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Abstract—We consider networks of noisy degraded wiretap
channels in the presence of an eavesdropper. For the case where
the eavesdropper can wiretap at most one channel at a time,
we show that the secrecy capacity region, for a broad class of
channels and any given network topology and communication
demands, is equivalent to that of a corresponding network where
each noisy wiretap channel is replaced by a noiseless wiretap
channel. Thus in this case there is a separation between wiretap
channel coding on each channel and secure network coding on
the resulting noiseless network. We show with an example that
such separation does not hold when the eavesdropper can access
multiple channels at the same time, for which case we provide
upper and lower bounding noiseless networks.

I. I NTRODUCTION

Information theoretically secure (secret) communicationin
the presence of an eavesdropper has been studied under various
models. One body of literature studies the wiretap channel,
introduced by Wyner [1], where the intended receiver and
the eavesdropper observe outputs of a physical layer channel.
Another body of literature investigates the secure capacity of
networks of noise-free links. Under this model, introducedby
Cai and Yeung in [2], an eavesdropper perfectly observes all
information traversing a restricted but unknown subset of links.
The first paper on the secure capacity of a network of noisy
channels is [3], which finds upper and lower bounds on the
unicast capacity of a network of independent broadcast erasure
channels when the output observed by the eavesdropper equals
that of the intended receiver on all wiretapped channels.

Our work considers the problem of secure communication
over a network of independent wiretap channels which are
physically degraded and “simultaneously maximizable” (see
Definition 1 in Section II), and broadens consideration to
general capacity regions specifying vectors of simultaneously
achievable rates. We require asymptotically negligible decod-
ing error probability and information leakage to the eaves-
dropper, as defined formally in Section II. In the case where
the eavesdropper has access to only one link, the identity of
which is unknown to the code designer, we show that the
secrecy capacity region is identical to that of a corresponding
noiseless network, for any network topology and connection
types. Thus in this case capacity can be achieved by separate
design of wiretap channel codes converting each channel to
a pair of public and confidential noiseless links, and a secure
network code on the resulting noiseless network. We show
with an example that such separation does not hold when
the eavesdropper can access multiple channels at the same

time, for which case we provide upper and lower bounding
noiseless networks. Our results bring together and generalize
the wiretap channel and secure network coding literature,
allowing application of existing results on secure network
coding capacity to characterize or bound the secure capacity
of networks of such wiretap channels. Our work builds on and
generalizes the techniques developed by Koetter, Effros, and
Medard in [4], [5], which show similar capacity bounds in the
absence of secrecy constraints. We provide below outlines of
all proofs, details of which are given in the full version of this
paper [6].

II. M ODEL AND PRELIMINARIES

Consider a networkG = (V , E), whereV is the set of nodes
andE ⊆ V×V×N is a set of directed edges between pairs of
nodes in the network. Edge(i, j, k) represents thekth wiretap
channel through which nodei communicates to nodej and
through which an eavesdropper may or may not be listening.
The total number of nodes in the network ism. The channel
inputs and outputs for nodei at time t are given by

X
(i)
t =

(

X
(e)
t : e ∈ Eout(i)

)

and Y
(i)
t =

(

Y
(e)
t : Ein(i)

)

whereX(e)
t andY (e)

t denote the input to and the output from
edgee respectively, andX (e) andY(e) denote their alphabets,
which may be discrete or continuous. We define

Ein(i) = {(u, v, w) ∈ E : v = i}

Eout(i) = {(u, v, w) ∈ E : u = i}

X (i) =
∏

e∈Eout(i)

X (e) and Y(i) =
∏

e∈Ein(i)

Y(e).

Let P(E) denote the power set of the set of all edges. In a
secure communication problem, an adversarial setA ⊆ P(E)
is specified. Each setE ∈ A describes a subset of channels
over which an eavesdropper may be listening. The code is
designed to be secure against eavesdropping on the set of
channelsE for everyE ∈ A. When the eavesdropper listens to
edgee = (i, j, k), the eavesdropper receives, at each timet, a
degraded versionZ(e)

t of the channel outputY (e)
t observed

by the intended recipient, which is the output nodej of
edge e = (i, j, k). If the eavesdropper has eavesdropping
set E ∈ A, then at timet it receives the set of random
variables

(

Z
(e)
t : e ∈ E

)

, which we compactly write asZ(E)
t .
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The vector
(

Z
(E)
1 , . . . , Z

(E)
n

)

of observations from all edges

e ∈ E over time stepst ∈ {1, . . . , n} is denoted by
(

Z(E)
)n

.

Similarly we define
(

X(E)
)n

=
(

X
(E)
1 , . . . , X

(E)
n

)

and
(

Y (E)
)n

=
(

Y
(E)
1 , . . . , Y

(E)
n

)

whereX(E)
t =

(

X
(e)
t : e ∈ E

)

andY (E)
t =

(

Y
(e)
t : e ∈ E

)

.

For eache ∈ E , channele is a memoryless, time-invariant,
physically degraded wiretap channel described by a condi-
tional distribution

p(y(e), z(e)|x(e)) = p(y(e)|x(e)) · p(z(e)|y(e)).

All wiretap channels are independent by assumption, giving

p
(

y(E), z(E)|x(E)
)

=
∏

e∈E

p
(

y(e), z(e)|x(e))

=
∏

e∈E

p
(

y(e)|x(e))p
(

z(e)|y(e)).

We further restrict our attention to channels that are “simulta-
neously maximizable,” as defined below.

Definition 1: Wiretap channele is called simultaneously
maximizable if

arg

[

max
p(x)

I(X(e);Y (e))

]

= arg

[

max
p(x)

I(X(e);Z(e))

]

and

max
p(x(e))

[

I(X(e);Y (e))− I(X(e);Z(e))
]

= max
p(x(e))

I(X(e);Y (e))− max
p(x(e))

I(X(e);Z(e)).

The about maximization is subject to any constraints on the
channel input (e.g., an input power constraint for a Gaus-
sian channel) associated with the communication network
of interest. Examples of simultaneously maximizable wiretap
channels include weakly symmetric channels and Gaussian
channels [7], [8]. Intuitively, restriction to simultaneously
maximizable channels simplifies our analysis since the same
input distribution maximizes both the total and secure capacity.

A code of blocklengthn operates overn time steps to
reliably communicate message

W (i→B) ∈ W(i→B) def
={1, . . . , 2nR

(i→B)

}

from each source nodei ∈ V to each nonempty setB ⊆ V\{i}
of sink nodes in a manner that guarantees information theoretic
security in the presence of any eavesdropperE ∈ A. This
constitutes a unicast connection if|B| = 1 and a multicast
connection if |B| > 1. ConstantR(i→B) is called the trans-
mission rate from sourcei to sink setB. The vector of all
ratesR(i→B) is denoted byR =

(

R(i→B) : i ∈ V ,B ∈ B(i)
)

,
where setB(i) = {B : B ⊆ V\{i},B 6= ∅} is the set of non-
empty receiver sets to which nodei may wish to transmit.
Similarly, the vector of all messages is denoted byW =
(

W (i→B) : i ∈ V ,B ∈ B(i)
)

.
Each nodei ∈ V also has access to a random variable

T (i) ∈ T (i) def
={1, . . . , 2nC

(i)

} for use in randomized coding

Fig. 1. A noiseless degraded broadcast channel with confidential rate Rc

and public rateRp.

for secrecy, where

C(i) =
∑

e∈Eout(i)

max
p(x(e))

I
(

X(e);Y (e)
)

(1)

is the sum of the outgoing channel capacities from node
i. Each T (i) is uniformly distributed on its alphabet and
independent of all messages and channel noise.

Definition 2: Let a network

N
def
=(

∏

e∈E

X (e),
∏

e∈E

(

p(y(e)|x(e))p
(

z(e)|y(e)
))

,

∏

e∈E

(

Y(e) ×Z(e)
)

)

be given corresponding to a graphG = (V , E). A blocklength
n solutionS(N ) is defined as a set of encoding functions

X
(i)
t :

(

Y(i)
)t−1

×
∏

B∈B(i)

W(i→B) × T (i) −→ X (i)

mapping
(

Y
(i)
1 , . . . , Y

(i)
t−1,

(

W (i→B) : B ∈ B(i)
)

, T (i)
)

to

X
(i)
t for eachi ∈ V andt ∈ {1, . . . , n}, and a set of decoding

functions

W̆ (j→K,i) :
(

Y(i)
)n

×
∏

B∈B(i)

W(i→B) × T (i) −→ W(j→K)

mapping
(

Y
(i)
1 , . . . , Y

(i)
n ,

(

W (i→B) : B ∈ B(i)
)

, T (i)
)

to

W̆ (j→K,i) for each j ∈ V , K ∈ B(j), and i ∈ K. The
solution S(N ) is called a (λ, ε, A,R)–solution, denoted

(λ, ε, A,R)–S(N ), if Pr
(

W̆ (j→K,i) 6= W (j→K)
)

< λ for

every j ∈ V , K ∈ B(j) and i ∈ K, andI
((

ZE
)n

;W
)

< nε
for everyE ∈ A.

Definition 3: The A–secure rate regionR(N , A) ⊆

R
m(2m−1−1)
+ of a networkN is the closure of all rate vectors

R such that for anyλ > 0 andε > 0, a solution(λ, ε, A,R)–
S(N ) exists.

Given a networkN and a channel̄e ∈ E , the model
Nē(Rc, Rp) replacesē with noiseless bit pipes as defined
below and illustrated in Figure 1.



Definition 4: Given a network

N
def
=(

∏

e∈E

X (e),
∏

e∈E

(

p
(

y(e)|x(e)
)

p
(

z(e)|y(e)
))

,

∏

e∈E

(

Y(e) ×Z(e)
)

)

and somēe ∈ E , the modelNē(Rc, Rp) replaces the degraded
wiretap channel

Cē =
(

X (ē), p(y(ē)|x(ē))p(z(ē)|y(ē)),Y(ē) ×Z(ē)
)

with the noiseless degraded wiretap channel

C(Rc, Rp) = ({0, 1}Rc+Rp , δ
(

y(ē) − (x(ē),c, x(ē),p)
)

δ
(

z(ē) − y(ē),p
)

, {0, 1}Rc+Rp × {0, 1}Rp)

that delivers the rate-Rc confidential portionx(ē),c of channel
input x(ē) = (x(ē),c, x(ē),p) to the intended receiver and the
rate-Rp public portionx(ē),p of that input to both the intended
receiver and eavesdropper. The resulting network is given by

Nē(Rc, Rp)
def
=({0, 1}Rc+Rp ×

∏

e∈E\{ē}

X (e),

δ(y(ē) − (x(ē),c, x(ē),p))δ(z(ē) − y(ē),p)

·
∏

e∈E\{ē}

(p(y(e)|x(e)).p(z(e)|y(e))),

{0, 1}Rc+Rp × {0, 1}Rp ×
∏

e∈E\{ē}

(Y(e) ×Z(e))).

As in [4], [5], we allow non-integer values ofRc andRp to
denote noiseless bit pipes that require multiple channel uses
to deliver some integer number of bits.

Many of the subsequent proofs use the notion of a “stacked
network” introduced in [4], [5], extended here by adding
an eavesdropper. Informally, theN -fold stacked networkN
containsN copies of networkN . TheN copies of each node
i ∈ V use the outgoing messages and channel outputs from
all N layers of the network to form the channel inputs in
each layer of the stack. Likewise, each node uses the channel
outputs and messages from all layers in the stack in buildingits
message reconstructions. An eavesdropperE ∈ A overhears
all copies of channele for eache ∈ E.

As defined formally below following [4], [5], a solution
for N -fold stacked networkN must securely and reliably
transmit, for eachi ∈ V and B ∈ B(i), N independent
messagesW (i→B)(1), . . . ,W (i→B)(N) from nodei to all the
receivers in setB. We underline the variable names from
N to denote variables for the stacked networkN . Therefore

W (i→B) ∈ W(i→B) def
=
(

W(i→B)
)N

, T (i) ∈ T (i) def
=
(

T (i)
)N

,

X
(i)
t ∈ X (i) def

=
(

X (i)
)N

, Y (i)
t ∈ Y(i) def

=
(

Y(i)
)N

, andZ(e)
t ∈

Z(e) def
=
(

Z(e)
)N

denoteN -dimensional vectors of messages,
channel inputs, channel outputs, and eavesdropper outputs,
respectively, in networkN . The variables in theℓth layer of the
stack are denoted by an argumentℓ. Finally, we define the rate

R(i→B) for a stacked network to be(log2 |W
(i→B)|)/(nN)

since any solution of blocklengthn for N -fold stacked net-
work N can be operated as a rate-R solution of blocklength
nN for network N under this definition [4, Theorem1].
A similar argument, given in Theorem 1 below, justifies
the security constraint imposed below. Definitions 5-7 are
analogous to Definitions 4-6 in [4].

Definition 5: Let a network

N
def
=(

∏

e∈E

X (e),
∏

e∈E

(

pe

(

y(e)|x(e)
)

pe

(

z(e)|y(e)
))

,

∏

e∈E

(

Y(e) ×Z(e)
)

)

be given corresponding to a graphG = (V , E), and let an
eavesdropper setA ⊆ P (E) be defined on networkN . Let
N be theN -fold stacked network forN . A blocklength-n
solutionS(N ) to this network is defined as a set of encoding
functions

X
(i)
t :

(

Y(i)
)t−1

×
∏

B∈B(i)

W(i→B) × T (i) −→ X (i)

mapping
(

Y
(i)
1 , . . . , Y

(i)
t−1,

(

W (i→B) : B ∈ B(i)
)

, T (i)
)

to

X
(i)
t for each i ∈ V and t ∈ {1, . . . , n}, and decoding

functions

W̆
(j→K,i)

:
(

Y(i)
)n

×
∏

B∈B(i)

W(i→B) × T (i) −→ W(j→K)

mapping
(

Y
(i)
1 , . . . , Y (i)

n ,
(

W (i→B) : B ∈ B(i)
)

, T (i)
)

to

W̆
(j→K,i)

for each j ∈ V , K ∈ B(j), and i ∈ K. The
solution S(N ) is called a(λ, ε, A,R)–solution for stacked

networkN , denoted(λ, ε, A,R)–S(N ), if
(

log2

∣

∣

∣
W (i→B)

∣

∣

∣

)

/

(nN) = R(i→B), I
((

Z(E)
)n

;W
)

< nNε for everyE ∈ A,

and Pr
(

W̆
(j→K,i)

6= W (j→K)
)

< λ for the specified
encoding and decoding functions.

Definition 6: The A-secure rate regionR(N , A) ⊆

R
m(2m−1−1)
+ of stacked networkN is the closure of all rate

vectorsR such that for anyλ > 0 and anyε > 0, a solution
(λ, ε, A,R)–S(N ) exists for sufficiently largeN .

Definition 7: Let a network

N
def
=(

∏

e∈E

X (e),
∏

e∈E

(

pe

(

y(e)|x(e)
)

pe

(

z(e)|y(e)
))

,

∏

e∈E

Y(e) ×
∏

e∈E

Z(e))

be given corresponding to a graphG = (V , E). Fix positive
integersn andN as the blocklength and stack size, respec-
tively. For eachi ∈ V andB ∈ B(i), let R(i→B) and R̃(i→B)

be constants withR̃(i→B) > R(i→B). Define W (i→B) =
{1, . . . , 2nR

(i→B)

} and W̃ (i→B) = {1, . . . , 2nR̃
(i→B)

}. Let N
be theN -fold stacked network forN . A blocklength-n stacked



solutionS(N ) to this network is defined as a set of mappings

W̃
(i → B)

:W(i→B) → W̃(i → B)

X
(i)
t :

(

Y(i)
)t−1

×
∏

B∈B(i)

W̃(i→B) × T (i) −→ X (i)

˘̃W (j→K,i) :
(

Y(i)
)n

×
∏

B∈B(i)

W̃(i→B) × T (i) −→ W̃(j→K)

W̆ (j → K, i) :W̃(j → K) → W(j→K),

where the other channel encoderW̃ (i → B)(· ) encodes mes-
sageW (i→B) to W̃

(i → B)(
W (i→B)

)

, encoderX(i)
t (· ) in-

dependently encodes each dimensionℓ ∈ {1, . . . , N}

of outgoing messages̃W (i → B), received channel outputs
Y

(i)
1 , . . . , Y

(i)
t−1, and random keysT (i) to channel input

X
(i)
t (Y

(i)
1 (ℓ), . . . , Y

(i)
t−1(ℓ),

(

W̃
(i → B)

(ℓ) : B ∈ B(i)
)

, T (i)(ℓ)),

node decoder˘̃W (j→K,i)(· ) independently decodes each di-
mension of the reconstruction
˘̃W (j→K,i)(Y

(i)
1 (ℓ), . . . , Y (i)

n (ℓ),
(

W̃
(i → B)

(ℓ) : B ∈ B(i)
)

, T (i)(ℓ))

of W̃
(j → K) at nodei, and channel decoder̆W (j → K, i)(· )

reconstructs message vectorW̆ (j → K, i)( ˘̃W (j → K, i)).

The following theorem extends [4, Theorem2] from tradi-
tional to secure capacity.

Theorem 1:The rate regionsR(N , A) and R(N , A) are
identical. Further, for anyR ∈ int

(

R(N , A)
)

, there exists a
sequence of(2−Nδ, ε, A,R)–S(N ) stacked solutions for the
stacked networkN for someδ > 0.

Sketch of the proof:The argument to showR(N , A) ⊆
R(N , A) follows [4, Theorem 1]: given any R ∈
int(R(N , A)), a blocklength-n (λ, ε, A,R) − S(N ) solu-
tion for network N is unraveled across time to achieve a
blocklength-nN solution for networkN . Since the given code
satisfies the causality constraints and precisely implements the
operations ofS(N ), the solutionS(N ) achieves the same
rate, error probability, and secrecy onN as the solutionS(N )
achieves onN , which gives the forward result.

The converse follows [4, Theorem2]. Again, fix ε > 0,
and for anyR ∈ int

(

R(N , A)
)

chooseR̃ ∈ int
(

R(N , A)
)

with R̃(i→B) > R(i→B) for all (i,B) with R(i→B) > 0.
Defineρ = mini∈V minB∈B(i)

(

R̃(i→B)−R(i→B)
)

and choose
constantλ > 0 satisfying

max
i∈V

max
B∈B(i)

R̃(i→B)λ+ h(λ) < ρ.

This is possible by choosingλ small enough so thatλ < ρ/
(3maxi∈V maxB∈B(i) R̃(i→B)) and h(λ) < ρ/(3ρ). Since
R̃(i→B) > R(i→B), there exists a blocklengthn such that
a (λ, ε

3 , A, R̃)–S(N ) single-layer solution exists. A stacked
solution is built using this same(λ, ε

3 , A,R)–S(N ) single-
layer solution in each layer and a randomly chosen channel
code across the layers of the stack. �

III. M AIN RESULTS

In Theorem 2, we show that for any networkN of wiretap
channels and any edgēe ∈ E , replacing channelCē with a
noiseless degraded wiretap channel of appropriate capacities
Rc andRp, as shown in Figure 1, yields a networkNē(Rc, Rp)
(Definition 4) whose secure capacity region contains the secure
capacity region ofN . Theorem 2 extends [5, Theorem5] from
traditional to secure capacity.

Theorem 2:Consider a networkN and an adversarial set
A ⊆ P(E). R(N , A) ⊆ R(Nē(Rc, Rp), A) for

Rc > max
p(x(ē))

I(X(ē);Y (ē))− max
p(x(ē))

I(X(ē);Z(ē))

Rp > max
p(x(ē))

I(X(ē);Z(ē)).

Sketch of the proof:By Theorem 1 it suffices to prove
R(N , A) ⊆ R(N ē(Rc, Rp), A). We employ a channel code
across layers of the stack to emulate a secure code for network
N on networkN ē(Rc, Rp). Typical inputsXt to ē are mapped
to jointly typical outputs from a random codebook. It can be
shown that the induced probability distributionp′ is close to
the probability distributionp of the original secure code for
N , and that mutual information values under both probability
distributions are similar. The bits transmitted over the noiseless
channel correspond to the codeword index, and thus reveal
a similar amount of information to the wiretapper as its
observations of the original noisy channel. �

Theorem 3 shows cases where the upper bound shown in
Theorem 2 is tight.

Theorem 3:Consider a networkN , an adversarial setA ⊆
P(E), and a single link̄e ∈ E . Let

Rc = max
p(x(ē))

I(X(ē);Y (ē))− max
p(x(ē))

I(X(ē);Z(ē))

Rp = max
p(x(ē))

I(X(ē);Z(ē)).

If ē is invulnerable to wiretapping (ē /∈ E for all E ∈ A)
or is not simultaneously wiretapped with other links (ē ∈ E
implies |E| = 1), thenR(N , A) = R(Nē(Rc, Rp), A).
Sketch of the proof:We outline the proof for the case whereē
is wiretapped but not simultaneously with other links; the case
where it is invulnerable to wiretapping is a simpler version.

We first show thatR(Nē(Rc − ǫ, Rp − ǫ), A) ⊆ R(N , A)
for any ǫ > 0, by starting with a secure code of rateR for
networkNē(Rc, Rp) and constructing a corresponding secure
code for networkN . Denote byCt andPt the transmissions
across the confidential and public links, respectively, of edge
ē ∈ E at time t. Let Cn = (C1, . . . , Cn), Pn = (P1, . . . , Pn)
and denote byCi

j and P i
j for any j < i the vectors

Ci
j = (Cj , Cj+1, . . . , Ci) and P i

j = (Pj , Pj+1, . . . , Pi). We
define networksI and II shown in Figure 2 that are identical
to networksNē(Rc, Rp) andN respectively with the addition
of an auxiliary receiver that observes the wiretap output of
ē, messagesW and a noiseless side channel of capacity
Cē (defined below) from a “super-source” that has access
to (W,Cn, Pn). In network I (II ) the auxiliary receiver is



Fig. 2. NetworkNē(Rc, Rp) along with networksI , II andN that assist proving Theorem 3.

required to decode the confidential bitsCn.

We construct a code for a stacked version of networkI with
N1 layers in which the auxiliary receiver is able to decode the
confidential bitsCn. The constructed coded for the stacked
version of networkI can be seen as a code of blocklengthn1 =
nN1 for the non-stacked version of networkI . To move the
proof from networkI to networkII we use a stacked version
of network II with N2 layers. The code used at each layer of
the stacked version of networkII is the code of blocklength
n1 constructed above. We need to use a stacked version of
network II to use a channel code at edgeē of network II to
emulate the noiseless edgeē of network I .

In the following we show that the communication code of
networkII gives a secure code of networkN . These auxiliary
receivers assist in the proof of the secrecy of the code for the
eavesdropping set{e} ∈ A in the following manner: capacity
Cē is defined such that the sum of capacities of(W,Zn, Ln

ē )
(whereLn

ē are the bits in the noiseless bit pipe of capacityCē)
that are all the incoming links to the auxiliary receivers is
almost equal to the entropy of(Pn, Cn,W ) that correspond
to the decoded message at the auxiliary receivers and therefore
all links are filled up to capacity. Therefore there is no spare
capacity at linksZn to carry any information about message
W and therefore the code is secure.

On the other hand, the upper bound result in Theorem 2
implies thatR(N , A) ⊆ R(Nē(Rc + ǫ, Rp + ǫ), A) for any
ǫ > 0. We then prove a continuity result on the rate region
R(Nē(Rc, Rp), A) with respect to(Rc, Rp) whenRc > 0 and

Rp > 0. The lower bound result, the upper bound result, and
the continuity result together prove Theorem 3. �

Example 1 demonstrates applications of Theorem 2 and 3
and shows that while Theorem 2 is tight in many cases, it
is not always tight when the replaced link appears in one or
more eavesdropping sets of size greater than1.

Example 1: In the network of Figure 3(a), channelse1 =
(1, 2, 1), e2 = (1, 4, 1), e3 = (1, 3, 1), e4 = (4, 2, 1), ande5 =
(4, 3, 1) are independent degraded binary wiretap channels.
Channelse1 ande3 have erasure probability0 at each intended
receiver and erasure probability12 at each wiretap output, as
shown in Figure 3(e). Channelse2, e4, and e5 have erasure
probability 1

2 , with identical outputs for their intended and
eavesdropped outputs, as shown in Figure 3(f). We consider
a single multicast from sourceS at node1 to terminalsT1
andT2 at nodes2 and3. We therefore setR(i→B) = 0 for all
(i,B) 6= (1, {2, 3}) and then consider the pointR ∈ R(N , A)
that maximizesR(1→{2,3}). The eavesdropper can listen in on
either bothe1 and e3 or just e2, i.e., A =

{

{e1, e3}, {e2}
}

.
The networkN̆ shown in Figure 3(b) has secrecy capacity
under adversarial setA =

{

{e1, e3}, {e2}
}

identical to that
of the network in Figure 3(a)

(

R(N , A) = R(N̆ , A)
)

and is
obtained by three applications of Theorem 2. Here channelCe4
andCe5 have been replaced by channelC(12 , 0) since channels
e4 and e5 are invulnerable to eavesdropping (e4, e5 /∈ E for
all E ∈ A). Likewise Ce2 has been replaced byC(0, 12 ) since
e2 cannot be simultaneously eavesdropped with any other
channel (e2 ∈ E implies |E| = 1) and has0 confidential



(a) (b)

(c) (d)

(e) (f)

Fig. 3. (a) The network for Example 1 and (b) its equivalent model by replacing channelse2, e4, ande5 by their equivalent noiseless links by Theorem 3
(rate-0 links are omitted from the model). (c) The noiseless model of(a) by applying Theorem 2 and (d) the secrecy capacity achieving code for the network
in (c). (e), (f) The channel distributions for independent degraded wiretap channelse1, e3 ande2, e4, e5 respectively.

bits. The noiseless network̂N is an upper bounding model
for the network in Figure 3(b) (and therefore also an up-
per bounding model for the network in Figure 3(a), giving
R(N , A) = R(N̆ , A) ⊆ R(N̂ , A)), and is obtained by two
applications of Theorem 2, replacing channelse1 and e3 by
their upper bounding models.

A rate-1 blocklength-2 code for networkN̂ is shown in
Figure 3(d). The messageW (1→{2,3}) ∈ {0, 1}2 is broken into
a pair of messagesW (1→{2,3}) =

(

W1,W2

)

∈ {0, 1}2 with
H
(

W1

)

= H
(

W2

)

= 1 andH
(

W1,W2

)

= 2. Random key
K1 ∈ {0, 1} is chosen uniformly at random and independently
of

(

W1,W2

)

. The code is secure sinceI
(

W1,W2;K1

)

= 0
and I

(

W1,W2;W2 +K1

)

= 0. In [6] we prove using infor-
mation inequalities that the noisy networkN of Figure 3(a)
has multicast secrecy capacity at most0.875.

To provide some intuition, notice that our capacity-
achieving code forN̂ transmits the same key over a pair of
noiseless links (e1 and e3 in N̂ ). Direct emulation of this
solution inN̆ network in Figure 3(a) fails to maintain security.
Specifically, if the same input is transmitted over channels

e1 and e3 (X(e1)
t = X

(e3)
t for all t ∈ {1, . . . , n}), then

an eavesdropper accessingE = {e1, e3} sees independent
channel outputsZ(e1)

t and Z
(e3)
t resulting from the same

channel inputX(e1)
t = X

(e3)
t at each timet. Since each

transmitted bit is erased with probability12 and the erasure
events are independent by assumption, an eavesdropper that
wiretaps bothe1 and e3 is expected to receive roughly75%
of the transmitted information bits. Consequently, a key ofrate
0.5 is not enough to completely protectW (1→{2,3}) from the
eavesdropper in this case. The problem here is that transmitting
correlated information on multiple channels may be necessary
to achieve the secure capacity in the noiseless case, but the
same strategy may fail in the noisy case owing to independent
realizations of probabilistic noise on different channels.

Theorems 4 and 5 provide two different lower bounds
for the case of multiple wiretapped channels. These bounds
correspond to achievable schemes that ensure all links to the
eavesdropper are filled to capacity with independent random-
ness.
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Fig. 4. An example wiretap network for which lower bound model-II is not
tight but lower bound model-II is tight.

Lower bound model-I.The first lower bound results from
removing the public portion of the upper bounding model. The
lower bound is achievable since it is always possible to simply
avoid the transmission of any rate on channelē that can be
overheard by the eavesdropper.

Theorem 4:Consider a networkN , an adversarial setA ⊆
P(E), and a single link̄e ∈ E . R(Nē(Rc, 0), A) ⊆ R(N , A)
for

Rc < max
p(x(ē))

I(X(ē);Y (ē))− max
p(x(ē))

I(X(ē);Z(ē)).

Sketch of the proof:The proof of this theorem is similar to
the proof of Theorem 3 except that in the noisy network we
transmit independent random bits in place of public bits.�

The lower bound model-I of Theorem 4 is not tight in
general. As a result, we do not use it to bound all channels but
instead apply it to a selective sequence of channels fromE .
Notice that the modelCē(Rc, 0) for channelCē in Theorem 4
sets the public rateRp to zero. This effectively removes̄e from
all eavesdropping setsE ∈ A, giving a new adversarial set
A′ =

{

E\{ē} : E ∈ A
}

. Repeated application of Theorem 4
on a carefully chosen sequence of channels enable us to
reduce all eavesdropping sets to size at most one. Once this is
accomplished, we can use the equivalence result of Theorem 3
to replace the remaining noisy channels.

To show that lower bound model-I is not tight, con-
sider the network of Figure 4, where eachi in {1, 2, 3},
max I(Yi;Xi) = 2 and max I(Zi;Xi) = 1. The adversary
can eavesdrop any two of{e1, e2, e3}. Since for each link in
{e1, e2, e3} the confidential capacity is1, and the public rate
on two of the three links must be set to zero, the capacity of
lower bound model-I is3. In the following we introduce lower
bound model-II, using which we get a tighter lower bound,4,
for this network.

Lower bound model-II.In this model we bound the secrecy
capacity region of networkN with adversarial setA ⊆ P(E)
by deriving a relationship with the traditional capacity of
a noiseless communication network called theA-enhanced
networkN (A) defined below and illustrated by Figure 5.

Definition 8: Consider networkN on graphG = (V , E).
Define rate vectorRc,p =

(

(Ře,c, Re,p) : e ∈ E
)

, and

i

Ti

vi

Wi

Re,p

CE

vT

vE

Re,c

v̄i

C(i)

C(i)

Fig. 5. TheA-enhanced networkN (A).

fix an adversarial setA ⊆ P(E). The A-enhanced network
N (Rc,p, A) on graphǦ = (V̌ , Ě) is defined as follows:

1) V̌ = V ∪
{

vi : i ∈ V
}

∪
{

v̄i : i ∈ V
}

∪
{

vE : E ∈ A
}

∪
{vT }. For eachi ∈ V we call vi and v̄i the ith message
node and random key node of networkN (Rc,p, A). For
eachE ∈ A, nodevE is called an eavesdropper node.
NodevT is called the overall key node.

2) Ě =
{

hi : i ∈ V
}

∪
{

h̄i : i ∈ V
}

∪
{

Če : e ∈ E
}

∪
{

he :
e ∈ E

}

∪
{

(vT , vE , 1) : E ∈ A
}

.

For eachi ∈ V , hi is a noiseless hyperarc of capacityC(i)

(or alternatively a set of bit pipes each of capacityC(i)) from
nodevi to all of the nodes in

{

i
}

∪
{

vE : E ∈ A
}

, andh̄i is
a noiseless hyperarc also of capacityC(i) (or alternatively a
pair of bit pipes each of capacityC(i)) from nodev̄i to both
of the nodes in

{

i, vT
}

, whereC(i) is defined in (1) as the
sum of the outgoing channel capacities from nodei.

For eache = (i, j, k) ∈ E , channelČe in network is a bit
pipe of capacityRe,c from nodei to nodej, and hyperarche

is a noiseless hyperarc of capacityRe,p from nodei to all of
the nodes in

{

j
}

∪
{

vE : E ∈ A, e ∈ E
}

. For everyE ∈ A
channelC(vT ,vE ,1) is noiseless bit pipe of capacity

CE =
∑

i∈V

C(i) −
∑

e∈E

Re,p

from nodevT to nodevE .
TheA-enhanced network is used for traditional (rather than

secure) communication with a collection of reconstruction
constraints that depend on bothN andA.

Definition 9: Let N (Rc,p, A) be theA-enhanced network
for networkN and adversarial setA ⊆ P(E). A blocklength-
n solutionS(N (Rc,p, A)) to networkN (Rc,p, A) is defined
as a set of encoding functions for each nodev in V̌

(X(v))n : (Y(v))n−1
1 × (W(v))n−1

1 × (T (v))n−1
1 −→ (X (v))n

and decoding functions

( ˆW (v))n : (Y(v))n−1
1 × (W(v))n−1

1 × (T (v))n−1
1 −→ (W(v))

( ˆT (v))n : (Y(v))n−1
1 × (W(v))n−1

1 × (T (v))n−1
1 −→ (T (v)).

such that for eachi ∈ V and B ∈ B(i), messageW (vi→B)

from nodevi is delivered to all of the nodes inB ∈ B(i),
whereB(i) is the receivers set for nodei ∈ V in networkN ,



and random keysT (i) ∈ T (i) = {1, . . . , 2nC
(i)

} are delivered
from nodev̄i to nodes{vE : E ∈ A}.

Definition 10: The rate region R(N (Rc,p, A)) ⊆

R
m(2m−1−1)
+ of the A-enhanced networkN (Rc,p, A) of

networkN is the closure of all rate vectorsR such that for
anyλ > 0, a solution(λ,R)–S(N (Rc,p, A)) exists.

Theorem 5:Consider networkN on graphG = (V , E) and
an adversarial setA ⊆ P(E). Let N (Rc,p, A) be theA-
enhanced network of networkN . If for every e ∈ E

Re,p < max
p(x)

I(X(e);Z(e))

Rc,p < max
p(x)

I(X(e);Y (e))−max
p(x)

I(X(e);Z(e)),

thenR(N (Rc,p, A)) ⊆ R(N , A).
Sketch of the proof:We start with a code for network
N (Rc,p, A) and we will construct a secure code for network
N . We make use of an auxiliary networkI which is the same
as the A-enhanced network except that the noiseless bit pipes
in

{

Če : e ∈ E
}

∪
{

he : e ∈ E
}

are changed back to the original
noisy channels. We show that we can emulate the given code
on network I such that the auxiliary receivers are still able
to decode the required messages. Since the total capacity of
all incoming links to the auxiliary receivers is almost equal
to the entropy of(Pn, Cn,W, (ZE\{ē})n), there is no spare
capacity at links((ZE\{ē})n, Zn) to carry any information
about messageW and this corresponds to a secure code for
networkN . �

Unlike the rest of the results, where changing a single wire-
tap channelCē to its noiseless counterpartCē(Rc, Rp) results
in an equivalent or bounding network, Theorem 5 requires
all wiretap channels in the noisy networkN to be changed
to noiseless channels in order to obtain a lower bounding
network. Intuitively, this is because our construction requires
the eavesdropperE ∈ A to decode all sources of randomness
in the network, which is not possible generally for noisy
networks where the entropy of the noise can be potentially
infinite. If we wish to replace only some noisy channels by
their noiseless counterparts then Theorem 4 should be used.
When all channels are to be replaced Theorem 5 can be used,
potentially leading to a tighter bound.

For example, we consider the network in Figure 4 where
model-I gives a lower bound of3. Here, we show that
lower bound model-II gives a tighter lower bound,4. The
A-enhanced network is shown in Figure 6. For simplic-
ity, we combine the three direct links (with capacity 1)
from S to R into a single link with capacity3. The fol-
lowing code achieves rate(RW , RT ) = (4, 6) in the A-
enhanced network. LetW = {W1, . . . ,W4} and T =
{T1, . . . , T6}. The outgoing link ofS with capacity 3 di-
rectly delivers{W1,W2,W3} to R. Each of other outgoing
links of S transmits a linearly independent combination of
{W4, T5, T6}. Node V̄S transmits{T1, T2, T3, T4} to each of
{V{1,2}, V{1,3}, V{2,3}}. Node{VS} transmits{W1, . . . ,W4}
to each of{V{1,2}, V{1,3}, V{2,3}}. R can decodeW4 from the
three linearly independent combinations of{W4, T5, T6}. At

S

T

W

R

4

4

4

1
3

1

1

6

6

6

6

6

v̄s

vs

v(1,2)

v(1,3)
v(2,3)

Fig. 6. The A-enhanced network for the network in Figure 4. The number
on top of each link represents the link capacity.

V{1,2}, messages{T1, T2, T3, T4} and{W1,W2,W3,W4} are
directly received fromV̄S andVS , respectively. By usingW4

and two linearly independent combinations of{W4, T5, T6},
nodeV{1,2} can decode{T5, T6}. V{1,3}, V{2,3} decode simi-
larly.
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