultaneously wiretapped with other linksg £
operations ofS(A), the solutionS(N) achieves the sameimplies|E| = 1), thenR(N, A) = R(Nz(Re, Ryp), A).
rate, error probability, and secrecy dhas the solutior5(A))  Sketch of the proofiVe outline the proof for the case where
achieves onV, which gives the forward result. is wiretapped but not simultaneously with other links; thee
where it is invulnerable to wiretapping is a simpler version
We first show thatR (Nz(R. — €, R, —€), A) C R(N, A)
for any e > 0, by starting with a secure code of rafe for
network Nz(R., R,) and constructing a corresponding secure
code for network\. Denote byC; and P; the transmissions
across the confidential and public links, respectively, adee
max max REBIX + h()) < p. ee & attimet. LetC" = (Cy,...,Cy), P" = (Py,..., B,)
i€V BeB® and denote byC’ and P; for any j < i the vectors
This is possible by choosing small enough so thax < p/ C; = (C},Cj41,...,C;) and Pj = (Pj, Pjt1,...,P;). We
(3 max;ey maxgepm RO73)) and h(\) < p/(3p). Since define networks andll shown in FiguréR that are identical
RU=B) ~ RU=B) there exists a blocklength such that to networks\z(R., R,) and\ respectively with the addition
a (\, %,A,R)—S(J\/) single-layer solution exists. A stackedof an auxiliary receiver that observes the wiretap output of
solution is built using this samé\, 5, A, R)=S(N) single- ¢, messaged?V and a noiseless side channel of capacity
layer solution in each layer and a randomly chosen chanmél (defined below) from a “super-source” that has access
code across the layers of the stack. O to (W,C™ P™). In network| (II') the auxiliary receiver is

The converse follows[[4, Theorer]. Again, fix ¢ > 0,
and for anyR € int(R(N\, A)) chooseR € int(R(N, A))
with R—=B) > RG=B) for all (i,B8) with RO=B) > 0.
Definep = min,ey minge e (RE5 —R(E-B)) and choose
constant\ > 0 satisfying
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Fig. 2. NetworkAz(R., R,) along with networkd, Il and A that assist proving Theorefd 3.

required to decode the confidential bit'. R, > 0. The lower bound result, the upper bound result, and

We construct a code for a stacked version of networkth the continuity result together prove Theorem 3. O
N, layers in which the auxiliary receiver is able to decode the Example[1 demonstrates applications of Theokém 2[@&nd 3
confidential bitsC™. The constructed coded for the stackednd shows that while Theorel 2 is tight in many cases, it
version of network can be seen as a code of blocklength= is not always tight when the replaced link appears in one or
nN; for the non-stacked version of netwolk To move the more eavesdropping sets of size greater than
proof from networkl to networkll we use a stacked version Example 1:In the network of Figuré 3(h), channels =
of networkll with N, layers. The code used at each layer O(fL 2,1), e2 = (1,4,1), e5 = (1,3,1), es = (4,2,1), andes =
the stacked version of netwotk is the code of blocklength (4,3,1) are independent degraded binary wiretap channels.
ny constructed above. We need to use a stacked versionc@fannels., ande; have erasure probabilityat each intended
networkll to use a channel code at edgef networkll 10 receiver and erasure probabilify at each wiretap output, as
emulate the noiseless edgef networkl. shown in Figurd 3(¢). Channels, ¢4, andes have erasure

In the following we show that the communication code ofrobability £, with identical outputs for their intended and
networkll gives a secure code of netwatk. These auxiliary eavesdropped outputs, as shown in Fidurg 3(f). We consider
receivers assist in the proof of the secrecy of the code #r th single multicast from sourc§ at nodel to terminals7;
eavesdropping sete} € A in the following manner: capacity and7; at nodes2 and3. We therefore seR(*5) = ( for all
C: is defined such that the sum of capacitiegdf, 2", L?) (i, B) # (1,{2,3}) and then consider the poifit € R(N, A)
(whereL” are the bits in the noiseless bit pipe of capaCity that maximizeskR(!*{2:3}). The eavesdropper can listen in on
that are all the incoming links to the auxiliary receivers igither bothe; andesz or justes, i.e, A = {{61,63},{62}}.
almost equal to the entropy ¢", C™, W) that correspond The networkA” shown in Figurg 3(B) has secrecy capacity
to the decoded message at the auxiliary receivers and éherefinder adversarial set = {{ei,es},{e2}} identical to that
all links are filled up to capacity. Therefore there is no spapf the network in Figur€ 3(RJR(N, A) = RN, A)) and is
capacity at linksz™ to carry any information about messag@btained by three applications of Theorigm 2. Here chafinel
W and therefore the code is secure. andC., have been replaced by changgk, 0) since channels

On the other hand, the upper bound result in Thedréme2 and e5 are invulnerable to eavesdropping,(es ¢ FE for
implies thatR(N, A) C R(Nz(R. + €, R, +¢€),A) for any all E € A). Likewise C., has been replaced (0, 1) since
e > 0. We then prove a continuity result on the rate regios, cannot be simultaneously eavesdropped with any other
R(Nz(Rc, Rp), A) with respect td R.., R,,) whenR. > 0 and channel ¢, € E implies |E| = 1) and has0 confidential
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Fig. 3. (a) The network for Exampld 1 and (b) its equivalentdeidoy replacing channels;, e4, andes by their equivalent noiseless links by TheorEm 3
(rate9 links are omitted from the model). (c) The noiseless moddldptby applying Theoreml2 and (d) the secrecy capacity aicitjesode for the network
in (c). (e), (f) The channel distributions for independertyiaded wiretap channets, e3 andes, eq, e5 respectively.

bits. The noiseless netwotk” is an upper bounding modele; and es (Xt(el) = X,feS) for all t € {1,...,n}), then
for the network in Figurd 3(b) (and therefore also an umn eavesdropper accessitiy = {ei,es} sees independent
per bounding model for the network in Figure 3(a), givinghannel outputszt(el) and Zfe?’) resulting from the same
RN, A) = R(N,A) € R(N, A)), and is obtained by two channel inputx(®’ = x°* at each timet. Since each
applications of Theorernl 2, replacing channejsandes by  transmitted bit is erased with probability and the erasure
their upper bounding models. events are independent by assumption, an eavesdropper that
A rate-l blocklength2 code for network\ is shown in wiretaps bothe; andes is expected to receive roughl§s%
Figurg[3(d). The messad& ' {23} ¢ {0,1}? is broken into of the transmitted information bits. Consequently, a keyaté
a pair of message®’ (! >{23}) = (W7, Ws) € {0,1} with 0.5 is not enough to completely proteidt ! {23} from the
H(Wy) = H(W2) =1 and H(Wy, W) = 2. Random key eavesdropper in this case. The problem here is that tratirsgnit
K, € {0,1} is chosen uniformly at random and independentigorrelated information on multiple channels may be necgssa
of (Wi, Ws). The code is secure sindg§WW;, W; K1) = 0 to achieve the secure capacity in the noiseless case, but the
and I(Wl, Wa; Wa + Kl) = 0. In [6] we prove using infor- same strategy may fail in the noisy case owing to independent
mation inequalities that the noisy netwaK of Figure[3(d) realizations of probabilistic noise on different channels
has multicast secrecy capacity at most75s. ) _
To provide some intuition, notice that our capacity- Theorems[ ¥ an([!S prqwde two different lower bounds
achieving code for\/ transmits the same key over a pair 0 or the case of mgltlple wiretapped channels. Thes_e bounds
noiseless links ¢, and e in A). Direct emulation of this correspond to achievable schemes that ensure all linkseto th

solution in A/ network in Figuré 3(a) fails to maintain Security'eavesdropper are filled to capacity with independent random

Specifically, if the same input is transmitted over channel€ss:
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Fig. 4. An example wiretap network for which lower bound mieldlés not
tight but lower bound model-1l is tight.

Fig. 5. TheA-enhanced network/(A).

fix an adversarial sel C P(&). The A-enhanced network

Lower bound model-IThe first lower bound results fromN(Rc’f”A) on graphg = (V,£) is defined as follows:
removing the public portion of the upper bounding model. The 1) V=V U{vi :i € Vi U{vi:i € V}U{vp: E€ AfU
lower bound is achievable since it is always possible to kimp {vr}. For eachi € V we callv; andd; the " message
avoid the transmission of any rate on chanaghat can be node and random key node of netwoxk R..,, A). For
overheard by the eavesdropper. eachF € A, nodevg is called an eavesdropper node.

Theorem 4:Consider a networl/, an adversarial set C Nodewr is called the overall key node.

P(€), and a single linke € €. RN (R.,0),A) C RN, 4) 2 €= {}hi i€ ViU ihiiieViU{Cere € £} U {he:
for e€ & U{(vr,vp,1): E € A}.
e . e . For eachi € V, h; is a noiseless hyperarc of capacity”)
Re < p?;??f)j(x( y(©) - ;g?g)f(X( )21, (or alternatively a set of bit pipes each of capadity)) from
, o nodev; to all of the nodes infi} U {vg : E € A}, andh; is
Sketch of the proofThe proof of this theorem is similar to ; 5iseless hyperarc also of capadity’) (or alternatively a
the proof of Theorer]3 except that in the noisy network Wﬁair of bit pipes each of capacity)) from nodes; to both
transmit independent random bits in place of public bits] of the nodes in{z’,vT}, whereC() is defined in[[L) as the

The lower bound model-I of Th.eorelﬁ 4 is not tight ingym of the outgoing channel capacities from nade
general. As a result, we do not use it to bound all channels bule,, aache — (i,7,k) € €, channelC. in network is a bit

inst_ead apply it to a selective sequence of _channels ffom pipe of capacityR, . from nodei to nodej, and hyperard.
Notice that the modee (%, 0) for channelCe in Theorenl# g’y noiseless hyperarc of capacty., from nodei to all of
sets the public rat&,, to zero. This effectively removesfrom o 1odes in{j} U {vgs: E € A,e € E}. For everyE € A
all eavesdropping set8 € A, giving a new adversarial Setchannelc(v vs.1) IS NOiseless bit pipe of capacity

A" ={E\{e} : E € A}. Repeated application of Theoréth 4 e
on a carefully chosen sequence of channels enable us to Cp=Y CY-3"R.,
reduce all eavesdropping sets to size at most one. Oncesthis i =% ecE
accomplished, we can use the equivalence result of Theldreq 3, nodeuv; to nodeuvy.

to replace the remaining noisy channels.. ) The A-enhanced network is used for traditional (rather than
~To show that lower bound model-I is not tight, congecyre) communication with a collection of reconstruction
sider the network of Figurél4, where eachin {1,2,3}, (onstraints that depend on botf and A.

max [(Y; X;) = 2 andmax I(Z;; X;) = 1. The adversary  pefinition 9: Let N(R.,,A) be the A-enhanced network
can eavesdrop any two qki, ez, ¢3}. Since for each link in o neqwork A" and adversarial set C P(€). A blocklength-

{e1,e2,e3} the confidential capacity is, and the public rate n_solution S(A'(Re.p, A)) to networkA(R..,, A) is defined
on two of the three links must be set to zero, the capacity 9 5 set of encodihg functions for each naedia v

lower bound model-1i8. In the following we introduce lower
bound model-I1, using which we get a tighter lower boutid, (X)™ : (VM) 5 WE)p=t s (T~ — (x@)n
for this network. _ and decoding functions
Lower bound model-liin this model we bound the secrecy
capacity region of network/ with adversarial sett C P(E) (W ®)" : (Y@))n=L s (W@)yn=t s (Thr=1 5 ()
by deriving a relationship with the traditional capacity of ..(,)\n . (y)(v)yn—1 (v)yn—1 (v)yn—1 (v)
a noiseless communication network called tHeenhanced (T T x VI (TR — (T,
network N/ (A) defined below and illustrated by Figure 5.  such that for eacti € V and B € B®, messagdy (vi—5)
Definition 8: Consider network\" on graphg = (V,€). from nodewv; is delivered to all of the nodes I8 € B,
Define rate vectorR., = ((Rec,Rep) @ e € &), and whereB( is the receivers set for nodes V in network \/,



and random keyg®) € 7 = {1,..., 27"} are delivered T 4
from nodev; to nodes{vg : E € A}. _

Definition 10: The rate region R(N(R.p,A)) C 4
R™" D of the A-enhanced network\'(R, . A) of 4
network A/ is the closure of all rate vector® such that for 6
any A > 0, a solution(\, R)-S(N(R.,,, A)) exists.

Theorem 5:Consider networldV" on graphG = (V, £) and 1 R
an adversarial sel C P(€). Let N (R, ,,A) be the A- 5
enhanced network of network. If for everye € £ l

R, < m(aicf(X(e); Z(©)
rlx

Vi1
Rep < max I(X(©:Y(®) —max [(X(©); (), Vs (L.3)

p(x) p(x)
thenR(N(Re,p, 4)) C R(N, A). W
Sketch of the proof:We start with a code for network
N(R.,,A) and we will construct a secure code for networg
N. We make use of an auxiliary networkwhich is the same
as the A-enhanced network except that the noiseless bi pipe
in {Cc : e € E}U{h. : e € £} are changed back to the originaly, ,,, message$7:, Tz, Ts, T} and {Wy, Wa, Wy, Wy} are
noisy channels. We show that we can emulate the given caglgectly received froms and Vs, respectively. By usingV,
on networkl such that the auxiliary receivers are still ableind two linearly independent combinations oy, Ts, Ts},

to Qecodg thg required messages. Sin_ce th(_e total capacity]@aev{w} can decodgT5, Ts}. Vi1.3), Via,3 decode simi-

all incoming links to the auxiliary receivers is almost efuaarly.

to the entropy of( P, C™, W, (Z"\{¢h)"), there is no spare

capacity at links((Z"\{¢})» Z") to carry any information ACKNOWLEDGMENTS

about messag®” and this corresponds to a secure code for This work has been supported in part by NSF grants CNS
network V. 0 0905615, CCF 0830666, and CCF 1017632.

Unlike the rest of the results, where changing a single wire-
tap channel; to its noiseless counterpaft(R., R,) results . _
in an equivalent or bounding network, Theor€in 5 requiréd A Ve, ghspwl'geég"_ple’%@angg' ?g';ssyswms Technical Jourpal
all wiretap channels in _the noisy netwoj_k’ to be changed_[z] N. Cai and R. W. Yeung, “Secure network coding,” Rroc. 2002
to noiseless channels in order to obtain a lower bounding IEEE Int. Symp. Information Theory (ISIT 2002pusanne, Switzerland,

it e i ; S Jun./Jdul. 2002, p. 323.
network. Intuitively, this is because our constructionuiegs 3] A Mills, B. Smith. T Clancy, E. Soljanin, and S. Vishwath, “On secure
_the eavesdropper E_A t(_) decode a"_ sources of randomn(_as communication over wireless erasure networks,Pioc. of IEEE ISIT
in the network, which is not possible generally for noisy July 2008, pp. 161-165.

; ; R. Koetter, M. Effros, and M. Médard, “A Theory of Networ
ﬂe_’[V\_IOI’kS Where. the entropy of the noise C"?‘” be potentlaw Equivalence—Part I: Point-to-Point Channelsiformation Theory, IEEE
'nﬁn'te- _lf we wish to replace only some noisy channels by transactions onvol. 57, no. 2, pp. 972 -995, February 2011
their noiseless counterparts then Theofdm 4 should be uged——, “A theory of network equivalence, Part II: Multiteiimal Channels.”

When all channels are to be replaced Thedrém 5 can be udélg|- Dikaliotis, H. Yao, T. Ho, M. Effros, and J. Kliewer, “&twork
equivalence in the presence of an eavesdropper,” 2012.ingnl

potentially leading to a tighter bound. Available:| http:/iwww.its.caltech.edu{$im$tho/eav-equi.pdf
For example, we consider the network in Figlite 4 whef@ Leung-Yan-Cheong and M. S. Hellman, “The wire-tap clelininfor-
model-1 gives a lower bound o8. Here, we show that ;nge;tg)n Theory, IEEE Transactions owol. 24, no. 4, pp. 451-456, Jul.
lower bound model-ll gives a tighter lower boundl, The [8] V. Liéng, H. V. Poor, and S. Shamai, “Secure communicativer fading
A-enhanced network is shown in FiguE 6. For simplic- channels,Information Theory, IEEE Transactions ovol. 54, no. 4, pp.
ity, we combine the three direct links (with capacity 1) 24702492, June 2008.
from S to R into a single link with capacity3. The fol-
lowing code achieves ratéRy , Rr) = (4,6) in the A-
enhanced network. LetW = {W;,...., Wy} and T =
{Ty,...,Ts}. The outgoing link ofS with capacity3 di-
rectly delivers{WW;, W5, W5} to R. Each of other outgoing
links of S transmits a linearly independent combination of
{W4,Ts,Ts}. Node Vs transmits{Ty, T», T3, T;} to each of
{Vi123, Vinsy, Vi3 - Node {Vs} transmits{ Wy, ..., Wy}
to each of{ Viy oy, V1,31, Vi3 }- R can decodéV, from the
three linearly independent combinations {dV,, T5, Ts }. At

Y(2,3)

ig. 6. The A-enhanced network for the network in Figllre 4e Flumber
n top of each link represents the link capacity.
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