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Abstract

In many areas of science and engineering there is a need for techniques to robustly extract velocity and its derivatives from a
finite sample of observed positions. The extracted information can be used to infer related quantities such as curvatureand speed,
which are important for analysis of strategies and feedbacklaws associated with the motion. In this work a novel approach is
proposed to reconstruct trajectories from a set of discreteobservations. A simple linear model is used as the generative model
for trajectories, and high values of the jerk (derivative ofthe acceleration) path integral are penalized during reconstruction. The
positions, reconstructed in this way, can be represented asa linear combination of the sample data. The regularization(penalty)
parameter plays a very important role in the reconstructionprocess, and it may be determined from data using ordinary cross
validation.

I. I NTRODUCTION

One finds evidence of collective motion in many natural settings. From schools of fish [1] to aerial display by large flocks of
starling [2] - we find agents moving collectively by interacting with each other. On the other hand, pursuit can be observed in
different kinds of intra- and inter- species encounters, such as bat-bat pursuit [3] or dragonfly foraging [4]. As both collective
motion and pursuit play a significant role also in engineering settings, it seems to be a relevant effort to explore underlying
strategies and control laws governing collective motion, by extracting parameters of motion (namely curvature, speed, lateral
acceleration etc.) from sampled observations of trajectories.

The problem of recovering an underlying smooth signal from sampled noisy observations arises in many fields of applied
science. This inverse problem is ill-posed in the sense thatnaive solutions are highly sensitive to noise, and non-unique. Tackling
such problems by the method of regularization has a long history [5]. In this paper we focus on a class of such problems
associated to reconstructing smooth trajectories of animal movement (e.g. starlings in a flock [2], echolocating bats engaged in
prey capture [3][6], fish schools [1]) from time samples of 3Dposition. Typically such time-samples are gathered from video
imagery (at rates anywhere from 10Hz to 1000Hz) using a multi-camera network subject to computer vision algorithms to
determine 3D positions of feature points (e.g. center of mass of a starling in flight) from 2D projections. Taking the result of
such vision processing as a starting point, we seek to extract noise-robust smooth trajectories. In what follows, we turn this
into an optimal control problem for agenerative model of feature point trajectories, and the choice of cost functional to be
optimized specifies the regularization imposed on the data.

Treating feature points as self steering particles with trajectoriesr(t) in three dimensions, a natural generative model is

ġ = νgξ

r =
[

I 0
]

ge
4
.

}

(1)

HereI denotes the3× 3 identity matrix,g(t) denotes a4× 4 matrix representation of a curve in the special euclidean group
SE(3):

g =

( [

T M1 M2

]

r

0 1

)

.

The3×3 block
[

T M1 M2

]

denotes a natural framing ofr, an orthonormal triad withT the normalized velocity. Letting
ξ0 = E

14
; ξ2 = E

13
−E

31
; ξ3 = E

21
−E

12
, denote standard basis elements inse(3) the Lie algebra ofSE(3), ande

4
denote

a standard basis vector inR4, we set
ξ = ξ0 + uξ3 − vξ2.

Thenu andv are natural curvatures (steering controls) andν is the speed of the trajectoryr(t). The existence and uniqueness
(up to a single rotational degree of freedom) of such a generative model for every twice differentiable trajectoryr(t) is discussed
in [7], and exploited in a series of papers (c.f. [8]) investigating pursuit models in nature and engineering.
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In this setting the optimal control problem takes the form (hereλ > 0),

Minimize

( N
∑

i=0

‖r(ti)− ri‖
2 + λ

∫ T

0

(

u̇2 + v̇2 + ν̇2
)

dt

)

(2)

subject to the generative model (1), given a time sample{ri}
N
i=0. The nonlinear nature of this optimization problem leads

one to resort to mathematical programming algorithms as in [9], to determine the inputsu, v, ν. We note that the purpose of
such reconstruction is to look for evidence in the data for theoretically based feedback steering control laws (in [9][10] this
pertained to sonar-guided pursuit of a prey insect by a bat).In the absence of a full-fledged integrability theory for optimal
control problems in Lie groups (but see [11][12]) one resorts to numerical, constrained optimization for (2).

On the other hand, one observes that steering control may be expressed in terms lateral acceleration. This in turn suggests
resorting to an alternative linear generative model drivenby acceleration as input and a regularization cost given by aquadratic
in jerk, the derivative of acceleration. This allows one to fully exploit the integrability theory of linear-quadratic optimal control,
given by Riccati equations, as in the rest of this paper. For adifferent view of exploiting linear optimal control for smooth
interpolation see [13].

II. PROBLEM STATEMENT

Given a time series of observed positions in three dimensional space, our primary objective is to generate a smooth trajectory
to fit these data points. To assure smoothness of the reconstructed trajectory we penalize high values of the jerk path integral.
This particular penalty term is very relevant and carries a similar effect as the penalty term considered in (2). Moreover it is
very significant in the context of physiological movement, as described in [14] and [15].

Let {ri}Ni=0 be the set of observed positions. We are interested in findinga trajectoryr : [0, T ] → R3 (t0 = 0, tN = T ) to
minimize the following cost:

N
∑

i=0

‖r(ti)− ri‖
2 + λ

∫ T

0

‖r(3)(t)‖2dt

where(·)(k) implies k-th derivative of any function, if it exits.λ > 0 acts as a regularization parameter in the above cost. It
forces a balance between the goodness of fit and the smoothness of the trajectory. The trajectory dynamics is given by

ṙ(t) = v(t)

v̇(t) = a(t)

ȧ(t) = u(t)

wherev, a andu represents the velocity, acceleration and jerk respectively. Then the cost can be expressed as:
N
∑

i=0

‖r(ti)− ri‖
2 + λ

∫ T

0

‖u(t)‖2dt.

Now we define a statex as:

x ,





r

v

a



 (3)

and therefore the dynamics of the trajectoryx can be represented in a compact form, as

ẋ(t) = Ax(t) +Bu(t)

r(t) = Cx(t)
(4)

where

A =





0 I 0
0 0 I

0 0 0



 ;B =





0
0
I



 ;C =





I

0
0





T

with I being a3 × 3 identity matrix. It is obvious that (4) is controllable and observable. Now we can pose our smoothing
problem as a special case of the following constrained optimization problem:

Minimize
x(t0),u

J(x(t0), u) =

N
∑

i=0

‖r(ti)− ri‖
2 + λ

∫ T

0

uTudt

subject to x(t0) ∈ R
n,

u ∈ U ,

ẋ(t) = Ax(t) +Bu(t),

r(t) = Cx(t)

(5)



whereU is the space of piecewise continuous functions.

III. C ONTROL THEORETICAPPROACH TODATA SMOOTHING PROBLEM

We begin by applying in the present setting of data smoothing, a standard tool from the theory of least squares, namely the
path independence lemma for trajectories of linear systems[16].

A. Path Independence Lemma and Its Application to Completion of Squares

Consider the quadratic formxT (t)K(t)x(t), whereK : [0, T ] → Rn×n is a symmetric matrix-valued function. Then, along
(5)

∫ t
−

i+1

t
+

i

d
(

xTKx
)

=

∫ t
−

i+1

t
+

i

(

xTK (Ax+Bu) + (Ax+Bu)
T
Kx+ xT K̇x

)

dt

⇒

∫ t
−

i+1

t
+

i

[

x

u

]T [

ATK +KA+ K̇ KB

BTK 0

] [

x

u

]

dt+ xT (ti)K(t+i )x(ti)− xT (ti+1)K(t−i+1)x(ti+1) = 0. (6)

For brevity of notation explicit time dependence will be dropped wherever doing so does not create any ambiguity. Adding
(6) over(t+0 , t

−
1 ), (t

+
1 , t

−
2 ), · · · , (t

+
N−1, t

−
N) we obtain

∫ T

0

[

x

u

]T [

ATK +KA+ K̇ KB

BTK 0

] [

x

u

]

dt+ xT (t0)K(t−0 )x(t0) +

N
∑

i=0

xT (ti)
(

K(t+i )−K(t−i )
)

x(ti)

− xT (tN )K(t+N )x(tN ) = 0. (7)

As the quantity given by (7) equals to zero for anyu ∈ U and anyK differentiable over(t+i , t
−
i+1) ∀i ∈ {0, 1, 2, · · · , N − 1},

a multiple of it can be added to the costJ(x(t0), u) without any change. Hence we have,

J(x(t0), u) = λxT (t0)K(t−0 )x(t0)− λxT (tN )K(t+N )x(tN ) +

N
∑

i=0

xT (ti)
[

λ
(

K(t+i )−K(t−i )
)

+ CTC
]

x(ti)

+ λ

∫ T

0

[

x

u

]T [

ATK +KA+ K̇ KB

BTK I

] [

x

u

]

dt+

N
∑

i=0

(

rTi ri − 2xT (ti)C
T ri
)

. (8)

As (8) holds true for any choice ofK, at this point we make the following assumptions onK,

K̇(t) = −ATK(t)−K(t)A+K(t)BBTK(t),

K(t+N ) = 0, (9)

K(t+i )−K(t−i ) = −
1

λ
CTC.

With the assumptions (9), the costJ(x(t0), u) can be represented as

J(x(t0), u) = λxT (t0)K(t−0 )x(t0) +

N
∑

i=0

(

rTi ri − 2xT (ti)C
T ri
)

+ λ

∫ T

0

‖BTK(t)x(t) + u(t)‖2dt. (10)

Now consider the linear functionalxT (t)η(t), whereη : [0, T ] → Rn is a vector valued function. Then,
∫ t

−

i+1

t+
i

d
(

xT η
)

=

∫ t
−

i+1

t+
i

(

xT η̇ + (Ax +Bu)T η
)

dt

⇒

∫ t
−

i+1

t
+

i

[

x

u

]T [

AT η + η̇

BT η

]

dt+ xT (ti)η(t
+
i )− xT (ti+1)η(t

−
i+1) = 0. (11)

Adding (11) over(t+0 , t
−
1 ), (t

+
1 , t

−
2 ), · · · , (t

+
N−1, t

−
N ) we obtain

∫ T

0

[

x

u

]T [
AT η + η̇

BT η

]

dt+ xT (t0)η(t
−
0 ) +

N
∑

i=0

xT (ti)
(

η(t+i )− η(t−i )
)

− xT (tN )η(t+N ) = 0. (12)



As the quantity given by (12) equals to zero for anyu ∈ U and anyη differentiable over(t+i , t
−
i+1) ∀i ∈ {0, 1, 2, · · · , N − 1},

a multiple of it can be added to the costJ(x(t0), u) in (10) without any change. Hence we have,

J(x(t0), u) = λ
(

xT (t0)K(t−0 )x(t0) + xT (t0)η(t
−
0 )
)

+

N
∑

i=0

xT (ti)
[

λ
(

η(t+i )− η(t−i )
)

− 2CT ri
]

− λxT (tN )η(t+N )

+ λ

∫ T

0

(

[

x

u

]T [
AT η + η̇

BT η

]

+ ‖BTKx+ u‖2

)

dt+

N
∑

i=0

rTi ri. (13)

As (13) holds true for any choice ofη, we make the following assumptions onη,

η̇(t) = −
(

AT −K(t)BBT
)

η(t),

η(t+N ) = 0, (14)

η(t+i )− η(t−i ) =
2

λ
CT ri.

With the assumptions (14), the costJ(x(t0), u) can be represented as

J(x(t0), u) = λ
[

xT (t0)K(t−0 )x(t0) + xT (t0)η(t
−
0 )
]

+ λ

∫ T

0

‖u(t) +BT

(

K(t)x(t) +
1

2
η(t)

)

‖2dt+

N
∑

i=0

rTi ri

−
λ

4

∫ T

0

‖BT η(t)‖2dt. (15)

From (15) it is clear that by choosing

u(t) = u
opt

(t) , −BT

(

K(t)x(t) +
1

2
η(t)

)

(16)

we have

J(x(t0), uopt
) = λ

(

xT (t0)K(t−0 )x(t0) + xT (t0)η(t
−
0 )
)

+
N
∑

i=0

rTi ri −
1

4
λ

∫ T

0

‖BT η(t)‖2dt. (17)

As λ > 0, it is apparent from (17), that the necessary and sufficient condition for the cost to be minimized is,
u = u

opt
and xT (t0)K(t−0 )x(t0) + xT (t0)η(t

−
0 ) be minimized over x(t0) ∈ Rn.

Therefore,
x

opt
(t0) = arg min

x(t0)∈Rn

(

xT (t0)K(t−0 )x(t0) + xT (t0)η(t
−
0 )
)

and the optimal initial state satisfies the following condition

[

K(t−0 )
]

x
opt

(t0) +
1

2
η(t−0 ) = 0. (18)

Hence, we have

J
min

= J(x
opt

(t0), uopt
) =

N
∑

i=0

rTi ri − λ

[

xT
opt

(t0)K(t−0 )xopt
(t0) +

1

4

∫ T

0

‖BT η(t)‖2dt

]

. (19)

From (5), it is clear that
J

min
≥ 0

or in other words

xT
opt

(t0)K(t−0 )xopt
(t0) +

1

4

∫ T

0

‖BT η(t)‖2dt ≤
1

λ

N
∑

i=0

rTi ri.

It is of relevance to mention here that a Riccati equation of the form

K̇(t) = −K(t)A−ATK(t) +K(t)BBTK(t)

K(T ) = Q = QT ≥ 0

has a symmetric, positive semi-definite solution for anyt ≤ T , represented as

K(t) = e−AT (t−T )Qe−A(t−T ) − e−AT (t−T )Q

[

(

G(t, T )
)−1

+Q

]−1

Qe−A(t−T ) (20)



whereG(t, T ) is a controllability Grammian like quantity and its invertibility is guaranteed by the controllability of the system
(5). With assurance on the existence of solution, we can makethe following claim on the solution of (9).

Proposition 3.1: The solution of the Riccati equation (9) assumes the form

K(t−i ) =
1

λ

N
∑

k=i

ΦΣ(ti, tk)C
TCΦT

Σ(ti, tk)

for any i ∈ {0, 1, · · · , N} whereΣ(t) = −(A− 1
2BBTK(t))T andΦΣ is the transition matrix ofΣ.

Proof: We will use mathematical induction to prove the above claim.
From the boundary and jump conditions in (9) it is obvious that the claim holds true fori = N .
Now we assume that it holds true fori = m+ 1, or in other words

K(t−m+1) =
1

λ

N
∑

k=m+1

ΦΣ(tm+1, tk)C
TCΦT

Σ(tm+1, tk).

Using uniqueness of solution, one can easily verify that

K(t) = ΦΣ(t, tm+1)K(t−m+1)Φ
T
Σ(t, tm+1)

satisfies the Riccatti differential equation

K̇(t) = −ATK(t)−K(t)A+K(t)BBTK(t)

for any t ∈ (tm, tm+1).
Therefore,

K(t−m) = K(t+m) +
1

λ
CTC

= ΦΣ(tm, tm+1)K(t−m+1)Φ
T
Σ(tm, tm+1) +

1

λ
CTC

=
1

λ

N
∑

k=m+1

ΦΣ(tm, tk)C
TCΦT

Σ(tm, tk) +
1

λ
ΦΣ(tm, tm)CTCΦT

Σ(tm, tm)

=
1

λ

N
∑

k=m

ΦΣ(tm, tk)C
TCΦT

Σ(tm, tk).

Hence the claim is proved, as it holds true fori = m.
Now we concentrate on the dynamics ofη given by (14) and introduce a new time-varying matrix

Σ̃(t) = −(A−BBTK(t))T .

Then the dynamics ofη can be represented as
η̇(t) = Σ̃(t)η(t) (21)

for any t ∈ (ti, ti+1), wherei ∈ {0, 1, · · · , N − 1}. Let ΦΣ̃ be the state-transition matrix for (21). Then we have the following
proposition.

Proposition 3.2:

η(t+i ) = −
2

λ

N
∑

k=i+1

ΦΣ̃(ti, tk)C
T rk

η(t−i ) = −
2

λ

N
∑

k=i

ΦΣ̃(ti, tk)C
T rk

Proof: We will use mathematical induction to prove the above claim.
From the boundary and jump conditions in (14) it is obvious that the claim holds true fori = N as,

η(t+N ) = 0

η(t−N ) = −
2

λ
CT rN .

Now we assume that it holds true fori = m+ 1, or in other words

η(t+m+1) = −
2

λ

N
∑

k=m+2

ΦΣ̃(tm+1, tk)C
T rk



η(t−m+1) = −
2

λ

N
∑

k=m+1

ΦΣ̃(tm+1, tk)C
T rk.

Using the dynamics ofη, given by (21), we have the following relationship

η(t+m) = ΦΣ̃(tm, tm+1)η(t
−
m+1)

= −
2

λ
ΦΣ̃(tm, tm+1)

N
∑

k=m+1

ΦΣ̃(tm+1, tk)C
T rk

= −
2

λ

N
∑

k=m+1

ΦΣ̃(tm, tk)C
T rk. (22)

Using the jump condition attm, we obtain

η(t−m) = η(t+m)−
2

λ
CT rm

= −
2

λ

N
∑

k=m+1

ΦΣ̃(tm, tk)C
T rk −

2

λ
ΦΣ̃(tm, tm)CT rm

= −
2

λ

N
∑

k=m

ΦΣ̃(tm, tk)C
T rk. (23)

From (22) and (23) it is clear that the claim holds true fori = m.
Hence the claim is proved.

Proposition 3.3: (−ΣT , C) forms an observable pair for the problem of our interest (4).
Proof: K is a symmetric matrix by definition, and hence one can assume the following block structure forK,

K(t) =





K11(t) K12(t) K13(t)
KT

12(t) K22(t) K23(t)
KT

13(t) KT
23(t) K33(t)



 .

With this particular structure forK, we have the following expression ofΣT (t) for the jerk path integral minimization problem,

ΣT (t) =





0 −I 0
0 0 −I

1
2K

T
13(t)

1
2K

T
23(t)

1
2K33(t)



 . (24)

Now, for the sake of convenience, we use Silverman-Meadows rank condition [17] to prove our claim. To do so, we define
the matrixQobv as

Qobv(t) =
[

S0(t) S1(t) · · · Sn−1(t)
]

whereSi(t)’s are computed recursively using

Sk+1(t) = −Σ(t)Sk(t) + Ṡk(t), S0(t) = CT . (25)

TheSi(t)’s will assume the following form,

S0(t) =





I

0
0



 , S1(t) =





0
I

0



 , S2(t) =





0
0
I



 , S3(t) = −
1

2





K13(t)
K23(t)
K33(t)



 ,

and so on. Hence it can be immediately concluded that the pair(−ΣT , C) is observable as the rank ofQobv(t) is 9 for any
t ∈ R+ ∪ {0}.

Theorem 3.4: The equation (18) is uniquely solvable for almost any time index set{ti}Ni=0.
Proof: From proposition 1 we have,

K(t−0 ) =
1

λ

N
∑

k=0

ΦΣ(t0, tk)C
TCΦT

Σ(t0, tk)

=
1

λ

N
∑

k=0

ΦT
−ΣT (tk, t0)C

TCΦ−ΣT (tk, t0)



=
1

λ











C

CΦ−ΣT (t1, t0)
...

CΦ−ΣT (tN , t0)











T 









C

CΦ−ΣT (t1, t0)
...

CΦ−ΣT (tN , t0)











=
1

λ
C
T
C.

Now we investigate the rank ofC because the solvability of (18) is equivalent to the fact ofC having full rank. To do so we
consider the following system

ξ̇(t) = −ΣT (t)ξ(t)

γ(t) = Cξ(t),
(26)

which is observable (proposition 3.3). We can easily show that thej-th derivative of its output can be represented as

γ(j)(t) = ST
j (t)Φ−ΣT (t, tini)ξ(tini)

whereSj(t)’s are defined in (25).
Let ξ1 6= ξ2 be two different choice of initial stateξ(t0) for the system (26) andγi(t) be its output corresponding to the initial
conditionξ(t0) = ξi. Now we define,

Yi ,











γi(t0)
γi(t1)

...
γi(tN )











= Cξi.

Now we claim that the outputs of (26), corresponding to two different initial conditionsξ1 6= ξ2, do not match identically over
any intervalT ⊂ R+ ∪ {0}, or in other words, there is no such intervalT ⊂ R+ ∪ {0} such thatγ1(t) = γ2(t) for any t ∈ T.
We can prove our claim by contradiction. Let

CΦ−ΣT (t, t0)ξ1 = CΦ−ΣT (t, t0)ξ2

for all t belonging to some intervalT. Then the derivatives, when they exist, should match for anyt∗ in the interior ofT, i.e.

dj

dtj

(

CΦ−ΣT (t, t0)ξ1

)∣

∣

∣

∣

t∗

=
dj

dtj

(

CΦ−ΣT (t, t0)ξ2

)∣

∣

∣

∣

t∗

⇒











ST
0 (t)

ST
1 (t)
...

ST
n−1(t)











Φ−ΣT (t∗, t0)ξ1 =











ST
0 (t)

ST
1 (t)
...

ST
n−1(t)











Φ−ΣT (t∗, t0)ξ2

⇒QT
obv(t)Φ−ΣT (t∗, t0)

(

ξ1 − ξ2

)

= 0

⇒ξ1 = ξ2.

But it contradicts our initial assumption about inequalityof ξ1 andξ2, thereby proves the claim. HenceCξ1 6= Cξ2 for almost
any time index set{ti}Ni=0. ThereforeK(t−0 ) is positive definite almost surely becauseC has full rank almost surely.
When the rank condition fails, i.e.Cξ1 = Cξ2, we can consider an arbitrary close perturbation of the original time index. For
any givenǫ > 0 we can choose a perturbed time index set{t̃i}

N
i=0, such that the following conditions holds true,

t0 = t̃0,

N
∑

i=1

|ti − t̃i| < ǫ,

and,











C

CΦ−ΣT (t̃1, t̃0)
...

CΦ−ΣT (t̃N , t̃0)











has full rank.

Therefore (18) can be uniquely solved, for almost any time index set{ti}Ni=0.



Following Theorem 3.4 the optimal initial condition can be represented as

x
opt

(t0) = −
1

2

[

K(t−0 )
]
−1

η(t−0 )

=
1

λ

[

K(t−0 )
]
−1

N
∑

k=0

ΦΣ̃(t0, tk)C
T rk. (27)

B. Linear Structure in The Reconstructed Trajectory

Under the action of optimal control inputu
opt

the dynamics of the system of our interest, given in (4), looks like

ẋ(t) = Ax(t) +Bu
opt

(t)

=
[

A−BBTK(t)
]

x(t) −
1

2
BBT η(t)

= −Σ̃T (t)x(t) −
1

2
BBT η(t), (28)

or in other words it can be viewed as a time-varying linear system with η being the input. Then we can expressx(t) as

x(t) = Φ−Σ̃T (t, t0)xopt
(t0)−

1

2

∫ t

t0

Φ−Σ̃T (t, σ)BBT η(σ)dσ

= ΦT

Σ̃
(t0, t)xopt

(t0)−
1

2

∫ t

t0

ΦT

Σ̃
(σ, t)BBT η(σ)dσ. (29)

It is quite clear from (27) that the optimal initial condition is linear in terms of the observed data points. From (29) we obtain
the following representation forx(tk),

x(tk) = ΦT

Σ̃
(t0, tk)xopt

(t0)−
1

2

∫ tk

t0

ΦT

Σ̃
(σ, tk)BBT η(σ)dσ

= ΦT

Σ̃
(t0, tk)xopt

(t0)−
1

2

k
∑

i=1

[

∫ ti

ti−1

ΦT

Σ̃
(σ, tk)BBT η(σ)dσ

]

= ΦT

Σ̃
(t0, tk)xopt

(t0)−
1

2

k
∑

i=1

[

∫ ti

ti−1

ΦT

Σ̃
(σ, tk)BBTΦΣ̃(σ, ti)η(t

−
i )dσ

]

= ΦT

Σ̃
(t0, tk)xopt

(t0)−
1

2

k
∑

i=1

[

∫ ti

ti−1

ΦT

Σ̃
(σ, tk)BBTΦΣ̃(σ, ti)dσ

]

η(t−i )

= ΦT

Σ̃
(t0, tk)xopt

(t0) +
1

λ

k
∑

i=1

[

∫ ti

ti−1

ΦT

Σ̃
(σ, tk)BBTΦΣ̃(σ, ti)dσ ×





N
∑

j=i

ΦΣ̃(ti, tj)C
T rj





]

= ΦT

Σ̃
(t0, tk)xopt

(t0) +
1

λ

N
∑

i=1

[

min{i,k}
∑

j=1

(

∫ tj

tj−1

ΦT

Σ̃
(σ, tk)BBTΦΣ̃(σ, tj)dσ

)

× ΦΣ̃(tj , ti)

]

CT ri.

Therefore the smoothed position at timetk can be expressed as

r(tk) =
1

λ

N
∑

i=0

[

CF
λ
(k, i)CT

]

ri (30)

where

F
λ
(k, i) = ΦT

Σ̃
(t0, tk)

[

K(t−0 )
]−1

ΦΣ̃(t0, ti) +

min{i,k}
∑

j=1

(

∫ tj

tj−1

ΦT

Σ̃
(σ, tk)BBTΦΣ̃(σ, ti)dσ

)

for i ∈ {0, 1, · · · , N}.
From (30) it can be concluded that the smoothed outputs are linear combinations of observed data.

Remark 3.5: As F(k, i) depends only on the sampling time instances, namelyt0, · · · , tN , these coefficients can be pre-
computed.

Remark 3.6: This approach can also be viewed as a global alternative to Savitzky-Golay smoothing filters [18][19], wherein
the filtered outputs are obtained by fitting a least square polynomial (locally) through the observed data points. In our approach
the local nature is absent instead each of the filtered outputs depends on the complete data set. But because of this global



nature our approach has its own drawback. This method, in itstrue form, cannot be used in real-time as it requires all the
observations together.

Remark 3.7: The significance of the word “smoothing” is twofold in this context. Firstly this approach penalizes high values
of jerk path integral and thereby yields a smoothened trajectory. Moreover, it uses data from both past and future to estimate
the present position and thus justifies the usage of “smoothing” in estimation context.

Remark 3.8: The formulation of the problem is an example of fixed intervalsmoothing. One can use this as a building
block and proceed to obtain a fixed lag smoothing algorithm. The path is quite intuitive.

IV. A N ALTERNATIVE CO-STATE BASED APPROACH

Here we represent the solution in terms of co-state variables, defined as,

p(t) , K(t)x(t) +
1

2
η(t) (31)

Then the optimal control input (16) and system dynamics (4) will have the form

u
opt

(t) = −BT p(t)

ẋ(t) = Ax(t) −BBT p(t)

and the dynamics of the co-states will be governed by the following equation

ṗ(t) = K̇(t)x(t) +K(t)ẋ(t) +
1

2
η̇(t) = −AT p(t). (32)

Therefore the optimal trajectory between two observation times can be viewed as the base integral curve of the following
system

d

dt

[

x(t)
p(t)

]

=

[

A −BBT

0 −AT

] [

x(t)
p(t)

]

. (33)

From (33) it is apparent that the dynamics ofp is decoupled from that ofx.
Now we’ll focus on the jump conditions for the co-states

p(t+i )− p(t−i ) =
[

K(t+i )−K(t−i )
]

x(ti) +
1

2

[

η(t+i )− η(t−i )
]

=
1

λ
CT (ri − r(ti)) . (34)

We also have the following terminal condition

p(t+N ) = K(t+N )x(tN ) +
1

2
η(t+N ) = 0

as bothK(t+N ) andη(t+N ) are equal to zero and by choosingx(t0) = x
opt

(t0) we get,

p(t−0 ) = K(t−0 )x(t0) +
1

2
η(t−0 ) = 0

from (18).
Now we introduce a new variable, namely incremental time, defined as∆i , ti+1 − ti i ∈ {0, 1, · · · , N − 1}. From (33)

we have

p(t) = e−AT (t−ti)p(t+i ) t ∈ (ti, ti+1) (35)

p(t+i+1) = p(t−i+1) +
1

λ
CT (ri+1 − Cx(ti+1))

= e−AT∆ip(t+i )−
1

λ
CTCx(ti+1) +

1

λ
CT ri+1 (36)

for i ∈ {0, 1, · · · , N − 1}. From the dynamics ofx in (33), we have

x(ti+1) = eA(ti+1−ti)x(ti)−

∫ ti+1

ti

eA(ti+1−σ)BBT p(σ)dσ

= eA∆ix(ti)−

∫ ti+1

ti

eA(ti+1−σ)BBT e−AT (σ−ti)p(t+i )dσ

= eA∆ix(ti)− eA∆i

[∫ ti+1

ti

eA(ti−σ)BBT e−AT (σ−ti)dσ

]

p(t+i ). (37)



From (36) and (37) we obtain the following matrix representation for forward-propagation ofx(ti) andp(t+i )
[

x(ti+1)
p(t+i+1)

]

=

[

eA∆i −eA∆iWi

− 1
λ
CTCeA∆i

[

e−AT∆i + 1
λ
CTCeA∆iWi

]

]

[

x(ti)
p(t+i )

]

+

[

0
1
λ
CT

]

ri+1 (38)

whereWi is defined as

Wi =

∫ ti+1

ti

eA(ti−σ)BBT e−AT (σ−ti)dσ

=

∫ ∆i

0

e−AτBBT e−AT τdτ (τ = σ − ti). (39)

From (39) it is apparent that the controllability GramianWi depends only on the inter-sample intervals, not explicitlyon the
sampling instances. Moreover,the Gramian is invertible asthe underlying system (4) is controllable.

By defining a discrete time state vector aszi =
[

xT (ti) p
T (t+i )

]T
, (38) can be represented as the following discrete time

system
zi+1 = Λizi + Γri+1 (40)

whereΛi andΓ are defined as

Λi =

[

eA∆i −eA∆iWi

− 1
λ
CTCeA∆i

[

e−AT∆i + 1
λ
CTCeA∆iWi

]

]

Γ =

[

0
1
λ
CT

]

.

Lemma 4.1: Λi is invertible for anyi ∈ {0, 1, · · · , N − 1}.
Proof:

Λi =

[

eA∆i −eA∆iWi

− 1
λ
CTCeA∆i

[

e−AT∆i + 1
λ
CTCeA∆iWi

]

]

=

[

I 0
− 1

λ
CTC I

] [

eA∆i −eA∆iWi

0 e−AT∆i

]

= MΥi (41)

(41) gives a block LU-factorization forΛi and bothM andΥi are invertible for anyi.
Hence,Λi is invertible for anyi.
From (40) we obtain

zk =

(

k−1
∏

i=0

Λi

)

[

x(t0)
1
λ
CT (r0 − Cx(t0))

]

+

k
∑

i=1





k−1
∏

j=i

Λj



Γri

=

(

k−1
∏

i=0

Λi

)

(

[

I

− 1
λ
CTC

]

x(t0) + Γr0

)

+

k
∑

i=1





k−1
∏

j=i

Λj



Γri

=

(

k−1
∏

i=0

Λi

)

[

I

− 1
λ
CTC

]

x(t0) +

k
∑

i=0





k−1
∏

j=i

Λj



Γri (42)

where
∏

represents left multiplication. Asp(t+N ) = 0, x(t0) can be obtained by solving the following equation

[0 I]

(

N−1
∏

i=0

Λi

)

[

I

− 1
λ
CTC

]

x(t0) = − [0 I]
N
∑

i=0





N−1
∏

j=i

Λj



Γri. (43)

From the way (43) has been obtained, it can be inferred that (43) is an alternative form of (18). Hence, it can be concluded
from Theorem 3.4 that (43) yields a solution for almost any time index set{ti}

N
i=0.

Oncex(t0) is obtained by solving (43), the trajectory can be reconstructed using (33) and the jump conditions given by
(34).



V. ORDINARY CROSSVALIDATION TO CHOOSE ANOPTIMAL λ FOR THE TRAJECTORYSMOOTHING PROBLEM

Ordinary cross validation (OCV) was first proposed by Allen (1974) in the context of regression [20] and by Grace Wahba
and Wold (1975) for smoothing splines [21]. The main idea behind cross validation is to use a subset of the given dataset
to obtain a parameter estimate and to use the rest of the data for performance validation under that particular value of the
estimate. However, cross validation does not use one subsetsolely for one purpose (estimation or validation); it allows all the
data to be used for both purposes. For instance, we can dividethe data set intom subsets; compute an estimate from all the
subsets but one; and validate the estimate using the left-out subset. Then, we perform the estimation-validation afterleaving
out a different subset. This process is repeatedm times.

OCV uses “leaving-out-one” strategy, i.e. each data point is left out in turn and an estimate for the curve is derived from
the rest of the data (by solving an optimization problem). Then the prediction error is computed at the left out data pointand
the prediction errors are summed to yield the ordinary crossvalidation cost. An optimalλ minimizes the summed error.

Now we’ll briefly discuss the ordinary cross validation procedure for the trajectory smoothing problem. Let
(

xk
λ(0), u

k
λ(·)
)

be a minimizer of the following optimization problem:

Minimize
x(t0),u









N
∑

j=0
j 6=k

‖r(tj)− rj‖
2 + λ

∫ T

0

uT (σ)u(σ)dσ









(44)

subject to the constraints given by (4). Then theordinary cross validation cost V0(λ) is defined as

V0(λ) =
1

N + 1

N
∑

k=0

‖rk − rkλ(tk)‖
2 (45)

whererkλ(·) is obtained from (4), usingxk
λ(0) as the initial condition anduk

λ(·) as the input. Hence we choose the optimal
value of the regularization parameter as

λ∗ = argmin
λ∈R+

(V0(λ)) . (46)

For the problem under consideration, the special structureof the underlying dynamical system yields a nice form for the
ordinary cross validation cost.

Now we solve the optimization problem (44) by following the path described in section IV of this article. By following
the co-state approach we can conclude that the optimal trajectory will be a base integral curve of the associated Hamiltonian
vector field, with suitable jump conditions on the co-state variables. It can be easily observed that the co-state variables are
continuous at the left-out point, without any jump. Then with a little bit of algebra we can show thatxk

λ(0), an optimal initial
condition, will satisfy a modified form of (43), in particular

[0 I]

(

N−1
∏

i=k

MΥi

)

Υk−1

(

k−2
∏

i=0

MΥi

)

[

I

− 1
λ
CTC

]

xk
λ(0)

= − [0 I]
k−1
∑

i=0





N−1
∏

j=k

MΥj



Υk−1





k−2
∏

j=i

MΥj



Γri − [0 I]
N
∑

i=k+1





N−1
∏

j=i

MΥj



Γri (47)

whereΥi’s are obtained by factorization ofΛi’s, as mentioned inLemma 4.1. Therefore the reconstruction error encountered
at thek-th data point can be represented as

rk − rkλ(tk) = rk − Cxk
λ(tk)

= rk − C

[

I

0

]T

Υk−1





k−2
∏

i=0

MΥi

[

I

− 1
λ
CTC

]

xk
λ(0) +

k−1
∑

i=0





k−2
∏

j=i

MΥj



Γri



 (48)

when we start the trajectory fromxk
λ(0) and apply the optimal inputuk

λ. From (47) it is quite clear thatλ affectsxk
λ(0) through

M , Γ and
[

I − 1
λ
CTC

]

and hence the reconstruction error is a vector of rational functions inλ. Now we can represent the
cross validation cost,V0(λ), associated with this particular problem as

V0(λ) =
1

N + 1

N
∑

k=0

(

rTk rk +
(

xk
λ(tk)

)T
CTCxk

λ(tk)− 2rTk Cxk
λ(tk)

)

. (49)

As we have the (somewhat) closed form for the OCV cost, given by (49), we are now ready to write down the first order
necessary condition for the optimality of the regularization parameterλ. We can easily check that the optimal value,λ∗, will



satisfy the following first order condition

N
∑

k=0

(

(

Cxk
λ∗(tk)− rk

)T
C

[

I

0

]T

Υk−1

)

×

(

∂

∂λ

[

k−2
∏

i=0

MΥi

[

I

− 1
λ
CTC

]

xk
λ(0)+

k−1
∑

i=0





k−2
∏

j=i

MΥj



Γri

]

λ∗

)

= 0. (50)

VI. N UMERICAL EXAMPLES

We generated two sets of synthetic data: (a) spiral on a sphere of radius5, and added i.i.d. Gaussian noise with mean =
0, and standard deviation =0.15; (b) circular helix on a cylinder of radius 5, and added i.i.dGaussian noise with mean =0,
and standard deviation =0.05. In each case the number of samples used wasN = 201. See Figures 1 and 2 for illustration.
Reconstruction using the method of this paper (see figures) appears to produce satisfactory results as judged from the fiterror
normalized by the corresponding radius. In these numericalexperiments the regularization/penalty parameter was determined
by ordinary cross validation.

Fig. 1. Curve on a sphere (λ∗ : 4.50× 10−6 and Avg. Fit Error/Radius:13.686 × 10−3).

VII. C ONCLUSION

Many areas of science and engineering (e.g. tracking individual trajectories of animal movement, motion capture in robotics)
lead to the ill-posed inverse problem of extracting velocity and higher derivatives from a noisy finite sample of observed
positions. Using a simple linear generative model for trajectories, this paper investigates a technique based on optimal control
to obtain smoothed solutions to the inverse problem. The method is based on regularization by adding a penalty - the path
integral of the square of jerk, to the fit error. The underlying cross validation technique for determining the regularization/penalty



Fig. 2. Circular Helix (λ∗ : 3.75× 10−6 and Avg. Fit Error/Radius:12.346 × 10−3).

parameter is also sketched out. The algorithm has been tested on synthetic data and is currently being applied to biological
observations.

APPENDIX A
SUPPLEMENTARY PROOFS

Proposition A.1 (Matrix Inversion Lemma): For any four compatible matricesE,F,G,H , the following relationship holds
true

(E − FH−1G)−1 = E−1 + E−1F (H −GE−1F )−1GE−1

wheneverE andH are invertible.
Proof: We will be using the following two matrix identities to provethe matrix inversion lemma

(I + P )−1 = I − (I + P )−1P (A51)

(I + PQ)−1P = P (I +QP )−1. (A52)

Now,

(E − FH−1G)−1 =
[

E(I − E−1FH−1G)
]−1

= (I − E−1FH−1G)−1E−1

=
[

I + (I − E−1FH−1G)−1E−1FH−1G
]

E−1 from (A51)



= E−1 + (I − E−1FH−1G)−1E−1FH−1GE−1

= E−1 + E−1F (I −H−1GE−1F )−1H−1GE−1 from (A52)

= E−1 + E−1F
[

H−1(H −GE−1F
]−1

H−1GE−1

= E−1 + E−1F (H −GE−1F )−1GE−1.

Theorem A.2: Consider a Riccati equation of the form

K̇(t) = −K(t)A−ATK(t) +K(t)BBTK(t) (A53)

K(T ) = Q.

It has a symmetric, positive semi-definite solutionK(t) for anyt ≤ T and controllable[A,B] whennever the terminal condition
Q is symmetric, positive semi-definite(Q = QT ≥ 0).

Proof: The adjoint system corresponding to the Riccati equation (A53) is

d

dt

[

η1
η2

]

=

[

A −BBT

0 −AT

] [

η1
η2

]

and the associated transition matrix can be represented as
[

φ11 φ12

φ21 φ22

]

(t, T ) = φ(t, T ) =

[

eA(t−T ) eA(t−T )G(t, T )

0 e−AT (t−T )

]

where,

G(t, T ) , −

∫ t

T

eA(T−σ)BBT eA
T (T−σ)dσ

is positive definite for anyt < T because of controllability of the pair[A,B].
Hence the solution for (A53) can be represented as,

K(t) =

[

φ21(t, T ) + φ22(t, T )Q

][

φ11(t, T ) + φ12(t, T )Q

]−1

= e−AT (t−T )Q

[

eA(t−T )
(

I +G(t, T )Q
)

]−1

= e−AT (t−T )Q

(

I +G(t, T )Q

)−1

e−A(t−T ).

Now by applying the matrix inversion lemma, and by lettingE = I, F = −I, G = Q andH =
(

G(t, T )
)−1

we obtain
(

I +G(t, T )Q

)−1

= I −

(

(

G(t, T )
)−1

+Q

)−1

Q.

As G(t, T ) > 0 for any t < T , its inverse is also positive definite for anyt < T . Then positive definiteness of
[(

G(t, T )
)−1

+

Q
]−1

is directly implied from the fact that the terminal condition Q is positive semi-definite.

By definingM(t) ,
(

G(t, T )
)−1

, we have

K(t) = e−AT (t−T )Q

[

Q−Q
[

M(t) +Q
]−1

Q

]

Qe−A(t−T ).

As M > 0 (implicit dependency on timet is not shown for the sake of clarity) andQ = QT ≥ 0, there exists a non-singular
matrix P such that

PTQP = Λ

PT
MP = I

whereΛ is a diagonal matrix with non-negative entries. With the above expressions from simulataneous diagonalization, we
have

Q−Q
[

M+Q
]−1

Q = (PT )−1

[

Λ− Λ
(

I + Λ
)−1

Λ

]

P−1 (A54)



Now, by assumingΛ = diag(λ1, · · · , λn), λi ≥ 0, we obtain

(

I + Λ
)−1

= diag(
1

1 + λ1
, · · · ,

1

1 + λn

)

⇒Λ
(

I + Λ
)−1

Λ = diag(
λ2
1

1 + λ1
, · · · ,

λ2
n

1 + λn

)

⇒Λ− Λ
(

I + Λ
)−1

Λ = diag(
λ1

1 + λ1
, · · · ,

λ2
n

1 + λn

)

ThereforeΛ − Λ
(

I + Λ
)−1

Λ is a postive semi-definite diagonal matrix, and hence from (A54), Q − Q
[

M + Q
]−1

Q is a
symmetric positive semi-definite matrix.
Hence,K(t) is symmetric, postive semi-definite for anyt < T .
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