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Abstract

We consider the problem of noisy Bayesian active learninigere we are given a finite set of
functions#, a sample spacé&’, and a label set. One of the functions iri{ assigns labels to samples
in X. The goal is to identify the function that generates the Imleeen though the result of a label
query on a sample is corrupted by independent noise. Mogsetg, the objective is to declare one of
the functions inH as the true label generating function with high confidendeguas few label queries
as possible, by selecting the queries adaptively and ina@egiic manner.

Previous work in Bayesian active learning considers GédizethBinary Search, and its variants for
the noisy case, and analyzes the number of queries requirtebe sampling strategies. In this paper,
we show that these schemes are, in general, suboptimatathste propose and analyze an alternative
strategy for sample collection. Our sampling strategy igivated by a connection between Bayesian
active learning and active hypothesis testing, and is baseduerying the label of a sample which
maximizes the Extrinsic Jensen—Shannon divergence atstepghWe provide upper and lower bounds
on the performance of this sampling strategy, and show thedet bounds are better than previous

bounds.

Index Terms

Bayesian active learning, hypothesis testing, geneiliirary search, Extrinsic Jensen—Shannon
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I. INTRODUCTION

We consider the problem of noisy Bayesian active learninggre we are given a finite set
of functions’#H, a sample spacd&’, and a label set. One of the functions irt{ assigns labels
to samples inY, and our goal is to identify this function when the result dabel query on a
sample is corrupted by independent noise. The objective detlare one of the functions H
as the true label generating function with high confidendeguas few label queries as possible,
by selecting the queries adaptively and in a strategic nranne

A special case of the problem, first considered(By [1], ansleen the label set is binary and
the natural sampling strategy for Bayesian active learbegpmes closely related to Generalized
Binary Search (GBS). In the binary label setting, GBS quetiie label of a sample for which
the size of the subsets of functions that labehs +1 and —1 respectively, are as balanced
as possible. A variant of GBS is Modified Soft-Decision Gatized Binary Search (MSGBS),
which was introduced by [1] to address the case when the wixddabels may be noisy.[1]
analyzes the performance of MSGBS, under a symmetric angasistent noise model which

flips the labels randomly, and shows that the number of sawplguired to identify the correct

log M +log %

function with probability of error satisfying P€ ¢ is O ( 5

), where M is the number

of functions in the clas${, and ) is a parameter which depends on the structure of the function
class, the sample space, and the noise rate. The first adgidnbof this paper is to generalize
the above problem to the case of general (non-binary) lagteiviéh general (and potentially
non-symmetric) non-persistent observation noise.

By allowing for the number of samples collected to be deteediin a sequential manner
(according to a random stopping time as a function of pasemhsons), we draw a parallel
between active sequential hypothesis testing and Bayesitve learning. In active sequential
hypothesis testing, we are given a set /df hypotheses, and a set of actions; each action,
conditioned on the true hypothesis, has a certain prolpabiiliyielding an outcome. We observe
that Bayesian active learning is a special case of activethgsis testing, where the hypotheses
map to functions, actions map to samples, and the outcompgan@oisy observation of labels.
This view of the problem allows for a natural extension of thedel of [1] to the non-binary
Bayesian active learning setting, where the label noisédntiig label dependent and asymmetric.

Relying on this connection, we derive a universal lower lwban theexpectechumber of samples



required to identify the true hypothesis amahgwith reliability ¢ as a function of noise model

parameters. Our lower bound generalizes that of [2]. Thigetobound, when specialized for
the noisy generalized binary search suggests that the gedmchemes of [1] are suboptimal in
general. The next contribution of this work is to propose andlyze an alternative strategy for
sample collection.

To find an alternative strategy, we again take advantageeotdimnection between Bayesian
learning and active sequential hypothesis testing/ In 8, authors introduced the notion of
Extrinsic Jensen—Shannon (EJS) divergence, and proposedti&e sequential hypothesis test
that, at each step, selects the action that maximizes thdiZd§ence. In this paper, we apply the
corresponding sampling strategy to Bayesian active legrr@nd characterize the performance of
this strategy. Our analysis improves on the analysis lofQ@it bounds show that the number of
label queries required by our aIgorithm@s(% + %) whereM is the number of functions
anda and g are terms, different from\, that depend on the structure of the function class, the
sample space, and the noise model.

To illustrate our bounds, in Sectiéd V, we focus on geneedlizinary search studied in/[1] and
consider the class of 1-neighborly functions and its thpeecsic subclasses — intervals on the
line, thresholds on the line, and a set of rich function &@as¥Ve show that the upper bounds on
the number of labels required by the EJS policy are supearitivdse of[[1] for all three subclasses
for the asymptotic values afand M. In addition, we show through numerical simulations that
our policy has better performance than the algorithms ofa[4p in non-asymptotic regimes of
practical interest.

There has been a large explosion of recent work on the thdaagtive learning([4]-]13] but
despite the similarity of the titles, the models and the agxions vary drastically with at times
contradictory conclusions. Here we attempt to detail deattributes of these papers and the
connection/disconnect between our work and this liteeat&arly work on active learning [4],
[5], [[7] considered the realizable case where the binarglfahre produced by a function in a
given function class and are observed noise-free. Herefutheion class is either finite, like
our setting, or, unlike our setting, infinite but equippedhna fixed structure, such as the class
of thresholds on a line, or the class of linear classifierscdntrast with our work, however,
the learner is only allowed to query the labels of samplesreyrem unlabeled set of points

which are drawn from the unlabeled data distribution. Alstke ours, the goal here is to find a



function which has lowprediction error with respect to the data distributiohhus the challenge

is to identify a function in the function class where the dig@ment with the true labeling

function is less than the required accuracy, and the piedi@rror occurs due to infiniteness
of the function class or due to the indistinguishability bé tfunctions with respect to the data
distribution as opposed to noisy observations of the labels

Since the realizability assumption can hardly ever be fjestiin practice, more recent lit-
erature [[6]-]8], [10]4[1R] has considered active learninghe non-realizable case. A line of
work [7]-[11] considers active learning in the agnostictisgt where the binary labels are
not necessarily generated by a function in a given functiass; and the goal is to find a
function in the function class which has low prediction ervath respect to the labeled data
distribution. Most of this work employs disagreement-basestrategy for label queries; the
algorithm maintains a candidate set of functions that ig@ntaed to contain the best function
in the class with high probability, and queries the label cfample only when there are two
functions in the candidate set that disagree on its labelirdgortant special case of the non-
realizable setting relevant to our work is the bounded rédsscnoise of[[6] in which labels
are produced by a member of a given function class but areestdlofj to an exogenous (and
non-persistent) observation noise. In such a setting,[I8]} show that repeat queries can be
effectively utilized to mitigate the effect of noise. In_J12he authors perform an information
theoretic analysis of active learning in the agnostic sgttand provide lower bounds on its
sample complexity.

Finally, [13] considers the same setting as our work. Unlikethey do not provide absolute
upper and lower bounds on the query complexity. Instead, ¢basider sampling strategies that
select the sample that maximizes the information gain basetlcertain measure of information,
and show that if the measure of information in question ispadaly submodular, then this
strategy is competitive with the optimal strategy accagdio the same information measure.

In summary, our work differs from the previous work on actlearning in three important
ways. First, we are interested in a generalized learningpsetere labels can be non-binary
and observation noise can have a general non-symmetric @mdlisacrete nature. Second, we
are interested in a sequential learning setting where taede is allowed not only to query
individual samples (hence, rendering the data distrilbbuticelevant), but also to determine the

number of queries in an online fashion as a function of olzems so far. Third, by considering



the simpler setup of a finite function class as well as an exoge and non-persistent observation
noise, we provide sharp lower and upper bounds on the quenpleaity. Our lower bound is
purely information theoretic and is only a function of thesebvation noise which is the only
inevitable source of inaccuracy in our model. Our upper lbpum contrast, is obtained via the
analysis of an achievable scheme and sheds light on how thetise of the function class
impacts the overall performance of our proposed schem&apPsy most significantly, we show
that the number of label queries required by the proposednsehmatches the lower bound
asymptotically when the function/sample space is sufftbietich.”

The remainder of this paper is organized as follows. In 8adi, we formulate the problem
of Bayesian active learning. In Sectibonl lll, we propose ceuristic policy for selecting samples.
Section[1V provides the main results of the paper. As a speeise, noisy generalized binary
search is discussed in Sectioh V and a comparison to somesdfnibwn results is provided.

Finally, we conclude the paper and discuss future work irtiGe/T]

Notation Let [z]* = max{z,0}. For any setS, |S| denotes the cardinality af. The space
of all probability distributions on setl is denoted byP(.A). All logarithms are in base 2. The
entropy function on a vectgs = [p1, po, . .., par) € [0,1]M is defined asi (p) = Ef‘il pi log pi
with the convention th&ﬂ)log% = 0. Finally, the Kullback—Leibler (KL) divergence betweenaw

q(y)
q(y) dy,

probability density functiong(-) andq’(-) on space) is defined ad(q||¢') = fy q(y) log
with the conventiordlog ¢ = 0 andblog 2 = oo for a, b € [0, 1] with b # 0.

II. BAYESIAN ACTIVE LEARNING

In this section, we provide the mathematical descriptiorthef problem of Bayesian active
learning.

Problem (P) [Bayesian Active Learning]
In the Bayesian active learning problem, we are givesample spaceY, a finite label
set £, and anobservation spac@. We are also given a s&{ = {hy, ha,...,hy} of M
distinct functions, where each; : X — £ maps elements in the sample spateto the
label setl. We assume that one of the functionstn denoted by, produces the correct
labeling onX.
The decision maker is allowed tuerysamples fromY. Querying a sample generates an

observation iny € Y whose distribution is a given function of the true label atedained by



the functionhy. More specifically, ifhy is the true underlying function and hentce- hy(z)

is the true label of sample, then the result of a query anis a )-valued random variable
with probability densityf;(-). We assume that the observation densiig$-)},-. are fixed
and known, and observations are conditionally independeet time.

The goal of the decision maker is to determine the identityth&f function in# that
generates the true labels by an adaptive sequential quergmiall number of samples. We
assume that the decision maker does not have any extra praviédge on the identity
of the true function; in other words, it begins with a unifoprior over H. Let 7 be the
stopping time at which the decision maker retires and desltre label generating function
h;. Furthermore, lePe = P(0 +# ) whered is the index of the true function. In Bayesian
active learning, the objective is to design a strategy fer diecision maker for querying

samples inY such that, for any givea > 0, we have
minimize E [7] subject toPe < e. (1)

Here the minimization is taken over the choice of the stopgime 7 and the learning
strategy and the expectation is taken with respect to thereagon distribution as well as
the Bayesian uniform prior on the true function#h
Note that Bayesian learning strategy is more than a singlgpkaquery but instead is an
adaptive and sequential rule that dictates the causaleldigandom) sample queries depending
on the past observations and past queries prior to the stgpipae. In this paper, we refer to this
adaptive and sequential rule as a query schemehich together with the particular realization
of outputsY,(0), Y:(1), ..., Y.(r — 2), dictates the sample querié§(1), X.(2),..., X (7 —1).
Before we end this section, and in face of the difficulty inlyfutharacterizing the optimal

learning strategy in general we define weaker notions ohuogity.

A. Asymptotic and Order Optimality

Definition 1. Let E[7f] denote the expected number of samples required by querynsoh&
achievePe < e. Furthermore, lefi[r*] be the minimum expected number of samples required
to achievePe < ¢, where the minimum is taken over all possible strategieer@)scheme is

referred to asasymptotically optimain e (and M) if
E[r] — E[r]

( lim ) lim —= —~ =0.

M—o00" e—0 E[TEC]



Query scheme is referred to a®rder optimalin ¢ (and M) if
E[r] — E[r]

€ €

( lim )lim < 1.

M—o00" =0 E [TEC]

It is clear from the definitions above that order optimal&yieaker than asymptotic optimality.
If a schemer is asymptotically optimal ire (and M), thenE|[7{] andE[r] will have the same
dominating terms i (and M); while order optimality of schemeonly implies that dominating

terms inE[r{] andE[7/] are similar up to a constant factor.

[Il. PRELIMINARIES AND PROPOSEDHEURISTIC

After providing some preliminary results and notationgluding the definition of Extrinsic
Jensen—Shannon (EJS) divergence, in this section we maposEJS-based heuristic.

Let Q@ = {1,2,..., M}. Recall that) € Q is the random variable that indicates the index of
the true function and is the stopping time at which the decision maker retires angsges the
true index.

Casting the problem as a decision theoretic problem all@ws$hie structural characterization
of the information state, also known as sufficient statsstit.et the decision maker’s posterior
belief about each possible function index (2, updated after each sample query and observation
fort=0,1,...,7—1, be

pilt) = P({0 = i}| X", Y7, (2)

The decision maker’s posteriors about the true label géngréunction collectively,

p(t) = [pr(t), p2(t), - - paa (D)), 3)

form a sufficient statistics for our Bayesian decision makerother words, the selection of
sample query as a function of this posterior does not incyr lass of optimality [15]. In
particular, the optimal decision maker guesses the funatith the highest posterior at time
to be the label generating function, i.e.,
0 = arg max p;(7). (4)
i€Q
We also note that the dynamics of the information state,the. posterior, follows Bayes’ rule.
But before we make this more precise, let us consider amalige representation of querying

a sampler € X



Definition 2. A samplex € X generates & |-partition =* := { H'},c, of the function class,
i.e., if Hlx = {h cH: h(l’) = l}, thenH = Ulengx.

This view allows us to characterize the observation dengifgn the belief vectop and
gueried sample: as
= pifnw®) =D L) Y (5)
i€Q leL ish €M
Therefore, given the belief vectar(t), querying sample: and observing (noisy) label results

in a refinement of the posterior according to the Bayes’ nue,

p(t+1) =2*(p(1),y) (6)
where
. @@ fha@ () Jrni @) (Y)
R = Ty gy P gy | ")

Many of our results in the paper are obtained as a consequiEnaeconnection between
Bayesian active learning and the more general problem a@frimdition Acquisition which has
been discussed in full generality in _[16]. In particularkitey cue from the seminal work of
DeGroot on statistical decision theofy [17], and our owrprork on active hypothesis testing
[3], given a belief vectorp € P(92), the expected utility of the sample query € X, or
equivalently its corresponding|-partition=* = { H"},c, can be characterized by its Extrinsic
Jensen—Shannon divergence [3]:

Bision) =3 3 oo (4] £00). ©
lel i:h;€H}

We use this to construct our proposed heuristic deterninidarkov sample query strategy.

A. Proposed Heuristic

In this work, we focus on the following (possibly suboptimatopping rule. For any given
query scheme, querying samples is only stopped when one of the postebecsmes larger

than1 — ¢, wheree > 0 is the desired probability of error:

T := min{t : max pi(t) > 1 —€}. 9)
1€



Let E[r] and E[7] denote the optimal expected number of queriedIn (1) and phienal
expected number of queries with the (possibly suboptimafng rule as given i {9), respec-
tively. The following fact bounds these quantities bothnfrabove and below, and hence will
be used in Section 1V in bounding the loss of optimality intrieing attention to the above

possibly suboptimal stopping rule.

Lemma 1. Consider stopping times defined earlier with scalats ¢ > 0. We have

E[#] (1-5) <E[r] < E[7). (10)

L

The proof of Lemma]l is similar to that of Lemma 3 [n[18] and igeg in Appendix1V.
We are now ready to fully describe our proposed heuristic.

Definition 3. Policy cg ;s is a stationary deterministic Markov policy with a subomlmtoppirlilg

rule defined in[(B) which at a given prior belipfqueries sampleX, € argmax EJS(p, x)

TeX

CEJS

IV. MAIN RESULTS

We now provide the main results — lower and upper bounds ooghienal number of queries
to identify the true function with high accuracy. Note that expect the query complexity of our
problem to depend on the characterizations of the discret@arnyless communication channel
(DMC) which corrupts the true label’s observations. Thigi®MC with input alphabet sef,
output alphabet s€V, and a collection of conditional probabilities(-), | € £. We begin with

a few assumptions on this channel.

A tion 1. C' := mi D :
ssumption 1. C gg%l(l)l})f{leabx (fillg) >0

Assumption 2. := inza%D(f’““fl) < 0.
RIS

Assumption 3. C, = I o,
P 27T RS ) <0

Note thatC' defined above is nothing but the Shannon capacity of the DME tive collection
of conditional probabilitiesP(Y = y|L = 1) = fi(y), | € L (See [19, Theorem 13.1.1]). In

ILet A denote the smallest partition of sample spacei.e., X = Uaca A, such that for everyA € A andh € H, the
value of h(x) remains constant for alt € A. By definition, EJS(p,z) = EJS(p,z") for everyz,z’ € A, A € A. We have

|A| < |£]™, and hencearg max is a valid operation imrg max E.JS(p, z).
reEX TEX
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particular, the minimum is achieved lgy, a convex combination off;}ic., i.e.,g" = >, . 77 fi
where {7} },c. is referred to as theapacity-achieving input distributioand has the property
that for eachk € L, if 7 > 0, thenD(fi|l¢g*) = C (See [20, Theorem 4.5.1]). If Assumptibh 1
does not hold, that is i€ = 0, the label queries will be completely noisy and no inforroati
can be retrieved from the label queries regarding the traetion. In this sense, Assumptigh 1
is a necessary condition that ensures Problem (P) has a mgéarsolution.

Parameter’; emerges as an important quantity in the problem of variddigth coding with
feedback: It denotes the maximum exponential decay ratéh@fetrror probability [[2]. It is
straight forward to show thaf’ < C, and hence, Assumptiof$ 1 and 2 imply that al§o> 0
andC < oc.

Since, in general(; < logCy, Assumptior[ 2 is redundant with respect to Assumpiibn 3.
For observation densities with finite support, i.e., whgh < oo, Assumptiorn B ensures that
the conditional distributions;, [ € £, are absolutely continuous with respect to each other.
Thus for observation densities with finite support, AssuorpB is a necessary and sufficient
condition to ensure Assumptidh 2. On the other hand, for mbsien kernels with unbounded
support, Assumptiohl3, which is stronger than Assumpliois 23 technical assumption made
for notational convenience, and will help us construct rejrmon-asymptotic bounds in closed
form.

While the (non-asymptotic) bounds and analysis in this pape all obtained under Assump-
tions[1 and B, we have chosen to separately state Assum@iamsi[B in order to point out
that it is possible to relax Assumptidh 3. More specificaillyis shown in [16] that at the cost
of increasing notation, more complicated analysis, anddamg the non-asymptotic bounds, it
is possible to relax Assumptidd 3 and obtain similar asyimiptcharacterizations only under

Assumptior ]l and a slightly stronger variant of Assumplibn 2

A. Main Results: Lower Bound

In this subsection, we show the following lower bound on thaimum expected number of

samples required to achiewre < e.
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Theorem 1. Consider Problem (P) under Assumptidds 1 and 3.
(1— 25 —$logt)log M — 2

log

+
N log% —210g10g% —logCy — 4

Elr'] >
7] 2 . o

(11)

Theoren{l is proved in Appendik | using results in dynamicgpaonming. Our lower bound
is similar to [21, Theorem 1]/ [22, Theorem 1], and|[23, Ttesor6].
Next we provide upper bounds on the optimal expected sangae@tEBayesian active learning.

B. Main Results: Upper Bounds

In this subsection, we characterize upper bounds on theceegp@umber of sample queries
in terms of the corresponding Extrinsic Jensen—Shanno8)(&yergence obtained at each time.

In our presentation of these results, we will need the falhganotation:

B () = {p € P(Q) : maxp; = ). (12)

where
1

— : 13
1 4+ max{log M,log £} (13)

p=1

Theorem 2. Consider Problem (P) under Assumptidids 1 and 3. If theretexigositive value
a such that at any given belief vectpre P((2), it is possible to find a sample € X" satisfying

EJS(p,x) > «, then
- log M + max{loglog M,log 1} + 4C5

E[77]

€

(14)

(0%
Furthermore, if there exists a positive valde> o such that for all belief vectorg € P¥ (),

it is possible to find a sample € X satisfying EJS(p,z) > (3, then the following bound is

obtained
log M 4+ max{loglog M,loglog1} logl  3(4C5)?
S € _|_ € _|_ .
a B ap

The proof of the above theorem is constructive and is pravideéAppendixX]]. In other words,

E[77]

€

(15)

the policy which selects and queries the label of the samfiée which EJS(p, x) > «, ensures
an expected sample size which is smaller than or equal toighe hand side of{(14). Now, by
construction, policyz g is such a policy. A similar statement holds for{(15).

We remark that ag’ is the minimum value ofE.JS(p,z) over a subset of belief vectors
p € PM(Q)), anda is the minimum value over all belief vectors,> «, (I8) illustrates that we

can get significantly better bounds whgéris much greater than.
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C. Main Results: Asymptotic and Order Optimality

Note that the lower and upper bounds provided by Theotémsl Paare non-asymptotic and
hold for all values ofA/ ande. Nonetheless, they can be applied to establish the asyimptad

order optimality ofcz ;5 as defined in Sectidn TI5A:

Corollary 1. The proposed Markov deterministic heuristic policy whichximizes the EJS
divergence is order optimal inand M if there exists scalar > 0 satisfying the first condition
of Theoreni2 such that A 0 as M — oo or € — 0. Furthermore, it is asymptotically optimal

in e (and M) if g can be selected to be as large @s (and « as large asC').

However, the above results depend on characterizing nanvadues, if not sufficiently large
values, for quantitiesr and 5, which in turn depend on the function clags and the set of
samples that we are allowed to pick from. In the next subsecte specialize the above results

to several function classes in order to concretely illustthe asymptotic performance of ;5.

D. Applications and Consequences

So far, we have only characterized the performancek in terms of strictly positive
scalarsa and 3, assuming they do exist. An important question remains astiveln one can
always find such scalars. In this section, we specificallyk lab an important function class
example and provide nontrivial characterizationcofind 3, hence, demonstrating the relative
looseness/tightness of the upper bounds. Furthermore, isoeiss the asymptotic and order
optimality of these bounds.

We begin with the following definitions which will allow us tgeneralize the notion of
1-neighborly, first suggested by [1]; then for this genetass, we will obtain non-trivial scalars
a and 3 satisfying the conditions of Theorem 2.

Consider the representation of a pair of samplesdz’ in terms of their partitioning of the

functions:

Definition 4. A pair of samplesr, ' € X partition the function clas${ in an agreement set
Ay ={heH :h(x)=h(z')} and a disagreement s&t, ., := {h € H : h(x) # h(z2')}.

Definition 5. A class of functionsH is referred to as locally identifiable if for any; € H,

there exist samples, 2’ € X and labeld, !’ € £ such that either of the following be true
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(i) hi € Apw NHF NVHE andH — {h;} = A, » U (HE 0 HY), or
(i3) {h;} = A, N HP and for allk # 1,1', HY U HY = ().

In essence, the locally identifiable condition implies tloatany functionh; € H, there are (at
least) two samples andz’ in X and two labelg and!’ using whichh; can be distinguished from
all other functions. As we will see in Sectidd V, local iddiatbility is a fairly mild condition
that is satisfied by a number of natural function classes.

The performance ofz ;5 when the labeling function class is locally identifiable iacterized

by the capacity of the (sub)channel with two inputs € £ denoted byCy, i.e.,

Cur = i max{D(fillg), D(frllg)}, (16)

and consequently

Cuin '= min min {Cll/, D (fl,

LUeLl Al

St %fl/)}. (17)

Proposition 1. When function clas${ is locally identifiableo > %Cmin and g > pChin. More

precisely, for every belief vectgs, there exists an: € X such that

LCmin if PM(Q)
BIS(p.x) > { pEFID. (18)
pChin  Otherwise

Proof: To prove Propositiofil]1, it suffices to show that
> iCinin-
max BJS(p, ) 2 max piCiin

Let ;: = argmax p;. By definition of the locally identifiable class, there existz! € X and

1€Q)
[,I' € £ such that one of the following conditions holds

[hi(;), i) = L] and [ (), by ()] € (AR MY UL, 0Y, Vi#4, (19)

kel

1,0 and [hy(z;), hy(ai)] € {[LUL [0, (10T}, Vi#d (20)

[l (27), i (24)]
For anyk, k' € L, let
Tkk! = Z 1p_]

Suppose[(119) holds. Then

r;lea%EJS(p, )
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> max { EJS(p, z;), EJS(p,2%)}

max{D(fh fjpﬁfhj(x;)), < HZ b fh )}

i J#
; ax { A - miefi + Wz'zfzf) <f1/|| > e+ szlfl)}
kel kel
(@) > T fr + T fr + mofi > Tk fro + morfi + morfu
> pymax { D fi] D ful =
- 14 my 14+ my
= p;min max{D(fillg), D(frllg)}
= ngll/
Z max picmim (21)
icQ

where (a) follows by FactB in Appendix1V.
On the other hand, if(20) holds, then

max E.JS(p, x)

TeX

Z p; max {D(leﬂ-ll’fl + <7Tl’l + Wl’l’)fl’)u D(leﬂ-l’lfl + (7‘('”/ + Wl’l’)fl’)}
1 1
D(flgfi+ 55)
> max piCmina (22)
i€

where (a) follows by Facf38 in Appendik1V and sincein{m, m} < 3.
Combining [21) and[{22), we have the assertion of the prdiposi [

The following corollary provides an upper bound on the expeaumber of sample queries.

Corollary 2. Consider Problem (P) under Assumptidnhs 1 &hd 3. If the fonatlassH is locally

identifiable, then

M (log M + max{loglog M, log log % logl  3M(4C,)?
B[] < (log {loglog ggﬁ})J_gEJr (22)_
C’min pCmin C

min

(23)

Next, we define a subclass of the locally identifiable furctabass, and show that for this
function classp and 5 can be selected to match the denominators in the lower bouidl).

Hence, the policy ;s is provably asymptotically optimal ia and M.
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Definition 6. We call the function clas${ R(H)-sample-rich forR(H) = U,cx=". In the
special case wher®(#) includes all (£|™ — |£]) non-trivial | £|-partitions of H, we simply

refer toH as sample-rich.
Proposition 2. When function clas%{ is sample-richa > C and 5 > pC;.

Proof: To prove Propositiof]2, we will show that for all belief verse,
>
max EJS(p,x) = C,

and furthermore,

> (1.
max EJS(p,x) > max piC1

Recall from Sectiofi IV that

C' = mi D 24
uin max (fillg), (24)

and the minimum is achieved by = >, 7/ fi where 7* is the capacity achieving input
distribution, i.e.,

D(ka Zw;f,) — ¢ forany ke £ suchthatr > 0. (25)

lel

By definition of the sample-rich function class, for each= [vy, ..., v)] € LM there exists

a sample inY, say,, that satisfiedi(z,) = v, whereh(z) := [h1(z), ho(z), ..., hy(z)]. Let

M
Ay = HW;
i=1
Note that) " _.. A; = 1. Moreover, for anyi, j € Q, i # j,
> X=m, Y X =m.
velM: v;=k velM: vi=kv;=l

Using weights{ )\ },.» and taking average over all € £, we obtain

TeX

max EJS(p,z) > Z Mo EJS(p, )

Pj
1 — i fhj(“/’lf))

M
=> A\ pD (fhz-(m 1>
v i=1

JFi

M * .
= ZpiZWz Z i_ZD<ka Z 1 fjpifw')

i=1 kel v: v;=k j#i
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(a) M * pj )\;
zzpiZ”kD<f’“Hzl— > W_vaj)

i=1 kel GAi Pi vi=k

SDIDELI(T) I S ST

i=1 kel j#i 1=pi IEL v vi=kw;=l
M

=> " pY mD (ka > mh
i=1 kel lec

(b) -

= piC

p— C,

where (a) follows from Jensen’s inequality an@) follows from (25).
Let s = argmax p;. Let k, 1 € £ be the labels satisfyind(f,||f;) = C,. By definition of the
1€Q
sample-rich function class, there exists a sample X' that satisfies;(z;) = k andh;(z;) =1

for all j # i. We have

i EIS(p.) 2 BIS(p.5) = 1D (o)

reX

E : Pj B |
) v 1—p; fhj(m;)) = I?E%szcl-
J7

As a simple corollary,

Corollary 3. Consider Problem (P) under Assumptidds 1 and 3. If the fonctilassH is

. 2
= c 50 T p0c, (26)

E[r]

€

The above results show that for sample-rich function clesseg s is asymptotically optimal
in both e and M.

The above results generalize the finding [df [1] to a multelaBayesian learning with non-
binary and asymmetric noise case. However, to make this agsgn precise, we will dedicate

the next section to specialize our general results abovieetmoisy generalized binary search of

[].

V. SPECIAL CASE: NOISY GENERALIZED BINARY SEARCH

We next compare our work with existing results. Since they atlidy of similar nature is that

of noisy generalized binary search [1], we consider an agfiin of our main results to noisy
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generalized binary search among 1-neighborly functiorst, ifitroduced in[[1]. This is a special
case of our problem where functions are binary-valued, Le—= {—1,+1}, the observation

space) = {—1,+1}, and observation densities are of the following form:

fz(y){ tor Ty

D if y=—I 7
for somep € (0,1/2). In other words, for any sample if &, is the true function, then the label
hi(z) is observed through a binary symmetric channel with cromsprobabilityp.
For the case of noisy generalized binary seat¢h(;, andC, defined in Sectiob IV can be

further simplified to

C:=1+plogp+ (1 —p)log(l—p),

p

C1 :=plog 1 P

1 —
CQ :—p
p

In order to emphasize the dependence pfC';, and C5; on the Bernoulli parameter (corre-
sponding to the observation noise), we denote thenCly), C:(p), and Cy(p) respectively.
Note that from Jensen’s inequality; (p) > 2C(p).

Next we define a class of 1-neighborly functions first definedfli Definition 2].

Definition 7. A class of binary-valued function®( is referred to as 1-neighborly if for any
h; € H, there existr, 2’ € X such that

{ hi(z) # bl
hi(w) =hy(a') if A iandh() £ —hi()

It is simple to see that the class of 1-neighborly functiaa subset of binary-valued locally
identifiable function class. This implies the following leéee bound:

Corollary 4. When function clas${ is 1-neighborly, we have > --C(p) and 8 > 5C(p).

In comparison,[[l1] provides two sample query strategiesBE@nd MSGBS, whose perfor-

mance (upper bound) depends strongly on the propertiesediutirction class at hand.
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Let ny denote the number of queries made by GBS to deterrjn@ the noiseless setting.
The number of queries required by NGBS to attBin< ¢ is upper bounded by
no(logng + log 1)
(5 —p)?
Let A denote the smallest partition of sample spata.e., X = Usc4A, such that for every

(27)

A € Aandh € H, the value ofh(z) is constant for alle € A; and denote this value by(A).

Furthermore, let

¢ := min max
PeP(A) heH

> MAPA)

AeA

. (28)

Under MSGBS, the number of queries required to ensureRbat ¢ is upper bounded by
log M + log%

min{2(1 — ¢*), 1} \(p)’ (29)
where
. L/ p-p (@A-=p)p
Ap) == p’én(]ill)j?) 1 (1 - v ) . (30)

Note that-* (as well as) in general depends on the function cl&ssSince this dependence is
implicit and hard to characterize in closed form for genéuaktion classH, a direct comparison
between[(20) (or(27)) and_(R3) is not possible. As a resext me focus on special cases of
function classes studied inl[1] for which a precise charazgon of the achievable upper bound
is available. Consequently, we next define two importantkdses of 1-neighborly binary-valued
functions: 1) Disjoint clas${p; 2) Threshold clas${;. We further specialize the choices of

and s for these classes.

Definition 8. Let e;, i € , represent a vector of siz& whosei" element is+1 and all
other elements are-1. A collection of functions# is referred to aglisjoint interval classif
Usex{h(z)} = Uiea{e;} C {—1,+1}M, whereh(z) := [hi(x), ho(x),. .., har(x)]. In other
words, for any sample € X', only one function inH takes valuet+1 and all other functions

take value—1.

Definition 9. Let u;, i € 2, represent a vector of siz& whose firsti elements are-1 and
all other elements are-1. A collection of functionsH is referred to aghreshold classif
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Fact 1 (see [24]) For the disjoint interval clas${p, no < M andc¢* = 1— 2. For the threshold
function classHr, ny < log M andc¢* = 0. For the sample-rich function clasi g, ng < log M

and c¢* = 0.
We are now ready to contrast these results with our findingpalticular, we have

Proposition 3. For the disjoint interval classip, a > :Ci(p) and 8 > 5Ci(p). For the
threshold function clas$(;, « > C(p) and 8 > C(p). For the sample-rich function clasig,
a > C(p) and 8 = pCi(p).

The proof of Propositiofl3 is provided in Appendix1II-A.

Table[l summarizes our results and specializes the upperdson [24] and lists the number
of samples required by the policies NGBS, MSGBS, apgs to attainPe < ¢. Furthermore,
these bounds together with {52) establish asymptotic addraptimality ofcy JSH

Recall that policies NGBS and MSGBS are non-sequential ensimse that they stop after a
fixed number of samples, regardless of the probability afreffhe numbers shown in Tallk |
are the number of samples that these policies require tewaehe < ¢. Policy ¢z ;¢ is sequential

and Tabld]l shows the expected number of samples requirelibpodlicy to achievePe < e.

TABLE |

PERFORMANCE COMPARISON OINGBS, MSGBSAND cgss ON DIFFERENT FUNCTION CLASSES

Function class NGBS MSGBS CEJS
- M (log M+log L) M (log M+log L) M log M log 1
D|SJO|nt HD T W ( Cl (p) + m) (1 + 0(1))
order optimal ine order optimal ine asymptotic optimal ine
log M (log log M +log %) log M +log % log M log %
ThresholdHr S e ( g M C(p)) (14 o(1))
order optimal ine order optimal ine, M order optimal ine, M
. log M (log log M +log %) log M +log % log M log %
Sample-richH r T2 ) (—C(p) + 7 (p)) (1+0(1))

order optimal ine order optimal ine, M asymptotic optimal ine, M

To provide a comparison between the obtained bounds, in@syimregime, Figl.ll compares

the denominators of the upper bounds given in Table |. No& dlur upper bound provides

>The termo(1) goes to zero as — 0 or M — oco. See AppendiX 1B for more details.



20

improvement over those corresponding to NGBS and MSGBSicBerly, the gap between the
bounds is very significant for small values of the Bernoudlrgmeterp and for large values of
1 and M.

14

12 -
—Ci(p)

— C(p)
— (3 -p)?
A(p) |

L 1
0.4 0.45 0.5

Fig. 1. Comparison o€’ (p), C1(p), (3 —p)*, and\(p), for p € (0,1/2).

Remark. With no tight lower bound on the performance of NGBS and MSGBf¢ above
comparison must not be confused with a comparative anabgtiseency ;s versus NGBS and
MSGBS. In fact, the gap between the above upper bounds cotédfpally be due to the analysis
limitation in [24] of these algorithms rather than their foemance.

Next, policiescr ;s and MSGBS are compared numerically for the problem of nomyeg
alized binary search with parameteiand a rich function class of siz&/ (we do not consider
NGBS since it is outperformed by MSGBS). This numerical gtudt only sheds light on
non-asymptotic performance of both policies but also mtesia direct comparison between the
performance of these policies (as opposed to a comparisoveee the upper bounds on the
performance of these policies given in Table I).

In order to have a fair comparison, the candidate policiescampared in both sequential
and non-sequential scenarios. In the sequential scerbheqolicies stop as soon as the belief
about one of the functions passes a thresHold ¢, and the expected number of queries is

considered as a measure of performance; while in the nameséigl scenario, the policies are
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compared based on their average probability of making a gvd@tlaration aftet. number of
label queries.
Figs.[2 and B show the performance wf;s and MSGBS for the sequential scenario while

Figs.[4 andb compare their performance for the non-secalestenario.

w
a1

----MSGBS
BOE e T R | | 4
R —C(EJS

25+ H H Lo \‘~_ i

20 I .

Expected number of samples
1

Fig. 2. Sequential noisy generalized binary search witlaupaterp = 0.2, desired probability of erroe, and a rich function

class of sizeM = 5. The expected number of samples is plotted asries.

The figures show the superior performancecgfs over MSGBS in both scenarios and for

different values of, N, and M.

VI. DIscussiON ANDFUTURE WORK

In this paper, we consider the problem of noisy Bayesiarvadéarning. In this setting, we
propose a heuristic policy for querying the labels of samplsing Extrinsic Jensen—Shannon
divergence, and provide upper bounds on its performancaddiition, we provide information-
theoretic lower bounds on the query complexity of any sangpbtrategy. Comparison to the
state-of-the-art [24] shows that our sampling strategyieses superior performance for several
natural function classes.

Our lower and upper bounds reveal that Bayesian activeitegain the presence of noise is a

two-phase problem, where the lengths of the phases comddpahe two terms in Theorerh$ 1
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26
240 |----MSGBS |
22 |7/ «cgJs P S 7

Expected number of samples

Fig. 3. Sequential noisy generalized binary search wittapaterp = 0.2, desired probability of erroe

function class of sizé\/. The expected number of samples is plotted\asvaries.

= 0.01, and a rich

10°

Pe

----MSGBS

CEJS

Fig. 4. Non-sequential noisy generalized binary search wirametep = 0.2, total number

function class of size\/ = 5. The average probability of error is plotted Asvaries.

of label queried’, and a rich



0.3~

0.2

Pe

0.1

----MSGBS

—tEJS .t

0.05-+*
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Fig. 5. Non-sequential noisy generalized binary search wirametep = 0.2, total number of label queried” = 10, and a

rich function class of sizé//. The average probability of error is plotted &§ varies.

and[2. The first phase corresponds teemrchamong the)M functions in the class, and the

second phase corresponds to a testing phase where we sewltdase our confidence in the

result. An important direction of future research is to exteour algorithms to more general

function classes such as linear classifiers and to estaidistonnection to other notions used

to measure the query complexity of active learning such a&xaxder’'s capacity [7]/[9]/]12]
and the splitting index |5].

APPENDIX |

PROOF OFTHEOREM[I

From Lemmdl1l, we have

E[r] > B[] (1--).

Let V* : P(Q2) — R, be the solution to the following fixed point equation:

Vi(p) =

1 + mingex E[V,(®"(p,Y))], otherwise

where®”, xr € X, is the Bayes operator defined [d (7).

if >1—
0 I;leaéipj > L

(31)
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It follows from Propositions 9.8 and 9.10 in [25] that
E[7] = V' ([1/M,...,1/M)). (32)

The assertion of the Theorem follows from¥31),1(32), and beai® at the end of this section,
and by setting = £log 2 andé = —L+, as shown below.

log%’
—flog 4
9 (1—@—§1og§)logM—2 10g$—10g10g2—10g02—1 +
]E 1 > 1— € + 2
m_( log%) C Cy
2 € 4 log M
- (1—10gg)( —§log;)log1\4—logé -2
- C
2 1 1 2 +
. (1—@)10g—§10g% —logw—loglogz—long—l
Cy
(1—10;—glog%)logM—lﬁ)gg%—2

C

log = —loglog ¢ — 1 —log ;757 — loglog ? —log Cy — 177
2 €

+ C,
- (1_lo§§_%log%)IOgM_2+log%—210glog%—log02—4 " (33)
- C ,
Lemma 2. At any information state € P(2) and for any. € (0,1) andé € (0,1/2),
J’_
. H(p) — Fy(0) — Fy (0 log%—logﬂ—logC—l
Vi(p) > [ () Mé ) 10 + 5«1 - 1{1316a§§pi§1—6} (34)

where Fiy(z) == H([z,1 — 2]) + zlog(M — 1) for 0 < z < 1.

Proof: The proof of Lemmal2 follows closely the proof of Lemma 1 anadiem 2 in[[16]
and is provided next.

First we will use the following technical lemma, proved in ggndix[1V.

Lemma 3. Any functionall’ : P(2) — R, that satisfies the following:

0 if maxp; >1—1
V(p) < , (35)
1+ mingex E[V(®“(p,Y))] otherwise

provides a uniform lower bound for the optimal value functig*.



25

Next we define/(p) = max{J'(p), J"(p)} where

) +
, —Fu(t) n log it —log gt —1
= i ! y 36
J'(p) 5+ ;p G (36)
and.J” is the right-hand side of (34), i.e.,
+
, H(p) — Fy(8) — F log 1=t —log =2 —log Cy — 1
J'(p) = (p) = Fau(0) =~ Fu(t) + g —log 5 —logCh Limax pi<i-s} | -
C Cl i€

We show that/ satisfies[(35) and henc&," > J = max{.J’, J"} > J".
We use Jensen’s inequality to show that

J(p) < 1+minE[J(®(p,Y))], Vp € P(Q). (37)

For any p such thatJ'(p) = 0, inequality [37) holds trivially. For any such thatJ'(p) > 0
and for anyzr € X, we have

— i) h;(x (y)
M log 1= —log—p LHO) -
. —Fa(e L 25 Pifn (@) (Y)
@ (V)] 2 / pidiin®) St g,
o J/( )_ - ffh log ZJ#L 1— pth (z)(y)dy
=Jp : Pi o
. D(fhi@lfny)
> 7 . ) J?ﬁl 1 p
> J'(p) Z::pz 01
> J'(p) - 1.
For all p satisfyingmez}lxp,- >1-—9,
H(p) < (1—06)log —— + (M — 1) x log ———— — Fy(6)
p %15 M-1 %5/ -1 M
hence,J” = 0. In other words,/(p) = J"(p) > 0 implies thatm%xpi <1-4.
1€
Let p = ®“(p,y). If m%xﬁi <1-4, then
1€
H(p) — Fy(6) — F, lo —lo —logCy —1
Jp) = 1'(p) = L2 MC( )= Ful) | log 2 —log 5 & BT (39

On the other hand, ifnz}lx,a,- >1—9, we get
1€

J(p) =J'(p)
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L log =t —log lfiﬁ

+
—Fu() S -1
C +;pl C

+
(;;) —F (1) N M ﬁ}og% —log =2 —log Cy — 1
¢ i=1 Gy
—Fy(1) log := — log % —logCy —1
> L 39
> —=—+ c. , (39)
where (a) follows from the fact that under Assumptidh 3 and for aé ,
pi Pi Pi Pi
1 <1 —1 1
Ogl—ﬁz’_ Ogl—ﬁz’ Ogl—Pi - Ogl—Pi
Pifhitz) () 1-9
< llog — log + log
Zj;ﬁi pjfhj(m) (y) 1—pi 0
fr)(y) ‘ 1—
= |log o + log ——
Zj;éi 1?[}1. fhj(:c) (y) 0
1—-6
<log Cy + log 5

From the above facts, we obtain:
. Case 1:For all p such that/(p) =0 or J(p) = J'(p), it is trivial from (317) that

J(p) = J'(p) < 1 +minE[J (®"(p,Y))] < 1 + minE[J(®"(p,Y))].  (40)

reX zeX

. Case 2:For all p such that/(p) = J"(p) > 0, and for anyz € X', we have

ELJ(@"(p.Y))] = / 1@ (p, ) £2(y)dy

@ [H(®"(p,y)f2(y)dy — Fu(d) — Fu(v)
- C
log% — logl%;‘g —logCy — 1
Gy
I(p; f£)

=J'p) — =5

1 <16
{tirleagpz_ }

> J"(p) -1
2 Jip) - 1. (41)

where (a) follows from (38) and[(39), andb) holds sincep is such that/(p) = J"(p).
Combining [40) and[(41), we have that
J(p) =1+ minE[J(®%(p,Y))] (42)
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What remains is to show that(p) = 0 for all p € P(Q2) such thatmax;cq p; > 1 — ¢.
For p € P(Q2) such thatmax;cq p; > 1 — ¢, we have:

(M log 1=t — log & Fu(e) *
T(p) =D pi— = =
= C C
1 1 *
| ¥ mibEsl b
Ch C
| {i€Qpi<l—i}
1 [{ieQpi<l—u}| +
(2) log L + log Z{iGQ:pi<17L} Pi 1 . FM(L>
{zGQpZ<1 L} Cl ¢

(2) tlog® + Llog —-1)  Ful) "
- C
9y, (43)

where(a) follows by Jensen’s inequality)) follows from the facts thap ;. 1, pi <0 <1
for any p € P(Q) that satisfiesnax;cq p; > 1 — ¢, andzlog <1 for z € [0, 1]; and(c) holds
sinceclog+ < H([t,1—]) andC < (.

On the other hand, fo¥” and anyp € P(Q2) such thatmax;cq p; > 1 — ¢, we have:

+
H(p) = Fu(r) | log'7t —log 152
C c, {%agpiﬁl—é}

(a) log log !
< Cy 1{59, max p;<1-6}

—0, (44)

J"(p) <

where (a) follows from concavity of the entropy function.
Combining [43) and[{44), we have that

J(p)=0 if max p; >1—u. (45)
1€
It is implied from (42) and[(45) that satisfies[(3b) and henc®&,* > J = max{J', J"} > J".
This is a slightly stronger result than (34). [ |
APPENDIX Il

PROOF OFTHEOREM[Z2

First let us consider inequality (1L4) in Theorém 2.
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Notice that for alli € 2, upon selectingX (¢) = « and observing/(t) = y, the belief state

evolves as

e ()
29

Let U(-) be the average log-likelihood function defined as

M 1
= pilog
=1

and let 7(t) = o{X(0),Y(0),...,X(t — 1),Y(t — 1)} denote the history of samples and

observations up to time We have

pit +1) = pi(t)

(46)

E[U(p(t +1))|F ()]

=3 P(X(t) = 2)E Zpi(t+1)1og1_pi—@“>\f(t),)((t):x]

= pi(t+1)
B B M ' o Zj;ﬁi Pj(t)fhj(x)(y)
_wGZXP(X (t) =) /y sz(t)fm(m)(y)l &= ) Tro @) dy
M P e OLC))
_Zpl log +;P :C)Z;/ypi(t)fhi(x)(y) log = fhi(:c)(y}; dy
=U<p<t>>—ZP<X<t>=x>Z ol g B o)

=U(p(t)) — > _ P(X(t) = ) EJS(p(1), ).
Remember thatr 5, at any timet < 7, selects a sample that maximizes the EJS divergence,

i.e., X(t) = argmax EJS(p(t),x). Thus, underk s, the sequencéU(p(t))} satisfies
reX

E[U(p(t +1))|F@)] =U(p(t)) — max EJS(p(t), 2)

2 U(p(t) - o, (47)

where(a) follows from the assumption of Theordmh 2. In other words,stbquence{—@—t}
forms a submartingale with respect to the filtratipA(¢) }. Let us define a stopping time

1
U= min{t : r?e%xpi(t) >1 —min{IOgQM,e}}.




29

It is clear that7. < v and henceE[7] < E[v] under any query scheme. By Doob’s Stopping

Theorem,

Rearranging the terms, we obtain
£ < VRO g [—U<p<v»]

(0] (0]

%) log M+ E[-U(p(v —1)) + U(p(v = 1)) = U(p(v))]

«v

(<b) log M + max{loglog M,log} + E[U(p(v — 1)) — U(p(v))]

o «

() log M + max{loglog M, log %} + C% <3 + bgﬁ log(M — 1))

<

B «

- log M + max{log log M, log 1} + 4C, | 48)

«
where (a) follows from the fact that initially the functions are equopable, i.e.,p(0) =
[1/M, ..., 1/M] and hencé/(p(0)) = log(M —1), (b) holds sincey; (v—1) < 1—min { 7557, €}
for all 7 € ©2 and hence,

M : 1
pi(U — 1) 11— mln{loggMae} 1
— ~1)) = (v—1)1 1 log log M, log =
U(p(v—1)) E_l piv—1)log 1 1) S8 Y p—— < max{loglog M, log -},
= 0og

and (c) follows from Lemmé&_.6 in AppendikIV.
The proof of Inequality[(15) in Theorefd 2 follows similar éis. Recall from[(13) that =

1— 1+max{1olgM,1ogg}' Notice that if p;(t) < p for all i € ©, then

U(p(0) = 3 pit) log * ;fgf” >3 pio)log - P _ log %

Similar to (4T), we can show that

Ulp(t) —a if U(p(t)) > log =2

E[U(p(t+1))|F ()] < i (49)
Ulp(t)) =B if U(p(t)) <log 5~
Furthermore, from Lemmia 6 in Appendix]IV, we know thaﬁrigzxpi(t) > p, then
[U(p(t)) =Ulp(t —1))] < Co 3+ (1 = p)log(M — 1)) < 4C5. (50)

The rest of the proof follows directly froni (#9) anld {50) anacf2 in Appendix IV.
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Il NoIsy GENERALIZED BINARY SEARCH

Let ¢,(-) and g,(-) be probability density functions ol defined as follows:

if y=—1
wp=47 Y L 5() = g,(—y). (51)
1—p if y=+1

It can be easily shown that:

gp+ g _ .9 tg _ B
C(p)ZD(ng%):D(ng p2 L) and Ci(p) = D(9,/19p) = D(pll9p)-

A. Proof of Propositiof3

The result for the sample-rich class follows from Proposifl. Next we provide the proof

for the class of disjoint interval functions and threshalddtions.

1) Disjoint Class:

To prove this case, we will show that

> ; .
max EJS(p,x) > max piC1(p)

Let i = arg max p,. By definition of the class of disjoint interval functionfiere exists a
i€Q
samplez; € X' that satisfiesh(z;) = e;. We have

Pj B
> 1 _Jpé fm-(x;)) = p;D(9,195) = p;C1 (D).
i !

EJS(p, ;) > p; D (fh;(:c;)

2) Threshold Class:
We will prove that
max BJS(p, x) = C(p).

At any belief vectorp € P(Q2), there existsk, k € €, such thathzlpj < 3 and
Z;tll pj > % Let x;, andx,,; be samples inY that satisfyh(z;) = u, andh(xg 1) =

;1 respectively. Let; = 5 —S>" | p; andd, = Y571 p; — 3. Notice thatpy.,.1 = 6, +db.
There are two cases:

« Case 1, < 6,. We have

M
EJS(/LM)IZﬂz’D<fhi(:vk)||Z b fhj(:vk))
=1

-
iz P
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k
126 —p 1/246
=ZpiD(ng/1_l g+ 2L ,lgp)

Pi ! 1_p2

/ 1 1/2 =4y
+pk+1D<gp||7g + 7 Ip
Pl+ — Pk+1

1/2 - 1/2+ 6, — pi
+ Z pi (gpll - O G+ 9

i=k+2 1= pi

S (/280D (a(1/2+ 505, + (1/2 — 5)g,)
+ 0+ 3D (559 + 59
+(1/2=8)D (gl (1/2 = 813, + (1/2+ 61)g, )

p D(gpll(l — )9 + vgp>

S D (g0l 570 + 390)

= C(p),

where
=(1/2-6)*+ %(51 +89) 4+ (1/2 = 62)(1/2 + &1),

inequality (a) follows from Fact[8 in AppendixX_IV and{(51);b) holds since KL
divergence is convex, and) follows from the fact thaty = 1 + 6;(6; — 6») < 5 and

by Fact3B.
o Case 21, > 6,. We have

/246, —pi 1/2-6
EJS(p, ws1) sz <gp||%gp+ {_p,zgp)

1/2-6, 1/2-5
+pk+1D(gp|| 2ot 2,
— Pk+1 — Pk+1

1248 1/2—6,— p,
+Zm (ng/ p429p+/ . gp)

i=k+2 1= pi

—

2 (12 50D (g,1(1/2 — 82)3, + (1/2+ 62)3,)

11
+ 61+ 8D (9159 + 59)

+(1/2 = 8)D (gpll(1/2 + 85, + (1/2 - 62)g,
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(b
> D(g,l1(1 =73 + 755 )

(¢) 1 1
> D<9p||§gp + Qgp)

= C(p),

=

where
o (1/2=061)(1/2+ o) + %(51 + )+ (1/2 - 52)2,

inequality (a) follows from Fact[B in AppendiX_1V and[{31),b) holds since KL
divergence is convex, and) follows from the fact thaty/ = 1 +d,(d, — &;) < 3 and
by Fact(3.

Therefore,

mea%EJS(p, x) > max {EJS(p,x), EJS(p, xr41} > C(p).

B. Noisy Generalized Binary Search: Asymptotic Analysis

For disjoint function clas${, and from Theorerhl2 and Propositibh 3,

E[] < log M + max{llog log M, loglog 1} ~log : 3(4C5(p))?
o 17C1(p) pCi(p) — 35C1(p)pCh(p)
02) Mlog M + Mloglog logl+1 6M(4Cy(p))?
- Ci(p) Ci(p) (Ci(p))?

(MlogM N log 1 ) y (1 N Mloglog 2 + 1+ 6M(4Cg(p))2/01(p))
Ci(p) Ci(p) M log M + log

([ MlogM log% )
- (“G + o)1+ o

whereo(1) — 0 ase — 0 or M — oo and(a) holds since; =1 + m <2.
For threshold function clasi and from Theoreml2 and Propositioh 3,
- log M + max{loglog M, log 1} + 4Cs(p)

B = )
() o
~ (logM  log % )
‘(C@)*C@)“+(”*

whereo(1) — 0 ase — 0 or M — oc.
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For rich function class{y and from Theoreml2 and Propositibh 3,

E[] < log M + max{log log M, loglog <} N ~log% N 3(4({2(})))2
o C(p) pCi(p) — Clp)pCi(p)
(@ log M +loglog 2 logl+1  6(4Cy(p))?
) Gl TG
C1(p) loglog & + C(p) + 6(4Cs(p))?

: CZ%\)J " Cl?i%)) ) (1+ C(p)log % )

~ (logM log% )
= (i ey )a-+ot),
<o

whereo(1) — 0 ase — 0 or M — oo and (a) holds since/l—3 =1+ m <

It follows from Propositiori 1l that

log M 2 1 2 log 1 2loglog 2 + log Cy(p) + 4
E[r*] > 1— —€log = | — —— e (1= €
1> Gy (1= s o8 2) - o7+ g o5
log M logt 1 2loglog 2 +log Cy(p) + 4 + 2C1(p)/C(p)
> + ) x|1—¢€log—— < T
Clp)  Cilp) ¢ log ¢
log M logt )
= + 22 ) (1= o(1), 52
(S0 * i )0 - 52

whereo(1) — 0 ase — 0.

IV TECHNICAL LEMMAS
In this appendix, we provide some preliminary lemmas antsfakhese lemmas are technical

and only helpful in proving the main results of the paper.

Lemma 1. Consider stopping times defined earlier with scalars ¢ > 0. We have

E[#] (1-5) <E[r] < E[7).

L

Proof: Under any query scheme with the stopping rile (9):

=E[1 - (7)) <
Pe =E[1 r?ez}lx,o,(n)]_e,

hence, by construction,
(53)
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On the other hand, let us considéjr;"| for any. > e. Let 7. be a stopping time at which the

probability of error satisfie®e < e. Under any query scheme,

EhJZEhﬁ%g%@921—w}P@%gW@J21_O
(a) )
> Bl maxpy(n) 2 1=1] (1= 'E[L - maxpi(n))
®

€
> B[ maxpj(r) = 1 -] (1)

> E[F] (1-2) (54)

L
where @) follows from Markov inequality anddj follows from the definition ofr, which implies
that Pe = E[1 — max pi(Te)] < e. From [54),
je

E[77] (1 - -) <E[]. (55)
]

Lemma 3. Any functionalV’ : P(2) — R, that satisfies the following:

0 if maxp; >1—1
Vip) < 7e

Y

1+ mingex E[V(®“(p,Y))] otherwise
provides a uniform lower bound for the optimal value funetig*.

Proof: To prove the above fact, we have to slightly modify the stptce and introduce new
notations. We assume that after taking the retire-declarera the system goes to the termination
state, denoted by, and remains in that state for the rest of the time. The sfaeesis modified

to S =P(Q2) U{F} to include the termination state. Fore X U {d;,ds,...,dy}, s € S, let
’1 if s=peP(Q),zeX

; o0 ifs:pEIP’(Q),rjneaécpj<1—L,x€{d1,...,dM}

)= 0 it s=peP(Q)maxp; > 1~ nx€{d.. dy} '

0 ifs=F

\

The Bayes operator is modified as follows:
®“(p,y) if s=pecP(Q),zelX
D4(s,y) =4 F if s=peP(Q),ze{d,... dy} -
F if s=F
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Using the notations above, conditidn {35) is rewritten as
V(F) =0,

V(s)<  min  {*(s) +E[V(®7(s,Y))]}, VseS—{F}. (56)

SCEXU{d1 ..... d]y[}
Let Sy, S1,Ss, ... be a sequence of random variables denoting the belief sahtidsest =

0,1,2,... starting from belief stats, i.e.,

So = s,

S, =®"=V(s ., Y), Vn,n>0.
Using (56) iteratively forN times, we obtain

V(s) < Ene[¥O ()] + En [V (2% (5,Y))]

— B [XO(Sp)] + Eqe [V(S)]

<E,- [Z cX(")(Sn)] + Ere [V (S2)]

< En CX(H)(Sn)] + Ex [V(Sn)],
n=0
where subscript* implies that actions are selected according to an optimédypa* [ Taking
the limit as N — oo, we obtain
(a) >
V(s) < Ere[>_ X™(S,)] + lim Ere[V(Sy)]

N—o0
n=0

2V (s)+ lim v [V(Sy)]

L

=V (s) + lim Er[V(F)lisy=ry + V(Sn)1{sy2F}]

N—oo

=V (s) + Jim B [V(Sn)1{sy2r)]
=V(s),

L

where(a) follows from the monotone convergence theorem éndollows from the definition
of V. u

*The existence of an optimal policy follows frof 25, Coroyled.12.1] and sincél| < oo.
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Lemma 4. For any: € (),

pi(t+1) pi(t)
‘10 e BTo 0

‘ < log (5.

Proof
g LD pilt) ‘ | log Pi(t) frix o (Y(2)) " log pi(t)
1—pi(t+1) 1 —pi(t) ; pi(t )fh xay(Y(t)) 1 — pi(t)
~ | og Sy (Y(t))
. it froo (Y (0)

< max sup log — frute) W)
TEX yey NI ;45 fhj(ac) (y)

< log (5.

Lemma 5. For any: € ),
pi(t +1) = pi(t)] < pi() (L — ps(t))(C2 — 1).

Proof:

|pi(t +1) = pi(B)] = pi(t)

<.
Il
—

Traxay (Y (1)) — . 1?@ I xay (Y (1))

= p;(t)(1 — p;(t —
A= ) | IS P i 070

max{fhi(x(t))(m)), o) hJ.(x(t»(Y(t))}

< pi®)(1 = pi(1)) -
miﬂ{fhi(X(t (Y ()) 1pjp(t(t Fryxon (Y ())}

< (O - (1) (gsup 2420 - 1)

kel yey fi(y)
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= pi(H)(1 = pi(8))(C2 = 1).

Lemma 6. For any é € (0, 5], if mez}lxpi(t) >1—4, then

U(p(t) = Ulp(t —1))| < C2 (3 + dlog(M —1)).

Proof: Without loss of generality assume(t) > 1 — 6. We obtain

|~Ul(p(t — 1)) + U(p(1))|
B pt—1) & pi(t)
_Zplt—llog = 1) ; ()logl_i()

_ Zp,.(t_n <1og1f";i(;i)1) log —2 )+Z (pilt = 1) = >>10g1f(p?<t>'
pi(t —1) N i)
<%%Xlog1—p,-(t—1) log 1—pz ‘—I—;Pzt_l ))IOgl—pi(t)
<10gC2+;\Pzt—1) pi(t)] - 1Og1_<pl)()‘
@ long+C2ip'(t)(1 pi(t)) log o) '
= — ! 1 —pi(t)
p;(t) !
< log Cy + Capi()(1 = pi(1) [log - pm\ +C %;ﬂi(t) o)
M—1
<log02+02+02<§m ) gzpz(t)
i1

<logCy + Cy 4 Cy(dlog(M — 1) + 1)
(d)
< 0y (3+ dlog(M — 1)),

where (a) and (b) follow respectively from Lemmakl| 4 arid 5; arid) follows from Jensen’s
inequality and the fact that

z(1 = z)|log 1

and (d) holds sinceC; > 1 and hencédog Cy < Cs. [

<1, zel01];
— Z



38

Fact 2 (Lemma 10 in[[18]) Assume that the sequentgt)}, ¢t =0, 1,2, ... forms a submartin-
gale with respect to a filtratiod 7 (¢) }. Furthermore, assume there exist positive const#hts
K,, and K3 such that

E[§(t + 1| F ()] > £(t) + Ky if &(t) <0,
E[(t+ 1)|F(t)] > £(t) + Ky if £(t) >0,
E(t+1) = &) < K3 if max{¢(t+1),£(¢)} > 0.

Consider the stopping time = min{t¢ : £(¢) > B}, B > 0. Then we have the inequality

B —£(0) 11 3K
Ebv] < ——=—~ 1 _ .
[v] < e + £(0)11e(0)<0y <K2 Kl) e

Fact 3 (Lemma 1 in [18]) For any two distributionsP and @@ on a set) and v € [0, 1],
D(P||vP + (1 —v)Q) is decreasing iny.
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