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Abstract— In this paper, a simple variation of classical Slotted
Aloha is introduced and analyzed. The enhancement relies on
adding multiple receivers that gather different observations of
the packets transmitted by a user population in one slot. For each
observation, the packets transmitted in one slot are assumed to
be subject to independent on-off fading, so that each of them is
either completely faded, and then does not bring any power or
interference at the receiver, or it arrives unfaded, and then may
or may not, collide with other unfaded transmissions. With this
model, a novel type of diversity is introduced to the conventional
SA scheme, leading to relevant throughput gains already for
moderate number of receivers. The analytical framework that
we introduce allows to derive closed-form expression of both
throughput and packet loss rate an arbitrary number of receivers,
providing interesting hints on the key trade-offs that characterize
the system. We then focus on the problem of having receivers
forward the full set of collected packets to a final gateway
using the minimum possible amount of resources, i.e., avoiding
delivery of duplicate packets, without allowing any exchange
of information among them. We derive what is the minimum
amount of resources needed and propose a scheme based on
random linear network coding that achieves asymptotically this
bound without the need for the receivers to coordinate among
them.

I. I NTRODUCTION

A renewed interest for Aloha-like random access (RA)
protocols led recently to the development of new high-
throughput uncoordinated multiple-access schemes [1]–[10].
These schemes share the feature of cancelling the interference
caused by a packet whenever (a portion of) it is successfully
decoded. Among the aforementioned works, a specific class
is based on the diversity slotted Aloha (DSA) protocol intro-
duced in [11] enhanced by successive interference cancelation
(SIC). In [4], [5] it was shown that the SIC process can be
well modeled by means of a bipartite graph. By exploiting
the graph model, a remarkably-high capacity (e.g., up to
0.8 [packets/slot]) can be achieved in practical implementa-
tions, whereas for large medium access control (MAC) frames
it was demonstrated that fully efficiency (1 [packets/slot]) can
be substantially attained [8], [10], [12]. A further key ingredi-
ent to attain large throughput gains deals with the exploitation
of diversity. As an example, the approaches proposed in [1],
[4]–[6], [9]–[11] take advantage of time diversity to resolve
collisions.

In this paper, we develop and analyze a simple yet powerful
relay-aided slotted Aloha (SA) scheme which enjoys space
diversity. More specifically,K independent observations of
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a slot are supposed to be available. The different observa-
tions are associated toK relays, and, for each of them,
the transmitted packets are subject to independent fading
coefficients. Collisions are regarded as destructive, and the
system is complemented by having relays deliver what they
have decoded to a centralized gateway.

SA with space (antenna) diversity was analyzed in [13]
under the assumption of Rayleigh fading and shadowing,
with emphasis on the two-antenna case. With respect to [13],
we introduce in our analysis a simplified channel model.
In particular, the uplink wireless link connecting useri and
relay j is described by a packet erasure channel with erasure
probability εi,j , following the on-off fading model [14]. The
fading is assumed to be independent for each pair of user-relay
pair. Despite its simplicity, the model is accurate enough for
some cases of interest. As an example, it captures the main
features of an interactive satellite network with satellite located
on different orbits, and where the line-of-sight link between
users and relays may be blocked whenever an obstacle lies
between a user and a satellite (here, the satellites play therole
of relays).

Under this fading model, elegant exact expressions for the
system throughput as a function of the number of relays
are derived, yielding deep insights in the gains provided by
diversity in SA protocols. We further provide an analysis on
how the link between the relays and the centralized gateways
(also referred to asdownlink) shall be dimensioned, assuming
the relays to be uncoordinated. A bound on the downlink
capacity is derived, which is achieved by a random linear
coding approach based on Slepian-Wolf coding.

The rest of the paper is organized as follows. We start in
Section II by defining the system model that is used to develop
our framework. Section III provides a thorough analysis of
the system uplink, characterizing it in terms of throughput
and delivery reliability, whereas in Section IV we study how
to effectively deliver collected packets to a common gateway
without resorting to coordination and information exchange
among relays. In Appendix, we also investigate, for the two-
receiver case, an extension of the considered scheme that takes
advantage of successive interference cancellation techniques.

II. SYSTEM MODEL AND PRELIMINARIES

Throughout this paper, we focus on the topology depicted
in Fig. 1, where an infinite population of users want to deliver
information in the form of data packets to a collecting gateway
(GW). The transmission process is divided in two phases,
referred to asuplink and downlink, respectively. During the
former, data are sent in an uncoordinated fashion over a shared
wireless channel to a set ofK receivers or relays, which, in
turn, forward collected information to the GW in the downlink.
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Fig. 1. Reference topology for the system under consideration.

As to the uplink, time is divided in successive slots, and
transmission parameters in terms of packet length, coding and
modulation are fixed such that one packet can be sent within
one time unit. Users are assumed to be slot-synchronized, and
Slotted Aloha (SA) [15] is employed as medium access policy.
Furthermore, the number of users accessing the channel in
a generic slot is modelled as a Poisson-distributed r.v.U of
intensityρ, with:

Pr{U = u} =
ρue−ρ

u!
. (1)

The uplink wireless link connecting useri and receiverj is
described by a packet erasure channel with erasure probability
εi,j , where independent realizations for any(i, j) pair as
well as for a specific user-receiver couple across time slots
are assumed. For the sake of mathematical tractability, we
set εi,j = ε, ∀ i, j. Following the on-off fading description
[14], we assume that a packet is either completely shadowed,
not bringing any power or interference contribution at a
receiver, or it arrives unfaded. While, on the one hand, such a
model is especially useful to develop mathematically tractable
approaches to the aim of highlighting the key tradeoffs of the
considered scenario, it also effectively captures effectslike
fading and short-term receiver unavailability due, for instance,
to the presence of obstacles. Throughout our investigation, no
multi-user detection capabilities are considered at the relays,
so that collisions among non-erased data units are regardedas
destructive and prevent decoding at a receiver.

Within this framework, the number of non-erased packets
that arrive at a relay whenu concurrent transmissions take
place follows a binomial distribution of parameters(u, 1 −
ε) over one slot. Therefore, a successful reception occurs
with probability u(1 − ε)εu−1, and the average throughput
experienced at each of theK receivers, in terms of decoded
packets per slot, can be computed as:

Tsa =

∞∑

u=0

ρue−ρ

u!
u(1− ε)εu−1 = ρ(1− ε)e−ρ(1−ε) , (2)

corresponding to the performance of a SA system with
erasures. On the other hand, a spatial diversity gain can

be triggered when the relays are considered jointly, since
independent channel realizations may lead them to retrieve
different information units over the same time slot. In order
to quantify this beneficial effect, we label a packet ascollected
when it has been received by at least one of the relays, and
we introduce theuplink throughput Tup,K as the average
number of collected packets per slot. Despite its simplicity,
such a definition offers an effective characterization of the
beneficial effects of diversity, by properly accounting forboth
the possibility of retrieving up tomin{u,K} distinct data units
or multiple times the same data unit over a slot, as will be
discussed in details in Section III-A. On the other hand,Tup,K
also quantifies the actual amount of information that can be
retrieved by the set of receivers, providing an upper bound for
the overall achievable end-to-end performance, and setting the
target for the design of any relay-to-GW delivery strategy.

For the downlink phase, we focus on adecode and for-
ward (D&F) approach, so that each receiver re-encodes and
transmits only packets it has correctly retrieved during the
uplink phase, or possibly linear combinations thereof. A finite
downlink capacity is assumed, and relays have to share a
common bandwidth to communicate to the GW by means of a
TDMA scheme. In order to get an insightful characterization
of the optimum achievable system performance, we assume
relay-to-GW links to be error free, and let resource allocation
for the D&F phase be performed ideally and without additional
cost by the central collecting unit.

We then complement our study in Appendix I by consid-
ering, for the simplifiedK = 2 scenario, anamplify and
forward (A&F) approach. In this case, relays simply deliver
an amplified version of the analog waveform (possibly the
outcome of a collision) they received, whereas the GW per-
forms decoding relying on successive interference cancellation
(SIC) techniques. The goal of such an investigation is to derive
a characterization of the gains that are achievable by jointly
processing signals incoming at different receivers. Alongthis
line of reasoning, we will focus on an idealized downlink, such
that information can be reliably delivered to the collecting unit
at no cost in terms of bandwidth.

A. Notation

Prior to delving into the details of our mathematical frame-
work, we introduce in the following some useful notation. All
the variables will be properly introduced when needed in the
discussion, and the present section is simply meant to offera
quick reference point throughout the reading.
K relays are available, and, within time slott, the countably

infinite set of possible outcomes at each of them is labeled as
Ωt := {ωt

0, ω
t
1, ω

t
2, . . . , ω

t
∞} for eacht = 1, 2, . . . , n. Here,

ωt
0 denotes the erasure event (given either by a collision or

by an idle slot), whileωt
j indicates the event that the packet

of the j-th user arriving in slott was received. According
to this notation, we define asXt

k the random variables with
alphabetN, whereXt

k = j if ωt
j was the observation at relayk.

When needed for mathematical discussion, we let the uplink
operate forn time slots. In this case, letAn

k be the set of
collected packets aftern time slots at receiverk, whereAn

k (



⋃n
t=1{Ωt\ω

t
0}. That is, we do not add the erasure events to

An
k . The number of received packets at relayk after n time

slots is thus|An
k |.

In general, the complement of a setA is indicated asA.
We write vectors as lowercase underlined variables, e.g.,w,
while matrices and their transposes are labeled by uppercase
letters, e.g.,G andGT .

III. A C HARACTERIZATION OF SYSTEM UPLINK

With reference to the topology of Fig. 1, we first consider
the uplink phase. In order to gather a comprehensive descrip-
tion of the improvements enabled by receiver diversity, we
characterize the system by means of two somewhat comple-
mentary metrics: uplink throughput (Section III-A) and packet
loss rate (Section III-B).

A. Uplink Throughput

Let us focus on the random access channel, and, following
the definition introduced in Section II, letC be the number
of packets collected by the relays over one slot.C is a r.v.
with outcomes in the set{0, 1, 2, . . . ,K}, where the maximum
value occurs when theK receivers decode distinct packets due
to different erasure patterns. The average uplink throughput
can thus be expressed by conditioning on the number of
concurrent transmissions as:

Tup,K =EU [E[C |U ] ]=

∞∑

u=0

ρue−ρ

u!

K∑

c=0

cPr{C = c |U = u}.

(3)
While Eq. (3) formula holds for anyK, the computation of the
collection probabilities intrinsically depends on the number of
available relays. In this perspective, we articulate our analysis
by first considering the two-receiver case, to then extend the
results for an arbitrary topology.

1) The Two-Receiver Case: Let us first then focus on
the case in which only two relays are available. Such a
scenario allows a compact mathematical derivation of the
uplink throughput, as the events leading to packet collection
at the relays set can easily be expressed. On the other hand,
it also represents a case of practical relevance, as it can be
instantiated by simply adding a receiver to an existing SA-
based system. WhenK = 2, the situation forC = 1 can easily
be accounted for, since a single packet can be collected as soon
as at least one of the relays does not undergo an erasure, i.e.,
with overall probability1−ε2. On the other hand, by virtue of
the binomial distribution ofU , the event of collecting a single
information unit over one slot occurs with probability

Pr{C = 1 |U = u} =2u(1− ε)εu−1
[
1− u(1− ε)εu−1

]

+ u(1− ε)2ε2(u−1), (4)

where the former addend accounts for the case in which one
relay decodes a packet while the other does not (either due to
erasures or to a collision), whereas the latter tracks the case
of having the two relays decoding the same information unit.
Conversely, a reward of two packets is obtained only when the
receivers successfully retrieve distinct units, with probability

Pr{C = 2 |U = u} = u(u− 1)(1− ε)2ε2(u−1). (5)
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Fig. 2. Average uplink throughput vs channel load under different erasure
probabilities. Black markers indicate the performance in thepresence of two
receivers, whereas white markers report the behavior of pureSA.

Plugging these results into (3) we get, after some calculations,
a closed-form expression for the throughput in the uplink and
thus, as discussed, also for the end-to-end D&F case with
infinite downlink capacity:

Tup,2 = 2ρ(1− ε) e−ρ(1−ε) − ρ(1− ε)2 e−ρ(1−ε2). (6)

The trend ofTup,2 is reported in Fig. 2 against the channel
load ρ for different values of the erasure probability, and
compared to the performance in the presence of a single
receiver, i.e.,Tsa. Eq. (6) conveniently expressesTup,2 as
twice the throughput of SA in the presence of erasures,
reduced by a loss factor which accounts for the possibility
of having both relays decode the same information unit. In
this perspective, it is interesting to evaluate the maximum
throughputT ∗

up,2(ε) as well as the optimal working pointρ∗(ε)
achieving it for the system uplink. The transcendental nature
of (6) does not allow to obtain a closed formulation of these
quantities, which, on the other hand, can easily be estimated
by means of numerical optimization techniques. The resultsof
this analysis are reported in Fig. 3, where the peak throughput
T ∗
up is depicted by the black curve as a function ofε and

compared to the performance of SA, which clearly collects
on average at most 0.36 pkt/slot regardless of the erasure
rate. In ideal channel conditions, i.e.,ε = 0, no benefits can
be obtained by resorting to multiple relays, as all of them
would see the same reception set across slots. Conversely,
higher values ofε favour a decorrelation of the pattern of
packets that can be correctly retrieved, and consequently
improve the achievable throughput at the expense of higher
loss rates. The result is a monotonically increasing behavior
for T ∗

up,2(ε), prior to plummeting with a singularity to a null
throughput for the degenerate caseε = 1. Fig. 3 also reports
(circled-white markers) the average throughput obtained for
ρ = 1/(1 − ε), i.e., when the uplink of the system under
consideration operates at the optimal working point for a
single-receiver SA, showing a tight match. In fact, even though
the abscissa of maximumρ∗(ε) may differ from this value
(they coincide only for the ideal caseε = 0), the error which



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

ε

M
ax

im
um

 a
ch

ie
va

bl
e 

th
ro

ug
hp

ut

 

 

SA
K=2, numerical
K=2, approximation
K=2 w/ A&F, numerical
K=2 w/ A&F, approximation

Fig. 3. Maximum uplink throughput vs erasure rate. The black continuous
line reports the performanceT ∗

up,2 of a two-receiver scheme, while white
circled markers indicateTup,2(1/(1 − ε)), and the dotted line shows the
behavior of pure SA. Gray curves and markers are to be referredto theamplify
and forward case, that will be treated in Appendix I.

is committed when approximatingT ∗
up,2 with Tup,2(1/(1−ε))

can easily be shown numerically to never exceed 0.6%, due
to the very small slope of the function in the neighborhood
of ρ∗(ε). We can thus provide a very precise estimate of the
peak uplink performance for a specific erasure rate as:

T ∗
up,2(ε) ≃

2

e
− (1− ε) e−1−ε, 0 ≤ ε < 1. (7)

which once again compactly captures the behavior of a two-
receiver scenario by quantifying the loss with respect to twice
the performance of SA. In this perspective, two remarks shall
be made. First of all, in order to approach the upper bound, the
system has to be operated at very high load, asρ∗ ≃ 1/(1−
ε)). These working points are typically not of interest, since
very low levels of reliability can be provided by a congested
channel with high erasure rates. Nevertheless, the presence of a
second receiver triggers remarkable improvements alreadyfor
loss probabilities that are of practical relevance, e.g., under
harsh fading conditions or for satellite networks. Indeed,with
ε = 0.1 a ∼ 15% raise can be spotted, whereas a loss rate
of 20% already leads to a 50% throughput gain. Secondly,
the proposed framework highlights how no modifications in
terms of system load are needed with respect to plain SA for
a two-receiver system to be very efficiently operated. Such
a result is particularly interesting, as it suggests that a relay
node can be seamlessly and efficiently added to an already
operating SA uplink when available, triggering the maximum
achievable benefit without the need to undergo a re-tuning of
the system which might be particularly expensive in terms of
resources.

2) The General Case, K > 2: Let us now focus on the
general topology reported in Fig. 1, whereK relays are avail-
able. While conceptually applicable, the approach presented
to compute the uplink throughput in the two-receiver case be-
comes cumbersome asK grows, due to the rapidly increasing
number of events that have to be accounted for. In order to
characterizeTup,K , then, we follow a different strategy. With

reference to a single slott, letΩt := {ωt
0, ω

t
1, ω

t
2, . . . , ω

t
∞} for

eacht = 1, 2, . . . , n be the countably infinite set of possible
outcomes at each relay, whereωt

0 denotes the erasure event
while ωt

j indicates the event that the packet of thej-th user
arriving in slot t was received. Let us furthermore define as
Xt

k the random variables with alphabetX = {0, 1, 2, . . . ,∞},
whereXt

k = j if ωt
j was the observation at relayk, so that

X1
k , X

2
k , . . . , X

n
k is an i.i.d. sequence for each relayk. We let

the uplink operate forn time slots, and indicate asAn
k the set

of packets collected at receiverk over this time-span, where
An

k (
⋃n

t=1{Ωt\ω
t
0} (i.e., we do not add the erasure events

to An
k ). The number of received packets at relayk after n

time slots is thus|An
k | and, with reference to this notation, we

prove the following result:
Proposition 1: For an arbitrary number ofK relays, the

throughputTup,K is given by

Tup,K =

K∑

k=1

(−1)k−1

(
K

k

)

ρ(1− ε)ke−ρ(1−εk) (8)

Proof: We have|An
k | =

∑n
t=1 {Xt

k
6=0}, where {E}

denotes the indicator random variable that takes on the value 1
if the eventE is true and0 otherwise. The throughput seen by
a single relay can then be written asTup,1 = E[ {Xt

k
6=0}] =

Pr{Xt
k 6= 0}, and does not depend on the specific receiver

being considered. By the weak law of large numbers,

Tup,1 = lim
n→∞

|An
k |

n
(9)

or, more formally,

lim
n→∞

Pr

{∣
∣
∣
∣

|An
k |

n
− Tup,1

∣
∣
∣
∣
> ǫ

}

= 0 for someǫ > 0. (10)

Similarly, for K relays we have

Tup,K = lim
n→∞

|
⋃K

k=1 A
n
k |

n
(11)

By the inclusion-exclusion principle (see, e.g., [16]), wehave
∣
∣
∣
∣
∣

K⋃

k=1

An
k

∣
∣
∣
∣
∣
=

∑

S⊆{1,...,K},S6=∅

(−1)|S|−1 |In
S | (12)

with In
S =

⋂

k∈S

An
k (13)

Here, In
S denotes the set of packets that all the relay nodes

specified byS = {k1, k2, . . . , k|S|} have in common:

|In
S | =

∣
∣
∣
∣
∣

⋂

k∈S

An
k

∣
∣
∣
∣
∣
=

n∑

t=1

{0 6=Xt
k1

=Xt
k2

=...=Xt
k|S|

} (14)

Due to symmetry in the setup, the value of|In
S | only depends

on the cardinality ofS but not the explicit choice, so that
|In

S | = ank for k = |S|, and,
∣
∣
∣
∣
∣

K⋃

k=1

An
k

∣
∣
∣
∣
∣
=

K∑

k=1

(−1)k−1

(
K

k

)

ank .

As X1
k , X

2
k , . . . , X

n
k are i.i.d., by the weak law of large

numbers we have:

lim
n→∞

|In
S |

n
= Pr[{0 6= Xt

k1
= Xt

k2
= . . . = Xt

k|S|
}]. (15)
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Fig. 4. Average uplink throughput vs channel load for different number of
relaysK. The erasure probability has been set toε = 0.5.

We can compute the latter probability as

Pr{0 6= Xt
k1

= . . . = Xt
k|S|

}

=
∑

u

Pr{0 6= Xt
k1

= . . . = Xt
k|S|

|U = u}Pr{U = u}

=
∞∑

u=1

e−ρρu

u!

(
u

1

)
(
(1− ε)εu−1

)|S|

=(1− ε)|S|ρe−ρ(1−ε|S|) (16)

As limn→∞
an
k

n
= (1−ε)kρe−ρ(1−εk), the proposition follows.

The performance achievable by increasing the number of
relays is reported against the channel load in Fig. 4 for a ref-
erence erasure rateε = 0.2. As expected,Tup,K benefits from
a higher degree of spatial diversity, showing how the system
can collect more than one packet per uplink slot as soon as
more than four receivers are available, for the parameters under
consideration. Such a result stems from two main factors. On
the one hand, increasingK enables larger peak throughput
over a single slot, as up toK different data units can be simul-
taneously retrieved. On the other hand, broader receivers sets
improve the probability of decoding packets in the presenceof
collisions even when less thanK users accessed the channel,
by virtue of the different erasure patterns they experience.
The uplink throughput characterization is complemented by
Fig. 5, which reports the peak value forT ∗

up,K (solid black
curve), obtained by properly setting the channel load toρ∗K
(whose values are shown by the gray dashed curve), for an
increasing relay population.1 The plot clearly highlights how
the benefit brought by introducing an additional receiver tothe
scheme, quantified by Eq. (17), progressively reduces, leading
to a growth rate for the achievable throughput that is less than

1As discussed for theK = 2 case, a mathematical derivation of the
optimal working point loadρ∗

K
is not straightforward, and simple numerical

maximization techniques were employed to obtain the results ofFig 5.
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linear and that exhibits a logarithmic-like trend inK.

∆Tup
= Tup,K − Tup,K−1

=

K∑

k=1

(−1)k−1

(
K − 1

k − 1

)

ρ(1− ε)keρ(1−εk) (17)

B. Packet loss probability

The aggregate throughput derived in Section III-A repre-
sents a metric of interest towards understanding the potential
of SA with diversity when aiming at reaping the most out
of uplink bandwidth. On the other hand, operating an Aloha-
based system at the optimal loadρ∗K exposes each transmitted
packet to a loss probability that may not be negligible. In the
classical single-receiver case without fading, for instance, the
probability for a data unit not to be collected evaluates to1−
e−1 ≃ 0.63. From this standpoint, in fact, several applications
may resort to a lightly loaded random access uplink, aiming
at a higher level of delivery reliability rather than at a high
throughput. This is the case, for example, of channels used
for logon and control signalling in many practical wireless
networks. In order to investigate how diversity can improve
performance in this direction, we extend our framework by
computing the probabilityζK that a user accessing the channel
experiences a data loss, i.e., that the information unit it sends
is not collected, either due to fading or to collisions, by any
of theK relays.

To this aim, letO describe the event that the packet of the
observed user sent over time slott is not received by any
of the receivers. Conditioning on the number of interferersi,
i.e., of data units that were concurrently present on the uplink
channel att, the sought probability can be written as:

ζK =

∞∑

i=0

Pr[O|I = i] Pr[I = i]. (18)

Here, the conditional probability can easily be determined
recalling that each of theK relays experiences an independent
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Fig. 6. ProbabilityζK that a packet sent by a user is not received by any of
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probability has been set toε = 0.2.

erasure pattern, obtainingPr[O|I = i] = (1− (1− ε)εi)K for
an individual packet andK relays with independent erasures
on all individual links. By resorting to the binomial theorem,
such an expression can be conveniently reformulated as:

Pr[O|I = i] =

K∑

k=0

(−1)k
(
K

k

)
(
(1− ε)εi

)k
. (19)

On the other hand, the number of interferers seen by a user
that accesses the channel at timet still follows a Poisson
distribution of intensityρ, so that, after simple calculations
we finally get:

ζK =
K∑

k=0

(−1)k
(
K

k

)

(1− ε)ke−ρ(1−εk). (20)

Fig. 6 reports the behavior ofζK as a function ofρ when the
erasure rate over a single link is set toε = 0.2. Different lines
indicate the trend when increasing the number of receivers
from 1 to 10. As expected, whenρ → 0, a user accessing the
channel is not likely to experience any interference, so that
failures can only be induced by erasures, leading to an overall
loss probability ofεK . In this perspective, the availability of
multiple receivers triggers a dramatic improvement, enabling
levels of reliability that would otherwise not be possible
irrespective of the channel configuration. On the other hand,
Eq. (20) turns out to be useful for system design, as it allows
to determine the load that can be supported on the uplink
channel while guaranteeing a target loss rate. Also in this
case diversity can significantly ameliorate the performance. As
shown in Fig. 6, for example, a target loss rateζ = 5 · 10−2

is achieved by a three- and four-receiver scheme under 6- and
10-fold larger loads compared to theK = 2 case, respectively.

IV. D OWNLINK STRATEGIES

The analysis carried out in Section III has characterized
the average number of packets that can be decoded at the
relay set when SA is used in the uplink. We now instead
consider the complementary task of delivering what has been

collected to a central GW. In doing so, we aim at employing
the minimum number of resources in terms of transmissions
that have to be performed by the relays, while not allowing any
information exchange among them. In particular, we consider
a finite-capacity downlink, where theK receivers share a
common bandwidth to communicate with the GW by means
of a time division multiple access scheme, and we assume that
each of them can reliably deliver exactly one packet, possibly
composed of a linear combination of what has been collected,
over one time unit. We once again focus on a horizon ofn
slots to operate the uplink, after which the downlink phase
starts.

We structure our analysis in two parts. First, in Section IV-
A, we derive lower bounds for the rates (in terms of downlink
slots allocated per uplink slot) that have to assigned to re-
ceivers in order to deliver the whole set of data units collected
in the uplink over then slots. Then, Section IV-B shows how
a simple forwarding strategy based on random linear network
coding suffices to achieve optimality, completing the downlink
phase inTup,K slots for asymptotically large values ofn.

Prior to delving into the details, let us introduce some useful
notation. We denote theL-bit data part of packet of thej-th
user arriving in time slott as W t

k ∈ W, with W = F2L ∪
e, wheree is added as the erasure symbol. We furthermore
assume that the receiver can determine the corresponding user
through a packet header, i.e., the receiver knows bothj and t
after successful reception. As the uplink operates overn time
slots, relayk observes the vectorwk = [W 1

k , . . . ,W
n
k ]. In

each time slot, the tuple(W t
1 ,W

t
2 , . . . ,W

t
K) is drawn from a

joint probability distributionPW1...WK
which is governed by

the uplink, and different relays might receive the same packet.

A. Bounds for Downlink Rates

Each relayk transmits a packet in each of itsnRk downlink
slots. We are interested in the set of rates(Rk)

K
k=1 such that

the gateway can recover all packets (with high probability).
This is essentially the problem of distributed source cod-

ing (SW-Coding [17]), with the following modification: SW-
coding ensures that the gateway can recover allK observed
stringswk, k = 1, 2, . . . ,K perfectly. In this setup, the gate-
way should be able to recover every packet that was received
at any relay. However, neither is the gateway interested in
erasures symbols at the relays, i.e. wheneverW t

k = e for any
k, t, nor in reconstructing each relay sequence perfectly. The
authors in [18] overcame this problem by assuming that the
decoder knows all the erasure positions of the whole network.
This assumption applies in our case as packet numbers are
supposed to be known via a packet header. Let all erasure
positions be represented byΓ.

The rates(R1, . . . , RK) are achievable [17] if
∑

k∈S

Rk ≥ H(WS |WS ,Γ), ∀ S ⊆ [1, 2, . . . ,K] (21)

where WS = (W t
k1
,W t

k2
, . . . ,W t

k|S|
), denotes the observa-

tions at some timet at the subset of receivers specified by
S = {k1, k2, . . . , k|S|}. Γ has the effect of removing the
influence of the erasure symbols on the conditional entropies.



Computing the entropies however requires the full probability
distributionPW1...WK

which is a difficult task in general. By
different means, we can obtain the equivalent conditions:

Proposition 2: The rates(Rk)
K
k=1 have to satisfy

∑

k∈S

Rk≥ Tup,K+

K−|S|
∑

k=1

(−1)k
(
K − |S|

k

)

ρ(1− ε)ke−ρ(1−εk),

∀S ⊆ {1, . . . ,K}
(22)

Proof: Consider a subset of relaysS ⊆ {1, . . . ,K} and
their buffer contents

⋃

k∈S An
k after n time slots. In order to

satisfy successful recovery at the gateway, at least all packets
that have been collected only by nodes in the setS and not
by anyone else have to be communicated to the gateway. That
is,

∑

k∈S

n ·Rk ≥

∣
∣
∣
∣
∣
∣

⋃

k∈S

An
k\

⋃

k∈S

An
k

∣
∣
∣
∣
∣
∣

, (23)

with S = {1, . . . ,K}\S. Note that

⋃

k∈S

An
k\

⋃

k∈S

An
k = An\

⋃

k∈S

An
k ,

so by the inclusion-exclusion principle and due to|S| = K −
|S|

∣
∣
∣
∣
∣
∣

⋃

k∈S

An
k\

⋃

k∈S

An
k

∣
∣
∣
∣
∣
∣

= |An
K |+

K−|S|
∑

k=1

(−1)k
(
K − |S|

k

)

ank

(24)

with |In
S | = ank for k = |S| as before. By plugging in the

value for limn→∞
an
k

n
, the proposition follows.

B. Random Linear Coding

By means of Proposition 2, we have derived a characteriza-
tion of the rates that have to be assigned to relays in order to
deliver the whole set of collected packets to the GW. In this
section, we complete the discussion by proposing a strategy
that is capable of matching such conditions, thus achieving
optimality. The solution that we employ is based on a straight-
forward application of the well-known random linear coding
scheme in [19], and will therefore only briefly sketched in the
following.

Each relayk generates a matrixGk ∈ FnRk×n
2L

and obtains
the data part of itsnRk transmit packets bycTk = Gkw

T
k .

Whenever an element ofwk was an erasure symbol, the
corresponding column ofGk is an all-zero column. Erasure
symbols thus have no contributions to the transmit packetsck.
All other elements ofGk are drawn uniformly at random from
F∗
2L , whereF∗

2L denotes the multiplicative group ofF2L .
The gateway collects all incoming packets and obtains the

system of linear equations







cT1
cT2
...
cTK








︸ ︷︷ ︸

cT

=








G1 0 . . . 0
0 G2 . . . 0

0 0
. .. 0

0 0 . . . GK








︸ ︷︷ ︸

G








wT
1

wT
2
...

wT
K








︸ ︷︷ ︸

wT

(25)

whereG ∈ F
n
∑

k
Rk×nK

2L
. Note that some elements ofw can

be identical because they were received by more than one relay
and thus are elements of somewk1

, wk2
, . . .. One can merge

these entries inw that appear more than once. Additionally,
we drop all erasure-symbols inw and delete the corresponding
columns inG to obtain the reduced system of equations

cT = G̃w̃T (26)

wherew̃ ∈ F
|An|
2L

contains only distinct received packets and
no erasure symbols. Clearly, there are

∣
∣
⋃

k∈S An
k

∣
∣ elements in

w̃.
We partition the entries iñw into 2K−1 vectorsw̃S for each

nonempty subsetS ⊆ {1, 2, . . . ,K}: Each vectorw̃S contains
all packets that have been received only by all relays specified
by S and not by anyone else. That is,w̃S corresponds to the
setPn

S =
⋂

k∈S An
k\

⋃

k∈S An
k , its length is|Pn

S |.
The columns inG̃ and rows inw̃T can be permuted such

that one can write

cTk = G̃kw̃ :=
∑

S⊆{1,2,...,K}

G̃k,S · w̃S , ∀ k = 1, . . . ,K.

(27)

Each of the matrices̃Gk,S ∈ F
nRk×|Pn

S |

2L
contains only ele-

ments fromF∗
2L if k ∈ S and is an all-zero matrix otherwise.

A compact representation forK = 3 is shown in (28) at the
bottom of next page.

The variables that are involved only inn
∑

k∈S Rk equa-
tions are those inw̃L, L ⊆ S, for each subsetS ⊆
{1, 2, . . . ,K}. For decoding, the number of equations has to be
larger or equal to the number of variables, so a necessary con-
dition for decoding is thatn

∑

k∈S Rk ≥
∑

L⊆S |Pn
L|. This is

satisfied by (23), since
∑

L⊆S |Pn
L| =

∣
∣
⋃

k∈S An
k\

⋃

k∈S An
k

∣
∣,

as we show in Appendix II
A sufficient condition is that the matrixG̃k, k ∈ S

representingn
∑

k∈S Rk equations has rank
∑

L⊆S |Pn
L| for

each subsetS ⊆ {1, 2, . . . ,K}. Denote the set of indices of
nonzero columns of matrix̃Gk as the support of̃Gk. Note
that a row of matrixG̃k has a different support than a row of
matrix G̃l, for k 6= l. These rows are thus linearly independent.
It thus suffices to check that all rows of matrix̃Gk are
linearly independent. As all nonzero elements are randomly
drawn fromF∗

2L , the probability of linear dependence goes
to zero asL grows large, completing our proof, and showing
that the presented forwarding scheme achieves the bounds of
Proposition 2.

V. CONCLUSIONS

In this paper, a simple and practical extension of Slotted
Aloha in the presence of multiple receivers, or relays, has



been presented and thoroughly discussed. By means of an
analytical framework, closed-form expression for the uplink
throughput (defined as the average number of packets per
slot collected by the set ofK relays), as well as for the
probability that a data unit is not retrieved by any of the
receivers, have been derived for an arbitrary value ofK
under the assumption of on-off fading. Remarkable gains have
been shown and discussed already for a moderate number
of receivers. The study is complemented by considering the
problem of delivering the set of collected packets to a common
gateway without allowing any information exchange among
receivers. Theoretical bounds for the amount of resources that
have to be allocated to achieve this task have been derived,
and a simple scheme based on random linear network coding
has been shown to match such bounds.

APPENDIX I
AMPLIFY AND FORWARD WITH SIC AT THE GATEWAY

The framework developed in this paper has focused on
characterizing the performance achievable by a SA system
with receiver diversity when a D&F scheme is implemented
at intermediate nodes. On the other hand, restricting relays
to simply forward what they have successfully retrieved in
the uplink prevents the GW from performing joint decoding
on possibly uncorrelated signals. In order to go beyond this
limitation, we consider in this appendix the possibility for
receivers to send in the downlink, on a slot-basis, an amplified
version of the analog waveform they perceive even in the
presence of a collision, following anamplify and forward
(A&F) approach. For the sake of mathematical tractability,
we focus on theK = 2 case, and we model relays to instantly
and reliably deliver information to the GW. The advantage of
such an assumption is twofold. On the one hand, it will allow
us once more to identify elegant closed-form expressions for
the throughput of A&F with spatial diversity, highlightingthe
fundamental tradeoffs that arise in the presence of multiple
receivers. On the other hand, despite its ideality, the model
under consideration is representative for several scenarios of
practical interest, in which the bandwidth available in the
downlink is much larger than the one of the uplink. Satellite
networks, as well as topologies where multiple base stations
or access points are connected to a coordinating unit via a
wideband backbone may be examples in this direction.

At the gateway side, successive interference cancellation
(SIC) is applied to the collected signals. This approach offers
an improvement whenever the waveform forwarded by one of
the relays allows decoding of a packet, sayx, while the other

reports a collision given by the superposition ofx and one
other packet. In this condition, the set of relays would be able
to collect only one information unit, whereas, with A&F, the
gateway can subtract the interference contribution ofx from
the collision-corrupted waveform and successfully collect the
second packet as well. Details on the accuracy of this model
on noisy channels with actual signal processing techniquescan
be found in [1], [4].

The gain offered by SIC can thus be computed for theK =
2 case by simply adding to the uplink throughput derived in
Section III-A one additional collected data unit each time the
described collision condition is met. Hence, we can write:

GSIC =
∞∑

u=2

ρu e−ρ

u!
2u(u− 1) εu−1(1− ε) · εu−2(1− ε)2

=2ρ2ε(1− ε)3 e−ρ(1−ε2), (29)

where, within the summation,εu−1(1 − ε) accounts for the
correct reception at one relay whileεu−2(1 − ε)2 enforces a
collision of exactly two packets at the other relay, for a total
of 2u(u− 1) configurations that can be solved with SIC. The
average number of collected packets at the GW per uplink
slot, which we refer to asTA&F , is thus simply expressed as
TA&F = Tup,2 + GSIC :

TA&F =2ρ(1− ε) e−ρ(1−ε) − ρ(1− ε)2 e−ρ(1−ε2)

+2ρ2ε(1− ε)3 e−ρ(1−ε2). (30)

The obtained trend is plotted in Fig. 7 against the channel
load ρ for an erasure probability ofε = 0.2, showing a
20% and 66% improvement in peak throughput compared to
the performance achieved under the same conditions in the
uplink (i.e., without SIC) and by a SA scheme with single
receiver, respectively. As discussed in Section III-A, a closed-
form evaluation of the maximum throughputT ∗

A&F is not
straightforward, due to the transcendental nature of the terms
that define the metric. Nevertheless, in the two-receiver case, a
good approximation is once again offered by evaluatingTA&F

at ρ = 1/(1− ε), obtaining, after some calculations:

T ∗
A&F (ε) ≃

2

e
− e−1−ε (1− 3ε+ 2ε2), (31)

where a loss factor ofe−1−ε(1−ε)(1−2ε) ≤ e−1−ε(1−ε) is
exhibited with respect to the upper bound provided by twice
the throughput of SA. The behavior ofT ∗

A&F (ε) is reported in
Fig. 3, where the dashed-gray curve indicates the actual peak
throughput values computed numerically, whereas the white-
squared markers report the proposed approximation. The plot
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Fig. 7. End-to-end throughput vs uplink channel load with infinite downlink
capacity andε = 0.2. The black-marked curve reports the behavior with
A&F; the gray-marked curve indicates D&F; the white-marked curve shows
the behavior of SA with a single receiver.

highlights how, as opposed to what discussed for the non-SIC
case, the introduction of joint processing modifies the shape of
the curve, identifying an optimal (albeit not practical formany
applications) erasure probability where the throughput ismore
than doubled over SA. On the other hand, it is remarkable to
point out that the most relevant improvements over a non-SIC
multi-receiver uplink are triggered exactly for values ofε that
may indeed be experienced in practical scenarios, boostingthe
peak throughput by up to 25%.

As a concluding observation, notice how the two-relay A&F
solution that we discussed requires rather simple interference
cancellation procedures compared to other advanced random
access schemes [1], [4], as only two observations need to
be considered for joint decoding. The presented architecture,
thus, represents an interesting tradeoff between complexity
and performance gain, and triggers interest in more advanced
scenarios where more receivers are available.

APPENDIX II

We derive that
∑

L⊆S |Pn
L| =

∣
∣
⋃

k∈S An
k\

⋃

k∈S An
k

∣
∣. We

need the following lemma.
Lemma 1: For a collection of setsB1,B2, . . . ,BK and a

subsetS ⊆ {1, . . . ,K},

⋃

k∈S

Bk =
⋃

L⊆S




⋂

l∈L

Bl\
⋃

s∈S\L

Bs



 , (32)

where the sets on the RHS do not intersect and thus form a
partition of the LHS.

Proof: We first show that any elementb ∈
⋃

k∈S Bk

is also included in the RHS: Pick an elementb ∈
⋃

k∈S Bk.
AssumeL is the subset of largest cardinality such thatb ∈
Bl, ∀l ∈ L. Clearly, b ∈

⋂

l∈L Bl but b 6∈
⋃

s∈S\L Bs. It
follows that b ∈

⋂

l∈L Bl\
⋃

s∈S\L Bs. This is true for some
subsetL ⊆ S. Second, we show that this subset is unique.
Let againL be the subset of largest cardinality such thatb ∈
Bl, ∀l ∈ L and choose a different subsetV ⊆ S, V 6= L.

Then, eitherb 6∈
⋂

l∈L Bl or b ∈
⋃

s∈S\L Bs. The elementb
is thus only included in

⋂

l∈L Bl\
⋃

s∈S\L Bs.
By choosingBk = An

k\
⋃

k∈S̄ An
k , the result follows by

elementary set operations.
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