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Abstract—We study a new class of codes for Gaussian multi-
terminal source and channel coding. These codes are designed
using the statistical framework of high-dimensional linear regres-
sion and are called Sparse Superposition or Sparse Regression
codes. Codewords are linear combinations of subsets of columns
of a design matrix. These codes were introduced by Barron and
Joseph and shown to achieve the channel capacity of AWGN
channels with computationally feasible decoding. They have
also recently been shown to achieve the optimal rate-distortion
function for Gaussian sources. In this paper, we demonstrate how
to implement random binning and superposition coding using
sparse regression codes. In particular, with minimum-distance
encoding/decoding it is shown that sparse regression codes attain
the optimal information-theoretic limits for a variety of multi-
terminal source and channel coding problems.

I. INTRODUCTION

Among the important outstanding problems in network
information theory is developing codes for various multi-
terminal source and channel models that are provably rate-
optimal with computationally efficient encoding and decoding
algortihms. The introduction of deep ideas such as superpo-
sition [1], random binning [2] and auxiliary random variables
[3]–[5] has led to a sharp characterization of information-
theoretic limits for several network problems. However, until
recently, even the best feasible codes for these problems fell
short of these limits.

There have been some recent breakthroughs that begin
to bridge this gap. Polar codes were the first codes with
computationally feasible encoding algorithms that were shown
to provably attain the information-theoretic limit for discrete-
alphabet symmetric sources and channels [6]–[9]. Spatially
coupled ensembles have recently been shown to achieve the
capacity of binary-input symmetric-output channels with belief
propagation decoding [10]. There are many important com-
munication settings where the source or channel alphabet is
inherently continuous, notably Gaussian sources and AWGN
channels. Elegant techniques such as lattice coding have been
proposed for continuous-alphabet source and channel coding
[11]–[13], but these rate-optimal coding schemes do not have
feasible encoding and decoding algorithms.

Recently a class of codes called Sparse Superposition Codes
or Sparse Regression Codes (SPARC) was introduced by
Barron and Joseph [14]–[16] for communication over the
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AWGN channel. In [16], it was shown that SPARCs achieve
the AWGN channel capacity with a computationally feasible
decoding algorithm. SPARCs have also been shown to attain
the optimal rate-distortion function of Gaussian sources with
feasible algorithms [17]–[19]. In this paper, we show that the
sparse regression framework can be used to design feasible
codes for various Gaussian multi-terminal source and channel
models.

The basic ingredients of the constructions used to prove
coding theorems for many multi-terminal problems are:

1) Rate-optimal point-to-point source and channel codes,
2) Random binning,
3) Superposition coding.

As mentioned above, it has been shown in [14], [16], [18] that
SPARCs are rate-optimal for Gaussian channels and sources.
In this paper, we show that source and channel coding SPARCs
can be combined to implement binning and superposition,
thus yielding a new class of codes for multi-terminal source
and channel coding. To illustrate how SPARCs can be used
for binning, we consider the canonical examples of source
coding with decoder side-information (the Wyner-Ziv prob-
lem [4]) and channel coding with encoder side-information
(the Gelfand-Pinsker problem [5], [20]). These problems are
depicted in Figure 1. Superposition coding using SPARCs is
a natural extension of point-to-point coding and is illustrated
via the Gaussian multiple-access and broadcast channels.
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In Sections II and III, we review the SPARC construction
and the minimum-distance performance results for source and
channel coding. In Section IV, we describe how to imple-
ment random binning using SPARCs and use it to construct
codes for the Wyner-Ziv problem (Figure 1a). The standard
construction for this problem consists of a high-rate source
codebook partitioned into bins, each of which serves as a
lower-rate channel code. Due to the importance of the problem,
several practical code-constructions have been proposed, e.g.,
[21]–[24], but they generally fall short of the Wyner-Ziv
bounds; besides they do not come with provable performance
guarantees. Recently polar codes have been proposed for
Wyner-Ziv coding [7], [8]. These are the first computationally
efficient code constructions that are provably rate-optimal.
However, these are only applicable to problems where the
source and side-information distributions are discrete and
symmetric. Elegant coding schemes such as those based on
lattices have been proposed [11], [25] for the Wyner-Ziv
problem with continuous-valued source and side-information,
but they have exponential encoding and decoding complexity.

In Section V, we turn our attention to channels with state,
where the state information is known non-causally at the
transmitter. This model (Figure 1b) has been studied widely in
the literature [5], [11], [20], [26] and has found many practical
applications such as multi-antenna communication [27], digital
watermarking [28], [29] and steganography [30]. It is the
channel coding dual of the Wyner-Ziv problem [31], [32]. In
Figure 1b, the encoder knows the entire state sequence S at
the beginning of communication while the decoder observes
only the channel output Y . This capacity of this channel model
was determined by Gelfand and Pinsker [5]. For the important
special case of AWGN channels with Gaussian state, Costa
[20] showed that the Gelfand-Pinsker capacity is the same as
the rate achievable when the decoder has full knowledge of
S. Since Costa’s discovery of this surprising result (dubbed
‘writing on dirty paper’), elegant capacity-achieving coding
schemes have been developed such as nested lattice codes [11],
[26], [29], but these are generally computationally infeasible.
Several computationally efficient code designs have also been
proposed, e.g., [33], [34]; however they do not come with
provable rate guarantees. In Section V, we show how to
implement Costa’s coding scheme by partitioning a high-rate
SPARC channel code into bins of lower-rate source codes.

Finally in Section VI, we show how to construct capacity-
achieving codes for the AWGN multiple-access and broadcast
channels using SPARCs. We show that superposition codes for
these channels can be implemented through a simple extension
of SPARCs for point-to-point channel coding.

The analysis of SPARCs in this paper is presented with
minimum-distance encoding and decoding, which is optimal
but computationally inefficient. This is mainly to keep exposi-
tion simple and to highlight the main contribution of the paper
– a demonstration that binning and superposition can be easily
implemented with sparse regression ensembles described by
compact dictionaries. The results also hold with the feasible
SPARC encoders and decoders developed in [16], [17], [19].
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Fig. 2: A is an n×ML matrix and β is a ML× 1 binary vector.
The positions of the non-zeros in β correspond to the gray columns
of A which add to form the codeword Aβ.

Further, we focus only on the achievability of the optimal
information-theoretic rates and do not discuss the SPARC
error exponents obtained in [14], [18]. These aspects will be
discussed in an extended version of this paper.

Notation: Upper-case letters are used to denote random vari-
ables, lower-case for their realizations, and bold-face letters to
denote random vectors and matrices. All vectors have length
n. ‖X‖ denotes the `2-norm of vector X, and |X| = ‖X‖/√n
is the normalized version. We use natural logarithms, so
entropy is measured in nats. To limit the number of symbols
introduced, we reuse notation across sections. For example, X
is used to represent the channel input as well as the source;
Y is used to denote both the channel output and the source
side-information. The model description at the beginning of
each section explains all the variables used in it.

II. SPARSE REGRESSION CODES

A sparse regression codebook (SPARC) is defined in terms
of a design matrix A of dimension n×ML whose entries are
i.i.d. N (0, 1), i.e., independent zero-mean Gaussian random
variables with unit variance. Here n is the block length and
M and L are integers whose values will be specified shortly
in terms of n and the rate R. As shown in Figure 2, one
can think of the matrix A as composed of L sections with
M columns each. Each codeword is a linear combination of
L columns, with one column from each section. Formally, a
codeword can be expressed as Aβ, where β is an ML ×
1 vector (β1, . . . , βML) with the following property: there is
exactly one non-zero βi for 1 ≤ i ≤ M , one non-zero βi for
M + 1 ≤ i ≤ 2M , and so forth. Denote the set of all β’s
that satisfy this property by BM,L. The non-zero values of β
are all set equal to c , γ√

L
where γ will be specified later

depending on the problem at hand.
Since there are M columns in each of the L sections, the

total number of codewords is ML. To obtain a rate of R
nats/sample, we therefore need

ML = enR. (1)

There are several choices for the pair (M,L) which satisfy
this. For example, L = 1 and M = enR recovers the
Shannon-style random codebook; here the number of columns



in the dictionary A is enR, i.e., exponential in n. For our
constructions, we choose M = Lb for some b > 1 so that (1)
implies

L logL = nR/b. (2)

Thus L is now Θ
(

n
logn

)
, and the number of columns ML

in the dictionary A is now Θ
(

n
logn

)b+1

, a polynomial in n.
This reduction in dictionary complexity can be harnessed to
develop computationally efficient encoders and decoders for
the sparse regression code.

Since each codeword in a SPARC is a linear combination of
L columns of A (one from each section), codewords sharing
one or more common columns in the sum will be dependent.
Also, SPARCs are not linear codes since the sum of two
codewords does not equal another codeword in general.

III. SPARC FOR POINT-TO-POINT SOURCE AND CHANNEL
CODING

In this section, we review the performance of SPARCs
for point-to-point source and channel coding under minimum
distance encoding/decoding.

A. Lossy Source Coding

Consider an i.i.d Gaussian source X with mean 0 and
variance σ2. A rate-distortion codebook with rate R and
block length n is a set of enR length-n codewords, denoted
{X̂(1), . . . , X̂(enR)}. The quality of reconstruction is mea-
sured through the mean-squared distortion criterion

dn(X, X̂) = |X− X̂|2 =
1

n

n∑
i=1

(Xi − X̂i)
2,

where X̂ is the codeword chosen to represent the source
sequence X. For this distortion criterion, an optimal encoder
maps each source sequence to the codeword nearest to it in
Euclidean distance. The rate-distortion function R∗(D), the
minimum rate for which the distortion can be bounded by D
with high-probability, is given by [35]

R∗(D) = min
pX̂|X :E(X−X̂)2≤D

I(X; X̂) =
1

2
log

σ2

D
nats/sample.

(3)
For rates R > R∗(D), a sparse regression codebook is

defined in terms of an n×ML design matrix Aβ, as described
in the previous section. The non-zero values of β ∈ BM,L are
all set equal to

√
(σ2 −D)/L. Encoding and decoding are as

follows.
Minimum-distance Encoder: This is defined by a mapping

g : Rn → BM,L. Given the source sequence X, the encoder
determines the β that produces the codeword closest in Eu-
clidean distance, i.e.,

g(X) = argmin
β∈BM,L

‖X−Aβ‖2.

Decoder: This is a mapping h : BM,L → Rn. On receiving
β ∈ BM,L from the encoder, the decoder produces reconstruc-
tion h(β) = Aβ.

The probability of error at distortion-level D of a rate-
distortion code Cn with block length n and encoder and
decoder mappings g, h is

Pe(Cn, D) = P
(
|X− h(g(X))|2 > D

)
. (4)

It was shown in [18] that SPARCs can achieve the optimal
rate-distortion function with the optimal error-exponents for
i.i.d Gaussian sources for all distortions D such that D/σ2 <
x∗, where x∗ ≈ 0.2032 is the solution of the equation

1 +
1

2
log x = x. (5)

Fact 1: [18] For D ∈ (0, σ2), let Rsp(D) =

max{ 12 log σ2

D , 1 − D
σ2 }. Fix rate R > Rsp(D), ε > 0 and

b > b1 where

b1 =
2.5R

R− 1 +D/σ2
. (6)

For all n, let Cn be a rate R SPARC defined by an n×LnMn

design matrix with i.i.d N (0, 1) entries, where Ln is deter-
mined by (2) and Mn = Lbn. Then for all sufficiently large n,
Pe(Cn, D) < ε.

Fact 1 implies that SPARCs achieve the optimal rate-
distortion function for 0 < D

σ2 < x∗ where x∗ ≈ 0.2032 is the
solution of (5). For x∗ ≤ D

σ2 ≤ 1, the minimum achievable
rate of Fact 1 (1− D

σ2 ) is larger than the optimal rate-distortion
function.

B. Communication over an AWGN Channel

Consider an AWGN channel with input X and output Y
defined by

Y = X + Z

where Z ∼ N (0, N) is a noise variable independent of X .
There is an average power constraint P on the input X . Denote
by v the signal-to-noise ratio P/N . It was shown in [14]
that SPARCs can achieve the capacity 1

2 log(1 + v) with the
probability of error decaying exponentially with n.

Encoder: This is a mapping g : BM,L → Rn. Each message
in the set {1, . . . ,ML = enR} is indexed by a unique β ∈
BM,L. The non-zero values of β are all equal to

√
P/L. To

transmit the message corresponding to β, the encoder produces
the channel input X = Aβ.

Minimum-distance Decoder: This is defined by a mapping
h : Rn → BM,L. Upon receiving the output sequence Y, the
encoder determines the β that produces the codeword closest
in Euclidean distance, i.e.,

β̂ = h(Y) = argmin
β∈BM,L

‖Y −Aβ‖2.

The average probability of error of a code Cn with block
length n and encoder and decoder mappings g, h is

Pe(Cn) =
1

ML

∑
β∈BM,L

P
(
β̂ 6= β | X = Aβ

)
. (7)

The performance of SPARC for channel coding is given
below.



Let v∗ ≈ 15.8 be the solution to (1+v∗) log(1+v∗) = 3v∗.
Define

b0(v) =


4v(1+v) log(1+v)

[(1+v) log(1+v)−v]2 v < v∗

(1+v) log(1+v)
(1+v) log(1+v)−2v v ≥ v∗

(8)

We note that b0 asymptotically approaches 1 with growing v.

Fact 2: [14] Fix rate R < C = 1
2 log(1 + v), b > b0(v)

and ε > 0. For all n, let Cn be a rate R SPARC defined by an
n×LnMn design matrix with i.i.d N (0, 1) entries, where Ln
is determined by (2) and Mn = Lbn. Then for all sufficiently
large n, Pe(Cn) < ε.

IV. SPARC FOR LOSSY COMPRESSION WITH DECODER
SIDE-INFORMATION

In this section, we construct SPARCs to achieve the opti-
mal Wyner-Ziv rate for Gaussian sources. Consider an i.i.d
Gaussian source X ∼ N (0, σ2) to be compressed with mean-
squared distortion D. The decoder side-information Y is noisy
version of X and is related to X by Y = X + Z, where
Z ∼ N (0, N) is independent of X . The sequence Y is
available at the decoder non-causally. If Y were available
at the encoder as well, the optimal strategy is to compress
Z = Y−X to within distortion D; the minimum rate required
for this is 1

2 log Var(X|Y )
D nats/sample. Wyner and Ziv showed

in [4] that this rate is achievable even when Y is available at
only the decoder.

Before presenting the SPARC construction, we briefly re-
view the main ideas in the Wyner-Ziv random coding scheme
[4]. Define an auxiliary random variable U jointly distributed
with X according to

U = X + V (9)

where V ∼ N (0, Q) is independent of X . The idea is that
the decoder first recovers U , and then produces X̂ as the
best estimate of X given U and Y . The codebook consists
of length-n vectors chosen i.i.d according to the marginal
distribution of U . The encoder attempts to find a codeword
U whose empirical joint distribution with X is close to (9).
From the rate-distortion theorem, this step will be successful
if the codebook size is at least slightly larger than enI(U ;X).
Since the decoder has Y, the index of the chosen codeword
U is not sent in its entirety; instead we divide the codebook
into enR equal-sized bins and send only the index of the bin
containing the codeword. Thus the information rate to the
decoder is R nats/source sample which is less than the rate
I(U ;X) required to convey the precise codeword index.

The decoder’s task is to recover the codeword U using the
bin index and the side-information Y. This is equivalent to
a channel decoding problem. We can correctly distinguish U
from the other codewords in the bin if number of codewords
in each bin is exponentially less than enI(U ;Y ). Combining
this with the minimum codebook size for quantization, we see

that the number of bins enR should satisfy

enR >
enI(U ;X)

enI(U ;Y )

or
R > I(U ;X)− I(U ;Y ) =

1

2
log

Var(X|Y )

D

where the last inequality is obtained by setting Q =
Var(X|Y )D

Var(X|Y )−D . After decoding U, the decoder reconstructs X̂

as the MMSE estimate of X given (U,Y). It can be verified
that expected squared-error distortion is D.

We now show that the above coding scheme with binning
can be implemented with SPARCs. The relation (9) can be
equivalently written in terms of the reverse test channel as

X = aU + V ′ (10)

where a = σ2

σ2+Q , and V ′ ∼ N (0, σ2Q
σ2+Q ) is independent of U .

The first step of the coding scheme is equivalent to quantizing
the source sequence X to a codeword aU with mean-squared
distortion at most σ2Q

σ2+Q . We can use a SPARC to perform
this quantization by choosing a design matrix with parameters
satisfying the specifications in Fact 1.

Instead of sending the codeword index β to the decoder in
its entirety, we divide each section of the design matrix A into
subsections of M ′ columns each as shown in Figure 3, and
only send information to indicate which subsection in each of
the L sections of β contains a non-zero. More precisely, we
send the decoder a tuple (p1, . . . , pL) where pi ∈ {1, . . . , MM ′ }
indicates a subsection in the ith section of A. This strategy is
equivalent to binning: a bin is now a subset of the codebook
consisting of codewords corresponding to β’s with ones in
the sections specified by (p1, . . . , pL). The codebook is thus
divided into

(
M
M ′

)L
bins and the rate R required to send the

bin index to the decoder is determined as

enR = (M/M ′)
L
. (11)

We note that each bin is itself a smaller sparse superposition
codebook with M ′L codewords, defined by a n ×M ′L sub-
matrix of A.

The decoder side-information variable Y is related to U as

Y = X + Z = aU + V ′ + Z (12)

where U, V ′ and Z are mutually independent. The problem
of recovering U from Y at the decoder is a channel decoding
problem over a channel with signal-to-noise ratio given by

snr =
a2Var(U)

Var(V ′) + Var(Z)
=

σ4

σ2Q+ (σ2 +Q)N
. (13)

Since Fact 2 shows shown that SPARCs can achieve the
AWGN channel capacity, the decoder can perfectly recover
U if the number of codewords in each bin satisfies

M ′L < exp

(
n

1

2
log(1 + snr)

)
.

The above SPARC coding scheme and its performance are
formalized below.



A:

β:
T

0, c, c, 0, , 00,

M columns
Section L

M columns
Section 1

Sub-sections of M ′ columns each

M columns
Section 2

, c, 0,
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Definition 1 (Nested Sparse Regression Codebook): A
nested sparse regression codebook with rates (R1, R2) and
block length n is defined by an n × ML design matrix A
with i.i.d N (0, 1) entries, where ML = enR1 . Each section of
M columns is divided into sub-sections of M ′ columns each,
where M ′ is determined by M ′L = enR2 . The codebook
consists of codewords Aβ, where β ∈ BM,L contains one
non-zero element in each of the L sections.

Theorem 1: Fix R1 > max{ 12 log σ2+Q
Q , σ2

σ2+Q} and R2 <
1
2 log(1 + snr) where

Q =
Var(X|Y )D

Var(X|Y )−D
and snr is given by (13). Then for any ε > 0 and all sufficiently
large n, there exists a rate R1−R2 code Cn with Pe(Cn, D) <
ε where Cn is defined by a nested sparse regression codebook
with rates (R1, R2) whose n×ML design matrix satisfies the
following: M = Lb where

b > max

{
2.5R1

R1 − σ2/(σ2 +Q)
,
R1

R2
b0(snr)

}
and L is determined by bL logL = nR1. (The function b0(.)
is defined in (8)).

Define

D∗ =
x∗σ2

1 + x∗σ2/N

where x∗ ≈ 0.2032 is the solution of (5).
Corollary 1: For D ∈ (0, D∗), sparse regression codes

achieve the optimal Wyner-Ziv rate-distortion function for
Gaussian sources given by 1

2 log Var(X|Y )
D .

Proof: It can be verified that for D ∈ (0, D∗), the lower
bound on R1 specified by the theorem becomes 1

2 log σ2+Q
Q .

The corollary then follows by choosing R1 = 1
2 log σ2+Q

Q + ε

and R2 = 1
2 log(1 + snr) − ε. This yields an achievable rate

R1−R2 = 1
2 log Var(X|Y )

D + 2ε where ε > 0 can be arbitrarily
small.

Proof of Theorem 1:
Fix block length n and rates R1, R2. Choose a n ×ML

design matrix A with M = Lb and bL logL = nR1 where b is

greater than the minimum value specified by the theorem. Each
section of A is partitioned into sub-sections of M ′ columns
each, where M ′L = enR2 .

The U -codebook consists of all vectors Aβ such that β ∈
BM,L and the non-zero entries in β are all equal to

√
σ2+Q
L .

Let
a =

σ2

σ2 +Q
.

Encoder: Given source sequence X, find the codeword U
from the SPARC such that aU is closest to X in Euclidean
distance. Specifically, determine

β∗ = argmin
β∈BM,L

‖X− aAβ‖2.

Send the decoder a tuple (p1, . . . , pL) where pi ∈ {1, . . . , MM ′ }
indicates the subsection in the ith section of A where β∗

contains a non-zero element. The rate to the decoder is

1

n
log

(
M

M ′

)L
= R1 −R2.

Decoder: The decoder first determines the n ×M ′L sub-
matrix corresponding to the subsections of A indicated by
p1, . . . , pL. We denote this sub-matrix Abin. Abin defines a
SPARC Abinβ where β ∈ BM ′,L contains one non-zero value
equal to

√
(σ2 +Q)/L in each of its L sections. The decoder

now reconstructs Û = Abinβ̂ where

β̂ = argmin
β∈BM′,L

‖Y − aAbinβ‖2. (14)

Finally, the source sequence is reconstructed as

X̂ =

(
1

Q
+

1

σ2
+

1

N

)−1(
Û

Q
+

Y

N

)
(15)

Error Analysis: Let δ > 0 be such that

R1 > max

{
1

2
log

(σ2 +Q)(1 + δ)

Q
, 1− Q

(σ2 +Q)(1 + δ)

}
(16)

The probability of the error event E , can be decomposed as
P (E) = P (E1 ∪ E2 ∪ E3) where E1 is the event that |X|2 >



σ2(1 + δ), E2 is the event of error at the encoder, and E3 the
event of error at the decoder. We have

P (E1) = P
(
|X|2 > σ2(1 + δ)

)
<
ε

3
(17)

for sufficiently large n from standard results on large-
deviations [36]. Next, we have

P (E2 | Ec1) = P

(
min

β∈BM,L

|X− aAβ|2 > σ2Q

σ2 +Q

)
<
ε

3
(18)

for sufficiently large n. This follows from Fact 1 since R1

and b satisfy the conditions specified in Fact 1 for compressing
source sequences of variance up to σ2(1+δ) at distortion-level
σ2Q
σ2+Q . Finally, we bound

P (E2 | Ec1 , Ec2) = P

(
argmin
β∈BM′,L

‖Y − aAbinβ‖2 6= β∗

)
.

Let the number of columns in each sub-section M ′ = Lb
′
.

Using M ′L = enR2 we have

b′ =
nR2

L logL
= b

R2

R1
> b0(snr) (19)

where the last inequality is due to the minimum value of b
specified by the theorem. Since

R2 <
1

2
log(1 + snr)

and b′ > b0(snr), the n ×M ′L design matrix Abin satisfies
the conditions of Fact 2 for signal-to-noise ratio given by
(13). Hence for sufficiently large n, P (E2 | Ec1 , Ec2) < ε/3.
Combining this with (17) and (18), we have P (E) < ε. �

V. SPARC FOR WRITING ON DIRTY PAPER

The AWGN channel with state is defined by the relation
Y = X+S+Z, where the state S ∼ N (0, σ2

s) is independent
of the additive noise Z ∼ N (0, N). There is an average power
constraint P on the input sequence X. The state sequence S ∼
i.i.d N (0, σ2

s) is known non-causally at the encoder.
We first review the main ideas behind Costa’s capacity-

achieving coding scheme [20] for this channel. The state
sequence S (known only at the encoder) is used in two ways:
part of it is used for coding and the rest is treated as noise.
Define an auxiliary random variable U as

U = X + αS (20)

where X ∼ (0, P ) is independent of S and α ∈ (0, 1) is
a constant specified later. The channel codebook consists of
enR1 U -sequences chosen i.i.d N (0, P+α2σ2

s). We divide this
codebook into enR equal-sized bins with each bin representing
a message. To transmit message m ∈ {1, . . . , enR}, the
encoder observes the state sequence S and attempts to find a
codeword U within bin m whose empirical joint distribution
with S is close to (20). From rate-distortion theory, this step
will be successful if the number of sequences in each bin
en(R1−R) is larger than enI(U ;S). The encoder then forms the
channel input sequence X as U− αS.

The channel receives the output sequence Y according to

Y = X + S + Z = U + (1− α)S + Z (21)

and attempts to decode U. This is effectively an AWGN
channel decoding operation, which will be successful if R1 <
I(U ;Y ). Combining this with the lower bound R1 − R >
I(U ;S), we see that any rate R < I(U ;Y ) − I(U ;S) is
achievable. The right-side of the inequality is equal to the
channel capacity 1

2 log(1 + P/N) for the joint distribution
given by (20) and (21) for α = P

P+N .
We now show how to implement the above coding scheme

with a nested SPARC. Define a nested SPARC with rates
(R1, R1−R) through an n×ML matrix A with ML = enR1 .
As in Section IV, each bin corresponds to a SPARC defined by
a sub-matrix of A, consisting of L subsections of M ′ columns.
We note that M ′L = en(R1−R) which implies that the number
of bins is (M/M ′)L = enR. Thus each message indexes a
unique bin of the nested SPARC or equivalently, a unique
sub-matrix of A .

The relation (20) can be be equivalently written in terms of
the reverse test channel as

S = κU +X ′ (22)

where κ = ασ2
s/(P + α2σ2

s) and X ′ ∼ N (0,
Pσ2

s

P+α2σ2
s
) is

independent of U . Given the message and state sequence
S, the encoder needs to quantize the state sequence S to a
codeword κU (within the bin indexed by the message) with
mean-squared distortion at most Var(X ′). The SPARC defined
by the message bin can reliably perform this quantization if
the corresponding sub-matrix of A has parameters satisfying
the specifications in Fact 1. Using (22), the channel law (21)
can be written as

Y = U+(1−α)S+Z = U+(1−α)κU+(1−α)X ′+Z (23)

where U,X ′, Z are mutually independent. Thus the decoder
has to recover the codeword U transmitted over a channel with
effective signal-to-noise ratio

snr =
(1 + (1− α)κ)2Var(U)

(1− α)2Var(X ′) +N
=

(1 + (1− α)κ)2(P + α2σ2
s)

(1−α)2Pσ2
s

P+α2σ2
s

+N
.

(24)
For all R1 <

1
2 log(1 + snr), this step is successful with high

probability if the design matrix A satisfies the specifications
in Fact 2.

The performance of this coding scheme is formalized in the
following theorem.

Theorem 2: Fix α ∈ (0, 1). Let κ =
ασ2

s

P+α2σ2
s

and snr
be defined by (24). Fix R1 < 1

2 log(1 + snr) and R2 >

max{ 12 log
(

1 +
α2σ2

s

P

)
,

α2σ2
s

P+α2σ2
s
} such that R1 > R2. There

exists a rate R1 − R2 code Cn with Pe(Cn) < ε where Cn
is defined by a nested sparse regression codebook with rates
(R1, R2) whose n×ML design matrix satisfies the following:
M = Lb where

b > max

{
2.5R1

R2 − α2σ2
s/(P + α2σ2

s)
, b0(snr)

}



and L is determined by bL logL = nR1. (The function b0(.)
is defined in (8)).

Corollary 2: Let x∗ ≈ 0.2032 be the solution of the
equation (5). For Pσ2

s

(P+N)2 ≥ 1
x∗ − 1, sparse regression codes

achieve the channel capacity 1
2 log

(
1 + P

N

)
.

Proof: It can be verified that when we choose α =
P/(P + N) and P,N, σ2

s satisfy the above condition, the
lower bound on R2 specified by the theorem becomes
1
2 log

(
1 +

α2σ2
s

P

)
. The corollary then follows by choosing

R1 = 1
2 log(1 + snr) − ε and R2 = 1

2 log
(

1 +
α2σ2

s

P

)
+ ε.

This yields an achievable rate R1−R2 = 1
2 log(1+P/N)−2ε

where ε > 0 can be arbitrarily small.
Proof of Theorem 2:
Fix block length n and rates R1, R2. Choose a n ×ML

design matrix A with M = Lb and b greater than the minimum
value specified by the theorem. The U -codebook consists of
all vectors Aβ such that β ∈ BM,L and the non-zero entries
in β are all equal to

√
(P + α2σ2

s)/L.
We have ML = enR1 , and each section of A is partitioned

into sub-sections of M ′ columns each where M ′L = enR2 .
Each of the en(R1−R2) messages corresponds to a unique tuple
(p1, . . . , pL) where pi ∈ {1, . . . , MM ′ }.

Encoder: The message (p1, . . . , pL) indexes an n ×M ′L
sub-matrix of A. This sub-matrix denoted by Abin. Find the
codeword U from the SPARC Abin such that κU is closest
to S in Euclidean distance. Specifically, determine

β∗ = argmin
β∈BM′,L

‖S− κAbinβ‖2

and transmit
X = Abinβ

∗ − αS.
Decoder: Given channel output Y, find the codeword U

from the SPARC such that (1 + (1 − α)κ)U is closest to Y
in Euclidean distance. Specifically, determine

β̂ = argmin
β∈BM,L

‖Y − (1 + (1− α)κ)Aβ‖2.

Decode the message as (p̂1, . . . , p̂L) where p̂i ∈ {1, . . . , MM ′ }
indicates the subsection in the ith section of A where β̂
contains a non-zero element.

Error Analysis: Let δ > 0 be such that

R2 > max

{
1

2
log

(
(1 + δ)

(P + α2σ2
s)

P

)
, 1− P

(P + α2σ2
s)(1 + δ)

}
(25)

The probability of error can be decomposed as P (E) =
P (E1 ∪ E2 ∪ E3) where E1 is the event that |S|2 > σ2

s(1 + δ),
E2 is the event of error at the encoder, and E3 the event of
error at the decoder. We have

P (E1) = P
(
|S|2 > σ2

s(1 + δ)
)
<
ε

3
(26)

for sufficiently large n. Letting M ′ = Lb
′
, we have

b′ =
nR2

L logL
= b

R2

R1
>

2.5R2

R2 − α2σ2
s/(P + α2σ2

s)
(27)

where the last inequality is due to the minimum value of b
specified by the theorem. We then have

P (E2 | Ec1) = P

(
min

β∈BM′,L
|S− κAbinβ|2 >

Pσ2
s

P + α2σ2
s

)
<
ε

3
(28)

for sufficiently large n. This follows from Fact 1 since R2 and
b′ satisfy the conditions specified in Fact 1 for compressing
sequences S of variance up to σ2

s(1 + δ) at distortion-level
Pσ2

s

P+α2σ2
s

. Finally, P (E2 | Ec1 , Ec2) is given by

P

(
argmin
β∈BM,L

‖Y − (1 + (1− α)κ)Aβ‖2 6= β∗

)
< ε/3 (29)

from Fact 2 since R1 <
1
2 log(1 + snr) and b > b0(snr) for

snr given by (24). Combining (26), (28) and (29), we conclude
that P (E) < ε. �

VI. SPARC FOR GAUSSIAN MULTIUSER CHANNELS

A. The AWGN Multiple-Access Channel

In a multiple-access channel (MAC), several users simul-
taneously transmit to a single receiver. For simplicity let us
consider the case of two users, each with average power
constraint P , transmitting information at rates R1 and R2,
respectively. The receiver of the AWGN MAC observes the
output

Y = X1 +X2 + Z

where X1, X2 denote the channel inputs of the two transmit-
ters and Z ∼ N (0, N) is the channel noise independent of X1

and X2. The capacity region for this channel is well-known
[35] and is given by

R1 <
1

2
log(1 +

P

N
), R2 <

1

2
log(1 +

P

N
),

R1 +R2 <
1

2
log(1 +

2P

N
).

(30)

We now show how to achieve the corner points of this rate
region using SPARCs. The remaining rate points in the region
can be achieved through time-sharing. The key observation is
that the corner points can be achieved using a pair of point-
to-point channel codes [37].

Consider a rate pair

R1 <
1

2
log(1 +

P

P +N
), R2 <

1

2
log(1 +

P

N
).

Fix codeword length n and choose a rate R1 SPARC for
transmitter 1 using an n × M1L1 design matrix A1, with
ML1

1 = 2nR1 and A1 satisfying the specifications of Fact 2 for
signal-to-noise ratio P

P+N . Similarly, chose a rate R2 SPARC
for transmitter 2 using an n×M2L2 design matrix A2, with
ML2

2 = 2nR2 and A2 satisfying the specifications of Fact 2
for signal-to-noise ratio P

N . The codewords X1 = A1β1 and
X2 = A2β2 chosen by the respective users, are transmitted
through the channel. The non-zero values in both β1 and β2
are set to

√
P/L. The receiver obtains

Y = A1β1 + A2β2 + Z



and uses a successive cancellation strategy. It first decodes the
message of transmitter 1 as β̂1, effectively treating A2β2+Z as
noise. This step will be successful with high probability since
the signal-to-noise ratio is P/(P + N) and R1 <

1
2 log(1 +

P
P+N ). In the second step, the receiver decodes β2 from the
residue Y−Aβ̂1 which equals A2β2 +Z if the first step was
successful, i.e., β̂1 = β1. The second step will be successful
with high probability since R2 < 1

2 log(1 + P
N ). The other

corner point of the rate region can be achieved by exchanging
the roles of X1 and X2.

B. The AWGN Broadcast Channel

Consider the two-receiver scalar Gaussian broadcast channel
where the outputs of the two receivers are related to the
channel input X as

Y1 = X + Z1, Y2 = X + Z2.

X has average power constraint P and the channel noises
Z1, Z2 are independent zero mean Gaussian random variables
with variances N1 and N2, respectively. Without loss of
generality, we assume that N2 ≥ N1. The capacity region
for this channel is given by [35]

R1 <
1

2
log

(
1 +

αP

N1

)
, R2 <

1

2
log

(
1 +

(1− α)P

αP +N2

)
.

(31)
This capacity region is achievable through a SPARC coding

scheme similar to the one for the AWGN MAC. Consider a
rate pair (R1, R2) satisfying (31). Fix codeword length n and
choose a rate R1 SPARC for transmitter 1 using an n×M1L1

design matrix A1, with ML1
1 = 2nR1 and A1 satisfying the

specifications of Fact 2 for signal-to-noise ratio αP
N1

. Similarly,
chose a rate R2 SPARC for transmitter 2 using an n×M2L2

design matrix A2, with ML2
2 = 2nR2 and A2 satisfying the

specifications of Fact 2 for signal-to-noise ratio (1−α)P
αP+N2

. The
input sequence is generated as X = A1β1 + A2β2 where
β1, β2 represent the messages of the two users. The non-zero
values in β1 and β2 are set to

√
αP/L and

√
(1− α)P/L,

respectively. The receivers obtain

Y1 = A1β1 + A2β2 + Z1, Y2 = A1β1 + A2β2 + Z2.

Receiver 2 decodes β2 treating A1β1 + Z2 as noise.
This will be successful with high probability since R2 <
1
2 log2

(
1 + (1−α)P

αP+N2

)
. Receiver 1 can also decode β2 with

high probability since its since N1 ≤ N2. Hence the residue
Y1 − A2β̂2 at receiver 1 will be equal to A1β1 + Z1 with
high probability. Receiver 1 can then reliably decode β1 from
this residue since the rate R1 <

1
2 log(1 + αP

N1
).

VII. CONCLUSION

The results of [14]–[19] showed that the sparse regression
framework can be used to design rate-optimal codes for
point-to-point source and channel coding with computationally
efficient encoders and decoders. In this paper, we showed
how these source and channel codes can be combined to
implement random binning and superposition. These two

techniques have been fundamental ingredients of rate-optimal
coding schemes for a wide range of problems in network
information theory. The next goal is a precise performance
analysis of the computationally feasible versions of the coding
schemes presented here. Constructing a library of efficient
sparse regression modules to perform source coding, channel
coding, binning and superposition will pave the way for
fast, rate-optimal codes for several network problems such as
multiple description coding, lossy distributed source coding,
interference channels and relay channels.
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