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Abstract—The rapid growth of content distribution on the
Internet has brought with it proportional increases in the costs of
distributing content. Adding to distribution costs is the fact that
digital content is easily duplicable, and hence can be shared in an
illicit peer-to-peer (P2P) manner that generates no revenue for
the content provider. In this paper, we study whether the content
provider can recover lost revenue through a more innovative
approach to distribution. In particular, we evaluate the benefits
of a hybrid revenue-sharing system that combines a legitimate
P2P swarm and a centralized client-server approach. We show
how the revenue recovered by the content provider using a
server-supported legitimate P2P swarm can exceed that of the
monopolistic scheme by an order of magnitude. Our analytical
results are obtained in a fluid model, and supported by stochastic
simulations.

I. I NTRODUCTION

T HE past decade has seen the rapid increase of content dis-
tribution using the Internet as the medium of delivery [2].

Users and applications expect a low cost for content, but at the
same time require high levels of quality of service. However,
providing content distribution at a low cost is challenging.
The major costs associated with meeting demand at a good
quality of service are (i) the high cost of hosting services on
the managed infrastructure of CDNs such as Akamai [3], [4],
and (ii) the lost revenue associated with the fact that digital
content is easily duplicable, and hence can be shared in an
illicit peer-to-peer (P2P) manner that generates no revenue for
the content provider. Together, these factors have led content
distributors to search for methods of defraying costs.

One technique that is often suggested for defraying dis-
tribution costs is to use legal peer-to-peer (P2P) networksto
supplement provider distribution [5]–[7]. It is well documented
that the efficient use of P2P methods can result in significant
cost reductions from the perspective of ISPs [3], [8]; however
there are substantial drawbacks as well. Probably the most
troublesome is that providers fear losing control of content
ownership, in the sense that they are no longer in control of
the distribution of the content and worry about feeding illegal
P2P activity.

Thus, a key question that must be answered before we can
expect mainstream utilization of P2P approaches is:How can
users that have obtained content legally be encouraged to
reshare it legally?Said in a different way, can mechanisms
be designed that ensure legitimate P2P swarms will dominate
the illicit P2P swarms?

Preliminary results were presented at Allerton, 2012 [1].

In this paper, we investigate a “revenue sharing” approach
to this issue. We suggest that users can be motivated to reshare
the content legally by allowing them to share the revenue
associated with future sales. This can be accomplished through
either a lottery scheme or by simply sharing a fraction of
the sale price. Recent work on using lotteries to promote
societally beneficial conduct [9] suggests that such schemes
could potentially see wide spread adoption.

Such an approach has two key benefits: First, obviously,
this mechanism ensures that users are incentivized to join the
legitimate P2P network since they can profit from joining.
Second, less obviously, this approach actually damages the
illicit P2P network. Specifically, despite the fact that content
is free in the illicit P2P network, since most users expect a
reasonable quality of service, if the delay in the illegitimate
swarm is large they may be willing to use the legitimate
P2P network instead. Thus, by encouraging users to reshare
legitimately, we are averting them from joining the illicitP2P
network, reducing its capacity and performance; thus making
it less likely for others to use it.

The natural concern about a revenue sharing approach is that
by sharing profits with users, the provider is losing revenue.
However, the key insight provided by the results in this paper
is that by discouraging users from joining illicit P2P network,
the increased share (possibly exponentially more) of legitimate
copies makes up for the cost of sharing revenue with end-users.

More specifically, the contribution of this paper is to develop
and analyze a model to explore the revenue sharing approach
described above. Our model (see Section II) is a fluid model
that builds on work studying the capacity of P2P content
distribution systems. The key novel component of the model
is the competition for users among an illicit P2P system
and a legal content distribution network (CDN), which may
make use of a supplementary P2P network with revenue
sharing. The main results of the paper (see Section III) are
Theorems 1-4, which highlight the order-of-magnitude gains
in revenue extracted by the provider as a result of participating
in revenue sharing. Further, In addition to the analytic results,
to validate the insights provided by our asymptotic analysis
of the fluid model we also perform numerical experiments
of the underlying finite stochastic model. Tables I and II
summarize these experiments, which highlight both that the
results obtained in the fluid model are quite predictive for the
finite setting and that there are significant beneficial effects of
revenue sharing.

There is a significant body of prior work modeling and
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analyzing P2P systems. Perhaps the most related work from
this literature is the work that focuses on server-assistedP2P
content distribution networks [10]–[15] in which a central
server is used to “boost” P2P systems. This boost is important
since pure P2P systems suffer poor performance during initial
stages of content distribution. In fact, it is this initially poor
performance that our revenue sharing mechanism exploits to
ensure that the legitimate P2P network dominates.

Two key differentiating factors of the current work com-
pared to this work are: (i) We model the impact of competition
between legal and illegal swarms on the revenue extraction of
a content provider. (ii) Unlike most previous works on P2P
systems, we consider a time varying viral demand model for
the evolution of demand in a piece of content based on the
Bass diffusion model (see Section II). Thus, we model the fact
that interest in content grows as interested users contact others
and make them interested.

With respect to (i), there has been prior work that focuses
on identifying the relative value of content and resources for
different users [16], [17]. For instance, [16] deals with creating
a content exchange that goes beyond traditional P2P barter
schemes, while [17] attempts to characterize the relative value
of peers in terms of their impact on system performance as a
function of time. However, to the best of our knowledge, ours
is the first work that considers the question of economics and
incentives in hybrid P2P content distribution networks.

With respect to (ii), there has been prior work that considers
fluid models of P2P systems such as [18]–[20]. However, these
all focus on the performance evaluation of a P2P system with
constant demand rate. As mentioned above, a unique facet
of our approach is that we explicitly make use the transient
nature of demand in our modeling. In the sense of explicitly
accounting for transient demand, the closest work to ours is
[14]. However, [14] focuses only on jointly optimizing server
and P2P usage in the case of transient demand in order to
obtain a target delay guarantee at the lowest possible server
cost.

The remainder of the paper is organized as follows. We
first introduce the details of our model in Section II. Then,
Section III summarizes analytic and numeric results, the proofs
of which are included in the appendix. Finally, Section V
provides concluding remarks.

II. M ODEL OVERVIEW

Our goal is to model the competition between illicit peer-
to-peer (P2P) distribution and a legitimate content distribution
network (CDN), which may make use of its own P2P net-
work. Our model is a fluid model, and there are four main
components:

1) The evolution of the demand for content. A key feature
of this paper is that we consider a realistic model for
the evolution of demand, specifically, the Bass diffusion
model.

2) The model of user behavior, which allows the user to
strategically choose between attaining content legally or
illegally based on the price and performance of the two
options.

3) The model of the illicit P2P system.
4) The model of the legal CDN and its possibility to use

“revenue sharing”.

We discuss these each in turn in the following.

A. The evolution of demand

The simplest possible model of demand is that the entire
population gets interested in the content simultaneously at
time t = 0. We call this the “Flash crowd model” due
to the instantaneous appearance of all the demand. While
the model is simplistic, it can serve as a foundation for
developing performance results, and we will utilize it as our
base case. More complex models of demand can be considered
as well. Indeed, models of the dynamics of demand growth for
innovations dates to the work of Griliches [21] and Bass [22].
The most widely used model for dynamics of demand growth
is the Bass diffusion model which describes how new products
get adopted as potential users interact with users that have
already adopted the product. Such word of mouth interaction
between users and potential users is very common in the
Internet and we use a version of Bass diffusion model that
only has word of mouth spreading. We describe both models
formally below.

We defineN to be the total size of the population andI(t)
to be the number of users that are interested in the content at
time t. In the Flash Crowd Model,

I(t) = N, (1)

since all users are interested from the very beginning. In the
Bass diffusion model, each interested user “attempts” to cause
a randomly selected user to become interested in the content.1

At any time t, there areN − I(t) users that could potentially
be interested in the content. Thus, the probability of finding
such a users is(N − I(t))/N . Assuming that an interested
user can interact with other users at rate1 per unit time, we
get that the rate at which interested users increase is givenby
the following differential equation:

dI(t)

dt
=

(

N − I(t)

N

)

I(t). (2)

The above differential equation can be easily solved and yields
the so-calledlogistic functionas its solution.

I(t) =
I(0)et

1− (1− et) I(0)N

, (3)

where I(0) is the number of user that are interested in the
content at timet = 0.

Though the Bass model is quite simple, it is a useful
qualitative summary of the spread of content. To highlight
this, Figure 1 (taken from [14]) highlights a similar behavior
in a data trace from CoralCDN [23], a CDN hosted at different
university sites. The figure shows the cumulative demand for
a home video of the Asian Tsunami seen over a month in
December 2005. For comparision, the figure on the right shows

1Note that these “attempts” should not be interpreted literally, but rather as
the natural diffusion of interest in the new content throughthe population.
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(b) Cumulative demand in Bass
model

Fig. 1. (a) shows the cumulative demand for a file over one month on Coral
CDN (Dec 2005–Jan 2006). (b) shows the cumulative demand seen in a Bass
diffusion.

the model in equation (3). The qualitative usefulness of the
Bass model has been verified empirically in many settings,
and hence the Bass model is often considered as canonical
[24].

B. The progression of a user

In order to capture the strategic behavior of users in the face
of competition between a legitimate CDN using P2P and an
illicit P2P network our model is necessarily complex. Figure 2
provides a broad overview of the user behavior in the system,
which we explain in detail in the following.

Let us explain the model through tracking the progression
of a user. We term an initial user that wants, but has not yet
attained, the content aWanter (W). When a Wanter arrives
to the system, it has two options: get content from the illicit
P2P system for free or get content from the legitimate system
for a price p. We assume that the Wanter wishes to obtain
content as quickly and cheaply as possible, and so she first
approaches the illicit P2P swarm and then only attains the
content from the legitimate system if the content is not attained
a reasonable time interval (one infinitesimal clock tick in our
model) from the illicit P2P. This cycle repeats, if necessary,
until the content is attained. In some sense, this is the worst-
case for the legitimate provider since the illicit source istried
first.

Once the Wanter has attained the content (legally or il-
legally), it could stay in the system and assist in content
dissemination. We denote the probability of this event by
κ < 1. Otherwise, it could simplyQuit (Q) and leave the
system with probability1 − κ. Now, if a Wanter obtains the
contentlegally and decides to assist in dissemination, it has
two options: (i) It might decide to use the content to assist the
illicit P2P swarm, i.e., goRogue (R). We denote the probability
this happens byρ < 1. (ii) It might decide to assist the
legitimate P2P swarm (if one exists) as aBooster (B). We
denote the probability of this event byβ < 1. Note thatβ = 0
if no legal P2P is used. Clearlyρ + β = κ. However, if a
Wanter obtains contentillegally and chooses to stay in the
system, it can only aid the illicit swarm as aFraudster (F).
The probability of this event is simplyκ.

Note that the goal of revenue sharing is to incentivize
Wanters to become Boosters after attaining content legally,
rather than going Rogue. The hope is that the revenue invested

CDN 

+P2P
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  Illicit
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  Sharing
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Fig. 2. An overview of the progression of a user through the systems. The
labels are defined as follows: W - Wanter, F - Fraudster, R - Rogue, B -
Booster, and Q - Quit.

toward reducing the number of “early adopters” that go Rogue
keeps the illicit P2P swarm from growing enough to provide
good enough quality of service to dominate the legitimate
swarm.

To model this system more formally, we introduce the
following notation. LetNw(t) be the number of Wanters at
time t, i.e., the number of users who have not yet attained
the content, and assumeNw(0) = 0. Further, letNl(t) and
Ni(t) be the number of users with legal and illegal copies of
the content at timet. Note that the total number of interested
users at any timet satisfies the following equation

I(t) = Nw(t) +Nl(t) +Ni(t) (4)

We can break this down further by noting that the number
of Rogues, Fraudsters, and Boosters in the system at timet
(denoted byNr(t), Nf (t), andNb(t) respectively) is:

Nr(t) = ρNl(t) (5)

Nf (t) = κNi(t) (6)

Nb(t) = βNl(t), (7)

with ρ + β < 1. The rest of legal and illegal users leave the
system.

The key remaining piece of the model is to formally define
the transition of Wanters to holders of illegal/legal content,
i.e., the evolution ofNi(t) andNl(t). However, this evolution
depends critically on the model of the two systems, and so we
describe it in the next section.

C. System models

We discuss in detail the illicit and legitimate system models
below. The factors in these models are key determinants of
the choice of a Wanter to get the content legally or illegally.
When modeling the two systems, we consider a fluid model,
and so the performance is determined primarily by the capacity
of each system, i.e., the combination of the initial seeds and
the Fraudsters/Boosters that choose to join (and add capacity).
However, other factors also play a role, as we describe below.
Throughout, we model the upload capacity of a user as being
one.
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1) The illicit P2P system:There are two components to
the model of the illicit P2P network: (i) the efficiency of the
network in terms of finding content, and (ii) the initial sizeof
the network and its growth.

Let us start with (i). To capture the efficiency of the P2P
system, we take a simple qualitative model. When attaining
the content illegally, a Wanter must contact either a Rogue
or a Fraudster. We letη(t) capture the probability of a
Wanter finding a Rogue or a Fraudster when looking for one
instantaneous time slot. We consider two cases: an efficient
P2P and an inefficient P2P. In anefficient P2P, we model

η(t) = 1,

with the understanding the the P2P allows easy lookup of
content and all content is truthfully represented. In contrast,
for an inefficient P2P, we model

η(t) = (Nr(t) +Nf (t))/N,

where recall thatN is the total population size. This corre-
sponds to looking randomly within the user population for
a Rogue or Fraudster. Neither of these models is completely
realistic, but they provide lower and upper bounds to the true
efficiency of an illicit P2P system.

Next, with respect to (ii), we model the initial condition for
the illicit network withNi(0) = 0, since the assumption is that
the content has not yet been released, and therefore is not yet
available in the illicit P2P swarm. From this initial condition,
Ni(0) evolves as follows:

dNi(t)

dt
= min

{

η(t)

(

Nw(t) +
dI(t)

dt

)

, Nr(t) +Nf (t)

}

,

(8)

The interpretation of the above is thatNr(t) + Nf (t) is the

current capacity of the illicit P2P andη(t)
(

Nw(t) +
dI(t)
dt

)

is the fraction of the Wanters (newly arriving and remaining
in the system) that find the content in the illicit P2P network.
Themin operator then ensures that no more than the capacity
is used.

2) The legitimate CDN:As discussed in the introduction,
our goal in this work is to contrast the revenue attained by a
CDN that uses P2P and revenue sharing with one that does
not use P2P. Thus, there are two key factors in modeling
the legitimate CDN: (i) the rate at which users that possess
content copies become fraudsters or boosters, and (ii) the
initial size of the CDN and its growth, which depends on the
presence/absence of the legal P2P.

Let us start with (i). From a performance standpoint, the
most important parameter isκ, since it determines what
fraction of users stay in the system and act as servers. These
users could either support the legal system as boosters, or the
illegal one as fraudsters. The question that we wish to answer
is that of how much of an impact the division of those who stay
into fraudsters and boosters would have on revenue obtained.
As we saw earlier,

ρ+ β = κ,

and our key result will be on their relative impact on obtainable
revenue. How we might attempt to control the booster factorβ

through different amounts of revenue sharing requires further
modeling of user motivation, which we will consider in greater
detail in Section IV. But initially we are more concerned with
the impact ofρ andβ, rather than how to socially engineer
their values.

Next, with respect to (ii), unlike for the illicit P2P swarm,
the legitimate network does not start empty. This is because
it has a set of dedicated servers at the beginning which are
then (possibly) supplemented using a P2P network. We denote
by CN be the capacity of the dedicated CDN servers when
the total population size isN . Note that this capacity must
scale with the total population size to ensure that the average
wait time for the users is small. As shown in [14], a natural
scaling that ensures no more thatO(ln lnN) delay is to have
the capacityCN = Θ(N/ lnN). Based on this, we adopt

CN =
N

lnN

in this work. Additionally, we assumeNl(0) = 0, in the case
of Flash Crowd model andNl(0) = I(0) in the case of Bass
model.

Given these initial conditions,Nl(t) evolves as follows:

dNl(t)

dt
=

{

CN + βNl(t), Nw(t) > 0,

min
{

CN + βNl(t),
dI(t)
dt − dNi(t)

dt

}

Nw(t) = 0.

(9)
The interpretation for the above is that if there are a positive
number of Wanters remaining in the system, then the full
current capacity of the CDN can be used to serve them,
i.e., CN + βNl(t). However, if there are no “leftover” Wan-
ters, arriving Wanters that are not served by the illicit P2P
(dI(t)dt − dNi(t)

dt ) are served up to the capacity of the CDN.

III. R ESULTS

To characterize the performance of the CDN against the
illicit P2P distribution, we usefractional legitimate copies,
which is defined as follows:

Definition 1. The fractional legitimate copies, L, is defined
as

L =
Nl(T∞)

N
, (10)

where T∞ is defined as the time after which onlyΩ(lnN)
users are left in the system without a copy of the content

Using this metric, we look at the performance of the CDN in
two settings: when the CDN competes against inefficient illicit
P2P sharing and when it competes against efficient illicit P2P
sharing. Recall, that our models for these two cases are meant
to serve as upper and lower bounds on the true efficiency
of an illicit P2P system. We start by considering the case
of an inefficient, illicit P2P. Note that the theorems stated
below characterize only the asymptotic growth of the fractional
legitimate copies. However, the proofs of these theorems,
presented in Appendices A-D, actually characterize the exact
growth.
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A. Inefficient illicit P2P

As discussed before, we look at the performance of CDN,
under two simple models of demand evolutions, namely Flash
Crowd Model (1) and Bass model (3).

First, we state the result for Flash Crowd model.

Theorem 1. SupposeI(t) satisfies(1). The fractional legiti-
mate copies attained by the content provider in the presence
an inefficient, illicit P2P is

L ∈ Ω

(

ln lnN + (lnN)
β
κ

lnN

)

. (11)

Further, whenβ = 0,

L ∈ Θ

(

ln lnN

lnN

)

. (12)

The interpretation of this theorem is striking. When booster
factor, β, is zero, the fractional legitimate copies is expo-
nentially small, Θ

(

ln lnN
lnN

)

. However, asβ increases, the
fractional legitimate copies grows by orders of magnitude.

Now, we consider the second model for demand evolution,
Bass model. For analytic reasons, we are not able to work
with the exact Bass model. Thus, we approximate the logistic
curve, (3), as follows:

I(t) =















NI(0)et

N−I(0)+I(0)et 0 ≤ t ≤ T1 : Phase1
I2 = N/ lnN T1 < t ≤ T2 : Phase2
I3 = N

2 T2 < t ≤ T3 : Phase3
I4 = N T3 < t < T4 : Phase4,

(13)

where we haveT1 = ln(N/(I(0) lnN)), T2 = ln(N/I(0)),
T3 = 2 ln(N/I(0)) andT4 = 3 ln(N/I(0)).2 Notice that the
first stage is the exact Bass diffusion, while the other stages are
order sense approximations of the actual expression. Though
this model is approximate, it yields the same qualitative insight
as the original model. Now, we are ready to state the result.

Theorem 2. SupposeI(t) satisfies(13). The fractional legit-
imate copies attained by the content provider in the presence
an inefficient, illicit P2P is

L ∈ Ω

(

ln lnN + (lnN)
β
κ

lnN

)

(14)

Further, whenβ = 0,

L ∈ Θ

(

ln lnN

lnN

)

. (15)

Note that the results of the above theorem match with that
of Theorem 1. That means, the fractional legitimate copies
attained by the CDN under Bass model of evolution is no
different from that of Flash Crowd model in asymptotic sense.

Next, let us consider the case of an efficient, illicit P2P
system.

2Note that the value ofT1 has been chosen such thatlimN→∞ I(T1) =
N/ lnN.
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(b) κ = 0.75, β = 0.52

Fig. 3. Evolution of usage in the presence of inefficient illicit P2P sharing.
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Fig. 4. Evolution of usage in the presence of efficient illicit P2P sharing.

B. Efficient illicit P2P

As before, we first consider the case of Flash Crowd model.

Theorem 3. SupposeI(t) satisfies (1). Let κ ∈ (0, 1 −
I(0)/N). The fractional legitimate copies attained by the
content provider in the presence an efficient, illicit P2P is

L ∈ Ω





1

lnN

(lnN)
β
κ − 1

(

β
κ

)



 . (16)

Further, whenβ = 0,

L ∈ Θ

(

ln lnN

lnN

)

. (17)

Again, the fractional legitimate copies rises by an order of
magnitude as the booster factor,β, increases. Interestingly, the
efficiency of the illicit P2P does not impact the asymptotic
order of the fractional revenue whenβ = 0, since in both
the efficient and inefficient case it isΘ

(

ln lnN
lnN

)

. However,
the efficiency of the illicit P2P does affect the fractional
legitimate copies attained for positive values of booster factor.
In particular, it causes a(1− β

κ ) factor change in the fractional
legitimate copies attained; however this has almost no effect
on the asymptotic growth.

Now, we consider the second case, Bass model of evolution.

Theorem 4. SupposeI(t) satisfies (3). Let κ ∈ (0, 1 −
I(0)/N). The fractional legitimate copies attained by the
content provider in the presence an efficient, illicit P2P is

L ∈ Ω





1

lnN

(lnN)
β
κ − 1

(

β
κ

)



 . (18)

Further, whenβ = 0,

L ∈ Θ

(

ln lnN

lnN

)

. (19)
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The above theorem along with Theorem 3 asserts that the
fractional legitimate copies attained by the CDN under Bass
model of evolution is no different from that of Flash Crowd
model in asymptotic order.

Since Theorems 1 and 3 rely on a fluid model, and char-
acterize only the asymptotic growth rate of the fractional
legitimate copies produced in the system, we present numerical
simulations to verify the qualitative insights in discretesystems
with finite N .

To simulate the underlying discrete stochastic system, we
assume time is discrete and that there areN = 100, 000
users in the system. A Bass model based interest evolution
is assumed. That means, at each time slot, each user picks a
Poisson distributed number (with mean1) of other users to
spread interest to. The server has a FIFO policy with service
rateC = 8000 ≈ N/ lnN .

Figure 3 illustrates the evolution of legal and illegal copies
of the content in the case of an inefficient illicit P2P system
with κ = 0.75. In Figure 3(a), whereβ = 0, the final number
of legal copies produced in the system is63, 000. When the
booster factor increases, as shown in Figure 3(b) whereβ =
0.52, the number of legal copies increases to88, 888; In fact,
the fractional legitimate copies increases by more than25%.

TABLE I
FRACTIONAL REVENUE RATIO - INEFFICIENT ILLICIT P2P. (*)

SIMULATION RESULTS. (**) A NALYTICAL RESULTS

β

κ

κ = 0.75 κ = 0.5
SIM* ANL** SIM ANL

0 0.64 0.60 0.69 0.67
0.10 0.71 0.71 0.77 0.75
0.24 0.77 0.72 0.82 0.77
0.41 0.81 0.75 0.86 0.79
0.63 0.87 0.79 0.92 0.80
0.92 0.97 0.85 0.98 0.82

In Table I, we compare the simulation results (SIM column
entries in Table I ) against our analytical results (ANL column
entries in Table I) from Lemma 9 and Corollary 10, for various
combinations ofκ andβ. As expected from Corollary 10, our
analytical predictions closely match with the simulation results
in the case,β = 0. In the case,β > 0, the predicted values are
less than those obtained using simulation, which agrees with
Lemma 9; nevertheless, the differences are quite small. Also
observe that, asβ increases, the fractional legitimate copies
improves significantly. Especially, in the case,κ = 0.75, as
booster factor increases fromβ = 0 to β = 0.92κ, the
fractional legitimate copies increases by150%.

Next, we move to the case of an efficient illicit P2P. Figure 4
illustrates the case of an efficient illicit P2P system. In Figure
4(a), whereβ = 0, the final number of legal copies produced
in the system is45, 920. When the booster factor increases,
as shown in Figure 4(b) whereβ = 0.38, the number of legal
copies increases to96, 380; In fact, the fractional legitimate
copies increases by more than100%.

In Table II, we tabulate the simulation results and the
analytical results. The analytical results are obtained from
Lemma 13 and Lemma 14. The simulation results are in
agreement with our analytical predictions. Also note that,the
improvement attained in the fractional legitimate copies,asβ

TABLE II
FRACTIONAL REVENUE RATIO - EFFICIENT ILLICIT P2P. (*) SIMULATION

RESULTS. (**) A NALYTICAL RESULTS

β

κ

κ = 0.75 κ = 0.5 κ = 0.25
SIM* ANL** SIM ANL SIM ANL

0 0.03 0.03 0.15 0.15 0.42 0.37
0.48 0.07 0.07 0.28 0.26 0.56 0.50
0.69 0.18 0.14 0.40 0.38 0.67 0.59
0.84 0.30 0.24 0.54 0.52 0.77 0.68
0.95 0.55 0.41 0.78 0.69 0.9 0.78

increase, is phenomenal. For example, in the case,κ = 0.75,
as booster factor increases fromβ = 0 to β = 0.95κ, the
fractional legitimate copies increases by1833%.

IV. REVENUE SHARING MODEL

In the previous sections, we studied the impact of the three
parametersρ, β andκ on the eventual number of legal content
copies in the system. We made the assumption thatρ+β = κ,
following the intuition thatκ is the fixed probability of a user
who has the content being willing to redistribute it, andwhich
P2P swarm is joined affects the number of legal copies. We
now consider the motivation behind the users’ decisions on
which swarm to join.

Suppose that the purchase price of a copy of the content
is p. Hence, a user that wishes to obtain a legal copy of the
content must pay the content generator the sump through
some kind of online banking system. Suppose that the content
owner utilizes a simple model for revenue sharing, where
a user receivesǫp for each piece of content it distributes
when taking part in the legitimate network as a Booster. Thus,
ǫ = 0 corresponds to no revenue sharing. Note that this could
potentially be implemented on a system such as BitTorrent by
simply keeping track of amount uploaded by each peer3. The
value ǫ can be viewed either as a share of the revenue from
each download or as the expected payoff of a lottery scheme
operated by the CDN.

While it is difficult to exactly predict the effect of revenue
sharing, it seems reasonable that increased revenue sharing
should limit the likelihood of a Wanter going rogue after
attaining the content legally. To qualitatively capture this
effect, we modelρ as a decreasing function ofǫ. A specific
form could be

ρ = κφ(ǫ),

whereφ(.) is a decreasing function withφ(0) = 1 andφ(1) =
0.

Recall that we defined the parameterR as the fractional
revenue, also the fraction of legitimate copies in the system
at T∞. It is clear that the profit obtained by the content
owner also depends on the amount of revenue shared with
the boosters, which in turn depends on the exact form ofφ(ǫ).
Hence, the content owner would have to determine the optimal
amount of revenue sharing in order to maximize profit. For
illustration, let us choose

φ(ǫ) = N−ǫ,

3BitTorrent Trackers already collect such information in order to gather
performance statistics.
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Fig. 5. Impact of the amount of revenue sharing on the fractional revenue
attained by the CDN.

in our simulations. The results are shown in Figure 5, which
illustrates the impact of the amount of revenue sharing on the
fractional revenue ratio of the CDN in the cases of inefficient
and efficient illicit P2Ps. We useκ = 0.75 in the simulation.
The key point to observe in the figure is that there is a
clear optimal amount of revenue sharing for the provider. In
both cases, this amount is fairly small, however, it is clearly
desirable to share more revenue in the presence of an efficient
illicit P2P than in the presence of an inefficient illicit P2P. In
fact, sharing nearly zero percent of the revenue still provides
fairly close to the optimal fractional revenue in the inefficient
case, while one must share more than10% of the revenue to
be near-optimal in the case of an efficient, illicit P2P.

V. CONCLUSION

Our goal in this paper is to quantify the ramifications of
coopting legal P2P content sharing, not only as a means of
reducing costs of content distribution, but, more importantly,
as a way of hurting the performance of illegal P2P file sharing.
The model that we propose internalizes the idea that demand
for any content is transient, and that all content will eventually
be available for free through illegal file sharing. The objective
then is not to cling to ownership rights, but to extract as much
revenue from legal copies as possible within the available
time. We develop a revenue sharing scheme that recognizes
the importance of early adopters in extending the duration of
time that revenue may be extracted. In particular, keeping users
from “going rogue” (becoming seeds in illegal networks) by
allowing them to extract some revenue for themselves (and
so defray part of their expense in purchasing the content in
the first place), providesorder sense improvementsin the
extractable revenue. We realize that our paradigm is contrary to
the “conventional wisdom” of chargingmorerather thanlessto
early adopters, and also to discourage file sharing using legal
threats. However, as many recent studies have demonstrated,
incentives work better than threats in human society, and
adoption of our revenue sharing approach might result in a
cooperative equilibrium between content owners, distributors
and end-users. Future work includes a characterization of the
exact value of users based on their times of joining the system,
as well as considering content streaming, which requires strict
quality of service guarantees.

REFERENCES

[1] V. Ramaswamy, S. Adlakha, S. Shakkottai, and A. Wierman,“Incentives
for P2P-Assisted Content Distribution: If You Can’t Beat ’Em, Join
’Em,” in Proceedings of Allerton Conference, October 2012.

[2] C. Labovitz, D. McPherson, and S. Iekel-Johnson, “2009 Internet
Observatory report,” inNANOG-47, October 2009.

[3] W. B. Norton, “Internet Video: The Next Wave of Massive
Disruption to the U.S. Peering Ecosystem,” 2007, Availableat
http://www.equinix.com.

[4] “Akamai Technologies,” http://www.akamai.com, 2011.
[5] “Pando Networks, Inc.” http://www.pando.com/, 2011.
[6] “Rawflow, Inc.” http://www.rawflow.com/, 2011.
[7] P. Rodriguez, S. Tan, and C. Gkantsidis, “On the feasibility of com-

mercial, legal P2P content distribution,”ACM SIGCOMM Computer
Communication Review, vol. 36, no. 1, pp. 75–78, 2006.

[8] T. Karagiannis, P. Rodriguez, and K. Papagiannaki, “Should Internet
service providers fear peer-assisted content distribution?” in Proc. of
the 5th ACM SIGCOMM conference on Internet Measurement, 2005.

[9] D. Merugu, B. Prabhakar, and N. Rama, “An incentive mechanism
for decongesting the roads: A pilot program in Bangalore,” in Proc.
NetEcon, ACM Workshop on the Economics of Networked Systems, July
2009.

[10] J. Wang, C. Yeo, V. Prabhakaran, and K. Ramchandran, “Onthe role
of helpers in peer-to-peer file download systems: Design, analysis and
simulation,” in Proc. IPTPS, Feb. 2007.

[11] E. Setton and J. Apostolopoulos, “Towards quality of service for peer-
to-peer video multicast,” inProc. ICIP, Sep. 2007.

[12] S. Liu, R. Zhang-Shen, W. Jiang, J. Rexford, and M. Chiang, “Perfor-
mance bounds for peer-assisted live streaming,” inProc. ACM SIGMET-
RICS, Jun. 2008.

[13] M. Chen, M. Ponec, S. Sengupta, J. Li, and P. A. Chou, “Utility
maximization in peer-to-peer Systems,” inProc. ACM SIGMETRICS,
Jun. 2008.

[14] S. Shakkottai and R. Johari, “Demand aware content distribution on the
Internet,” IEEE/ACM Transactions on Networking, vol. 18, no. 2, April
2010.

[15] P. Parag, S. Shakkottai, and I. Menache, “Service routing in multi-
ISP peer-to-peer content distribution: Local or remote?” in Proc. of
GameNets, 2011.

[16] C. Aperjis and R. Johari, “A peer-to-peer system as an exchange
economy,” inProc. GameNets, Oct. 2006.

[17] V. Misra, S. Ioannidis, A. Chaintreau, and L. Massouli´e, “Incentivizing
peer-assisted services: A fluid Shapley value approach,” inACM SIG-
METRICS Performance Evaluation Review, vol. 38, no. 1, 2010, pp.
215–226.

[18] D. Qiu and R. Srikant, “Modeling and performance analysis of
BitTorrent-like peer-to-peer networks,” inProc. ACM SIGCOMM, Aug.
2004.

[19] L. Massoulie and M. Vojnovic, “Coupon replication systems,” in Proc.
ACM SIGMETRICS, Jun. 2005.

[20] X. Yang and G. de Veciana, “Performance of Peer-to-PeerNetworks:
Service Capacity and Role of Resource Sharing Policies,”Performance
Evaluation: Special Issue on Performance Modeling and Evaluation of
P2P Computing Systems, vol. 63, 2006.

[21] A. Griliches, “Hybrid Corn and the Economics of Innovation,” Science,
vol. 132, pp. 275–280, 1960.

[22] F. M. Bass, “A new product growth model for consumer durables,”
Management Science, vol. 15, pp. 215–227, 1969.

[23] M. J. Freedman, E. Freudenthal, and D. Mazières, “Democratizing
content publication with Coral,” inProc. NSDI, Mar. 2004.

[24] G. Moore, Crossing the Chasm: Marketing and Selling High-Tech
Products to Mainstream Customers, Rev edition. New York, NY:
HarperBusiness, 1999.

APPENDIX A
PROOF OFTHEOREM 1

To prove Theorem 1, we analyze two processesN̄l(t) and
N̄i(t) which bounds the actual evolutionsNl(t) andNi(t).
Importantly, the bounding processes are equivalent to the
original processes whenβ = 0.

http://www.akamai.com
http://www.pando.com/
http://www.rawflow.com/
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Before stating the results, we introduce a few notation. Let

θ1 =
κ

2
+
κ

2

√

1 +
4

κ lnN
, θ2 =

κ

2
−
κ

2

√

1 +
4

κ lnN
,

b = −
θ1
θ2
, ∆θ = θ1 − θ2, (20)

τ̄ =
2

∆θ
ln





√

1 + 4
κ lnN + 1

√

1 + 4
κ lnN − 1



 , (21)

N̄l =
κCN

βθ1

(

1

1 + b

)
β
κ (

1− e(−
βθ1 τ̄

2κ )
)

e(
βθ1
κ

τ̄)

−
κCN

βθ2

(

1

1 + b

)
β
κ

e(
τ̄β
2 )
(

1− e
βθ2τ̄

2κ

)

. (22)

Finally, we are ready to define the bounding processes
used in the proof,N̄l(t) and N̄i(t). Let N̄i(0) = Ni(0).
Furthermore, let

dN̄i(t)

dt
=
ρN̄l(t) + κN̄i(t)

N
(N − (N̄l(t) + N̄i(t))). (23)

Similarly, let N̄l(0) = Nl(0) and

dN̄l(t)

dt
=

{

CN + βN̄l(t)
N−(N̄l(t)+N̄i(t))

N , N̄w(t) > 0,
0, N̄w(t) = 0.

(24)
whereN̄w(t) = N − (N̄i(t) + N̄l(t)).

We can now state our result characterizing the number of
legal and illegal copies.

Lemma 5. In the presence of an inefficient, illicit P2P, the
number of illegal and legal copies at the end of evolution is

Nl(T∞) ≥ N̄l,

where equality holds whenβ = 0.

Proof: Recall that the efficiency factor of an inefficient
illicit P2P, η(t), is given by

η(t) =
Nr(t) +Nf(t)

N
=
ρNl(t) + κNi(t)

N
. (25)

The second equality follows from (5) and (6). From (8), the
illegal growth rate is

dNi(t)

dt

(a)
= η(t)Nw(t) (26)

(b)
= (ρNl(t)+κNi(t))(N−(Nl(t)+Ni(t)))

N . (27)

(a) follows from the definition ofη(t) and the fact that
Nw(t) ≤ N . (b) follows from (25) and (4). From equation (9),
the growth rate of legal copies is given by

dNl(t)

dt
=

{

CN + βNl(t), Nw(t) > 0,
0, Nw(t) = 0.

(28)

LetU(t) be the total copies of the content in the system. Then,
U(t) = Nl(t) +Ni(t).

Now, we claim that,

Nl(T∞) ≥ N̄l(T∞), (29)

and the equality holds whenβ = 0.

The proof is as follows: First, we define,̄U(t) = N̄l(t) +
N̄i(t). We can obtaindNi

dU and dN̄i

dŪ
from the pair of equations

(26), (28) and (23), (24) respectively. Then, it can be shown
that

dNi

dU
|Ni=x,U=y ≤

dN̄i

dŪ
|N̄i=x,Ū=y, (30)

and the equality holds whenβ = 0. Note that the range space
of functionsU(t) and Ū(t) are identical. Since, the initial
valuesNi(0) and N̄i(0) are equal by definition, we get the
result in (29).

Now, we deriveN̄l(t). Let τ̄ be the time at which the
number of wanters in the system vanishes to zero. Then,
N̄w(t) = 0 and Ū(t) = N for t ∈ [τ̄ , T∞]. Adding (24)
and (23), fort ∈ (0, τ̄ ], we get,

dŪ

dt
=
(

(β + ρ)N̄l(t) + κN̄i(t)
) (N − (N̄l(t) + N̄i(t)))

N
(f)
= κŪ(t)

N − Ū(t)

N
.

(f) follows from the fact thatρ+ β = κ and the definition of
Ū(t).

The above differential equation is in the form of a standard
Riccatti equation, and it’s solution can be written as

Ū(t) =
Nθ2
κ

+
N∆θ/κ

1 + be−∆θt
, (31)

where∆θ = θ1 − θ2. θ1, θ2 andb are given by equation (20).
From the relation,̄U(τ̄ ) = N , we get (21).

Now, from (24), fort ∈ (0, τ̄ ], we get

dN̄l(t)

dt
= CN + βN̄l(t)

N − (N̄l(t) + N̄i(t))

N
.

A lower bound on the solution of the above differential
equation is provided by Lemma 16 in Appendix E. From the
defintions ofb and τ̄ , given by (20) and (21), it is clear that
b > 1 and τ̄ > ln b/∆θ. Then, by evaluating (147) att = τ̄
with N̄l(0) = I(0), we get N̄l in (22). Also, whenβ = 0,
the lemma yields an exact solution of the above differential
equation. Hence proved.

As mentioned in the statement of Lemma 5, the inequality
is exact in the case ofβ = 0. Additionally, in this case, the
form of Nl(T∞) simplifies.

Corollary 6. Let β = 0. In the presence of an inefficient,
illicit P2P, the number of illegal and legal copies is given by

Nl(T∞) =
2CN

∆θ
ln





√

1 + 4
κ lnN + 1

√

1 + 4
κ lnN − 1



 . (32)

Now that we have characterized the number of legal and
illegal copies precisely, attaining the statement in Theorem 1
is accomplished by studying the asymptotics of the results in
Lemma 5 and Corollary 6.

To begin, recall from (10) that,

L =
Nl(T∞)

N
≥
N̄l

N
, (33)
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whereN̄l is defined by (22). Following a few algebraic steps,
from the above equation, we get that

L ∈ Ω

(

ln lnN + (lnN)
β
κ

lnN

)

(34)

andL ∈ Θ
(

ln lnN
lnN

)

if β = 0, which completes the proof of
Theorem 1.

APPENDIX B
PROOF OFTHEOREM 2

To prove Theorem 2, we will go through a sequence of
intermediate results characterizing the number of legal/illegal
copies at the transition points of the approximate Bass model.

We start by characterizing the number of legal and illegal
copies at the end of Phase1.

Lemma 7. In the presence of an inefficient, illicit P2P, the
number of illegal and legal copies at the end of Phase1 of
the approximate Bass model are given by

Ni(T1) =

(

ρI(0)

κ− ρ
+

Nρ

(κ− ρ)2

)

exp (BN )

−
I(T1)ρ

κ− ρ
−

Nρ

(κ− ρ)2
(35)

Nl(T1) = I(T1)−Ni(T1), (36)

where

I(T1) =
N

lnN

N

N − I(0) + (N/ lnN)

BN =

(

(κ− ρ)

N
(I(T1)− I(0))

)

.

Note that in the above, we have allowedκ, ρ, andβ to be
arbitrary. In fact, in this case,β is inconsequential since the
full amount of interested copies can be served by the dedicated
capacity of the CDN. Note that in the case whenρ = κ, things
simplify considerably.

Corollary 8. Let ρ = κ. In the presence of an inefficient,
illicit P2P, the number of illegal and legal copies at the end
of Phase1 of the approximate Bass model are given by

Ni(T1) =
κ(I2(T1)− I2(0))

2N
Nl(T1) = I(T1)−Ni(T1),

whereI(T1) = N
lnN

N
N−I(0)+(N/ lnN) .

We now prove the lemma.
Proof of Lemma 7: From equation (13), the population

of interested copies in phaseI is given by

I(t) =
NI(0)et

N − I(0) + I(0)et
. (37)

From the above equation, it is easy to verify that the rate of
growth of interested copies is less than the server capacity
CN , i.e., dI(t)/dt ≤ CN . Thus, any interested user is served
instantaneously either by a legal or illegal mechanism. Hence,
the number of Wanters in the system is zero, i.e,Nw(t) = 0.

Therefore, it follows from equation (4) thatNl(t) +Ni(t) =
I(t).

Next, from equation (8), we get that

dNi(t)

dt
= min

{

η(t)
dI(t)

dt
,Nr(t) +Nf (t)

}

(a)
= η(t)

dI(t)

dt
, (38)

where the equality (a) follows from the definition ofη(t) and
the fact thatdI(t)/dt ≤ CN < N .

Because we are considering an inefficient P2P, we have

η(t) =
Nr(t) +Nf (t)

N
,

(b)
=
ρNl(t) + κNi(t)

N
,

(c)
=
ρ(I(t)−Ni(t))

N
+
κNi(t)

N
,

=
ρI(t)

N
+

(κ− ρ)Ni(t)

N
.

where equality (b) follows from (5), (6) and the equality (c)
follows from the fact thatNl(t) = I(t) −Ni(t). Substituting
the above result in equation (38), we get

dNi(t)

dt
=
dI(t)

dt

ρI(t)

N
+
dI(t)

dt

(κ− ρ)Ni(t)

N
.

The solution of the above differential equation is given by

Ni(t) = K exp

(

I(t)(κ− ρ)

N

)

−
ρI(t)

κ− ρ
−

Nρ

(κ− ρ)2
,

where the constantK can be obtained from the fact that
Ni(0) = 0. Thus, the evolution of illegal copies is given by

Ni(t) =

(

ρI(0)

κ− ρ
+

Nρ

(κ− ρ)2

)

exp

(

(κ− ρ)

N
(I(t)− I(0))

)

−
ρI(t)

κ− ρ
−

Nρ

(κ− ρ)2
.

The number of illegal copies at the end of Phase1 can be
obtained by evaluating the above expression att = T1. The
remaining population get the content legally, i.e,Nl(T1) =
I(T1)−Ni(T1).

Now that we have characterized the number of legal and
illegal copies at the end of Phase1, we can move to Phases
2-4. Unfortunately, the resulting number of legal and illegal
copies at the end of these phases is much more complicated.
However, much of this complicated form is only necessary
to specify the exact analytic values. Once we focus on the
asymptotic form (as in Theorem 1), it simplifies considerably.

Before stating the result, we need to introduce a consid-
erable amount of notation. This notation stems from the fact
that we do not analyze the exact process ofNl(t) andNi(t).
Instead, we define a processesN̄l(t) andN̄i(t) which bounds
Nl(t) andNi(t) and analyze these processes. Importantly, the
bounding processes are equivalent to the original processes
when β = 0, i.e., the case of no revenue sharing. Before
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definingN̄l andN̄i, Let

∆τ̄2 =
1

κ lnNZ1
ln





Z1 + 1− 2I(T1)
(N/ lnN)

Z1 − 1 + 2I(T1)
(N/ lnN)





+
1

κ lnNZ1
ln

(

Z1 + 1

Z1 − 1

)

, (39)

∆τ̄3 =
2

κZ2
ln

(

Z2 + 1− 4
lnN

Z2 − 1 + 4
lnN

)

+
2

κZ2
ln

(

Z2 + 1

Z2 − 1

)

, (40)

∆τ̄4 =
1

κZ3
ln

(

Z3 + 1

Z3 − 1

)

, (41)

where Z1 =
√

1 + 4 lnN
κ , Z2 =

√

1 + 16
κ lnN , Z3 =

√

1 + 4
κ lnN and I(T1) = N

lnN
N

N−I(0)+(N/ lnN) . In addition,
let

θj1 = κ
Ij
2N

+
1

2

√

(

κIj
N

)2

+
4κ

lnN
, (42)

θj2 = κ
Ij
2N

−
1

2

√

(

κIj
N

)2

+
4κ

lnN
, (43)

∆θj = θj1 − θj2 and

bj =
Nθ1,j − κI(Tj−1)

κI(Tj−1)−Nθ2,j
. (44)

Note that, in the above definition, in factI(Tj−1) = Ij−1 for
j = 3 and4.

Furthermore, forj = 2, 3 and4, let

dj = (bj + exp(∆θj∆τ̄j)) (45)

qj1 =

(

βθj2
κ

−
βIj
N

)

(46)

qj2 =
βθj1
κ

−
βIj
N

(47)

Finally, we are ready to define the bounding processes
used in the proof,N̄l(t) and N̄i(t). Let N̄i(T1) = Ni(T1).
Furthermore, during Phasej, let

dN̄i(t)

dt
=
ρN̄l(t) + κN̄i(t)

N
(Ij − (N̄l(t) + N̄i(t))). (48)

Similarly, let N̄l(T1) = Nl(T1) and, during Phasej,

dN̄l(t)

dt
=

{

CN + βN̄l(t)
Ij−(N̄l(t)+N̄i(t))

N , N̄w(t) > 0,
0, N̄w(t) = 0.

(49)
whereN̄w(t) = Ij − (N̄i(t) + N̄l(t)). Finally, let

Ū(t) = N̄l(t) + N̄i(t).

To state the result, we use a bit more notation about these
processes. Let̄N1

l = Nl(T1) and for j = 2, 3, and 4 define

N̄l(Tj) recursively as follows:

N̄ j
l = N̄ j−1

l

(

1 + bj
dj

)
β
κ

e(−qj1∆τ̄j)+

+ CN

(

bj
dj

)
β
κ

e(−qj1∆τ̄j)





e

(

qj1
ln bj

∆θj

)

qj1
−

1

qj1



 1b≥1

+ CN

(

1

dj

)
β
κ

e(−qj1∆τ̄j)







e(q
j
2∆τ̄j)

qj2
−
e

(

q
j
2 ln bj
∆θj

)

1b≥1

qj2







− CN

(

1

dj

)
β
κ

e(−qj1∆τ̄j) 1

qj2
(1− 1b≥1), (50)

where1b≥1 is given by

1b≥1 =

{

1 b ≥ 1,
0 b < 1.

(51)

We can now state our result characterizing the number of
legal and illegal copies at the end of Phases2-4.

Lemma 9. In the presence of an inefficient, illicit P2P, the
number of illegal and legal copies at the end of Phasej,
j ∈ {2, 3, 4} of the approximate Bass model are given by

Nl(Tj) ≥ N̄ j
l ,

where equality holds whenβ = 0.

From the approximate Bass model (13), the evolution of
demand in Phasej, for j = 2, 3 and4, is given by,

I(t) = Ij , where t ∈ [Tj−1, Tj).

Note that in these three phases, a change in the number of
interested copies occurs only at the beginning of the phase and
then, it remains constant throughout the phase. That means,the
dynamics of evolutions ofNl(t) andNi(t) in these phases are
similar to that of Flash Crowd model discussed in Lemma 5.
Also, it can be shown that each of these phases is long enough
so that every interested user appearing at the beginning of a
phase is being served by the end of that phase. Therefore,
we can analyaze each of these phases independently. Now, by
recursively applying the analysis of Lemma 5 for each of the
three phases, we get Lemma 9. A detailed proof of the above
lemma is given below.

Proof: From the approximate Bass model (13), the evo-
lution of demand in Phasej is,

I(t) = Ij , where t ∈ (Tj−1, Tj ],

and the number of Wanters in Phasej isNw(t) = Ij−(Nl(t)+
Ni(t)).

Recall that the efficiency factor of an inefficient illicit P2P,
η(t), is given by

η(t) =
Nr(t) +Nf (t)

N
=
ρNl(t) + κNi(t)

N
. (52)

The second equality follows from (5) and (6).
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From equation (8), the illegal growth rate in Phasej is

dNi(t)

dt

(a)
= min {η(t)Nw(t), Nr(t) +Nf (t)} ,

(b)
= η(t)Nw(t) (53)

(c)
=
ρNl(t) + κNi(t)

N
(Ij − (Nl(t) +Ni(t))). (54)

Here (a) follows from the fact thatI(t) is constant in the last
three phases. (b) follows from the definition ofη(t) and the
fact thatNw(t) ≤ N . (c) follows from (52).

From equation (9), the growth rate of legal copies in Phasej
is given by

dNl(t)

dt
=

{

CN + βNl(t), Nw(t) > 0,
0, Nw(t) = 0.

(55)

The second equality follows from the fact thatdNi

dt = 0 when
there are no Wanters in the system (from (53)) andI(t) is
constant.

Let U(t) be the total copies of the content in the system.
Then,

U(t) = Nl(t) +Ni(t).

Note that the growth rateNl(t) is at least equal toCN when
Nw(t) > 0. In that case, it can be shown that

CN × (Tj − Tj−1) > (I(Tj)− I(Tj−1)).

since I(0) << CN , by assumption. This means that every
interested user generated in any one of the last three phases
can be served within that phase itself. Furthermore, Lemma
7 shows that no Wanters are left unserved after Phase1.
Therefore, we can conclude that

Nl(Tj) +Ni(Tj) = U(Tj) = I(Tj) = Ij . (56)

The same arguments hold true in the case ofN̄l(t), i.e,

N̄l(Tj) + N̄i(Tj) = Ū(Tj) = I(Tj) = Ij . (57)

Now, we claim that,

Nl(Tj) ≥ N̄l(Tj), (58)

and the equality holds whenβ = 0.
We can derivedNi

dU and dN̄i

dŪ
from the pair of equations (53),

(55) and (48), (49) respectively. Then, it can be shown that

dNi

dU
|Ni=x,U=y ≤

dN̄i

dŪ
|N̄i=x,Ū=y, (59)

and the equality holds whenβ = 0. Note that the range space
of functionsU(t) andŪ(t) are identical; in fact they are equal
to [I(Tj−1), I(Tj)] in Phasej which follows from (56) and
(57). Furthermore, recall that the initial values ofNi(T1) and
N̄i(T1) are equal by definition. Hence, the conclusion is

Ni(Tj) ≤ N̄i(Tj).

Then, the claim in (58) is true from the facts thatNl(Tj) =
I(Tj)−Ni(Tj) andN̄l(Tj) = I(Tj)− N̄i(Tj).

Our objective is to derive an expression of̄Nl(t). Then,
evaluate the expression att = Tj in order to obtain a lower
bound on the number of legal copies at the end of each Phasej.

Let τ̄j be the time such that̄U(τ̄j) = Ij . This event happens
within Phasej itself (from (57)). i.e, τ̄j ∈ (Tj−1, Tj ]. In
addition,

N̄w(t) = 0 when t ∈ (τ̄j , Tj].

Adding (49) and (48), fort ∈ (Tj−1, τ̄j ], we get,

dŪ

dt
=
(

(β + ρ)N̄l(t) + κN̄i(t)
) (Ij − (N̄l(t) + N̄i(t)))

N
(e)
=
(

κN̄l(t) + κN̄i(t)
) (Ij − (N̄l(t) + N̄i(t)))

N
(f)
= κŪ(t)

Ij − Ū(t)

N
.

(e) follows from the fact thatρ+ β = κ. (f) follows from the
definition of Ū(t) in Phasej.

The differential equation given above is a standard Riccatti
equation. Its solution is given by

Ū(t) =
Nθ2,j
κ

+
N∆θj/κ

1 + bje−∆θj(t−Tj−1)
, (60)

where ∆θj = θ1,j − θ2,j . θ1,j , θ2,j and bj are given by
equations (42), (43) and (44) respectively.

Let ∆τ̄j = τ̄j − Tj−1. Recall thatτ̄j is the solution of the
equationŪ(τ̄j) = Ij . Hence, from the above result, we get,

τ̄j − Tj−1 =
1

∆θj
ln





√

1 + 4
κ lnN j + 1−

2I(Tj−1)
I(Tj)

√

1 + 4
κ lnN j − 1 +

2I(Tj−1)
I(Tj)





+
1

∆θj
ln





√

1 + 4
κ lnN j + 1

√

1 + 4
κ lnN j − 1



 . (61)

The above expression yields (39), (40) and (41) respectively,
when I(Tj) is substituted by actual values from the bass
model.

Now, applying the above expression in (49), fort ∈
(Tj−1, τ̄j ], we get

dN̄l(t)

dt
= CN + βN̄l(t)

Ij − (N̄l(t) + N̄i(t))

N
.

A lower bound on the solution of the above differential
equation is provided by Lemma 16 in Appendix E. It can
be shown thatb exp(−∆θj∆τ̄j) << 1. Then τ̄j satisfies the
condition stipulated by that lemma and a lower bound on the
number of legal at the end of Phasej can be obtained by
evaluating (147) att = τ̄j , which yieldsN̄ j

l in (50). In case
β = 0, (147) is an exact solution of the above differential
equation.

As mentioned in the statement of Lemma 9, the inequality
is exact in the case ofβ = 0. Additionally, in this case, the
form of Nl(T4) simplifies.

Corollary 10. Let β = 0. In the presence of an inefficient,
illicit P2P, the number of illegal and legal copies at the end
of Phase4 of the approximate Bass model is given by

Nl(T4) = Nl(T1) + CN

4
∑

j=2

∆τ̄j (62)

whereNl(T1) is given by Corollary 8.
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Now that we have characterized the number of legal and
illegal copies at the end of Phase4 precisely, attaining the
statement in Theorem 1 is accomplished by taking studying
the asymptotics of the results in Lemma 9 and Corollary 10.
Throughout, we useAN ∼ BN to denotelimN→∞

AN

BN
= 1.

To begin, recall from (10) that,

L =
Nl(T∞)

N
=
Nl(T∞)

N
(63)

≥
N̄4

l

N
, (64)

whereN̄4
l is recursively defined by (50) in terms of̄N1

l , N̄
2
l

and N̄3
l . As N goes larger, from the above equation, we get

that

L ∈ Ω

(

ln lnN + (lnN)
β
κ

lnN

)

(65)

andL ∈ Θ
(

ln lnN
lnN

)

if β = 0, which completes the proof of
Theorem 1.

APPENDIX C
PROOF OFTHEOREM 3

The proof of Theorem 3 parallels to that of Theorem 1.We
mimick the approach of the proof of Theorem 3 and define
two processes̄Nl(t) andN̄i(t) that boundNl(t) andNi(t) and
analyze these processes. Importantly, the bounding processes
are equivalent to the original processes whenβ = 0.

Let Ū(t) = N̄l(t) + N̄i(t). Further, letN̄l(0) = Nl(0) = 0
and

dN̄l(t)

dt
= =

{

CN + βN̄l(t) N̄w(t) > 0,
0 N̄w(t) = 0.

(66)

whereN̄w(t) = N − Ū(t). Furthermore, we definēNi(0) =
Ni(0) = 0 and

dN̄i(t)

dt
=

{

ρN̄l(t) + κN̄i(t) 0 ≤ Ū(t) ≤ N
1+ρ ,

N − N̄l(t)− N̄i(t)
N

1+ρ ≤ Ū(t) ≤ N.
(67)

Finally, let N̄i(0) = Ni(0) = 0. To state the results, we may
need a bit more notation. Let

N̄l =
N

lnNβ

(

eβτ̄ − 1
)

. (68)

Furthermore,̄τ = 1
1+β ln

(

1 + lnN(1+β)H
−β
κ

1+ρ

)

+ 1
κ ln (H) ,

whereH = 1 + κ lnN
(1+ρ) . Now, we characterize the number of

legal copies and illegal copies in the following lemma.

Lemma 11. In the presence of an efficient, illicit P2P, the
number of illegal copies is given by

Nl(T∞) ≥ N̄l, (69)

and the equality holds whenβ = 0.

Proof:
From equation (8), the growth rate of illegal copies is given

by

dNi

dt

a
= min {Nw(t), ρNl(t) + κNi(t))} (70)

b
= min{I(t)− U(t), ρNl(t) + κNi(t))} (71)

where (a) follows from equations (5), (6) along with the facts
thatη = 1 andI(t) is constant. (b) follows from the definition
of the number of wanters in the system.

From equation (9), the growth rate of legal copies in Phasej
is given by

dNl(t)

dt

c
= CN + βNl(t) if Nw(t) > 0,

d
= 0 if Nw(t) = 0. (72)

(d) follows from the facts thatdNi

dt = 0 when there are no
wanters in the system (from (70)) andI(t) is constant.

As defined before, letU(t) be the total copies of the content
in the system. Then,U(t) = Nl(t) +Ni(t).

Now, we claim that,

Nl(Tj) ≥ N̄l(Tj). (73)

and the equality holds whenβ = 0.
Note that

dN̄l(t)

dt
|Ū=x,N̄i=y

e
=
dNl(t)

dt
|U=x,Ni=y, (74)

dN̄i(t)

dt
|Ū=x,N̄i=y

f

≥
dNi(t)

dt
|U=x,Ni=y. (75)

and (f) is an equality whenβ = 0. (e) follows from (66)
and (72). And (f) is due to (70) and (67). From the above
equations, we can deduce that

dN̄l

dŪ
|Ū=x,N̄i=y ≤

dNl

dU
|U=x,Ni=y. (76)

Note that the range of functionsU(t) and Ū(t) are identical,
[I(0), N ]. SinceNl(0) = N̄l(0), from the above equation, we
get thatNl(Tj) ≥ N̄i(Tj), Also, equality holds whenβ = 0.

Let τ̄ be the instant at which̄Nw(τ̄ ) = 0. Then, the number
of legal copies,Nl(t), is given by

N̄l(t) =

{ (

CN

β

)

eβt − CN

β t ∈ (0, τ̄ ],

N̄l(τ̄) t > τ̄ .
(77)

The above result follows from (66) and the initial condition
Nl(0) = 0. Now, we resort to find̄τ . Note that,N̄w(τ̄ ) = 0
implies Ū(τ̄ ) = N . Therefore, first we derivēU(t) and then,
finds the time at which̄U(t) reachesN .

Note thatŪ(0) < N
1+ρ , by assumption. Then, from (66) and

(67), we get that

dŪ(t)

dt
= ρŪ(t) + CN , if t ∈ [0, ν],

whereν is defined as̄U(ν) = N
1+ρ . Solving the above equation

with the initial conditionŪ(0) = 0 yields

Ū(t) =
CN

κ
eκt −

CN

κ
, if t ∈ [0, ν]. (78)

Then, from the above resultν can shown to beν = 1
κ ln(H),

whereH = 1 + κ lnN
1+ρ .

Now, consider the caset ∈ [ν, τ̄ ]. Then, N
1+ρ ≤ Ū(t) ≤ N

and hence, from (67),

dNi

dt
= N − N̄l(t)− N̄i(t), if t ∈ [ν, τ̄ ].
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Solving the above equation, we get

N̄i(t) = N −

(

N̄l(ν) +
CN

β

)

eβ(t−ν)

1 + β
+
CN

β

+

(

N̄i(ν) +
N̄l(ν)

1 + β
−

CN

1 + β
−N

)

e−(t−ν),

= N −
CN

β

eβ(t)

1 + β
+
CN

β

−

(

Nρ

1 + ρ
+
CNe

βν

1 + β

)

e−(t−ν),

for t ∈ [ν, τ̄ ]. Here, the second equality is obtained by
replacingN̄i(ν) with Ū(ν)− N̄l(ν) and by substitutinḡNl(ν)
from (77). Then,Ū(t), which is eqaul toN̄l(t) + N̄i(t), is
given by

Ū(t) = N +
CNe

βt

1 + β
−

(

Nρ

1 + ρ
+
CNe

βν

1 + β

)

e−(t−ν).

Now, solving fort, from Ū(t) = N , we get that

τ̄ = ν +
1

1 + β
ln

(

1 +
lnN(1 + β)e−βν

1 + ρ

)

(79)

=
1

κ
lnH +

1

1 + β
ln

(

1 +
lnN(1 + β)H

−β
κ

1 + ρ

)

. (80)

The second result follows by susbtitutingν = 1
κ lnH , where

H = 1 + κ lnN
1+ρ .

Finally, substitutingτ̄ in (77) yields N̄l, which completes
the proof.

As mentioned in the statement of Lemma 11, the inequality
is exact in the case ofβ = 0. Additionally, in this case, the
form of Nl(T∞) simplifies.

Corollary 12. Let β = 0. Then, the number of legal copies at
the end of Phase4 is given byNl(T∞) = CN τ̄ ,

Now that we have characterized the number of legal and
illegal copies precisely, attaining the statement in Theorem 3
is accomplished by studying the asymptotics of the results in
Lemma 11 and Corollary 12. From (10), Lemma 11, Corollary
12 and equation (68), we can show that

L ∈ Ω





1

lnN

(lnN)
β
κ − 1

(

β
κ

)



 , (81)

andL ∈ Θ
(

ln lnN
lnN

)

if β = 0, which completes the proof.

APPENDIX D
PROOF OFTHEOREM 4

In our model, an efficient illicit P2P is characterized by
efficiency parameter,η(t), equal to one. Then, from (8), the
evolution of illegal copies of content in the system,Ni(t), is
given by

dNi(t)

dt
= min

{

Nw(t) +
dI(t)

dt
, ρNl(t) + κNi(t)

}

. (82)

And, the evolution of legal copies of the content in the system,
Ni(t), is given by,

dNl(t)

dt
=

{

CN + βNl(t) Nw(t) > 0,

min{CN + βNl(t),
dI
dt −

dNi

dt } Nw(t) = 0.
(83)

Fig. 6. Evolutionary phases of the growth of Legal and Illegal copies of
content in the presence of an efficient Illicit P2P

As the interest for the content evolves according to the Bass
demand model, the evolution ofNl(t) and Ni(t) traverses
along multiple stages of dynamics as shown in Figure 6.
Below, we discuss these stages of evolution in detail.

Stage1: By assumption,Nl(0) = I(0), Ni(0) = 0 and
Nw(0) = 0 whereI(0) is the initial demand in the system.
Then,

Nw(0) +
dI(t)

dt
|t=0 > ρNl(0) + κNi(0).

The above result follows from our assumption thatκ < 1 −
I(0)
N . Therefore, att = 0, from (82),

dNi(t)

dt
= ρNl(t) + κNi(t). (84)

From (83), the evolution ofNl(t) at time t = 0 is,

dNl(t)

dt
=

dI(t)

dt
−
dNi(t)

dt
, (85)

=
dI(t)

dt
− (ρNl(t) + κNi(t)). (86)

The first equality follows from the facts thatNw(0) = 0 and
dI(t)
dt |t=0 < CN . Also, from the above equations, we get that
Nl(t) +Ni(t) = I(t).
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The evolution exits Stage1 when any one of the following
conditions is attained,

C1 :
dI

dt
(t)−

dNi

dt
≥ CN + βNl(t), (87)

C2 :
dI

dt
(t) ≤ ρNl(t) + κNi(t). (88)

Here, C1 occurs when the number of wanters approaching
the legitimate CDN exceeds its current capacity, Then, from
(83), the dynamics of evolution ofNl(t) changes. C2 happens
when the number of users attempting to download from the
illicit P2P reduces below the current capacity of the illicit P2P.
Then, from (82), the dynamics of evolution ofNi(t) changes.
Next, we show ifκ < 1− 2√

lnN
, C1 occurs before C2 and the

evolution proceeds to Stage2. Otherwise, Stage1 is followed
by Stage7.

Now, let T2, be the time at which C1 is attained, i.e,

dI(t)

dt
|t=T2 −

dNi(t)

dt
|t=T2 = CN + βNl(T2),(89)

⇒
dI(t)

dt
|t=T2 − κI(T2) = CN (90)

⇒ I(T2) =
N(1− κ)

2

[

1−

√

1−
4

lnN(1− κ)2

]

(91)

The second equality follows from (84) along with the facts that
κ = ρ + β andNl(t) + Ni(t) = I(t). Equation (91) follows
from the definition ofI(t). In the above equation,T2 has a
real positive solution iffκ < 1 − 2√

lnN
. Also, let T7 be the

time at which C2 is attained, i.e,
dI(t)
dt |t=T7 = ρNl(T7) + κNi(T7)

⇒ dI(t)
dt |t=T7 − κI(T7) = −βNl(T7). (92)

The second equality follows from the facts thatκ = ρ + β
andNl(t) +Ni(t) = I(t). From (90), (92) and the definition
of I(t), it can be shown that, ifT2 has a real valued solution,
then T2 < T7. Therefore, Stage1 is followed by Stage2 if
κ < 1− 2√

lnN
and, Stage7 otherwise.

Stage2 : The evolution enters Stage2 from Stage1 due to
the condition C1 given by (87). Then, the dynamics ofNi(t)
does not change from that of Stage1,

dNi

dt
= ρNl(t) + κNi(t), (93)

but the dynamics ofNl(t) changes to,

dNl

dt
= CN + βNl(t). (94)

Also, from the above equations and (87),Nl(t)+Ni(t) ≤ I(t).
A transition from this stage occurs when any one of the

following conditions is satisfied,

C3 : CN + βNl(t) ≥
dI(t)

dt
−
dNi(t)

dt
,

Nw(t) = 0, (95)

C4 :
dI(t)

dt
+Nw(t) ≤ ρNl(t) + κNi(t). (96)

Here, C3 occurs when the number of wanters in the system
goes to zero and the rate at which newly generated popula-
tion approaching the legitimate CDN falls below its current

capacity. Then, from (83), the dynamics of evolution ofNl(t)
changes. C2 happens when the number of users attempting
to download from the illicit P2P reduces below the current
capacity of the illicit P2P. Then, from (82), the dynamics of
evolution ofNi(t) changes. The evolution enters Stage3, if
C3 is attained before C4. Otherwise, it proceeds to Stage4.

Let T3 mark the time at which the evolution enters Stage3.
Then, from C3 and (93),

CN + βNl(T3) ≥
dI(t)

dt
|t=T3 − (ρNi(T3) + κNl(T3)), (97)

and Nw(T3) = 0. (98)

Also, let Stage4 start at timet = T4. Then, from C4,

dI(t)

dt
|t=T4 +Nw(T4) = ρNl(T4) + κNi(T4). (99)

Stage3: The evolution enters Stage3 from Stage2 due
to the condition C3 given by (95). Then, the dynamicsNi(t)
does not change from that of Stage2,

dNi(t)

dt
= ρNl(t) + κNi(t), (100)

but, the evolution ofNl(t) changes to,

dNl(t)

dt
=

dI(t)

dt
−
dNi(t)

dt
, (101)

=
dI(t)

dt
− (ρNl(t) + κNi(t)). (102)

This stage starts att = T3, which is defined by (97) and
(98). From the above dynamics equations and (98), we get
Nl(t) +Ni(t) = I(t).

We show that the evolution ofNl(t), given by (101), does
not change as long as the evolution ofNi(t) does not deviate
from (100). This claim holds true if

CN + βNl(t) ≥
dI(t)

dt
− (ρNl(t) + κNi(t)),

⇒
dI(t)

dt
− κI(t) ≤ CN , (103)

for all t ≥ T3. The second inequality follows from the facts
κ = ρ + β andNl(t) + Ni(t) = I(t). At t = T3 the above
requirement is met, which follows from (97). Then, we get

I(T3) ≥
N(1− κ)

2
, (104)

from the definition ofI(t) and (103). The functiondI(t)dt −

κI(t) is monotonically decreasing ifI(t) > N(1−κ)
2 . Then,

(103) holds for allt > T3 and that proves our claim.
The above discussion implies that a transition from this

stage happens only when the dynamics of evolution ofNi(t)
changes. From (82) and (100), the dynamics ofNi(t) changes,
when the number of users downloading from the illicit P2P
reduces below the current capacity of illicit P2P,

C5 :
dI(t)

dt
≤ ρNl(t) + κNi(t). (105)

When C5 occurs, evolution enters Stage5. Let this occurs at
t = T5. Then,

dI(t)

dt
|t=T5 = ρNl(T5) + κNi(T5). (106)
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Stage4: The evolution enters Stage3 from Stage2 due to
the condition C4 given by (96). Then, the dynamics ofNl(t)
does not change from that of Stage2,

dNl(t)

dt
= CN + βNl(t), (107)

but the evolution ofNi(t) changes to,

dNi(t)

dt
= Nw(t) +

dI(t)

dt
, (108)

This stage starts at timet = T4 defined by (99).
We claim that the evolution ofNi(t) follows (108) for all

t ≥ T4. This claim holds true if
(

Nw(t) +
dI(t)

dt

)

≤ ρNl(t) + κNi(t), (109)

for all t ≥ T4. Note that Equation (109) holds true att = T4.
Since,Nw(t) = I(t) − (Nl(t) + Ni(t)) by definition, from
Equation (108), we get thatdNw(t)

dt < 0. Also, using the
definition ofNw(t) in (99), we can show that

dI(t)

dt
|t=T4 − κI(T4) = −(1 + κ)Nw(T4)− βNl(T4) < 0.

Then, from the definition ofI(t), the above result holds for
all t ≥ T4. Then, we get

d

dt

(

Nw(t) +
dI

dt

)

<
d

dt
(ρNl(t) + κNi(t)),

which along with (99) proves (109).
The above discussion implies that a transition from this

stage occurs when the evolution ofNl(t) changes. From (107)
and (83), the evolution ofNl(t) changes when the number of
wanters goes to zero. Then,

Nw(T6) = 0. (110)

whereT6 marks the beginning of Stage6.
Stage5,6,7:

These are the final stages of evolution. Stage5 is preceded
by Stage3, Stage6 is preceded by Stage4, and Stage7 is
preceded by Stage1. The dynamics of all these stages are
identical,

dNl(t)

dt
= 0, (111)

dNi(t)

dt
=

dI(t)

dt
. (112)

It is easy to see that the evolutions ofNl(t) andNl(t) stay in
these stages forever once they reach here.

In summary, if κ ≥ 1 − 2√
lnN

, the evolution
of Ni(t) and Nl(t) traverse along the sequence
of phases, Stage 1 →Stage 7. Otherwise, they
proceed along the sequence of phases,Stage 1 →
Stage 2 →Stage 3(Stage 4) →Stage 5(Stage 6). In the
next section, we analyze these two cases separately and
obtain a lower bound on number of legal copies of the
content in the system at the end of evolution.

A. Analysis

We first consider the case,κ ≥ 1− 2√
lnN

. Let us introduce
a few notation before stating the result. We define

Φ(x) =

(

I(0)

N

)β

N
[

(1− κ)ψ
(

β,
x

N

)

− κψ
(

β − 1,
x

N

)]

,

(113)
andψ(β, x) =

∫ x

I(0)/N

(

1−u
u

)β
du. Also, let

T̄ = ln

[

N(1− κ)G

I(0) (2− (1− κ)G)

]

, (114)

where G = 1 +
√

1 + 4βD
N(1−κ)2 and D = Φ(N(1 −

κ))
(

N(1−κ)
I(0)κ

)β

. Now, we are ready to provide the result.

Lemma 13. Assumeκ ≥ 1 − 2√
lnN

. Then, a lower bound
on the number of legal copies of the content in the system at
t = T∞ is given by,

Nl(T∞) ≥ (Φ(I(T̄ )) + I(0))eβT̄ . (115)

whereI(t) is given by(3).

Proof: Recall that, whenκ ≥ 1 − 2√
lnN

, the evolution
of Nl(t) andNi(t) takes place in two stages, namely Stage1
and Stage7. Solving the dynamics of evolution in Stage1,
given by (85) and (84), we get

Nl(t) = (Φ(I(t))− Φ(I(0))eβt + I(0)eβt,

= (Φ(I(t)) + I(0))eβt, (116)

whereΦ(x) is defined by (113). The second equality follows
sinceΦ(I(0)) = 0.

Stage7 starts att = T7. Recall from (92) thatT7 is a
solution to the equation,

dI(t)

dt
− κI(t) = −βNl(t)

. It is not easy to solve the above equation exactly . Hence,
here, we obtain a lower bound onT7. Let r = ln(N(1−κ)

I(0)κ ).
Note that, att = r,

dI

dt
(t)− κI(t) = 0.

Also, the functiondI
dt (t) − κI(t) is positive fort < r and, it

is monotonically decreasing fort ≥ r. Then,r ≤ T7. Then,
Nl(r) ≤ Nl(T7). That implies the solution of the equation,

dI

dt
− κI(t) = −βNl(r),

must be less than or equal toT7. Now, substitutingNl(r) from
Equation (116) in the above equation, and then, solving fort
yields T̄ , which is defined by (114), as the unique solution.
Since no legals are generated in Stage7 according to (111),
andT7 ≥ T̄ , we have

Nl(T∞) = Nl(T7) ≥ Nl(T̄ ).

Now, obtainNl(T̄ ) from (116) and substitute in the above
inequality to prove the lemma.
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Now, we consider the second case whereκ < 1 − 2√
lnN

.
We introduce a few notation before stating the result. Let

I2 = N(1−κ)
2

[

1−
√

1− 4
lnN(1−κ)2

]

, (117)

T2 = ln
[

NI2
I(0)(N−I2)

]

, (118)

I3 = I2e
∆T1

1− I2
N

+
I2
N

e∆T1
, (119)

∆T1 = 1
κ ln

[

c
κ
+N(1−κ)

2 [1+H]
c
κ
+

N(1−κ)
2 [1−H]

]

, (120)

∆T2 = 1
κ ln

[

c
κ
+I3

c
κ
+I2

]

, (121)

T̄3 = T2 +∆T2 (122)

L3 = C
β (e

β∆T2 − 1) + (Φ(I2) + I(0))eβT̄3 ,

whereH =
√

1− 4
lnN(1−κ)2 .

Also, let

I4 = I(T̄3) =
I(0)eT̄3

1− I(0)
N

+ I(0)
N

eT̄3
, (123)

I5 = N(1−κ)
2

[

1 +
√

1 + 4βL3

N(1−κ)2

]

, (124)

T̄5 = ln
[

NI5
I(0)(N−I5)

]

, (125)

L4 = (Φ(I5)− Φ(I4))e
βT̄5 + L3e

β(T̄5−T̄3),

whereI(t) is the Bass demand function.

Lemma 14. Assumeκ < 1− 2√
lnN

. Then, a lower bound on
the number of legals att = T∞ is given by,

Nl(T∞) ≥

{

L3 if T̄5 ≤ T̄3
L4, else.

(126)

Proof: Whenκ < 1− 2√
lnN

, the evolution of ofNl(t) and
Ni(t) takes place along a sequence of stages, which is given
by, ‘Stage1 → Stage2 →Stage3(or Stage4)→Stage5(or
Stage 6)’. An exact characterization ofNl(t) and Ni(t)
might be quite difficult as the analysis involves solving many
complex differential equations. Therefore, we define two pro-
cessesN̄l(t) and N̄i(t); N̄l(t) boundsNl(t) from below and
N̄i(t) boundsNi(t) from above. We analyze these bounding
processes instead of the actual processes.

We go through a sequence of intermediate steps to prove
this lemma.
Step 1: DefineN̄l(t) and N̄i(t)

First of all, let N̄l(0) = Nl(0) and N̄i(0) = Ni(0). Let
N̄l(t) evolves as follows,

dN̄l(t)

dt
=















dI
dt − (ρN̄l(t) + κN̄i(t)), [0, T2],

CN + βN̄l(t), [T2, T̄3],
dI
dt − (ρN̄l(t) + κN̄i(t)), [T̄3,max{T̄3, T̄5}],

0, [max{T̄3, T̄5}, T∞].
(127)

Also, let

dN̄i(t)

dt
=























(ρN̄l(t) + κN̄i(t)), [0, T2],
(ρN̄l(t) + κN̄i(t))

+Rδ(t− T̄3), [T2, T̄3],
(ρN̄l(t) + κN̄i(t)), (T̄3,max{T̄3, T̄5}],

dI
dt [max{T̄3, T̄5}, T∞].

(128)

where T2 is given by (118),T̄3 is defined by (122),T̄5 is
defined by (125),R = I(T̄3) − (Nl(T̄3) + Ni(T̄3)) and δ(t)
is Kronecker delta function. It can be verified thatT̄3 > T2.
Also, the following equations can be verified:

dI(t)
dt

∣

∣

t=T̄3
− κI(T̄3) ≤ CN , (129)

N̄l(t) + N̄i(t) < I(t)for T2 < t < T̄3, (130)
dI(t)
dt

∣

∣

t=T̄5
− κI(T̄5) = βN̄l(T̄3). (131)

Also, we defineN̄w(t) = I(t)− (N̄l(t) + N̄i(t)). In the next
step, we show that̄Nl(t) ≤ Nl(t) for all t.

Step 2: We claim thatN̄l(t) ≤ Nl(t):
Recall that, the actual processes may pass through either
Stages3 and5 or Stages4 and6. We analyze these two cases
separately.

Case1: The evolution ofNl(t) andNi(t) takes place along
Stages3 and 5

First of all, we haveNl(0) = N̄l(0) andNi(0) = N̄i(0)
from the definition of the bounding processes. Now, suppose
T̄3 ≤ T3. Then, comparing Stage1 dynamics, (85, 84), and
Stage2 dynamics (94, 93) with the bounding process dynamics
(127, 128), we get that, fort ∈ [0, T̄3],

dN̄l(t)

dt
=
dNl(t)

dt
and

dN̄i(t)

dt
≥
dNi(t)

dt
.

Then,
N̄l(t) = Nl(t) if t ∈ [0, T̄3]. (132)

Also, supposēT5 ≤ T5. Then, comparing Stage2 dynamics,
(94, 93), Stage3 dynamics (101, 100) and Stage5 dynamics
(111, 112) with the bounding process dynamics (127, 128),
we get that, fort ∈ [T̄3, T∞],

dN̄l(t)

dt
≤
dNl(t)

dt
and

dN̄i(t)

dt
≥
dNi(t)

dt
.

Then, N̄l(t) ≤ Nl(t) for t > T̄3. To complete the proof, we
must show that̄T3 ≤ T3 and T̄5 ≤ T5.
Show thatT̄3 ≤ T3: Recall that Stage3 begins atT3 in the
evolution of the original processes. From the definition ofT3,
given by (97),

dI(t)
dt |t=T3 − (ρNl(T3) + κNi(T3)) ≤ CN + βNl(T3),

⇒ dI(t)
dt |t=T3 − κI(T3) ≤ CN . (133)

The second inequality follows from the facts thatκ = ρ+ β
andNi(T3)+Nl(T3) = I(T3) (sinceNw(T3) = 0 from (98)).

First, we guess a lower bound forT3. Suppose, at time
t = r,

I(r) =
N(1− κ)

2

[

1 +

√

1 +
4

lnN(1− κ)2

]

,

is satisfied. Note thatI(r) > I(T2) and hence,r > T2. It can
be shown that ift ∈ [T2, r],

dI

dt
(t)− κI(t) ≥ CN ,

with equality att = T2 andt = r. Also, the function,dIdt (t)−
κI(t) strictly decreasing ift ≥ r. Then, from (133) and the
fact thatT3 > T2, we conclude thatr ≤ T3.
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Now, obtain a better lower bound forT3. Let us define
U(t) = Nl(t)+Ni(t). From (98), we haveNw(T3) = 0, which
implies thatU(T3) = I(T3). We know thatU(r) ≤ I(r). Find
t′ such thatU(t′) = I(r). Then,U(t′) ≤ I(t′). Then, gets
such thatU(s) = I(t′). SinceU(t) andI(t) are monotonically
increasing, we haver ≤ t′ ≤ s ≤ T3.

From the dynamics of evolution of Stage2, given by (93)
and (94), we can show that during the interval[T2, T3],

U(t) =

(

C

κ
+ I2

)

eκ(t−T2) −
C

κ
.

Then, it can be shown thatt′ = T2 + ∆T1, I3 = I(t′) and
s = T̄3. Hence,T̄3 ≤ T3.

Show thatT̄5 ≤ T5: Recall that Stage5 begins atT5. From
(106),

dI(t)

dt
|t=T5 − κI(T5) = −βNl(T5).

The above result is due to the facts thatκ = ρ+β andNi(t)+
Nl(t) = I(t) in Stage3 and5.

We guess a lower bound forT5. From, (131),

dI(t)

dt

∣

∣

t=T̄5
− κI(T̄5) = −βN̄l(T̄3).

is satisfied. IfT̄5 ≤ T̄3, thenT̄5 ≤ T3 ≤ T5. SupposēT5 > T̄3.
Recall thatT̄3 ≤ T3 ≤ T5 andN̄l(T̄3) = Nl(T̄3) (from (132)).
Then,N̄l(T̄3) ≤ Nl(T5). Also, dI(t)

dt − κI(t) is a decreasing
function oft when its value is negative. Combining these facts
with the definitions ofT5 andT̄5, we can assert that̄T5 ≤ T5.

Case2: The evolution ofNl(t) andNi(t) takes place along
Stage4 and Stage6.

We have to consider two cases,T4 < T̄3 and T4 ≥ T̄3
respectively.

SupposeT4 < T̄3: First, we show that,

N̄l(T̄3) = Nl(T̄3). (134)

Note that the dynamics of actual and the bounding processes
are identical untillt = T4. Then,Nw(T4) = N̄w(T4). Also,
during T4 < t ≤ min{T6, T̄3}, N̄i(t) grows faster than
Ni(t), while N̄l(t) grows at the same rate as that ofNl(t).
Therefore, to prove (134) holds true, we just need to show
that T6 ≥ T̄3, which is done as follows: Note that, when
t ∈ [T4,min{T6, T̄3}], the growth rate ofNl(t)+Ni(t) is less
than that ofN̄l(t) + N̄i(t), and henceN̄w(t) ≤ Nw(t). Then,
from (130) and the definition of̄Nw(t), we getNw(t) > 0
whenT4 < t < T̄3 (sinceT4 > T2 by definition). Then, from
(110), we get thatT6 cannot be less than̄T3.

Now, supposēT5 ≤ T̄3. Then, from (134) and (127),

N̄l(T∞) = N̄l(T̄3) = Nl(T̄3) ≤ N(T∞),

which proves our claim. Now, we show that̄T5 ≤ T̄3 as
follows: For all t > T4, (109) is satisfied. Then, we get

dI(t)

dt

∣

∣

t=T̄3
− κI(T̄3) ≤ −βNl(T̄3).

due to the assumption,T4 < T̄3 and the definition ofNw(t).
But, from (131) and (134),

dI(t)

dt

∣

∣

t=T̄5
− κI(T̄5) = −βNl(T̄3).

Therefore,T̄5 ≤ T̄3 since dI
dt − κI(t) is decreasing int once

it goes negative.
SupposeT4 ≥ T̄3: Note that the dynamics of actual and the

bounding processes are identical untillt = T̄3. To prove the
claim, we show that

dNl(t)

dt
≥
dN̄l(t)

dt
when t ≥ T̄3. (135)

At t = T̄3, from (129), the dynamics of actual and the
bounding processes, the above expression holds true. Also,
during t ∈ [T̄3, T6],

dNl(t)
dt and dN̄l(t)

dt are increasing and
decreasing functions respectively. Hence, (135) holds true until
t ≤ T6. Now, we show that̄T5 < T6, and hence the growth rate
of N̄l(t) is zero fort ≥ T6. This asserts that (135) holds for
t ≥ T6. The proof is as follows: From (99) and the definition
of Nw(t), we get

dI(t)

dt
|t=T4 − κI(T4) = −βNl(T4)− (1 + κ)Nw(T4). (136)

Then, T̄5 ≤ T4 due to these reasons:1) T̄5 satisfies (131),
2) βN̄l(T̄3) = βNl(T̄3 < βNl(T4) + (1 + κ)Nw(T4) since
T̄3 < T4 by assumption,3) dI(t)

dt − κI(t) is decreasing once
its value goes negative. Now, sinceT4 < T6, we haveT̄5 < T6,
and hence (135) is attained.

Having shown thatN̄l(t) boundsNl(t) from below, we
evaluateN̄l(T∞) in the next step.

Step 5: Evaluate the bounding process,̄Nl(T∞):
Find N̄l(T2): The evolution of the bounding processes

during [0, T2] are given by (127) and (128). Solving them,
we get

N̄l(t) = (Φ(I(t))− Φ(I(0))eβt + I(0)eβt,

= (Φ(I(t)) + I(0))eβt,

whereΦ(x) is defined by (113). The second equality holds
true sinceΦ(I(0)) = 0.

SubstitutingT2 from (118) in the above result,

N̄l(T2) = (Φ(I2) + I(0))eβT2 ,

whereI2 = I(T2).
Find N̄l(T̄3): Solving the growth equations given by (127)

and (128), for the interval[T2, T̄3], we get

N̄l(t) =

(

C

β
+ N̄l(T2)

)

eβ(t−T2) −
C

β
.

Substituting, T̄3 from (122), and N̄l(T2) in the above
expression, we get

Nl(T̄3) =
C

β
(eβ∆T2 − 1) + (Φ(I2) + I(0))eβT̄3 = L3.

whereL3 is given by (123).
Let T̄3 < T̄5. Find N̄l(T̄5): Solving the growth equations

given by (127) and (128), for the interval[T̄3, T̄5], we get

N̄l(t) = (Φ(I(t)) − Φ(I(T̄3))e
βt + N̄l(T̄3)e

β(t−T̄3),

SubstitutingT̄3, T̄5 and N̄l(T̄3) in the above equation, we
get

N̄l(t) = (Φ(I5)− Φ(I4))e
βt + L3e

β(T̄5−T̄3) = L4,
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whereI5, I4, L3 andL4 are given by (124), (123), (123) and
(126) respectively.

Find N̄l(T∞): From (127), we have dN̄l(t)
dt = 0,

for t ≥ max{T̄3, T̄5}. Therefore, we haveN̄l(T∞) =
N̄l(max{T̄3, T̄5}). Then,

Nl(T∞) ≥ N̄l(T∞) =

{

N̄l(T̄3) = L3 if T̄5 ≤ T̄3
N̄l(T̄5) = L4, else.

We have characterized the number of legal copies generated
in the system in the presence of an efficient illicit P2P in the
previous two lemmas. Attaining the statement in Theorem 3
is accomplished by studying the asymptotics of the results in
Lemma 13 and 14. We start by introducing a few notation.

∆T3 =
1

κ
ln [κ(1− κ) lnN + (1− κ)] ,

T̃3 = T2 +∆T3, (137)

∆T4 =
1

κ
ln

[

κ(1 − κ)

1 + κ
lnN + (1− κ)

]

, (138)

T̃4 = T2 +∆T4. (139)

Also, we say,AN ∼ BN , if limN→∞
AN

BN
= 1, AN � BN ,

if limN→∞
AN

BN
≤ 1. and,AN � BN , if limN→∞

AN

BN
≥ 1.

Now, we are ready to prove the theorem.
As N goes large, for any givenκ, the assumption of

Lemma 14 thatκ < 1 − 2√
lnN

is attained. Therefore, in the
asymptotic case, we use the result of Lemma 14. That lemma
says,

Nl(T∞) ≥

{

L3, if T̄5 ≤ T̄3
L4, else.

(140)

whereT̄3, L3, T̄5 andL4 are given by (122), (123), (125) and
(126) respectively. The proof is done in two steps. First, we
evaluateL3. Next, we show thatT̄3 � T̄5. Then, from the
above equation, we get thatNl(T∞) � L3.

EvaluateL3: As N goes larger, it can be shown that,

I2 ∼
N

lnN(1− κ)
, ∆T2 ∼

1

κ
ln (κ(1− κ) logN) ,

T2 ∼ ln

(

N

I(0)(1− κ) lnN

)

,

T̄3 ∼ ln

[

N(κ(1− κ) lnN)
1
κ

I(0)(1− κ) lnN

]

.

Φ(I2) ∼

(

I(0)

N

)β

N
(1− κ)

(1 − β)

(

1

(1 − κ) lnN

)1−β

.

The above results follows from (117), (121), (118), (122) and
(113) respectively. Substituting the above results in (123), we
get that

L3 ∼
N

lnNβ

(

(lnNκ(1− κ))
β
κ

(1− β)
− 1

)

. (141)

Show thatT̄3 � T̄5: First of all, from (125) and (124), note
that,I(T̄5) = I5 andI5 ≤ N . Also, for large values ofN , from
(122) and the definition ofI(t), we can show that,I(T̄3) ∼ N .
Combining these two results, we getI(T̄5) � I(T̄3) This result
in turn implies thatT̄5 � T̄3, since I(t) is monotonically
increasing.

Hence, from (140),

Nl(T∞) � L3.

From (141), the above equation, and (10), we get (16), which
completes the first part of theorem.

The second part of the theorem deals with the caseβ = 0.
From, (16), we have,

L ∈ Ω

(

ln lnN

lnN

)

. (142)

Now, to complete the proof, it suffices to prove the following
lemma.

Lemma 15. Whenβ = 0,

L ∈ o

(

ln lnN

lnN

)

.

Proof: Recall that whenκ < 1 − 2√
lnN

, which holds
for any κ when N is large, the evolution ofNl(t) and
Ni(t) takes place along the sequence of phases,‘Stage1 →
Stage2 →Stage3 ( or Stage4)→Stage5 ( or Stage6)’. We
analyze each of these phases and obtain an upper bound on
Nl(T∞) as follows.

Stage1: An upper bound on the number of legal copies at
the end of this stage is given by,

Nl(T2) �
N

lnN(1− κ)
. (143)

which follows from the facts thatNl(t) ≤ I(t) for all t and
I(T2) ∼ N

lnN(1−κ) . Stage2: First we show that asN goes
large, T4 � T3 and hence, in the asymptotic case Stage2
is followed by Stage4. The proof of this claim proceeds as
follows. Let, U(t) = Nl(t) + Ni(t). From the dynamics of
evolution of Stage2, given by (93) and (94),

U(t) =

(

C

κ
+ I2

)

eκ(t−T2) −
C

κ
, (144)

where I2 is given (117) andT2 is given by (118). Now,
substitutingT̃3 from (137) in the above equation, we get

U(T̃3) ∼ I(T̃3).

Also, it is easy to verify that̄T3 satisfies (97). These results
along with the definition ofT3, given by (97-98), implies that
T̃3 ∼ T3. Similarly, substitutingT̃4 in (144), we can show that

U(T̃4) ∼
1

1 + κ

(

I(T̃4) +
dI

dt
(T̃4)

)

.

This result along with the definition ofT4, given by (99),
implies thatT̃4 ∼ T4.

We have,T̃4 � T̃3, since

U(T̃4) =
N

1 + κ
< N = U(T̃3),

andU(t) is monotonically increasing. Therefore, we conclude
that T4 � T3. And hence, this stage is always followed by
Stage4.

Then, from the dynamics ofNl(t), given by (94),

Nl(T4) = Nl(T2) + CN (T4 − T2).
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Now, from (143) and the definitions of̃T4 andT2, we get

Nl(T4) �
N

lnN(1− κ)
+

N

κ lnN
ln

(

lnN
κ(1− κ)

1 + κ
+ 1− κ

)

.

(145)
Stage 4: This stage starts at timet = T4. From the

discussion given above (in Stage3 analysis),T4 ∼ T̃4. Then,
from (139),I(T4) ∼ I(T̃4) ∼ N and dI

dt (T4) ∼
dI
dt (T̃4) ∼ 0.

Also, Nw(T4) = I(T̃4) − U(T̃4) ∼
Nκ
1+κ . Recall thatU(t) =

Nl(t) +Ni(t). And U(T̃4) is obtained from (144) and (139).
Using these facts and the dynamics ofNi(t) andNl(t) given

by (108) and (107) respectively, we show that,

U(t) = (CN +N)(1− e−t) + U(T̃4)e
−(t−T̃4).

This stage terminates, when no Wanters are left to be served,
i.e U(t) ∼ N . Let T̃6 marks this event. Then,

T̃6 ∼ ln

(

lnN

1 + κ

)

.

The legal copies of content generated in this phase isCN ×
(T̃6 − T̃4) from the dynamics ofNl(t) given by (107). Then,
from the above result and (145), we get

Nl(T∞) �
N

lnN
ln

[

(lnN)(
1
κ
+1)

1 + κ

(

(1 − κ)κ

(1 + κ)

)
1
κ

]

,

which completes the proof.

APPENDIX E
TECHNICAL LEMMAS

Lemma 16. Consider a differential equation given

dy

dt
= CN +

βy

N
(I − U(t)) (146)

where

U(t) =
Nθ2
κ

+
N∆θ/κ

1 + be−∆θ(t−T )
.

Then for allt−T > ln b
∆θ , the solution to the above differential

equation satisfies the inequality

y(t) ≥ y(T )
(

1+b
d

)

β
κ e(−q1(t−T ))

+CN

(

b
d

)

β
κ e(−q1(t−T ))

(

e(q1
ln b
∆θ )

q1
− 1

q1

)

1b≥1

+CN

(

1
d

)
β
κ e(−q1(t−T ))

(

e(q2∆τj)

q2
− e(q2

ln b
∆θ )

q2
1b≥1

)

−CN

(

1
d

)
β
κ e(−q1(t−T )) 1

q2
(1− 1b≥1), (147)

where d = (b + exp(∆θ(t − T ))), q1 =
(

βθ2
κ − βI

N

)

and

q2 = βθ1
κ − βI

N . Furthermore, forβ = 0, equality holds.

Proof: A general solution to the above differential equa-
tion is

y(t) =

∫

CN exp(
∫

Pdt) +M
∫

Pdt
(148)

whereP (t) = − β
N (I − U(t)). We have

∫

Pdt = −
βIt

N
+
βθ2t

κ
+
β

κ
ln (1 + (1/b) exp(∆θ(t − T ))) .

Then,

CNe
∫

Pdt = CNB(t) exp

(

βθ2
κ

−
βIt

N

)

t,

where
B(t) = (1 + (1/b) exp(∆θ(t− T )))

β
κ .

For b ≥ 1, we can lower boundB(t) as

B(t) ≥

{

1 t ≤ ln b
∆θ + T

(

1
b

)
β
κ exp

(

β
κ∆θ(t− T )

)

t > ln b
∆θ + T.

(149)

On the other hand, ifb < 1,

B(t) ≥

(

1

b

)
β
κ

exp

(

β

κ
∆θ(t− T )

)

, ∀t. (150)

Let us now evaluateA(t). We have

A(t) =

∫

CNe
∫

Pdtdt.

Initially consider the caseb ≥ 1. For t < ln b
∆θ + T , it is easy

to verify that

A(t) ≥ CN

exp
((

βθ2
κ − βI

N

)

t
)

βθ2
κ − βI

N

(151)

where the inequality follows from (149). Fort > ln b
∆θ +T , we

have

A(t) ≥ A(
ln b

∆θ
+ T ) +

∫ t

ln b
∆θ

+T

CNe
∫

Pdt (152)

≥ CN exp (q1T ) exp

(

q1
ln b

∆θ

)

1

q1

+ CN exp (q1t)

(

1

b

)
β
κ exp

(

β∆θ
κ (t− T )

)

q2

− CN exp (q1T )

(

1

b

)
β
κ exp

(

q2
ln b
∆θ

)

q2
.

whereq1 =
(

βθ2
κ − βI

N

)

andq2 = βθ1
κ − βI

N .
In the second case, in whichb < 1, for all values oft, we

have,

A(t) ≥ CN exp (q1t)

(

1

b

)
β
κ exp

(

β∆θ
κ (t− T )

)

q2
.

where the inequality follows from (150).
Then, combining the expressions ofA(t) in both cases, for

t > ln b
∆θ + T , we have,

A(t) ≥ CN exp (q1T ) exp

(

q1
ln b

∆θ

)

1

q1
1b≥1 (153)

+ CN exp (q1t)

(

1

b

)
β
κ exp

(

β∆θ
κ (t− T )

)

q2

− CN exp (q1T )

(

1

b

)
β
κ exp

(

q2
ln b
∆θ

)

q2
1b≥1.

where1b≥1 is the indicator function defined by (51).
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Using the above result in equation (148), we get that for
t > ln b

∆θ + T ,

y(t) =
M

exp(
∫

Pdt)
+

A(t)

exp(
∫

Pdt)
(154)

≥M

(

b

d

)
β
κ

exp (−q1t)

+ CN

(

b

d

)
β
κ

exp (−q1(t− T )) exp

(

q1
ln b

∆θ

)

1

q1
1b≥1

+ CN

(

1

d

)
β
κ exp

(

β∆θ
κ (t− T )

)

q2

− CN

(

1

d

)
β
κ

exp (−q1(t− T ))
exp

(

q2
ln b
∆θ

)

q2
1b≥1.

(155)

whered = (b+ exp(∆θ(t− T ))).
Using boundary conditions, we can show that

M =

(

1 + b

b

)
β
κ

exp (q1T )

(

y(T )− CN

(

b

1 + b

)
β
κ 1

q1
1b≥1

)

−

(

1 + b

b

)
β
κ

(

CN

(

1

1 + b

)
β
κ 1

q2
(1 − 1b≥1)

)

.

Substituting the above equation in equation (155) and rearrang-
ing yields (147). Forβ = 0, the inequalities in equations (149)
and (150) become equalities and we get the lemma.
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