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Abstract— The problem of optimizing retail electricity price  that the prosed scheme is more compatible with existing
for residential demand response is considered. A two stage modus operandi, potentially offering a more attractivehpat
stochastic optimization is formulated in which the retaile to broader adoption.

optimizes the day ahead price in the first stage, and resideiat - .

customers schedule their demands optimally in respond to Furthgrmore, by Sh'eld'_ng the Consumer from reacting
the optimized retail price and in a distributed fashion. For to real-time wholesale price fluctuations, such a demand
the control of thermal dynamic loads, the optimal residental  response program reduces price volatility and the potentia

demand response policy is obtained based on a form of of instability postulated recently in [2].
consumer surplus that captures the tradeoff between comfar

level and cost. It is shown that the optimal control is an affie A, Summary of Results

function of the retail price with a negative definitive factor ) ) .
matrix. The optimal retail pricing is obtained through a convex In this paper, we propose a new retail market mechanism
program that maximizes average profit or a form of conditiond  in which the retailer optimizes a day ahead price for residen

value at risk. Effects of incorporating renewable energy ae also  tial customers who engage in distributed demand response in
considered. scheduling price-elastic load. The proposed market stract
is compatible with the current deregulated wholesale ntarke
and offers the customers to decide their own energy usage
In a conventional demand response program, a residentjgttern in response to different retail prices.
consumer benefits from reduced electricity price by giving We formulate the problem of optimal pricing for residen-
the retailer a level of control of his energy use. The retailetial demand response as a two-stage stochastic optinmizatio
on the other hand, benefits from such a program by shapimg this end, we first consider optimal demand response given
the aggregated load so as to maximize the profit in the fixed day ahead retail price. Using a criterion based on a
presence of operation and wholesale price uncertaintidfear combination of the cost of electricity and the quéidra
As an example, the consumer may be offered a lowerefbviation of the desired temperature setting, the optimal
electricity price by allowing the retailer to interrupt hiscontrol is shown to be an affine function of price with a
services a number of hours in a year [1]. negative definite factor matrix. It is this relationship ttha
One of the barriers to the wide adoption of demandeads to a convex optimization of retail price at the retaile
response is the intrusive nature of such programs. A coend.
sumer may feel uncomfortable for letting the utility affédcs We also consider the problem of integrating stochastic
lifestyle in such a direct and unpredictable fashion. Anid it renewable generation at the retail level. In particular, we
difficult to price the inconvenience caused by interrupgionassume that the retailer has access to low cost renewable
at some unknown time. From a retailer's perspective, theources, which allow the retailer reduce the retail price in
implementation of demand response for a large number ekchange for a higher volume. We show that the problem of
customers is highly nontrivial, even though the underlyingptimal pricing remains convex. We also demonstrate that
technologies have existed for decades. the accuracy of prediction of renewable generation affects
We consider in this paper an alternative residential demanie profit of the retailer in a monotonic fashion.
response framework. The objective of the proposed scheme is
twofold. First, it gives the consumer full control in schédu B- Related Work
ing his own energy usage in responding to a (day-ahead)Although extensive research has been conducted on the
price from the retailer, which removes the retailer fromwholesale electricity market, limited attentions have rbee
implementing and managing a control system that involvesgaid to the retail market. Among the earliest studies ofilreta
large number of distributed components. Second, the eetailelectricity market is [3] where the authors present simoihat
optimizes its profit by taking into account the volatility of studies of expected profit for retailers. The authors of [4],
the wholesale price, the availability of low cost renewabl¢5] present a more elaborate formulation of retail markets
sources, and response behavior of the residential cussomehat incorporate load models, retailers profit functionsj a
Because the proposed scheme allows the consumdirsancial risks. Our work is related to [3,4] but different
choose the state of the art technology in home enerdgy several important aspects. Specifically, the results in
management and the retailer adjusts its (daily) price baséus paper establish the dynamic demand side response to
on the operating conditions of the network, it is hopedlifferent prices by the retailer. When incorporating ramdo

. INTRODUCTION



phenomena in stochastic optimization, our approach avoids The wholesale electricity market

approximating continuous random variables through quanti \\e assume a deregulated wholesale electricity market
zation. The pricing scheme considered in this paper is al§ghere the cost of electricity to a retailer is determined in
different from and appears to be more flexible than that ig ywo settiement system: a day ahead market that generates
[4], [8]. the day ahead wholesale price and a real-time market that

Recent work of Yang, Tang, and Nehorai [6] considerprovide necessary adjustments based on the actual operatin
a similar retail market structure. Their work is based orgndition.

an abstract characterization of static interactions betwe Thus the actual cost to a retailer can be modeled as a

retailer and consumers. The scenario considered in thisrpap4 dimensional random vector(w) with known mean (at
incorporates thermal dynamics, resulting a policy involvthe day ahead wholesale price) and variance. Note that the
ing optimal dynamic demand response. In [7], competitiogholesale price in the peak hours might be tens or even
among retailers is considered. Their analysis is based @findreds times of the regular price. Such kind of price
market share modeling and each retailer is using a mixgghcertainty imposes high risk to the retailer who must hedge
strategy. against its exposure to price hikes when optimizing theilreta
Given a specific market structure, a key step in obtainingrice.
optimal pricing is to establish an optimal or suboptimal )
demand response policy at the consumer end. To this erfdt, 1he retail market
there have been several approaches, all appear to be agacki Serving as an intermediate agent between the wholesale
the problem of optimal demand response without couplingnarket and end customers, the retailer has to guarantee powe
with the optimal pricing problem. For example, authors oflow to the customer while maintaining a healthy cash flow
[8] use statistical methods to model the household elétstric for itself. In our setting, any level of demand from the end
demand, and addresses the fact that accurate modelingis vedstomers has to be satisfied by acquiring power from either
difficult. In [9], Callaway and Hiskens discussed the som#e wholesale market or, if possible, from alternativeshsuc
key issues and applications of nondisruptive control stratas its own renewable generatigiw) or through bilateral
gies for aggregated electric loads. In terms of responding €ontracts with independent wind farms.
different prices, the approaches in [10], [11], [12] used®IP  Previous study shows that allowing real-time response to

(Model Predictive Control) method to control HVAC. wholesale market price may cause price instability [2]. In
our setting, the retailer shields the end users from the risk
Il. MARKET STRUCTURE of real-time price fluctuations by offering its customers a

fixed day ahead price = (71, -+ ,m24). In the following,

The proposed residential electricity retail market stiet Without loss of generality, we assume the retailer provides
consists of three main components: the wholesale elggtricihourly price. However, the period length is flexible to be
market, the retail market, and the residential demand, &§neralized.
shown in Fig. 1. We describe in this section briefly models While this retail market avoids price shocks to consumers
for each component. As a notational convention, we us&ho expect the price of electricity stays within a certain
w to indicate a sample in the native probability spacelominalrange, the challenge of market design is to maximize

When necessary, a random variable is written explicitly as e retail profit by hedging against uncertainties in the
function of w, eg. z(w). wholesale market, the availability of renewable genergtio

and exploiting of the demand response behavior of the end
users.
B -
wind farm

s

/ d(w,m) = p(m,w) + pu(w), @)
al (x, w) where p(w,w) is the price elastic component that can be

controlled by the residential customer apglw) the price
inelastic component that is only affected by random factors
in electricity usage.

According to [13] in which the U.S. Energy Information
Administration reports that the dominant residential &lee
ity usage comes from space heating and air conditioning,
in this paper, we assume that the price elastic demand
comes primarily from the control of a certain HVAC unit

C. Residential demand and thermal dynamics

Let the aggregated demand from end customers be denoted
as d(m,w), which is a function of the deterministic retail
price 7 and random factors such as weather conditions.

We partition the load into two components,

resident resident

Fig. 1: Market structure



that maintains the indoor temperature at a certain desirabl Assumew; andv; are jointly Gaussian. Backward induc-
setting. tion gives a well structured solution

To this end, we assume that the thermal energy state of
a residential home satisfies a linear state space model as

detailed below. Pi 5 (#icrjion + ligiog = Fiyjioa) — 27),

% mi—(1—a)mit1
x} “—.5 — tti
IIl. OPTIMAL RESIDENTIAL DEMAND RESPONSE e (©)

We consider in this section the optimal demand respong¢here ;1,1 and a;;; are the estimated indoor and
to the day ahead retail price by the residential customers, outdoor temperatures based on observations up tohedr
Here we specialize a particular thermal dynamic modépspectively, and:; is an ancillary value.
involving an HVAC temperature control. Notice thatz} can be viewed as the indoor temperature

Consider a single residential home. Lstbe the indoor target for houri at houri — 1. If w; =0, &;_1);—1 = =1
temperature at hout. Empirical studies [14], [15], [11], and a;;—1 = a;—1, then applyingp; will lead the actual
[12] have shown that the dynamic equation that governs thedoor temperature at hour z; = z;.

el

temperature evolution is given by This problem is almost the same as the classical LQG
(Linear Quadratic Gaussian) control problem. The solution
z; =21 +ofa; — xi 1) — Bpi + wy, (2) can be viewed as the certainty equivalence [16] with a form

of separation principle where the certainty equivalence is
wherea; is the outdoor random temperature at héup;  implemented by conditional expectation on noisy measure-
the control variable representing the power drawn by thgents. Expanding and writing the solutigi matrix form
HVAC unit andw; the process noise. System parameters || give us the following theorem
and 5 model the insolation of the building and efficiency Theorem 1:For fixed retail pricer, assume that residen-
of the HVAC unit. Note that the above equation applies g5 |0ad & has the form
both heating and cooling scenarios but not simultaneously.
We focus herein the cooling scenario and the results apply d* (m,w) = p*(m,w) + pk(w). (7)
to heating as well.
To control the HVAC, temperature measurement valuedssuming optimal demand response, the aggregated demand
need to be collected. We assume thermal meters are im- .
plemented both for indoor and outdoor temperatures. The d(m, w) = Zd (m,w) = =Gr +c(w), (8)
measurement equation is k
where matrixG > 0 is positive definite and deterministic,
Yi = [xz ai]T + vi, (3) depending only on the dynamic system parameter.
wherew.: is the measurement noise Proof: .Le.t §upk denote the parameter associated with
! ) . ' . load k. For individual loadk, expanding the form of Eq. (6)
Assume at hout, the resident wants to keep the indoor .. . © Y 9
o . will give pf(m,w) = (1 —a)mie1 — (14+ (1 — @)®)m +
temperature as. The deviation of actual indoor temperature o P PO
xz; from ¢; can be used to measure the resident’s uncomfog _r?‘)wi“p(;' b (“C}’ "]Yhereb. (w)k IS mdepen}?ent o
level. Hence, a reasonable residential utility function is ~ >C, 1€ total demand of usdris d*(r,w) = p"(r,w) +
pi(w) = =G+ c*(w), wherec® (w) = b*(w) + p;(w) and

u

u(z) = —p Z(xi — )2, (4) G* satisfies
: 1+ (1-w)?)/gF  ifi=j
where p is a weight factor to convert the deviation of ij ={ —1+4+a if |i—7]=1 9)
from ¢; to money. ' 0 0.W.

Given the retail pricer, the objective of residential de-
mand response is to maximize the consumer surplus definedNotice G* is deterministic and diagonal dominant with
as the difference of utility and energy payment. Specificall positive diagonal elements. Hene&" is positive definite.
the residential optimal stochastic demand response isadkfin - On the other hand, the aggregated demand

as the solution to following optimal control problem,
d(m,w) =Y d"mw) =D (~GFrt+c¥(w)) = —Gre(w),
min, E (Z?il(ﬂipi + p(w; — ti)Q)) * * (10)
st @i =1 +ala; —xi-1) — Bpi + ws, () vyhere C(w) = > cf(w), G » Z.Gk' Since Gk Is pqs?-
T tive definite and deterministioi7 is also positive definite
Yi = [xl ai] + i and deterministic, depending only on the dynamic system
For computation convenience, under mild conditions (thparameter. [ |
price doesn’t vary too much during a day amds large), we Eq. (8) gives an affine form of residential demand re-
ignore the positive constraint and rate constraint for gyer sponse. The property thét is positive definite is important
consumptiorp. to our later discussion.



IV. OPTIMAL RETAIL PRICING Theorem 2:Problem (15) is a convex programming with

In this section, we focus on optimizing pricing for the” as the variable. _
retailer. We consider two different objectives: the expect Proof:  According to the result of [17]y-CVaR is a
profit and a measure derived from the conditional value &°ncave function with respect to the decision variable ag lo
risk (CVaR); the latter represents a form of robustness. @S the value function is concave with respect to the decision

variable. Since (7, w) = (71— A(w))T (—=Gr+c(w)) andG'is
A. Optimal retail price over expected profit a positive definite matrix; is a concave function af. Hence

Recall that the wholesale price of electricity is a randorthe objective function is concave. Maximizing a concave
vector A(w) = (A1(w),..., Aaa(w)), Which represents the function with linear constraints is a convex programming
marginal cost to the retailer. Given the day-ahead prieed problem. u
the randomness realization the total profit of the retailer ~ The convex property makes this problem solvable by many
can be represented as the product of the demand quantignlinear convex programming methods. Notice that we do
and the net unit profit, which is the difference between thgot make any assumption that the random variables are
day-ahead retail price and the cosi\. discrete, although in practice we can do disretization to

rlmw) = (r — Aw))Td(rw) S|mpllfy the co_mput:_mon_. In that case, the objective fiorct
T (11) will become piecewise linear concave.
= (m — Mw))* (—G7 + ¢(w)).

Assume the retailer knows the distribution of the cuist) V. EFFECTS OFWIND INTEGRATION

and the stochastic demand respor$e,w), the expected ~We now consider a scenario in which the retailer has
profit of the retailer can be calculated as Eq. (12). Siice access to renewable sources such as a wind farm. We assume

is positive definite[E[r(,w)] is a concave function of. that the cost of renewable to the retailer is zero. However,
the generation of renewable is stochastic that cannot be
Efr(m,w)] = —n"Gr+ (E\)"Gr (12) controlled by the retailer. The retailer does know the distr

+(E[d)Tr — E[ATd].

On the other hand, the pricing behavior of the electricipf*Ploited for maximizing its profit. The wind power is used

retailer will be regulated by many factors. In this paperEO supply the residential load, but if it is larger than nekde

we simplify all the regulations into one price cap i.e. extra wind power cannot be sold back to the wholesale
the retailer's pricer; < 7. Then, the retailer's optimal Market

pricing strategy over expected profit can be formulated as D€Note the wind generation for the next day ast @imen-
the following quadratic programming sional random vectof(w) = (¢1(w), ..., g24(w)). Similar
to Eqg. (11), given the day-ahead prieeand the demand

max —7"Gr + (EA)"Gr + (Ele])"m — E[N ] responsel(r,w), the retailer's profit with wind-,, (, w) can

st m <7 be represented as
(13)

The objective is concave and the constraint is linear.
Hence, the optimization is convex. All the classical noaéin
convex programming methods apply to this problem and the
solution can be easily found.

bution of the renewable generation. This knowledge will be

Tw (7‘1’,&)) = ﬂ—Td(ﬂ-a W) - )‘(w)T(d(ﬂ—aw) - Q(w))+
= 77(=Gr + c(w))
“AMw) T (=G7 + c(w) — q(w)*.
(16)
B. Optimal retail price over CVaR The following theorem gives the nice property of the

In the presence of uncertainty, maximizing the expecte@t@ilers objectives after incorporating wind power.
profit is not always the best choice, especially when the 1h€orem 3:E[r,] and y-CVaR are both concave func-
random variable has a long tail distribution. One altexati iOns Of 7. _ _
is to use risk measures as metric to make decisions. CVaR Proof: Foreachu, (—~Gm+c(w)—g(w))™ is equivalent
(Conditional Value at Risk, also know as Expected shojtfalf® MaX —Gm + c(w) — g(w), 0}. Both of —Gm + ¢(w) —
is one commonly used coherent risk measure. The CvaR @) and0 are linear functions hence convex. The max of

o pt
~ level is defined as the expected profit in the worstf the (WO convex function is convex. Se(w) _(__GWTJF c(w) —
cases, as shown in Eq. (14). q(w))T is concave. Sincé is positive definiteg” (-G +

¢(w) is concave. As the sum of two concave functions,s
y-CVaR = B, [r(m, w)|r(m,w) < ()], (14) c?ncave. So both d[r,,] andy-CVaR are concave functions

ol .

wherer, (7) = inf{r e R: P[r(m,w) < 7] > ~}. m
Using the equivalent form of CVaR in [17], the retailer's Hence, the retailer's optimization problems in terms of

best pricing strategy over CVaR can be formulated as thsoth expected profit and CVaR remain as convex program-
following optimization problem with the price cap consirai  ming, which are solvable by numerical nonlinear program-

ming methods. In the simulation part, we will test how the

_ 1 _ + . . . ..
max,~ & {Ew[f r(m w)] (15) uncertainty of wind power affects the retailer's objective
st m <7 values.



VI. SIMULATION RESULTS

In order to illustrate the optimality of the proposed priin
scheme, two alternative commonly used pricing schemes ¢
compared to the optimal pricing: constant pricing schentk ar
constant mark-up pricing scheme. Constant pricing meai
the retailer will offer constant price for the next day, i.e.

(expected profit)/(no uncertainty expected profit

m = 7o = ... = moy4. The constant mark-up pricing scheme 093
is to design the price according to the prediction of nex %% 565 o1 ois o?zwmdﬁ‘czesnamo‘,s 0% o4 oas o5
day’s cost\, and each hour’s price has the same mark-up
7T 7T2 _ . 7724
over the predicted cost, I. & = T Fig. 4: Wind uncertainty vs. retailer’s expected profit

We use the optimal pricing scheme as benchmark The
y-axis is the expected profit of constant pricing or constant

mark-up pricing divided by the expected profit of optimal as for CvaR, although analytical result is hard to show,
pricing scheme. The-axis is the average price of the twojntyitively, large uncertainty of wind will cause more loss
compared pricing schemes, i.z™. The parameter for for the worst cases. Hence CVaR will be decrease as the
testing is the same as [12]. The result is shown in Fig. Zncertainty increases as shown in Fig. 5. Comparing Fig. 4

from which we can see that the proposed pricing scheme gsd Fig. 5, the uncertainty affects the retailer's CvaR more
much better than the two dummy pricing schemes. significantly than expected profit.
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Fig. 2: Expected profit comparison of three pricing
schemes Fig. 5: Wind uncertainty vs. retailer's CVaR

The same simulation i.s co.nducted for the pricing scheme Then we fix the uncertainty but increase the average
over CVaR, as shown in Fig. 3. In terms of CVaR, th&yind level, g. The result is shown in Fig. 6. The-axis is
advantage of using optimal pricing scheme over dummihe average wind divided by the base case andthgis is

alternatives is more significant. the corresponding CVaR divided by the CVaR at the base
case. The CVaR increases monotonically as expected since
0 ‘ ‘ ‘ ‘ ‘ ‘ more wind production will increase the retailer’s profit for

each realization.
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(average wind)/(average wind at base level)
After incorporating wind power, we show that the problem
can still be formulated as a convex program. Now we want Fig. 6: Average wind vs. retailer's CVaR
to test how the uncertainty of the wind power will affect the
retailer’s objective, both expected profit and CVaR. Assume
the wind power is uniformly distributed ovef — A/2,q + VII. CONCLUSION AND FUTURE WORK
A/2]. Fix g, simple calculation can give us th%% <0.So In this paper, we propose a new retail market structure
better prediction will give the retailer more profit, as simow with fixed day-ahead retail price from retailer and realdim
in Fig. 4. Thez-axis is the uncertaintyA, and they-axis is  stochastic demand response from the residents. The problem
the expected profit. of optimal retail pricing for residential demand response i



formulated as a two-stage stochastic optimization. A dosg14]
form solution to the optimal residential demand response
is shown to be an affine function of price with a negative;s
definite factor matrix. At the retailer side, optimal prigin
strategy is given as the solution to a convex program, ov?lre]
both expected profit and CVaR. Finally, effect of incorperat
ing wind power is considered. It is shown that the probleni7)
of optimal pricing remains convex. We also demonstrate that
the accuracy of prediction of renewable generation affibets
profit of the retailer in a monotonic fashion.

The framework in this paper is compatible with the current
deregulated wholesale market and flexible for generaliza-
tions. More comprehensive resident side model will help
to get more precise stochastic demand form. Deferrable
loads, energy storage, and other controllable loads neled to
considered. In addition, competition among differentiteta
in a more competitive environment can be formulated within
the current framework. These issues are currently under
investigation.
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