Trajectory Smoothing as a Linear Optimal Control Problem

Biswadip Dey P. S. Krishnaprasad
Dept. of Electrical and Computer Engg., & Dept. of Electrical and Computer Engg., &
Institute for Systems Research, Institute for Systems Research,
University of Maryland, University of Maryland,
College Park, MD 20742, USA. College Park, MD 20742, USA.
bi swadi p@ind. edu kri shna@nd. edu
Abstract

In many areas of science and engineering there is a needcfamitgies to robustly extract velocity and its derivativesf a
finite sample of observed positions. The extracted infoionatan be used to infer related quantities such as curvannlespeed,
which are important for analysis of strategies and feedbaals associated with the motion. In this work a novel appnoisc
proposed to reconstruct trajectories from a set of disavbgervations. A simple linear model is used as the generativdel
for trajectories, and high values of the jerk (derivativetloé acceleration) path integral are penalized during r&coction. The
positions, reconstructed in this way, can be represente le®ar combination of the sample data. The regularizaf@malty)

parameter plays a very important role in the reconstructimtess, and it may be determined from data using ordinaryscr
validation.

|. INTRODUCTION

One finds evidence of collective motion in many natural sgti From schools of fish [1] to aerial display by large flocks o
starling [2] - we find agents moving collectively by interiact with each other. On the other hand, pursuit can be obderve
different kinds of intra- and inter- species encountershsas bat-bat pursuit [3] or dragonfly foraging [4]. As botlilective
motion and pursuit play a significant role also in enginegsettings, it seems to be a relevant effort to explore ugbheyl
strategies and control laws governing collective motionektracting parameters of motion (namely curvature, spkseéral
acceleration etc.) from sampled observations of trajetor

The problem of recovering an underlying smooth signal framgled noisy observations arises in many fields of applied
science. This inverse problemis ill-posed in the senserthige solutions are highly sensitive to noise, and non-wmidackling
such problems by the method of regularization has a lon@tyig6]. In this paper we focus on a class of such problems
associated to reconstructing smooth trajectories of dmmoezement (e.g. starlings in a flock [2], echolocating batgaged in
prey capture [3][6], fish schools [1]) from time samples of BBsition. Typically such time-samples are gathered frodewi
imagery (at rates anywhere from 10Hz to 1000Hz) using a realtiera network subject to computer vision algorithms to
determine 3D positions of feature points (e.g. center ofsdsa starling in flight) from 2D projections. Taking the résaf
such vision processing as a starting point, we seek to éxt@se-robust smooth trajectories. In what follows, wentthis
into an optimal control problem for generative model of feature point trajectories, and the choice of cost fural to be
optimized specifies the regularization imposed on the data.

Treating feature points as self steering particles witfettariesr(t) in three dimensions, a natural generative model is

g = vgg
ro= |1 0]964.} (1)

HereI denotes th& x 3 identity matrix,g(¢) denotes al x 4 matrix representation of a curve in the special euclideaugr

SE(3):
g:([T MS M, | I)

The3 x 3 block [ T My M, } denotes a natural framing of an orthonormal triad witl” the normalized velocity. Letting
&=EFE, &=E,—-FE,; &=EFE, —E,, denote standard basis elementsd(3) the Lie algebra ofSE(3), ande, denote
a standard basis vector IR*, we set

§ = &0+ ugs — véo.

Thenwu andv are natural curvatures (steering controls) and the speed of the trajectoryt). The existence and uniqueness
(up to a single rotational degree of freedom) of such a géimenmodel for every twice differentiable trajectoryt) is discussed
in [7], and exploited in a series of papers (c.f. [8]) invgating pursuit models in nature and engineering.
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Program Grant No. N000140710734 (through the Office of N&esearch).



In this setting the optimal control problem takes the forrarém > 0),
N T
Mmmue<§:w@g—mﬁ+x/ @2+ﬁ+v%ﬁ) 2)
i=0 0

subject to the generative model (1), given a time sanfpléY ,. The nonlinear nature of this optimization problem leads
one to resort to mathematical programming algorithms a®jintd determine the inputs, v, . We note that the purpose of
such reconstruction is to look for evidence in the data feotktically based feedback steering control laws (in [][this
pertained to sonar-guided pursuit of a prey insect by a hat)he absence of a full-fledged integrability theory foriopl
control problems in Lie groups (but see [11][12]) one resaot numerical, constrained optimization for (2).

On the other hand, one observes that steering control maxgressed in terms lateral acceleration. This in turn sugges
resorting to an alternative linear generative model drivemcceleration as input and a regularization cost given gQyaairatic
in jerk, the derivative of acceleration. This allows one to fullypkmit the integrability theory of linear-quadratic optih@ntrol,
given by Riccati equations, as in the rest of this paper. Fdiffarent view of exploiting linear optimal control for srath
interpolation see [13].

Il. PROBLEM STATEMENT

Given a time series of observed positions in three dimeasgpace, our primary objective is to generate a smoothctaje
to fit these data points. To assure smoothness of the reaotestrtrajectory we penalize high values of the jerk patbgrdl.
This particular penalty term is very relevant and carriegnalar effect as the penalty term considered in (2). Moreavés
very significant in the context of physiological movemerst,described in [14] and [15].

Let {r;}}¥, be the set of observed positions. We are interested in finglitrgjectoryr : [0,7] — R? (tc =0, ty =T) to
minimize the following cost:

N T
Sl = rilP 4 [ 1)
i=0 0

where (-)*) implies k-th derivative of any function, if it exitsA > 0 acts as a regularization parameter in the above cost. It
forces a balance between the goodness of fit and the smostbh#®e trajectory. The trajectory dynamics is given by

P(t) = v(t)
o(t) = a(t)
a(t) = u(t)

wherew, a andu represents the velocity, acceleration and jerk respdgtiVéen the cost can be expressed as:
N T
St = rilP 42 [ JuolPat
i=0 0

Now we define a state as:
r

v ®)

a

A
xr =

and therefore the dynamics of the trajectargan be represented in a compact form, as
#(t) = Ax(t) + Bu(t)

4
r(t) = Cx(t) @
where
071 0 0 1"
A=10 0 I [;B=|0|;C=10
0 0 O I 0

with I being a3 x 3 identity matrix. It is obvious that (4) is controllable andservable. Now we can pose our smoothing
problem as a special case of the following constrained dpétion problem:

N T
Minimize J(z(tg),u) = r(t;) —r; 2—i-/\/ uTudt
mimize (o)) = 3= @) < i+
subject to z(tp) € R", )

u€EeU,

z(t) = Ax(t) + Bu(t),

r(t) = Cx(t)



wherel/ is the space of piecewise continuous functions.

IIl. CONTROL THEORETICAPPROACH TODATA SMOOTHING PROBLEM

We begin by applying in the present setting of data smoottargtandard tool from the theory of least squares, namely the
path independence lemma for trajectories of linear sys{é@sis

A. Path Independence Lemma and Its Application to Completion of Squares
Consider the quadratic form! (t)K (t)x(t), whereK : [0, T] — R™*" is a symmetric matrix-valued function. Then, along

(%)

tita tita .
/ ' d (2" Kx) :/ ' (:UTK(A:C—I—BU)—i—(A:v—i—Bu)TKgc—i—:vTK:v)dt
t

+ +

N tl‘“{xr{ATKJrKAJrK KB

. s C ] ] e em @) - o ket =0 ©)

0

For brevity of notation explicit time dependence will be pped wherever doing so does not create any ambiguity. Adding
(6) over(td,t7), (tF,t5), -, (th_,,ty) We obtain

N

T T :
x ATK+KA+K KB x T - T I _
/0 [ N } { BTK 0 } { N } dt + " (to) K (ty )z(to) —l—;x (ti) (K (&) — K(t7)) x(t:)
— " (tn) K (t5)z(ty) = 0. @)
As the quantity given by (7) equals to zero for amy U/ and anyK differentiable over(tj,t;rl) vie {0,1,2,--- N —1},

a multiple of it can be added to the coBtz (o), ) without any change. Hence we have,

J(x(to), u) = Az (to) K (t )z (to) — ™ (tn) K () x(tn) + XN:CUT(%‘) MK () = K(t;) + CTCl a(ty)
i=0
Tt ATK + KA+ K KB T al
—|—)\/O [u} { BT K 7 }[u}dt+§(r?ri—2xT(ti)CTri). (8)
As (8) holds true for any choice df, at this point we make the following assumptions &h

K(t)=-ATK(t) - K(t)A+ K(t)BBTK(t),
K(t}) =0, 9)

K{tH) - K(t;]) = —%CTC.

With the assumptions (9), the co$fz(to),«) can be represented as

N T
J(x(to), u) = A" (to) K (g )x(to) + > (r]'ri — 227 (t;)C"'ry) + /\/0 | BT K (t)x(t) + u(t)||dt. (10)
i=0

Now consider the linear functionaf’ (¢)n(t), wheren : [0, 7] — R™ is a vector valued function. Then,

t;+1d(xT)_ t;rl(xT._i_(A +B )T)dt
n) = o+ n T wu)-n

th ]
Tt x T AT77+ ) " . -

Adding (11) over(t$,t7), (tF,t5), -+, (t_,,ty) we obtain

N

T T .
/0 [ u } { A;nT;; ! } dt + " (to)n(tg ) + Yot (1) (n(t]) —n(t;)) — 2 (tw)n(tx) = 0. (12)
=0



As the quantity given by (12) equals to zero for ang ¢/ and anyn differentiable over(t;, tiy) Vi€ {0,1,2,--- N —1},

a multiple of it can be added to the costx (), «) in (10) without any change. Hence we have,

J(x(to),u) = X (27 (to) K (t )w(to) + 2™ ) + Z”C ) (i) — 207r] — 3 (e
' 1" AT+ T 2 X T,
+/\/0 <[u] [ BTy }—FHB Kz + ul| dt—i—;ri ;. (13)

As (13) holds true for any choice of, we make the following assumptions on
i(t) = — (AT = K(t)BBT) n(t),
n(ty) =0, (14)
n(eh) = n(t) = 3

With the assumptions (14), the costz(ty), «) can be represented as

T 1 N
Ja(to)u) = X[« (o)t Jotto) + 27 o)) 4 A [ o) + 87 (K(0)a(0) + 500 ) [P+ Y-,
=0

3 [ (15)
From (15) it is clear that by choosing
) = 0,0 2 =B (K(o(t) + 3100 (16)
we have N .,
J(z(to), u,,,) = A (" (t) K (tg )z (to) + =" (to)n(ty)) + Z; rir; — %/\/0 | BTn(t)|dt. 17)

As A\ > 0, it is apparent from (17), that the necessary and sufficientlition for the cost to be minimized is,
u=u,, and 27 (to) K (t; )z (to) + ™ (to)n(ty ) be minimized over z(ty) € R™.

Therefore,

x,,,(to) = a(rg) r?Rig (27 (to) K (tg )z (to) + 27 (to)n(ty))

and the optimal initial state satisfies the following corudtit

_ 1
[K(to )] r,,. (to) + En(to ) =0. (18)
Hence, we have
N T
_ 1 T 9
T = (@ (0) ) = D v = X |al (10)K ()2, (t0) + 5 [ 1B n(|Pde| - (19)
1=0 0
From (5), it is clear that
J >0

min —

or in other words
I -
K (6 ), (00) + 7 [ 1B P < 5 Zr i

It is of relevance to mention here that a Riccati equatiorheffbrm
K(t)=-K(t)A - ATK(t)+ K(t)BBTK(t)
KT)=Q=Q">0

has a symmetric, positive semi-definite solution for any T, represented as
-1

K(t) = e A (=D Qe AU=T) _ ~AT(=T)( [(G(t, )" + Q] Qe=AC=T) (20)



whereG(t, T) is a controllability Grammian like quantity and its invéitity is guaranteed by the controllability of the system
(5). With assurance on the existence of solution, we can riakdollowing claim on the solution of (9).
Proposition 3.1: The solution of the Riccati equation (9) assumes the form

N
_ 1 T T
K(t7) =5 ; D (ti, 1) CTODE (L, 1)
for anyi € {0,1,---,N} whereX(t) = —(A — 1BBTK(t))” and @y, is the transition matrix of.
Proof: We will use mathematical induction to prove the above claim.
From the boundary and jump conditions in (9) it is obvioud th& claim holds true foi = N.
Now we assume that it holds true for= m + 1, or in other words
1 N
K(tna) =5 > Os(tmin, ) CTCBE (b1, t)-
k=m+1
Using uniqueness of solution, one can easily verify that
K(t) = (I)Z(tv tm-ﬁ-l)K(t;zﬁ-l)q)g (ta tm-l-l)
satisfies the Riccatti differential equation
K(t)=-ATK(t) - K(t)A+ K(t)BBTK (t)
for anyt € (tm, tm+t1)-

Therefore,

Kt )=K(t!) + %CTC
1
= O (tm, tm+1) K (t, 1 )PE (b, tmy1) + XCTO
- 1
— 5y (tm, tr)CTCOL (b, t —B5 byt ) CTCOL (t, 1
Ak;jﬂ (b, 1) CT CO (b, th) + 5 (b, b )CT COE (t, tm)

N
1
=3 Z 5y (tm, tr)CTCOL (tyn, ).
k=m

Hence the claim is proved, as it holds true for m. |
Now we concentrate on the dynamics:pfjiven by (14) and introduce a new time-varying matrix

$(t) = —(A— BBTK(t))".
Then the dynamics off can be represented as .

i(t) = X(t)n(t) (21)
foranyt € (t;,ti11), wherei € {0,1,--- , N —1}. Let @5, be the state-transition matrix for (21). Then we have thi¥ahg
proposition.

Proposition 3.2:
N

2
n(tj):_X > Bt tr)C
k=i+1

N
n(t; ) = —§ ;‘bi(tutk)CTTk
Proof: We will use mathematical induction to prove the above claim.
From the boundary and jump conditions in (14) it is obvioust tthe claim holds true foi = N as,
n(ty) =0
niy) = ~2CTry.

Now we assume that it holds true for= m + 1, or in other words
N

2
Nty 1) = DY Z D5 (b1, t1)CT Ty
k=m+42



77( m-‘rl )\ Z m+17tk C Tk
k=m+1

Using the dynamics of;, given by (21), we have the following relationship

n(ti@) = q)i(tmv tm+1)77(t;n+1)

N
2
Z_Xq)f;(tmatm-l—l) Z @i(tm+1,tk)CT7‘k
k=m-+1
N
2
3 Z D (tm, t)C 7. (22)

=223 @b, )T (23)

From (22) and (23) it is clear that the claim holds true fet m.

Hence the claim is proved. |
Proposition 3.3: (—X7, C) forms an observable pair for the problem of our interest (4).
Proof: K is a symmetric matrix by definition, and hence one can asshméotlowing block structure for,

Kll(t) Klg(t) K13(t)
KL(t) Ka(t) Ka(t)
Ki3(t) Kgs(t) Kss(t)

With this particular structure fok’, we have the following expression &f’ (¢) for the jerk path integral minimization problem,

K(t) =

0 —I 0

() = 0 0 —1 : (24)
{ sKf3(t) 3K3(t)  5HKss(t) }

Now, for the sake of convenience, we use Silverman-Meadawk condition [17] to prove our claim. To do so, we define

the matrixQ,,, as

Qobu(t) = [So(t) Si(t) -+ Sn-1(t)]
where S;(t)'s are computed recursively using
Skr1(t) = =S(8)Sk(t) + Sk(D), So(t) = C™. (25)

The S;(t)'s will assume the following form,

I 0 0 Ky3(t)
So(t) = [ 0 ] , Si(t) = [ I ] , Sao(t) = [ 0], S3(t)=-—=| Kal(t) |,
0 0 I K33(t)

and so on. Hence it can be immediately concluded that the(palf, C) is observable as the rank 6f.,(t) is 9 for any
te Rt U{0}. [
Theorem 3.4: The equation (18) is uniquely solvable for almost any timéeiset{t;}¥ .
Proof: From proposition 1 we have,

K(ty) = P (to, tr)CTCRL (Lo, tr)

>
] =

el
Il
=)

(I)TET (tk, to)CTC(I),ET (tk, to)

I
1=
(1=

=
Il
=]



T

C C
1| CP_sr(ti to) CP_xr(t1,to)
R : :
CP_sr(tn,to) CP_sr(tn,to)
_ L7
= XQ: ¢.

Now we investigate the rank af because the solvability of (18) is equivalent to the factdfaving full rank. To do so we
consider the following system

(t) = 2T (t)e(t
£(t) ()&(t) (26)
V(1) = C&(1),
which is observablepfoposition 3.3). We can easily show that theth derivative of its output can be represented as
Y (t) = ST()®_syr (L, tin )€ (tini)

whereS;(t)'s are defined in (25).
Let & # & be two different choice of initial staté(t,) for the system (26) and;(¢) be its output corresponding to the initial
condition(tp) = &. Now we define,

YV & : = &¢;.

Yi(tn)
Now we claim that the outputs of (26), corresponding to twifedént initial conditionst; # &, do not match identically over

any intervallT' ¢ R™ U {0}, or in other words, there is no such interfRlc R+ U {0} such thaty; (t) = v2(¢) for anyt € T.
We can prove our claim by contradiction. Let

CO_yr(t,t9)&1 = CP_xr(t,t0)é2

for all ¢ belonging to some intervdl. Then the derivatives, when they exist, should match fortany the interior ofT, i.e.

di di
€ (C‘b—zT <t,to>§1> - (C(I’—ET <t,to>§2> )
S () Sg (t)
STt ST (¢
= 1:( ) O_sr(t',t0)61 = 1:( ) O_yr(t*,t0)&2
ST (1) ST (1)
=Q1,, ()P _gr(t*, t) (51 - 52) =0

=& = &o.
But it contradicts our initial assumption about inequabfys; and¢s, thereby proves the claim. Hen€g, # &€&, for almost
any time index seft;}Y . ThereforeK (¢, ) is positive definite almost surely becausénas full rank almost surely.

When the rank condition fails, i.&¢; = €&, we can consider an arbitrary close perturbation of theimalgime index. For
any givene > 0 we can choose a perturbed time index &g} ,, such that the following conditions holds true,

to = to,
N

thi_£i| < €,

iz
C
CP_yr(t1,10)

and, has full rank.

CP_gr(tn,to)

Therefore (18) can be uniquely solved, for almost any tinseinset{t;} . |



Following Theorem 3.4 the optimal initial condition can be represented as
1 -1

2, (to) = 3 [K(tg)]  n(ty)
-1 N
:%[K(ta)} S @y (to, 1) C T (27)
k=0

B. Linear Structure in The Reconstructed Trajectory
Under the action of optimal control input , the dynamics of the system of our interest, given in (4), &like
#(t) = Ax(t) + Bu,,,(t)
= [A-BB"K(t)] z(t) — %BBTn(t)
= 57 (a(t) — 3 BB (1), (28)

or in other words it can be viewed as a time-varying lineatesyswith 7 being the input. Then we can expres$) as

1 t
l'(t) = @7271 (t, to)l’opt (to) — 5 / q)ff]T (t, O')BBT’]’](O')dU
to

1

= L(to, 1)z, (to) = 5 /t ®L(0,t)BB (o) do. (29)

It is quite clear from (27) that the optimal initial conditids linear in terms of the observed data points. From (29) bitaio
the following representation for(t;),

L[t
I(tk) = (I)g(to, tk)'ropt (to) — 5/ (I):g(a', tk)BBTn(O')dU

-
(=}

M:*

o
= @g(to,tk)fﬂopt (to) — 5 / (I)g(d, t]g)BBTT](O')d/U‘|
i—1 ti—1

o
Il

N =
-

-
= ®L(to, tr)x,,, (to) — / 0L (0,tx) BB @0, ti)”(ti_)dal

1 ti—1

/ti @g(a, ty) BB @ (o, ti)dcr] n(t;)

-
Il

N =
ndle

s
Il
—

= ®L(to, th)z,,, (to) —

ti—1

t N
l /t ®L(0,t)) BB @ (0, t;)do x (Z @i(ti,tj)CTrj)

> =
Indle

= oL(to, tr)z,,, (to) +

opt

i=1

CT’I’i .

M=

min{s,k} t;
l > (/ @g(a,tk)BBTq)i(a,tj)dcr)x@i(tj,ti)

j=1 tj—1

1
= (I)g(to, tk)xom (t()) + X
i=1

Therefore the smoothed position at timecan be expressed as

N
[CF, (k,i)CT]r; (30)
1=0

> =

T(tk) =

where

min{i,k} t;
Fo(kyi) = 9L (to, 1) [K(t5)] " s(to.ti) + > </ q)g(aatk)BBT@i(a,ti)da)

j=1 tj—1

fori e {0,1,--- ,N}.
From (30) it can be concluded that the smoothed outputs meardicombinations of observed data.
Remark 3.5: As F(k,i) depends only on the sampling time instances, namgly- - , ¢y, these coefficients can be pre-
computed.
Remark 3.6: This approach can also be viewed as a global alternativeuitz®aGolay smoothing filters [18][19], wherein
the filtered outputs are obtained by fitting a least squargrmohial (locally) through the observed data points. In quuraach
the local nature is absent instead each of the filtered omtpepends on the complete data set. But because of this global



nature our approach has its own drawback. This method, itrits form, cannot be used in real-time as it requires all the
observations together.

Remark 3.7: The significance of the word “smoothing” is twofold in thisrtext. Firstly this approach penalizes high values
of jerk path integral and thereby yields a smoothened trajgcMoreover, it uses data from both past and future tarest
the present position and thus justifies the usage of “smogthn estimation context.

Remark 3.8: The formulation of the problem is an example of fixed intersaloothing. One can use this as a building
block and proceed to obtain a fixed lag smoothing algorithhe Path is quite intuitive.

IV. AN ALTERNATIVE CO-STATE BASED APPROACH
Here we represent the solution in terms of co-state vasallefined as,

p(t) 2 K(0)a(0) + 50() (31)

Then the optimal control input (16) and system dynamics (#l)have the form

U, (t) = =BTp(t)
@(t) = Ax(t) — BB p(t)

and the dynamics of the co-states will be governed by thewatlg equation

. . . 1.
B(t) = K(t)a(t) + K0 (t) + 5i(t) = —ATp(?). (32)
Therefore the optimal trajectory between two observatiore$ can be viewed as the base integral curve of the following
system
dfat)|] _[A —BBT z(t) (33)
dt | pt) | | 0 —AT p(t) |

From (33) it is apparent that the dynamicsyofs decoupled from that of.
Now we’ll focus on the jump conditions for the co-states

p(t) = p(t7) = [K(6]) = K ()] o) + 5 [n(t") —n(t;)]

= %CT (Ti — T‘(ti)) . (34)
We also have the following terminal condition

plt) = K(t)a(tn) + u(ty) =0

as bothK (t};) andn(t};) are equal to zero and by choosin¢,) = =, (t) we get,

opt

pltg) = K (tg )alto) + gu(tg) = 0

frolilnoé\}s\zé introduce a new variable, namely incremental timdindd asA; £ ¢, —t; i € {0,1,---,N — 1}. From (33)
we have
p(t) = e TIp(EF) b (tistin) (35)
p(ti,) = ptiq) + %CT (rix1 — C(tiy1))
= e AT Rip(t) — %CTcx(tiJrl) + %CTWH (36)

fori e {0,1,---, N —1}. From the dynamics of in (33), we have
tit1
2(tig1) = eArt) p(t,) — / eAtit1=) BBT p(0)do
ti

ti
:eAAix(ti)_/ At =) BT ¢~ AT (00 ()
ti

tit1
_ eAAiI(ti) _ eAAi |:/ eA(tifa)BBTefAT(afti)do- p(tj). (37)
t;



From (36) and (37) we obtain the following matrix represéntafor forward-propagation of:(¢;) andp(t;")

w(tiv1) | _ e T et gLl I R (38)
p(thy) | 7| —ioTCerss [eaTa teToerdwy| | | ) LoT | it

whereW,; is defined as

tit1 T
W; :/ eAtimo) BRTe=A (0=t 4o
ti

Ay T
= / e "BBTe A Tdr (r=0—t;). (39)
0

From (39) it is apparent that the controllability Grami&, depends only on the inter-sample intervals, not expliaittythe
sampling instances. Moreover,the Gramian is invertibl¢ghasunderlying system (4) is controllable.

By defining a discrete time state vector as= [z” (¢;) pT(tj)]T, (38) can be represented as the following discrete time
system

Zigl = Nizi + Tripq (40)
whereA; andT" are defined as
A _ AN,
Ai = _%CTCeAA»; |:e—ATA'L + %CTCGAA7W1:| ‘|
0
r_[ }
kot
Lemma 4.1: A, is invertible for anyi € {0,1,--- , N — 1}.
Proof:
Ai = _%CTCeAA»; |:e_ATA'L + %CTCGAATWl} ‘|

S teel, 0 e AT

= MY, (41)

(41) gives a block LU-factorization foh; and bothM andY; are invertible for any.
Hence,A; is invertible for any;. [ |
From (40) we obtain

) { 507 (rgg(t—o)cx(to)) } +Zk: (kHl Aj) Ir;
_ <klA> ([ _§é:rc ]I(to) +rr0) +; (i:[l Aj) Ir:
)l

I k k—1
chW+Z(HM%% (42)
i=0 \ j=i

where[] represents left multiplication. Ag(t};) = 0, z(ty) can be obtained by solving the following equation

N—-1 I N N—-1
[0 1] (H) Al-) { _1ete ]x(to) =-10 1]23 H Aj | Ty (43)
= 1= Jj=1
From the way (43) has been obtained, it can be inferred ti8ti¢dan alternative form of (18). Hence, it can be concluded
from Theorem 3.4 that (43) yields a solution for almost any time index §&t .
Oncex(tp) is obtained by solving (43), the trajectory can be recom$ta using (33) and the jump conditions given by
(34).



V. ORDINARY CROSSVALIDATION TO CHOOSE ANOPTIMAL A\ FOR THE TRAJECTORY SMOOTHING PROBLEM

Ordinary cross validation (OCV) was first proposed by Allé®74) in the context of regression [20] and by Grace Wahba
and Wold (1975) for smoothing splines [21]. The main ideaibheltross validation is to use a subset of the given dataset
to obtain a parameter estimate and to use the rest of the dafefformance validation under that particular value @& th
estimate. However, cross validation does not use one sabky for one purpose (estimation or validation); it alkall the
data to be used for both purposes. For instance, we can dividdata set inton subsets; compute an estimate from all the
subsets but one; and validate the estimate using the lefttdaset. Then, we perform the estimation-validation d&aving
out a different subset. This process is repeatetimes.

OCV uses “leaving-out-one” strategy, i.e. each data pairieft out in turn and an estimate for the curve is derived from
the rest of the data (by solving an optimization problem)eithe prediction error is computed at the left out data pait
the prediction errors are summed to yield the ordinary cvadislation cost. An optimah minimizes the summed error.

Now we'll briefly discuss the ordinary cross validation pedare for the trajectory smoothing problem. L(e:f;(()), u’§(~))
be a minimizer of the following optimization problem:

N T
Minimize Z 7(t;) — rj|I* + )\/ u® (o)u(o)do (44)
R e 0

ik

subject to the constraints given by (4). Then tndinary cross validation cost V() is defined as

N
Vo) = = 3 e — rk (6P (45)
k=0

wherer§(-) is obtained from (4), using’ (0) as the initial condition and/§(-) as the input. Hence we choose the optimal
value of the regularization parameter as
A" = argmin (Vp(N)) . (46)
AER 4
For the problem under consideration, the special struotfirthe underlying dynamical system yields a nice form for the
ordinary cross validation cost.

Now we solve the optimization problem (44) by following thatlp described in section IV of this article. By following
the co-state approach we can conclude that the optimattosjewill be a base integral curve of the associated Hamidto
vector field, with suitable jump conditions on the co-sta&eiables. It can be easily observed that the co-state lasare
continuous at the left-out point, without any jump. Thenhaét little bit of algebra we can show thaf (0), an optimal initial
condition, will satisfy a modified form of (43), in particula

N-1 k2 /
[0 1] (H MTi) Ti—1 <H MTi) [ _1loTo ]x’j(O)
i=k i=0 A

k—1 [N—1 k—2 N N-—-1
== 0> | J] M0 | Yoo | [T MY | Tri=(0 17 > | ] MY, | T (47)
i=0 \ j=k j=i i=k+1 \ j=i

whereY;’s are obtained by factorization d¥;’s, as mentioned il.emma 4.1. Therefore the reconstruction error encountered
at thek-th data point can be represented as

Tk — Ti(tk) =T — CIi(tk)

I T k—2 I k=1 (k-2
=, —C [ 0 } Yeor | J] M { _107c } NOEDE I Ravany (48)
i=0 A j=i

=0

when we start the trajectory front (0) and apply the optimal inputs. From (47) it is quite clear that affectsz% (0) through
M, T and [ — %C’TC’] and hence the reconstruction error is a vector of rationattians inA\. Now we can represent the
cross validation cosf,()\), associated with this particular problem as

N

Z <T£’I’k + (xli(tk))T cTexk(ty,) — 2T£C’xlf\(tk)). (49)
k=0

1

o = § T

As we have the (somewhat) closed form for the OCV cost, giverid®), we are now ready to write down the first order
necessary condition for the optimality of the regulariazatparametei. We can easily check that the optimal valué, will



satisfy the following first order condition

N T k—2 k=1 (k-2

0 A i=0 \ j=i

1=

VI. NUMERICAL EXAMPLES

We generated two sets of synthetic data: (a) spiral on a spbferadius5, and added i.i.d. Gaussian noise with mean =
0, and standard deviation &15; (b) circular helix on a cylinder of radius 5, and added iGdussian noise with meanG;
and standard deviation 6.05. In each case the number of samples used Was 201. See Figures 1 and 2 for illustration.
Reconstruction using the method of this paper (see figu®as to produce satisfactory results as judged from tlesrét
normalized by the corresponding radius. In these numeexpériments the regularization/penalty parameter wasréed
by ordinary cross validation.

Reconstructed Curve
o ¢ (Observed Positions
" |7 Ground Truth

z direction
o

o

y-direction P
x-direction

Fig. 1. Curve on a sphere\{ : 4.50 x 10~ % and Avg. Fit Error/Radius13.686 x 10~3).

VII. CONCLUSION

Many areas of science and engineering (e.g. tracking iddalitrajectories of animal movement, motion capture irotms)
lead to the ill-posed inverse problem of extracting velp@nd higher derivatives from a noisy finite sample of observe
positions. Using a simple linear generative model for tri@mges, this paper investigates a technique based on alptiomtrol
to obtain smoothed solutions to the inverse problem. Thehatkts based on regularization by adding a penalty - the path
integral of the square of jerk, to the fit error. The undemryinoss validation technique for determining the reguéitm/penalty



Reconstructed Curve
¢ Observed Positions
Ground Truth

z—Direclion
=Y

y-Direction

x-Direction

Fig. 2. Circular Helix 0* : 3.75 x 10~6 and Avg. Fit Error/Radiusi2.346 x 10—3).

parameter is also sketched out. The algorithm has beerdtestesynthetic data and is currently being applied to biaabi
observations.

APPENDIXA
SUPPLEMENTARY PROOFS

Proposition A.1 (Matrix Inversion Lemma): For any four compatible matrices, F, G, H, the following relationship holds
true
(E-FH'G)'=E '+ E'F(H-GE'F)'GE™!

wheneverE and H are invertible.
Proof: We will be using the following two matrix identities to protiee matrix inversion lemma
(I+P)'=1-(I+P)'P (A51)
(I+PQ)"'P=P(I+QP) L (A52)
Now,

(E-FH'G)' = [E(I - E"'FH'@)] "

=(I-E'FH'G)'E!
=[I+{I-E'FH'G)'ET'FH'G]E™! from (A51)



=E'+(I-E'FH'G)'E'FH'GE™!
=E '+ E'FI-H'GE'F)'H'GE™! from (A52)
—E '+ E'F[H Y (H-GE'F|'H'GE™!
=E '+ E'F(H-GE'F)"'GE™".
[
Theorem A.2: Consider a Riccati equation of the form
K(t)=-K(t)A - ATK(t) + K(t)BBTK(t) (A53)
K(T)=Q.
It has a symmetric, positive semi-definite solutiiit) for anyt < T and controllablé A, B] whennever the terminal condition

Q is symmetric, positive semi-definitg) = Q7 > 0).
Proof: The adjoint system corresponding to the Riccati equatidsBjAs

d[m]_[A -BBT m
dt|m | | 0 —AT 2

and the associated transition matrix can be represented as

eA(th) eA(tT)G(t,T)]

b1 P12 _ _
{ P21 P22 ] 1) =ot.T) = [ 0 e=AT(=T)

where,

t
G(t,T) = —/ eAT=0) BT A (T-0) 4y
T

is positive definite for any < T' because of controllability of the pair, B].
Hence the solution for (A53) can be represented as,

~1
K(t) = [¢21(t7 T) + ¢aa(t, T)Q} [¢11(f, T) + ¢12(t, T)Q}
_ efAT(th)Q [eA(tT) (I + G(t7 T)Q):| —1

—1
_ e—AT(t—T)Q(I+ G(t,T)Q) e—A(t—T)_

Now by applying the matrix inversion lemma, and by lettifg= I, F = —1, G = Q and H = (G(t, T))_1 we obtain
1

<1 + G(t,T)Q) o I- ((G(t, )+ Q) o

As G(t,T) > 0 for anyt < T, its inverse is also positive definite for any< 7". Then positive definiteness ¢{G(t, T))71 +
Q]_l is directly implied from the fact that the terminal conditi@) is positive semi-definite.
By definingM(t) = (G(t,T))_l, we have

K(t) = e—AT(t—T)Q [Q -Q [IM(t) + Q] _IQ:| Qe—A(t—T)_
As M > 0 (implicit dependency on time is not shown for the sake of clarity) ar@d = Q7 > 0, there exists a non-singular
matrix P such that
PTQP=A
PTMP =1

where A is a diagonal matrix with non-negative entries. With theabexpressions from simulataneous diagonalization, we
have

Q-QM+Q] 'Q=(PT) " [A-A(T+A)'A| P (A54)



Now, by assuming\ = diag A1, -+, A\n), A; > 0, we obtain

1 1 )
1+X7 14\
-1 : A2 22

A(I+A) A=d n
= ( + ) 'ag(1+A1’ ’1+/\n)
A A2 )
1+X7 14\

(I+A)"" = diag

<A —A(I+A)"'A = diag

ThereforeA — A(I + A)flA is a postive semi-definite diagonal matrix, and hence frorB4)AQ — Q[IM + Q]le is a
symmetric positive semi-definite matrix.
Hence,K (t) is symmetric, postive semi-definite for any 7. [ ]
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