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Abstract— We consider the problem of synthesizing optimal
linear feedback policies subject to arbitrary convex constraints
on the feedback matrix. This is known to be a hard problem
in the usual formulations (H2,H∞,LQR) and previous works
have focussed on characterizing classes of structural constraints
that allow efficient solution through convex optimization or
dynamic programming techniques. In this paper, we propose
a new control objective based on eigenvalues of the covari-
ance matrix of trajectories of the system and show that this
formulation makes the problem of computing optimal linear
feedback matrices convex under arbitrary convex constraints
on the feedback matrix. This allows us to solve problems in
distributed control (sparsity in the feedback matrices), control
with delays and variable impedance control. Although the
control objective is nonstandard, we present theoretical and
empirical evidence that it agrees well with standard notions of
control. We numerically validate the our approach on problems
arising in power systems and simple mechanical systems.

I. INTRODUCTION

Linear feedback control synthesis is a classical topic
in control theory and has been extensively studied in the
literature. From the perspective of stochastic optimal control
theory, the classical result is the existence of an optimal
linear feedback controller for systems with linear dynamics,
quadratic costs and gaussian noise (LQG systems) that
can be computed via dynamic programming [1]. However,
if one imposes additional constraints on the feedback
matrix (such as a sparse structure arising from the need to
implement control in a decentralized fashion), the dynamic
programming approach is no longer applicable. In fact, it
has been shown that the optimal control policy may not
even be linear [2] and that the general problem of designing
linear feedback gains subject to constraints is NP-hard [3].
Previous approaches to synthesizing structured controllers
can be broadly categorized into three types: Frequency
Domain Approaches[4], [5], [6], [7], Dynamic Programming
Approaches [8], [9], [10] and Nonconvex optimization
methods [11], [12], [13]. The first two classes of approaches
find exact solutions to structured control problems for special
cases. The third class of approaches tries to directly solve
the optimal control problem (minimizing the H2,H∞ norm)
subject to constraints on the controller, using nonconvex
optimization techniques. These are generally applicable,
but are susceptible to local minima and slow convergence
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(especially for nonsmooth norms such as H∞).

Our approach involves the following steps:
a We formulate the control problem in terms of the

minimizing the eigenvalues of the covariance matrix of
the system trajectories.

b We show that the above problem can be solved via
an equivalent semidefinite programming (SDP) formu-
lation.

c We solve the SDP formulation of the problem using
standard semidefinite programming techniques. Further,
we show that the problem has sparsity structure that en-
ables efficient solution: The computational complexity
grows linearly in the time horizon considered.

A. Notation

We use x ∈ Rn to denote states, u ∈ Rnu for controls
and ε ∈ Rn for process noise. We work with discrete-time
systems and denote integer-valued time with t (1 ≤ t ≤ T ).
T denoting the horizon of the finite-horizon control problem.
The time-indices on quantities are indicated as subscripts
(xt,ut, etc.). We use λmax (M) to denote the maximum
eigenvalue of an l × l symmetric matrix M , λmin (M)
to denote the minimum eigenvalue and λi (M) the i-th
eigenvalue in ascending order:

λ1 (M) = λmin (M) ≤ λ2 (M) ≤ . . .
. . . ≤ λmax (M) = λl (M) .

We denote by CovP (Y ) the covariance matrix of the
random variable Y ∈ Rl with distribution P .

II. PROBLEM FORMULATION

We deal with linear systems of the form

x1 ∼ N (0,Σ0)

xt+1 = At xt +Bt ut +εt, εt ∼ N (0,Σt), t = 1, 2, . . . , T−1

where xt, εt ∈ Rn, At ∈ Rn×n, Bt ∈ Rn×nu,ut ∈ Rnu.
We will assume that Σt is full rank for all 0 ≤ t ≤ T − 1 (0
refers to the distribution of the initial state x1). We denote
Si = Σi

−1.
We seek to design feedback matrices Kt ∈ Rnu×n so

that the control policy ut = Kt xt drives the system state xt

towards the origin. Let K = {Kt} and denote by PK(X) the
joint Gaussian density over the trajectories X = [x1, . . . ,xT ]
sampled from this stochastic dynamical system. Let P0

denote the probability density over trajectories in the absence
of feedback (K = 0). The feedback K is chosen to mini-
mize the deviations from the mean trajectory [0, 0, . . . , 0]



as quantified by the covariance matrix of the trajectories
EPK

[
XXT

]
. More concretely, we solve an optimization

problem of the form:

Minimize λmax

((
Cov
PK

(X)

)−1)
Subject to Convex Structural Constaints/Costs on K

We show (in theorem 3.1) that this problem can be solved
via convex programming (specifically semidefinite program-
ming) techniques. In the following section, we discuss the
choice of control objective and how it relates to more
standard formulations of control.

A. Justification for the Control Objective

The problem formulation is stated as minimizing the
maximum eigenvalue of the inverse covariance - which is
equivalent to maximizing the minimum eigenvalue of the
covariance (since these eigenvalues are positive and recipro-
cal to each other). Intuitively, we would expect that doing so
would produce controllers that destabilize the system, since
it makes the covariance “large”. However, it turns out that
given the structure of the inverse covariance matrix PK, this
is actually a sensible thing to do.
PK has a Gaussian density over the space of trajectories

X with the joint inverse covariance M = (CovPK
(X))

−1.
Surprisingly, the structure of the covariance is such that it
satisfies det (M) =

∏T−1
t=0 det (St) irrespective of the values

of A,B,K (lemma 8.1). This is in fact a restatement of
a finite horizon version of Bode’s sensitivity integral [14].
Since the determinant is the product of eigenvalues, we have:

λmax (M) =

∏T
t=0 det (St)∏nT−1
i=1 λi (M)

=

∏nT
i=2 λi (CovPK

(X))∏T
t=0 det (Σt)

where the second equality follows from the fact that eigen-
values ofM are reciprocal to the eigenvalues of CovPK

(X).
Thus, λmax (M) ∝

∏nT
i=2 λi (CovPK

(X)), the product
of the largest nT − 1 largest eigenvalues of CovPK

(X).
Hence, minimizing λmax (M) is equivalent to minimizing∏nT

i=2 λi (CovPK
(X)), which corresponds to our intuition of

making the covariance of the trajectories “small”.
An alternate interpretation is that by minimizing

λmax (M) or equivalently maximizing λmin (CovPK
(X)),

we are effectively minimizing the spread of eigenvalues
(since the product of eigenvalues is fixed) and the optimum
is achieved when all the eigenvalues are equal (assuming
we could change the eigenvalues to any number we desire).
Of course, there is no value of K that would achieve
this in general since we can only choose K and not the
eigenvalues themselves directly. However, the optimization
criterion we chose will tend to promote uniformity of the
eigenvalues. As a concrete example, in figure 1, we compare
the eigenvalue range for CovP0

(X) and CovPK∗ (X) where
K is the optimal solution found by our framework for
the simple pendulum system described in section V-A. The

results clearly show that the eigenvalue spread for PK (the
controlled system) is much smaller than that for P0(the
uncontrolled system).

If we had a state cost of the form
∑

t xt
Txt = XTX, its

expected values under the distribution PK is

E
PK

[∑
t

xt
T xt

]
= tr

(
Cov
PK

(X)

)
=

nT∑
i=1

λi

(
Cov
PK

(X)

)
.

We know that

det

(
Cov
PK

(X)

)
=

nT∏
i=1

λi

(
Cov
PK

(X)

)
=

nT−1∏
i=0

det (Σt)

Under this constraint, the above cost is minimized when all
the eigenvalues are equal.

Thus, although the objective is not formally equiva-
lent to any of the classical choices (quadratic costs in
LQR/H2,H∞ etc.), the above arguments indicate that it is
a sensible choice.
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Fig. 1. Eigenvalue Spread

B. Penalizing Control Effort

So far we have only talked about states and not penalized
control effort explicitly. This is required for both implemen-
tation (control limits) and numerical (conditioning) reasons.
In this framework, we propose to do this by penalizing
the KL-divergence between the controlled dynamics (with
feedback gains K) and the uncontrolled dynamics (no feed-
back). This criterion has been used previously in the linearly
solvable MDP framework [15] and shown to be related to
quadratic control costs for systems with linear dynamics and
Gaussian noise. More concretely, it can be shown [16] that

KL (P0 ‖ PK)

= E
P0

[
T∑

t=1

KL (P0(xt+1 |xt) ‖ PK(xt+1 |xt))

]

= E
X∼P0,ut=Kt xt

[
T−1∑
t=1

1

2
ut

TBt
T Σt

−1Bt ut

]

Comparing this to the standard LQR control cost ut
TRt ut

2 ,
we see that this is the expected control cost with Rt =



Bt
T Σt

−1Bt, but for trajectories sampled from the un-
controlled dynamics. Thus, it is not the same a standard
quadratic control cost used in the LQR framework, but
has a similar effect of choosing feedback gains that do not
produce excessively large controls. Using the formula for
KL-divergence between Gaussian densities, it can be shown
that the KL divergence between P0 and PK is given by

KL (P0 ‖ PK) = tr

(
M
(

Cov
P0

(X)

))
− nT.

Note that this is a linear (and hence convex) function of
M.

C. Overall optimization problem

The overall control design problem can now be cast as
follows:

Minimize λmax

((
Cov
PK

(X)

)−1)
︸ ︷︷ ︸

Minimize Trajectory Variance

+µ KL (P0 ‖ PK)︸ ︷︷ ︸
Minimize Control Effort

Subject to K ∈ C (1)

where C is a convex set encoding the structural constraints
on K and µ > 0 is a regularization parameter controlling the
trade-off between performance (small covariance of trajecto-
ries) and control effort.

D. More General Objective Functions

The results we develop here are applicable more generally.
The general form of the problem we solve is:

Minimize F

[(
Cov
PK

(X)

)−1]
Subject to K ∈ C (2)

where F [M ] is an arbitrary convex function of M and in-
creasing with respect to the �-semidefinite ordering and C is
an arbitrary convex set encoding constraints on the feedback.
We show (in theorem 3.1) that this problem can be solved
via convex programming (specifically semidefinite program-
ming) techniques. Since λmax (M) and KL (P0 ‖ PK) =
tr (M (CovP0

(X))) − nT are convex and �-increasing in
M, so is their sum and hence (1) is a special case of this
problem.

Again, the fact that F [M ] is monotone-increasing suggest
that minimizing it will tend to make M = (CovPK

(X))
−1

small or CovPK
(X) large. A concrete class of functions sat-

isfying this are convex, symmetric and increasing functions
of eigenvalues:

F [M] = f (λ1 (M) , . . . , λnT (M))

with f convex and increasing in each of its arguments.
We know that detM =

∏nT
i=1 λi (M) =

∏nT−1
t=0 det (St).

Relaxing the problem assuming that we can free pick yi =
log (λi (M)) (without the restriction that yi are logarithms
of eigenvalues of M) results in the following problem:

Minimize
y

f(exp (y1) , exp (y2) , exp (y3) , . . . , exp (ynT ))

Subject to
∑
i

yi =

nT−1∑
i=0

log (det (St))

This is a convex optimization problem since f is itself convex
and increasing, and composed with a convex function (the
exp function). Writing down the KKT conditions for this
problem, we get ∂if(y) exp (yi) = λ where ∂i denotes the
partial derivative with respect to the i-the coordinate and λ
is the Lagrange multiplier corresponding to the constraint.
Since f is symmetric in its coordinates, ∂if is symmetric
as well, and hence the yi are all equal at the optimum.
This shows that for this general class of functions, the
relaxed problem of optimizing over the log-eigenvalues of
M (assuming they are free variables) leads to a optimal
solution where the eigenvalues ofM are all equal. As argued
in section II-A, this optimum also minimizes E

[∑
t xt

T xt

]
.

The restriction is that we cannot treat the eigenvalues
as free variables and depending on the choice of f and
problem constraints (the values of A,B, C), a different opti-
mum would be reached. However, this result hints that our
optimization criterion is trying to do something similar to a
standard quadratic cost criterion and would hopefully lead
to satisfactory results in many problems of practical interest.
We also believe that formal results characterizing the quality
of the optimal solution with respect to the standard quadratic
cost metric are possible and plan to pursue these results
in future work. Further, the choice of f may well affect
the quality of the final control solution, and since we have
freedom in this regard, investigating the effects of various
choice of f is another direction for further work.

III. MAIN TECHNICAL RESULTS

In this section, we present our main theorem proving the
convexity of the general optimization problem (2), and hence
the convexity of the problem (1) follows since it is a special
case.

Theorem 3.1: The optimal solution to problem (2) can
be obtained by solving the following convex programming
problem:

Minimize
{Mi},K

F [M]

Subject to M =


S0 +M1 −Ã1

T
S1 0 . . .

−S1 Ã1 S2 +M2 −Ã2
T
S2 . . .

0 −S2 Ã2 . . .
...

...
...

 .
[
Si
−1 Ãi

T

Ãi Mi

]
� 0, i = 1, . . . , T − 1

Ãt = At +BtKt

K ∈ C.
Proof: Let K∗, {Mt

∗} be an optimal solution and let
M∗, {Ãt

∗} be defined accordingly. Let M̃t = Ãt
∗T
StÃt

∗
.



Construct M̃ as follows:

M̃ =


S0 + M̃1 −Ã1

T
S1 0 . . .

−S1 Ã1 S2 + M̃2 −Ã2
T
S2 . . .

0 −S2 Ã2 . . .
...

...
...

 .

Then K∗, {M̃t},M̃, {Ãt
∗} satisfy the problem constraints.

The last set of constraints implies (by Schur complements),
that Mt

∗ � Ãt
∗T
StÃt

∗
= M̃t. Since Mt

∗ � M̃t for all t
and the off-diagonal blocks of M̃ and M∗ are identical,
M∗ � M̃. Since F [M] is �-increasing, F [M∗] ≥
F
[
M̃
]
. Since M∗ is optimal, this inequality can only be

satisfied if F [M∗] = F
[
M̃
]
. Further, by construction,

M̃ = (CovPK∗ (X))
−1 (see lemma 8.1). Finally, for any

K′ ∈ C,K′ 6= K∗, one can construct Ã
′
t = At + BtKt and

M′t = Ã
′
t

T
St Ã

′
t and M′ (as above) to satisfy the problem

constraints. Again by construction, M′ =
(
CovPK′ (X)

)−1
.

Since M∗ is optimal,

F

[(
Cov
PK′

(X)

)−1]
= F [M′] ≥ F [M∗] = F

[
M̃
]

= F

[(
Cov
PK∗

(X)

)−1]
.

Hence, for any K′ ∈ C,K′ 6= K∗, F
[(

CovPK′ (X)
)−1] ≥

F
[
(CovPK∗ (X))

−1
]
. Hence, K∗ is an optimal solution for

problem (2) as well.

In fact, we can prove a stronger result using concepts from
matrix convexity: The function F [M] can be directly shown
to be a convex function of K (theorem 8.2, section VIII).
However, the above formulation allows us to reduce the
general convex programming problem using to semidefinite
programming, which allows us to formulate and solve them
in modeling languages like cvx [17].

IV. EXPLOITING STRUCTURE: EFFICIENT
ALGORITHMS

The SDPs we describe have a lot of structure: All the
matrices involved have block-tridiagonal structure, which
is a special case of a chordal sparsity structure [18], al-
lowing for efficient computation of Cholesky factors and
gradients/Hessians of log-barrier functions used in interior
point methods for semidefinite programming. Thus, given
the structure of the problem, we can compute a Newton
step in the interior point method in time that grows linearly
with T and cubically with n in the worst case - O(n3T ).
This complexity is of the same order as solving time-varying
Ricatti equations for a standard LQR problem. However, we
will have to do this at every iteration of the interior point
method - which typically converge in a small number of
iterations (< 40, largely independent of problem dimension).

Further, in many cases of practical interest, the matrices
A,B,K would themselves have additional structure (sparsity
etc.) which would allow further improvements in compu-
tation time. In this work, our focus is on the modeling
and problem formulation. Hence, we do not investigate
issues of computational complexity in depth and use off-
the-shelf solvers [17]. However, this is an interesting area
for future work and is critical to making this promising
framework applicable to large-scale real-world distributed
control problems.

V. NUMERICAL EXPERIMENTS

In this section we present numerical results that demon-
strate that our framework can produce stabilizing controllers
for dynamical systems under non-trivial structural constraints
on the feedback matrix.

A. Mechanical Systems: Simple Pendulum

We first tested the algorithm on the simple pendulum: The
system is characterized by the angular position and velocity
x = [θ; θ̇] and the control input u is the external torque
applied. Assuming a unit mass, the system dynamics is given
by

θ̈ = u+ g sin(θ).

where θ is measured clockwise from the upright position of
the pendulum. The control task is to stabilize the pendulum
at the topmost position, which is an unstable equilibrium.
Linearizing about this equilibrium θ = 0, θ̇ = 0, the system
dynamics is given by

ẋ =

(
0 1
g 0

)
x+

(
0
1

)
u .

Using an Euler-discretization with time-step h, the
discrete-time dynamics is given by

A = I + h

(
0 1
g 0

)
, B = h

(
0
1

)
.

We solve the optimization problem (1) with these matrices
with the constraint that K1 = K2 = . . . = KT (the feedback
is time-invariant), T = 40 and h = .01 (implying a 400 ms
horizon). We compare it to the solution obtained by solving
the infinite-horizon discrete-time algebraic ricatti equation
(the optimal solution for the infinite horizon LQR problem).

The results for a particular initial displacement (1 radian)
are plotted in figure 2. We get qualitatively similar behav-
ior from both controllers. The controller produced by our
framework takes longer to stabilize but it utilizes smaller (in
magnitude) controls initially. The trade-off between controls
and performance is different in our framework and in LQR
and they cannot be directly compared - the illustration here
is simply meant to show that our framework discovers a
stabilizing controller with qualitatively similar behavior as
an LQR controller.
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Fig. 2. Pendulum: LQR vs Our Framework

B. Power Systems

As a second application, we study distributed control of
generators in a power system. The power grid is described
by an undirected graph with nodes i representing generators
or loads (or both) and edges representing transmission links
between neighboring nodes. We denote by Neb(i) the set of
nodes that are neighbors of i in the graph. The model we
consider is the structure preserving model [19]. Under this
model, the dynamics of the voltage angles in the generators
is given by

Miθ̈ +Diθ̇

= pi − |Vi||Vj |
∑

j∈Neb(i)

Bij sin(θi − θj) +Gij cos(θi − θj)

where θi refers to the voltage phase at node i, |Vi| is the
voltage magnitude, Gij , Bij are the electrical conductance
and susceptance of the line connecting i and j, Mi is the
inertia of the generator at node i, Di is a damping term
and pi is the power due to mechanical torque (generated by
the turbine in a generator or consumed by a motor load) at
node i. We assume that the voltage magnitudes are fixed to
unity and ignore the inertias to get an approximate first-order
model of the system (akin to [20]) that still captures essential
features of the dynamics. It has been argued that this model
suffices to predict voltage angle-based instabilities in power
systems. Ideally, we want the voltage angles to all be close to
each other (for the generators to be “in-phase”). We linearize
the dynamics about an equilibrium (computed by solving a
quasi-static Optimal Power Flow (OPF) problem using [21])
and proceed with applying our control framework to this
problem. The control variable is the power injection pi, and
we consider modifying that in response to changes in θ. We
consider 3 different control schemes: a) Full Distributed -
pi changes based only on θi, b) Sparse pi changes based
on {θi} ∪ {θj : j ∈ Neb(i)} and c) Centralized control (pi
changes based on changes in all θ).

We impose the constraint that |Kt| ≤ 5, entrywise, which
corresponds to enforcing control limits within the expected
operating conditions of the problem (reasonable ranges for
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Fig. 3. Distributed Control in Power Systems: The different lines corre-
spond to voltage phase angles of different generators in the system.

θ). Note that this limitation is not possible in the LQR frame-
work, and hence we are forced to make the approximation
of truncating the values of the feedback matrix generated
by LQR to conform to these limits. The results (figure
3) show that our algorithm can do much better than the
simple truncated LQR, which causes the voltage angles to go
completely out of phase, while our control design is able to
quickly bring the system back into synchronized operation
(all angles equal) in the centralized and sparse cases. In the
fully distributed case, our control design is unable to keep
angle deviations to acceptable levels, but still performs much
better than the LQR based design.

Thus, our framework is able to handle nontrivial con-



straints on the feedback matrices, which LQR and other
dynamic programming based approaches cannot. Even by
playing with the relative values of the state and control
costs for LQR, we were unable to obtain a feedback matrix
satisfying the constraints |Kt| ≤ 5 and simple truncation
based schemes produce bad results as shown in this example.

VI. DISCUSSION AND RELATED WORK

There have been three major classes of prior work in
synthesizing structured controllers: Frequency domain ap-
proaches, dynamic programming and nonconvex optimiza-
tion approaches. We compare the relative merits of the
different approaches in this section.

In frequency domain approaches, problems are typically
formulated as follows:

Minimize
K

‖ Closed loop system with feedback K ‖

Subject to K Stabilizing ,K ∈ C

where ‖·‖ is typically the H2 or H∞ norm. In general,
these are solved by reparameterizing the problem in terms
of a Youla parameter (via a nonlinear transformation), and
imposing special conditions on C (like quadratic invariance)
that guarantee that the constraints C can be translated into
convex constraints on the Youla parameter [6][5]. There are
multiple limitations of these approaches:
(1) Only specific kinds of constraints can be imposed on the
controller. Many of the examples have the restriction that the
structure of the controller mirrors that of the plant.
(2) They result in infinite dimensional convex programs in
general. One can solve them using a sequence of convex
programming problems, but these approaches are susceptible
to numerical issues and the degree of the resulting controllers
may be ill-behaved, leading to practical problems in terms
of implementing them.
(3) The approaches rely on frequency domain notions and
cannot handle time-varying systems.
In the special case of poset-causal systems (where the
structure of the plant and controller can be described in terms
of a partial order [7]), the problem can be decomposed when
the performance metric is the H2 norm and explicit state-
space solutions are available by solving Ricatti equations for
subsystems and combining the results. For the H∞ norm, a
state-space solution using an LMI approach was developed
in [22].

Another thread of work on decentralized control looks at
special cases where dynamic programming techniques can be
used in spite of the decentralization constraints. The advan-
tage of these approaches is that they directly handle finite
horizon and time-varying approaches. For the LEQG cost-
criterion, a dynamic programming approach was developed
in [8] for the case of 1-step delay in a 2-agent decentralized
control problem. In [9], the authors show that for the case
of 2 agents (a block-lower triangular structure in A,B with
2 blocks) can be solved via dynamic programming. In [10],
the authors develop a dynamic programming solution that

generalizes this and applies to general “partially-nested”
systems allowing for both sparsity and delays.

All the above methods work for special structures on the
plant and controller (quadratic invariance/partial nestedness)
under which decentralized controllers can be synthesized
using either convex optimization or dynamic programming
methods.

Our work differs from these previous works in one funda-
mental way: Rather than looking for special decentralization
structures that can be solved tractably under standard control
objectives, we formulate a new control objective that helps
us solve problems with arbitrary decentralization constraints.
In fact, we can handle arbitrary convex constraints - decen-
tralization constraints that impose a sparsity pattern on K
are a special case of this. We can also handle time-varying
linear systems. Although the objective is nonstandard, we
have provided theoretical and numerical evidence that it is a
sensible control objective.

In this paper, we have presented a formulation of the
feedback synthesis problem that is convex under arbitrary
convex constraints on the feedback matrix. Designing sta-
bilizing feedback controllers under even simple constraints
like bounds on coefficients of K is known to be NP-hard [3],
which was precisely the constraint we imposed in section
V-B. Thus, it is clear that we cannot guarantee stability
of controllers produced by our framework even for simple
constraints on K. Further, our framework is formulated in
finite-horizon, where stabilizing constraints do not show up
explicitly (although intuitively we would expect that making
the covariance of the trajectories small would tend to produce
stabilizing controllers). Further work needs to be done to
understand the relationship between the covariance-based
metric we have considered here and more standard metrics
used in control (H2,H∞,LQR etc.).

VII. CONCLUSION

As argued above, the framework we have developed seems
promising and overcomes limitations of previous works on
convex optimization based controller synthesis. Although the
control objective used is non-standard, we have argued why
it is a sensible objective, and we also presented numerical
examples showing that it produces controllers that generate
“desirable” behavior. Additional work needs to be done to
rigorously understand the relationship with more standard
control objectives and whether solutions generated by our
framework can have guarantees in terms of traditional met-
rics (stability etc.) We also have some flexibility in choosing
the control objective in this framework: Investigating the
effects of this choice is another topic worth further inves-
tigation. Finally, we hope to develop solvers that exploit the
structure of the problem (referred to in section IV) and scale
to large-scale real-world control problems.
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APPENDIX

Lemma 8.1: Consider the discrete time dynamical system

x1 ∼ Σ0,xt+1 = At xt +BtKt xt +εt, εt ∼ N (0,Σt)

t = 1, . . . , T − 1. Let Ãt = At + BtKt. Then, the distri-
bution of trajectories X = [x1, . . . ,xT ] is jointly Gaussian:
N (0,M−1) where

M =


S0 + Ã1

T
S1 Ã1 −Ã1

T
S1 0 . . .

−S1 Ã1 S1 + Ã2
T
S2 Ã2 −Ã2

T
S2 . . .

0 −S2 Ã2 . . . . . .
...

...
...

...

 .

and St = Σt
−1. Further, det (M) =

T−1∏
t=1

det (St).

Proof: By the Markov Property,

P (X) = P (x1)

T−1∏
t=1

P (xt+1 |xt)

=
exp

(
−x1

TS0 x1

2

)
√

(2π)n det (Σ0)

T−1∏
t=1

exp

(
− (xt+1− Ãt xt)

T
St(xt+1− Ãt xt)
2

)
√

(2π)n det (Σt)

=
exp

(
−XTMX

2

)
√∏T−1

t=0 (2π)n det (Σt)
.

From the numerator, we see that the resulting density has a
Gaussian form with inverse covariance M. It follows that
the normalizing constant is

√
(2π)nT det (M−1). Matching

this with the denominator below, we get

det (M) =
1∏T−1

t=0 det (Σt)
=

T−1∏
t=0

det (St) .

Theorem 8.2: Supposed that F [M ] is a convex function
of M ∈ RnT×nT for M � 0 and is increasing with
respect to the �-ordering, that is, F [M ] ≥ F [M ′] whenever
M � M ′. Then the function F

[
(CovPK

(X))
−1
]

is a
convex function of K.

Proof: The proof uses the concept of convexity with
respect to the �-cone [23] (chapter 3, section 3.8). The
block super-diagonal and sub-diagonal elements of M are
�-convex since they are linear functions of K. The block-
diagonal elements are of the form MTQM , Q � 0, which
are known to be �-convex themselves. Thus,M(K) is a sum
of �-convex functions, and hence itself a �-convex function
of K. Since F [M] is a convex and �-increasing function
of M, the composition F [M(K)] is a convex function of
K.


