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Abstract

A broadcast network is a classical network with all source messages collocated at a
single source node. For broadcast networks, the standard cut-set bounds, which are known
to be loose in general, are closely related to union as a specific set operation to combine
the basic cuts of the network. This paper provides a new set of network coding bounds
for general broadcast networks. These bounds combine the basic cuts of the network via a
variety of set operations (not just the union) and are established via only the submodularity
of Shannon entropy. The tightness of these bounds are demonstrated via applications to
combination networks.

1 Introduction

A classical network is a capaciated directed acyclic graph ((V,A), (Ca : a ∈ A)), where V and
A are the node and the arc sets of the graph respectively, and Ca is the link capacity for arc
a ∈ A. A broadcast network is a classical work for which all source messages are collocated at a
single source node.

Consider a general broadcast network with one source node s and K sink nodes tk, k =
1, . . . , K (see Figure 1). The source node s has access to a collection of independent messages
WI = (Wi : i ∈ I), where I is a finite index set. The messages intended for the sink node
tk are given by WIk , where Ik is a nonempty subset of I. When all messages from WI are
unicast messages, i.e., each of them is intended for only one of the sink nodes, it follows from
the celebrated max-flow min-cut theorem [4] that routing can achieve the entire capacity region
of the network. On the other hand, when some of the messages from WI are multicast messages,
i.e., they are intended for multiple sink nodes, the capacity region of the network is generally
unknown except when there is only one multicast message at the source node [1, 8, 9] or there
are only two sink nodes (K = 2) in the network [3, 10, 12].

In this paper, we are interested in establishing strong network coding bounds for general
broadcast networks with multiple (multicast) messages and more than two sink nodes (K ≥ 3).

∗This paper was presented in part at the 2012 International Symposium on Network Coding (NetCod),
Cambridge, MA, June 2012. This research was supported in part by the Department of Defense under Grant
HDTRA1-08-1-0010 and by the National Science Foundation under Grant CCF-08-45848. The authors are with
the Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843,
USA (email: {salimi,tieliu,cui}@tamu.edu).
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In particular, we are interested in network coding bounds that rely only on the cut structure
of the network. The rational behind this particular interest is two-folded. First, cut is a
well-understood combinatorial structure for networks. Second, the fact that standard cut-set
bounds [2, Ch. 15.10] are tight for the aforementioned special cases [1, 3, 4, 8–10, 12] suggests
that cut as a combinatorial structure can be useful for more general broadcast-network coding
problems as well.

The starting point of this work is the following simple observation. For each k = 1, . . . , K,
let Ak be a “basic” cut that separates the source node s from the (single) sink node tk. Then, for
any nonempty subset U ⊆ [K] := {1, . . . , K} the union ∪k∈UAk is also a cut that separates the
source node s from the “super” sink node tU , whose intended messages are given by W∪k∈UIk .
By the standard cut-set bound [2, Ch. 15.10], we have

R(∪k∈UIk) ≤ C(∪k∈UAk) (1)

for any achievable rate tuple RI := (Ri : i ∈ I). Here, R : 2I → R
+ is the rate function that

corresponds to the rate tuple RI and is given by

R(I ′) :=
∑

i∈I′

Ri, ∀I ′ ⊆ I, (2)

and C : 2A → R
+ is the capacity function of the network where

C(A′) :=
∑

a∈A′

Ca, ∀A′ ⊆ A. (3)

Note that the above observation depends critically on the fact that all messages WI are
collocated at the source node s. When the messages are distributed among several source nodes,
it is well known that the union of several basic cuts may no longer be a cut that separates the
super source node from the super sink node and hence may not lead to any network coding
bounds [7].

Based on the above discussion, it is clear that for broadcast networks the standard cut-set
bounds [2, Ch. 15.10] are closely related to union as a specific set operation to combine different
basic cuts of the network. Therefore, a natural question that one may ask is whether there are
any other set operations (besides the union) that will also lead to nontrivial network coding
bounds.

In this paper, we provide a positive answer to the above question by establishing a new set
of network coding bounds for general broadcast networks. We term these bounds generalized
cut-set bounds based on the facts that: 1) they rely only on the cut structure of the network; and
2) the set operations within the rate and the capacity functions are identical (but not just the
union any more), both similar to the case of standard cut-set bounds as in (1). From the proof
viewpoint, as we shall see, these bounds are established via only the Shannon-type inequalities.
It is well known that all Shannon-type inequalities can be derived from the simple fact that
Shannon entropy as a set function is submodular [14, Ch. 14.A]. So, at heart, the generalized
cut-set bounds are reflections of several new results that we establish on submodular function
optimization.

The rest of the paper is organized as follows. In Section 2 we establish several new results on
submodular function optimization, which we shall use to prove the generalized cut-set bounds.
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Figure 1: Illustration of a general broadcast network.

A new set of network coding bounds that relate three basic cuts of the network is provided in
Section 3. The proof of these bounds is rather “hands-on” and hence provides a good illustration
on the essential idea on how to establish the generalized cut-set bounds. In Section 4, a new
set of network coding bounds that relate arbitrary K basic cuts of the network is provided,
generalizing the bounds provided in Section 3. In Section 5, the tightness of the generalized cut-
set bounds is demonstrated via applications to combination networks [11]. Finally, in Section 6
we conclude the paper with some remarks.

2 Modular and Submodular Functions

Let S be a finite ground set. A function f : 2S → R
+ is said to be submodular if

f(S1) + f(S2) ≥ f(S1 ∪ S2) + f(S1 ∩ S2), ∀S1, S2 ⊆ S, (4)

and is said to be modular if

f(S1) + f(S2) = f(S1 ∪ S2) + f(S1 ∩ S2), ∀S1, S2 ⊆ S. (5)

More generally, let Sk, k = 1, . . . , K, be a subset of S. For any nonempty subset U of [K]
and any r ∈ [|U |], let

S(r)(U) := ∪{U ′⊆U :|U ′|=r} ∩k∈U ′ Sk. (6)

Clearly, we have

∪k∈USk = S(1)(U) ⊇ S(2)(U) ⊇ · · · ⊇ S(|U |)(U) = ∩k∈USk (7)

for any nonempty U ⊆ [K] and

S(r)(U ′) ⊆ S(r)(U) (8)
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for any ∅ ⊂ U ′ ⊆ U ⊆ [K] and any r ∈ [|U ′|]. Furthermore, it is known that [6, Th. 2]

∑

k∈U

f(Sk) ≥

|U |
∑

r=1

f(S(r)(U)) (9)

if f is a submodular function, and

∑

k∈U

f(Sk) =

|U |
∑

r=1

f(S(r)(U)) (10)

if f is a modular function.
Note that the standard submodularity (9) relates S(r)(U) for different r but a fixed U . To

establish the generalized cut-set bounds, however, we shall need the following technical results on
modular and submodular functions that relate S(r)(U) for not only different r but also different
U .

Lemma 1. Let r′ and J be two integers such that 0 ≤ r′ ≤ J ≤ K. We have

r′
∑

r=1

f(Sr) +
J
∑

r=r′+1

f(Sr ∪ S(r′+1)([r])) ≥
r′
∑

r=1

f(S(r)([J ])) +
J
∑

r=r′+1

f(S(r′+1)([r])) (11)

if f is a submodular function, and

r′
∑

r=1

f(Sr) +
J
∑

r=r′+1

f(Sr ∪ S(r′+1)([r])) =
r′
∑

r=1

f(S(r)([J ])) +
J
∑

r=r′+1

f(S(r′+1)([r])) (12)

if f is a modular function.

Note that when r′ = 0, we have S(r′+1)([r]) = S(1)([r]) = ∪r
k=1Sk ⊇ Sr for any r = 1, . . . , J .

In this case, the inequality (11) reduces to the trivial equality

J
∑

r=1

f(S(1)([r])) =

J
∑

r=1

f(S(1)([r])). (13)

On the other hand, when r′ = J , the inequality (11) reduces to the standard submodularity

J
∑

r=1

f(Sr) ≥
J
∑

r=1

f(S(r)([J ])). (14)

For the general case where 0 < r′ < J , a proof of the lemma is provided in Appendix A.
Let S ′

k := Sk ∪ S0 for k = 1, . . . , K. For any nonempty U ⊆ [K] and any r = 1, . . . , |U | we
have

S ′(r)(U) = ∪{U ′⊆U :|U ′|=r} ∩k∈U ′ S ′
k (15)

= ∪{U ′⊆U :|U ′|=r} ∩k∈U ′ (Sk ∪ S0) (16)

=
(

∪{U ′⊆U :|U ′|=r} ∩k∈U ′ Sk

)

∪ S0 (17)

= S(r)(U) ∪ S0. (18)

Applying Lemma 1 for S ′
k, k = 1, . . . , K, and (18), we have the following corollary.
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Corollary 2. Let r′ and J be two integers such that 0 ≤ r′ ≤ J ≤ K, and let S0 be a subset of
S. We have

r′
∑

r=1

f(Sr ∪ S0) +

J
∑

r=r′+1

f(Sr ∪ S(r′+1)([r]) ∪ S0)

≥
r′
∑

r=1

f(S(r)([J ]) ∪ S0) +
J
∑

r=r′+1

f(S(r′+1)([r]) ∪ S0) (19)

if f is a submodular function, and

r′
∑

r=1

f(Sr ∪ S0) +

J
∑

r=r′+1

f(Sr ∪ S(r′+1)([r]) ∪ S0)

=
r′
∑

r=1

f(S(r)([J ]) ∪ S0) +
J
∑

r=r′+1

f(S(r′+1)([r]) ∪ S0) (20)

if f is a modular function.

We shall also need the following lemma, for which a proof is provided in Appendix B.

Lemma 3. Let U and T be two nonempty subsets of [K]. Write, without loss of generality, that
T = {t1, . . . , t|T |} where 1 ≤ t1 < t2 < · · · < t|T | ≤ K. Let q and rq be two integers such that
1 ≤ q ≤ |U |, 1 ≤ rq ≤ |T |, and S(q)(U) ⊆ S(rq)(T ). We have

|T |
∑

r=1

f(Str) + rqf(S
(q)(U))

≥

rq
∑

r=1

(

f(S(r)(T )) + f(Str ∩ S(q)(U))
)

+

|T |
∑

r=rq+1

f(Str ∩ (S(q)(U) ∪ S(rq+1)({t1, . . . , tr})))

(21)

if f is a submodular function, and

|T |
∑

r=1

f(Str) + rqf(S
(q)(U))

=

rq
∑

r=1

(

f(S(r)(T )) + f(Str ∩ S(q)(U))
)

+

|T |
∑

r=rq+1

f(Str ∩ (S(q)(U) ∪ S(rq+1)({t1, . . . , tr})))

(22)

if f is a modular function.

For specific functions, let ZS := (Zi : i ∈ S) be a collection of jointly distributed random
variables, and let H(ZS) be the joint (Shannon) entropy of ZS. Then, it is well known [14,
Ch. 14.A] that HZ : 2S → R

+ where

HZ(S
′) := H(ZS′), ∀S ′ ⊆ S (23)
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is a submodular function. Furthermore, it is straightforward to verify that the rate function R(·)
(for a given rate tuple RI) and the capacity function C(·), defined in (2) and (3) respectively,
are modular functions.

3 Generalized Cut-Set Bounds Relating Three Basic Cuts

of the Network

3.1 Main Result

Theorem 1. Consider a broadcast network with a collection of independent messages WI col-
located at the source node s and K ≥ 3 sink nodes tk, k = 1, . . . , K. For any k = 1, . . . , K, let
WIk be the intended messages for the sink node tk, and let Ak be a basic cut that separates the
source node s from the sink node tk. We have

R(Ii ∪ Ij ∪ Ik) +R(Ii ∩ Ij) ≤ C(Ai ∪ Aj ∪ Ak) + C(Ai ∩ Aj), (24)

R(Ii ∪ Ij ∪ Ik) +R((Ii ∩ Ij) ∪ (Ii ∩ Ik) ∪ (Ij ∩ Ik))

≤ C(Ai ∪Ai ∪Ak) + C((Ai ∩Aj) ∪ (Ai ∩Ak) ∪ (Aj ∩ Ak)), (25)

R(Ii ∪ Ij ∪ Ik) +R(Ii ∪ Ij) +R(Ii ∩ Ij ∩ Ik)

≤ C(Ai ∪Aj ∪ Ak) + C(Ai ∪Aj) + C(Ai ∩Aj ∩Ak), (26)

and 2R(Ii ∪ Ij ∪ Ik) +R(Ii ∩ Ij ∩ Ik) ≤ 2C(Ai ∪ Aj ∪Ak) + C(Ai ∩ Aj ∩Ak) (27)

for any achievable rate tuple RI and any three distinct integers i, j, and k from [K].

Note that the left-hand sides of the generalized cut-set bounds (24)–(27) are weighted sum
rates with integer weights on the rates of the messages from WIi∪Ij∪Ik . Figure 2 illustrates the
weight distributions for the generalized cut-set bounds (24)–(27).

3.2 Proof of Theorem 1

Let (n, {Xa : a ∈ A}) be an admissible code with block length n, where Xa is the message
transmitted over the arc a. By the independence bound [2, Th 2.6.6] and the link-capacity
constraints, we have

HX(A
′) ≤

∑

a∈A′

H(Xa) ≤ n
∑

a∈A′

Ca = nC(A′), ∀A′ ⊆ A. (28)

For notational simplicity, in this proof we shall assume perfect recovery of the messages at each
of the sink nodes. It should be clear from the proof that by applying the well-known Fano’s
inequality [2, Th 2.10.1], the results also hold for asymptotically perfect recovery. By the perfect
recovery requirement, for any nonempty subset U ⊆ [K] the collection of the messages W∪k∈UIk

must be a function of the messages X∪k∈UAk
transmitted over the s-tU cut ∪k∈UAk. We thus

have

HW(∪k∈UIk) ≤ HX(∪k∈UAk), ∀U ⊆ [K]. (29)

6
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Figure 2: The weight distributions for the generalized cut-set bounds (24)–(27). Here, each
circle represents the set of the messages intended for a particular sink node. The number within
each separate area indicates the weight for the rates of the messages represented by the area.

Proof of (24). Let U = {i, j, k} in (29). Denote by

IX(Ai;Aj) := I(XAi
;XAj

) (30)

the mutual information between XAi
and XAj

. We have

HW(Ii ∪ Ij ∪ Ik) ≤ HX(Ai ∪ Aj ∪ Ak) (31)

= HX(Ai) +HX(Aj |Ai) +HX(Ak|Ai ∪ Aj) (32)

= HX(Ai) + (HX(Aj)− IX(Ai;Aj)) + (HX(Ak)− IX(Ak;Ai ∪ Aj)) (33)

= HX(Ai) + (HX(Aj)− IX,W(Ai, Ii;Aj , Ij))+

(HX(Ak)− IX,W(Ak, Ik;Ai ∪ Aj, Ii ∪ Ij)) (34)

≤ HX(Ai) + (HX(Aj)−HX,W(Ai ∩Aj , Ii ∩ Ij)) +

(HX(Ak)−HX,W(Ak ∩ (Ai ∪ Aj), Ik ∩ (Ii ∪ Ij))) (35)
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where (34) follows from the fact that: 1) WIi and WIj are functions of XAi
and XAj

respectively
so we have IX(Ai;Aj) = IX,W(Ai, Ii;Aj, Ij); and 2) WIk and WIi∪Ij are functions of XAk

and
XAi∪Aj

respectively so we have IX(Ak;Ai ∪ Aj) = IX,W(Ak, Ik;Ai ∪ Aj, Ii ∪ Ij), and (35) follows
from the fact that

IX,W(Ai, Ii;Aj, Ij) ≥ IX,W(Ai ∩ Aj, Ii ∩ Ij;Ai ∩ Aj , Ii ∩ Ij) (36)

= HX,W(Ai ∩ Aj, Ii ∩ Ij) (37)

and

IX,W(Ak, Ik;Ai ∪Aj , Ii ∪ Ij)

≥ IX,W(Ak ∩ (Ai ∪ Aj), Ik ∩ (Ii ∪ Ij);Ak ∩ (Ai ∪Aj), Ik ∩ (Ii ∪ Ij)) (38)

= HX,W(Ak ∩ (Ai ∪Aj), Ik ∩ (Ii ∪ Ij)). (39)

Note that we trivially have

HX,W(Ai ∩ Aj , Ii ∩ Ij) ≥ HW(Ii ∩ Ij) (40)

and HX,W(Ak ∩ (Ai ∪ Aj), Ik ∩ (Ii ∪ Ij)) ≥ HX(Ak ∩ (Ai ∪ Aj)). (41)

Substituting (40) and (41) into (35) gives

HW(Ii ∪ Ij ∪ Ik) +HW(Ii ∩ Ij) ≤ HX(Ai) +HX(Aj) +HX(Ak)−HX(Ak ∩ (Ai ∪ Aj)) (42)

≤ HX(Ai) +HX(Aj) +HX(Ak \ (Ai ∪ Aj)) (43)

≤ n (C(Ai) + C(Aj) + C(Ak \ (Ai ∪ Aj))) (44)

= n (C(Ai ∪ Aj ∪Ak) + C(Ai ∩ Aj)) (45)

where (43) follows from the independence bound

HX(Ak) ≤ HX(Ak ∩ (Ai ∪Aj)) +HX(Ak \ (Ai ∪ Aj)); (46)

(44) follows from (28) for A′ = Ai, Aj , and Ak \ (Ai ∪ Aj); and (45) follows from the fact that
the capacity function C(·) is a modular function. Substituting

HW(Ii ∪ Ij ∪ Ik) = nR(Ii ∪ Ij ∪ Ik) (47)

and HW(Ii ∩ Ij) = R(Ii ∩ Ij) (48)

into (45) and dividing both sides of the inequality by n complete the proof of (24). �

We note here that if we had directly bounded from above the right-hand side of (31) by
nC(Ai ∪ Aj ∪ Ak) using the independence bound, it would have led to the standard cut-set
bound

R(Ii ∪ Ij ∪ Ik) ≤ C(Ai ∪ Aj ∪ Ak). (49)

But the use of the independence bound would have implied that all messages transmitted over
Ai ∪Aj ∪Ak are independent, which may not be the case in the presence of multicast messages.
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Proof of (25). Applying the two-way submodularity (4) of the Shannon entropy with Z = (X,W),
S1 = (Ai ∩ Aj, Ii ∩ Ij), and S2 = (Ak ∩ (Ai ∪ Aj), Ik ∩ (Ii ∪ Ij)), we have

HX,W(Ai ∩ Aj , Ii ∩ Ij) +HX,W(Ak ∩ (Ai ∪Aj), Ik ∩ (Ii ∪ Ij))

≥ HX,W(Ai ∩ Aj ∩Ak, Ii ∩ Ij ∩ Ik)+

HX,W((Ai ∩ Aj) ∪ (Ai ∩ Ak) ∪ (Aj ∩ Ak), (Ii ∩ Ij) ∩ (Ii ∪ Ik) ∩ (Ij ∪ Ik)) (50)

≥ HX(Ai ∩ Aj ∩Ak) +HW((Ii ∩ Ij) ∪ (Ii ∩ Ik) ∪ (Ij ∩ Ik)). (51)

Substituting (51) into (35) gives

HW(Ii ∪ Ij ∪ Ik) +HW((Ii ∩ Ij) ∪ (Ij ∩ Ik) ∪ (Ik ∩ Ii))

≤ HX(Ai) +HX(Aj) +HX(Ak)−HX(Ai ∩Aj ∩ Ak) (52)

≤ HX(Ai) +HX(Aj) +HX(Ak \ (Ai ∩ Aj)) (53)

≤ n (C(Ai) + C(Aj) + C(Ak \ (Ai ∩Aj))) (54)

= n (C(Ai ∪ Aj ∪Ak) + C((Ai ∩ Aj) ∪ (Ai ∩Ak) ∪ (Aj ∩ Ak))) (55)

where (53) follows from the independence bound

HX(Ak) ≤ HX(Ak ∩ (Ai ∩Aj)) +HX(Ak \ (Ai ∩ Aj)); (56)

(54) follows from (28) for A′ = Ai, Aj , and Ak \ (Ai ∩ Aj); and (55) follows from the fact that
the capacity function C(·) is a modular function. Substituting (47) and

HW((Ii ∩ Ij) ∪ (Ii ∩ Ik) ∪ (Ij ∩ Ik)) = nR((Ii ∩ Ij) ∪ (Ii ∩ Ik) ∪ (Ij ∩ Ik)) (57)

into (55) and dividing both sides of the inequality by n complete the proof of (25). �

Proof of (26). By the symmetry among i, j, and k in (35), we have

HW(Ii ∪ Ij ∪ Ik) ≤ HX(Ai) + (HX(Ak)−HX,W(Ai ∩ Ak, Ii ∩ Ik))+

(HX(Aj)−HX,W(Aj ∩ (Ai ∪ Ak), Ij ∩ (Ii ∪ Ik))) . (58)

Also note that

HW(Ii ∪ Ij) ≤ HX(Ai ∪Aj) (59)

= HX(Ai) +HX(Aj |Ai) (60)

= HX(Ai) + (HX(Aj)− IX(Ai;Aj)) (61)

= HX(Ai) + (HX(Aj)− IX,W(Ai, Ii;Aj, Ij)) (62)

≤ HX(Ai) + (HX(Aj)−HX,W(Ai ∩Aj , Ii ∩ Ij)) . (63)

Adding (58) and (63) gives

HW(Ii ∪ Ij ∪ Ik) +HW(Ii ∪ Ij)

≤ 2HX(Ai) + 2HX(Aj) +HX(Ak)−HX,W(Ai ∩Aj , Ii ∩ Ij)−

HX,W(Ai ∩ Ak, Ii ∩ Ik)−HX,W(Aj ∩ (Ai ∪Ak), Ij ∩ (Ii ∪ Ik)). (64)
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Applying the two-way submodularity (4) of the Shannon entropy with Z = (X,W), S1 = (Ai ∩
Aj , Ii ∩ Ij), and S2 = (Ai ∩ Ak, Ii ∩ Ik), we have

HX,W(Ai ∩Aj , Ii ∩ Ij) +HX,W(Ai ∩Ak, Ii ∩ Ik)

≥ HX,W(Ai ∩ Aj ∩ Ak, Ii ∩ Ij ∩ Ik) +HX,W(Ai ∩ (Aj ∪ Ak), Ii ∩ (Ij ∪ Ik)) (65)

≥ HW(Ii ∩ Ij ∩ Ik) +HX(Ai ∩ (Aj ∪ Ak)). (66)

Note that we trivially have

HX,W(Aj ∩ (Ai ∪Ak), Ij ∩ (Ii ∪ Ik)) ≥ HX(Aj ∩ (Ai ∪Ak)). (67)

Substituting (66) and (67) into (64), we have

HW(Ii ∪ Ij ∪ Ik) +HW(Ii ∪ Ij) +HW(Ii ∩ Ij ∩ Ik)

≤ 2HX(Ai) + 2HX(Aj) +HX(Ak)−HX(Ai ∩ (Aj ∪Ak))−HX(Aj ∩ (Ai ∪Ak)) (68)

≤ HX(Ai) +HX(Aj) +HX(Ak) +HX(Ai \ (Aj ∪ Ak)) +HX(Aj \ (Ai ∪Ak)) (69)

≤ n (C(Ai) + C(Aj) + C(Ak) + C(Ai \ (Aj ∪Ak)) + C(Aj \ (Ai ∪ Ak))) (70)

= n (C(Ai ∪Aj ∪ Ak) + C(Ai ∪Aj) + C(Ai ∩ Aj ∩Ak)) (71)

where (69) follows from the independence bounds

HX(Ai) ≤ HX(Ai ∩ (Aj ∪ Ak)) +HX(Ai \ (Aj ∪Ak)) (72)

and HX(Aj) ≤ HX(Aj ∩ (Ai ∪ Ak)) +HX(Aj \ (Ai ∪Ak)); (73)

(70) follows from (28) for A′ = Ai, Aj, Ak, Ai \ (Aj ∪Ak), and Aj \ (Ai ∪Ak); and (71) follows
from the fact that the capacity function C(·) is a modular function. Substituting (47),

HW(Ii ∪ Ij) = nR(Ii ∪ Ij), (74)

and HW(Ii ∩ Ij ∩ Ik) = nR(Ii ∩ Ij ∩ Ik) (75)

into (71) and dividing both sides of the inequality by n complete the proof of (26). �

Proof of (27). Adding (35) and (58), we have

2HW(Ii ∪ Ij ∪ Ik) ≤ 2HX(Ai) + 2HX(Aj) + 2HX(Ak)−HX,W(Ai ∩Aj , Ii ∩ Ij)−

HX,W(Ai ∩ Ak, Ii ∩ Ik)−HX,W(Aj ∩ (Ai ∪Ak), Ij ∩ (Ii ∪ Ik))−

HX,W(Ak ∩ (Ai ∪Aj), Ik ∩ (Ii ∪ Ij)). (76)

Note that we trivially have

HX,W(Ak ∩ (Ai ∪Aj), Ik ∩ (Ii ∪ Ij)) ≥ HX(Ak ∩ (Ai ∪ Aj)). (77)

Substituting (66), (67), and (77) into (76), we have

2HW(Ii ∪ Ij ∪ Ik) +HW(Ii ∩ Ij ∩ Ik)

≤ 2HX(Ai) + 2HX(Aj) + 2HX(Ak)−HX(Ai ∩ (Aj ∪ Ak))−

HX(Aj ∩ (Ai ∪ Ak))−HX(Ak ∩ (Ai ∪ Aj)) (78)

≤ HX(Ai) +HX(Aj) +HX(Ak) +HX(Ai \ (Aj ∪ Ak))+

HX(Aj \ (Ai ∪Ak)) +HX(Ak \ (Ai ∪ Aj)) (79)

≤ n (C(Ai) + C(Aj) + C(Ak) + C(Ai \ (Aj ∪ Ak))+

C(Aj \ (Ai ∪ Ak)) + C(Ak \ (Ai ∪Aj))) (80)

= n (2C(Ai ∪ Aj ∪Ak) + C(Ai ∩ Aj ∩Ak)) (81)
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where (79) follows from the independence bounds (46), (72), and (73); (80) follows from (28)
for A′ = Ai, Aj, Ak, Ai \ (Aj ∪Ak), Aj \ (Ai ∪Ak) and Ak \ (Ai ∪Aj); and (81) follows from the
fact that the capacity function C(·) is a modular function. Substituting (47) and (75) into (81)
and dividing both sides of the inequality by n complete the proof of (27). �

We have thus completed the proof of Theorem 1.

4 Generalized Cut-Set Bounds Relating K Basic Cuts of

the Network

4.1 Main Results

Theorem 2. Consider a broadcast network with a collection of independent messages WI col-
located at the source node s and K ≥ 3 sink nodes tk, k = 1, . . . , K. For any k = 1, . . . , K, let
WIk be the intended messages for the sink node tk, and let Ak be a basic cut that separates the
source node s from the sink node tk. Let G, U and T be nonempty subsets of [K] such that

A(1)(G) ⊇ A(1)(U). (82)

Let Q be a subset of {2, . . . , |U |}, and let (rq : q ∈ Q) be a sequence of integers from [|T |] and
such that

A(q)(U) ⊆ A(rq)(T ) and I(q)(U) ⊆ I(rq)(T ), ∀q ∈ Q. (83)

We have

R(I(1)(G))+
∑

r∈{2,...,|U |}\Q

R(I(r)(U)) +
∑

q∈Q

rq
∑

r=1

αQ(q, r)R(I(r)(T ))

≤ C(A(1)(G)) +
∑

r∈{2,...,|U |}\Q

C(A(r)(U)) +
∑

q∈Q

rq
∑

r=1

αQ(q, r)C(A(r)(T )) (84)

for any achievable rate tuple RI , where

αQ(q, r) =

{

0, if r ∈ Q
∏

{p∈Q:p<r}(p−1)
∏

{p∈Q:r<p≤rq}
p

rq
∏

{p∈Q:p≤rq}
(p−1)

, if r /∈ Q
(85)

for any q ∈ Q and r ∈ [rq].

Note that the generalized cut-set bound (84) involves a number of parameters: G, U , T , Q,
and (rq : q ∈ Q). Specifying these parameters to certain choices will lead to potentially weaker
but more applicable generalized cut-set bounds. More specifically, let G = U = T and rq = q−1
for any q ∈ Q. By the ordering in (7), the condition in (83) is satisfied (the condition in (82)
holds trivially with an equality). Thus, by Theorem 2 we have

∑

r∈[|U |]\Q

R(I(r)(U))+
∑

q∈Q

q−1
∑

r=1

αQ(q, r)R(I(r)(U))

≤
∑

r∈[|U |]\Q

C(A(r)(U)) +
∑

q∈Q

q−1
∑

r=1

αQ(q, r)C(A(r)(U)) (86)
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for any achievable rate tuple RI , where

αQ(q, r) =

{

0, if r ∈ Q
∏

{p∈Q:p<r}(p−1)
∏

{p∈Q:r<p≤q−1} p∏
{p∈Q:p≤q}(p−1)

, if r /∈ Q
(87)

for any q ∈ Q and r ∈ [q − 1]. A proper simplification of (86) leads to the following corollary.
See Appendix C for the details of the simplification procedure.

Corollary 4. Consider a broadcast network with a collection of independent messages WI col-
located at the source node s and K ≥ 3 sink nodes tk, k = 1, . . . , K. For any k = 1, . . . , K, let
WIk be the intended messages for the sink node tk, and let Ak be a basic cut that separates the
source node s from the sink node tk. Let U be a nonempty subset of [K], and let Q be a subset
of {2, . . . , |U |}. We have

|U |
∑

r=1

βQ(r)R(I(r)(U)) ≤

|U |
∑

r=1

βQ(r)C(A(r)(U)) (88)

for any achievable rate tuple RI , where βQ(r) = 1 for any r ∈ [|U |] if Q = ∅, and

βQ(r) =

{

0, if r ∈ Q
∏

{q∈Q:q<r}(q − 1)
∏

{q∈Q:q>r} q, if r /∈ Q
(89)

for any r ∈ [|U |] if Q 6= ∅.

The generalized cut-set bound (88) can be further specified by letting Q = {2, . . . , m} for
m = 1, . . . , |U | (note that Q = ∅ when m = 1). For this particular choice of Q, we have

βQ(r) =







m!, r = 1
0, r = 2, . . . , m

(m− 1)!, r = m+ 1, . . . , |U |.
(90)

Substituting (90) into (88) immediately leads to the following corollary.

Corollary 5. Consider a broadcast network with a collection of independent messages WI col-
located at the source node s and K ≥ 3 sink nodes tk, k = 1, . . . , K. For any k = 1, . . . , K, let
WIk be the intended messages for the sink node tk, and let Ak be a basic cut that separates the
source node s from the sink node tk. Let U be a nonempty subset of [K]. We have

mR(I(1)(U)) +

|U |
∑

r=m+1

R(I(r)(U)) ≤ mC(A(1)(U)) +

|U |
∑

r=m+1

C(A(r)(U)) (91)

for any achievable rate tuple RI and any m = 1, . . . , |U |.

Now, the generalized cut-set bound (27) can be recovered from Corollary 5 by setting U =
{1, 2, 3} and m = 2 in (91); the generalized cut-set bound (25) can be recovered from Corollary 4
by setting U = {1, 2, 3} and Q = {3} such that

βQ(r) =

{

3, r = 1, 2
0, r = 3;

(92)
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the generalized cut-set bound (24) can be recovered from Theorem 2 by setting G = {i, j, k},
U = {i, j} (so A(1)(G) ⊇ A(1)(U)) and Q = ∅; and finally, the generalized cut-set bound (26) can
be recovered from Theorem 2 by setting G = U = {i, j, k} (so A(1)(G) = A(1)(U)), T = {i, j},
Q = {2}, and r2 = 1 such that

A(2)(U) = (Ai ∩ Aj) ∪ (Ai ∩Ak) ∪ (Aj ∩ Ak) ⊆ Ai ∪Aj = A(r2)(T ),
I(2)(U) = (Ii ∩ Ij) ∪ (Ii ∩ Ik) ∪ (Ij ∩ Ik) ⊆ Ii ∪ Ij = I(r2)(U),

(93)

and αQ(2, 1) = 1.

4.2 Proof of Theorem 2

Let (n, {Xa : a ∈ A}) be an admissible code with block length n, where Xa is the message
transmitted over the arc a. Similar to the proof of Theorem 1, we shall assume perfect recovery
of the messages at each of the sink nodes. As such, for any nonempty subset U ⊆ [K] the
messages W∪k∈U Ik must be functions of the messages X∪k∈UAk

transmitted over the s-tU cut
∪k∈UAk.

Let us first consider the case where Q = ∅. Note that

HW(I(1)(G))

≤ HX(A
(1)(G)) (94)

≤ HX(A
(1)(U)) +HX(A

(1)(G) \ A(1)(U)) (95)

= HX,W(A(1)(U), I(1)(U)) +HX(A
(1)(G) \ A(1)(U)) (96)

≤
∑

k∈U

HX,W(Ak, Ik)−

|U |
∑

r=2

HX,W(A(r)(U), I(r)(U)) +HX(A
(1)(G) \ A(1)(U)) (97)

=
∑

k∈U

HX(Ak)−

|U |
∑

r=2

HX,W(A(r)(U), I(r)(U)) +HX(A
(1)(G) \ A(1)(U)) (98)

≤ n

(

∑

k∈U

C(Ak) + C(A(1)(G) \ A(1)(U))

)

−

|U |
∑

r=2

HX,W(A(r)(U), I(r)(U)) (99)

= n





|U |
∑

r=1

C(A(r)(U)) + C(A(1)(G) \ A(1)(U))



−

|U |
∑

r=2

HW(I(r)(U)) (100)

= n



C(A(1)(G)) +

|U |
∑

r=2

C(A(r)(U))



−

|U |
∑

r=2

HX,W(A(r)(U), I(r)(U)) (101)

where (94) and (96) follow from the fact that the messages WI(1)(U) are functions of XA(1)(U);
(95) follows from the independence bound on entropy; (97) follows from the standard multiway
submodularity (9); (98) follows from the fact that the messages WIk are functions of XAk

so we
have HX,W(Ak, Ik) = HX(Ak) for any k ∈ U ; (99) follows from the link capacity constraints;
(100) follows from the fact that the capacity function C(·) is a modular function so we have
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∑

k∈U C(Ak) =
∑|U |

r=1C(A(r)(U)); and (101) follows from the fact that the capacity function
C(·) is a modular function and the assumption (82) so we have C(A(1)(G)) = C(A(1)(U)) +
C(A(1)(G) \ A(1)(U)). Rearranging the terms in (101) gives

HW(I(1)(G)) +

|U |
∑

r=2

HX,W(A(r)(U), I(r)(U)) ≤ n



C(A(1)(G)) +

|U |
∑

r=2

C(A(r)(U))



 . (102)

Further note that

HW(I(1)(G)) = nR(I(1)(G)) (103)

and HX,W(A(r)(U), I(r)(U)) ≥ HW(I(r)(U)) = nR(I(r)(U)), ∀r = 2, . . . , |U |. (104)

Substituting (103) and (104) into (101) and dividing both sides of the inequality by n, we have

R(I(1)(G)) +

|U |
∑

r=2

R(I(r)(U)) ≤ C(A(1)(G)) +

|U |
∑

r=2

C(A(r)(U)) (105)

for any achievable rate tuple RI . This completes the proof of (84) for Q = ∅.
Next, assume that Q 6= ∅. Write, without loss of generality, that Q = {q1, . . . , q|Q|} where

2 ≤ q1 < q2 < · · · < q|Q| ≤ |U |. (106)

By Lemma 3, for any two integers q′ and rq′ such that 1 ≤ q′ ≤ |U |, 1 ≤ rq′ ≤ |T |, A(q′)(U) ⊆
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A(rq′ )(T ), and I(q
′)(U) ⊆ I(rq′ )(T ) we have

rq′
∑

r=1

HX,W(A(r)(T ), I(r)(T ))− rq′HX,W(A(q′)(U), I(q
′)(U))

≤

|T |
∑

r=1

HX,W(Atr , Itr)−

rq′
∑

r=1

HX,W(Atr ∩ A(q′)(U), Itr ∩ I(q
′)(U))−

|T |
∑

r=rq′+1

HX,W(Atr ∩ (A(q′)(U) ∪ A(rq′+1)({t1, . . . , tr})),

Itr ∩ (I(q
′)(U) ∪ I(rq′+1)({t1, . . . , tr}))) (107)

≤

|T |
∑

r=1

HX(Atr)−

rq′
∑

r=1

HX(Atr ∩ A(q′)(U))−

|T |
∑

r=rq′+1

HX(Atr ∩ (A(q′)(U) ∪ A(rq′+1)({t1, . . . , tr}))) (108)

≤

rq′
∑

r=1

HX(Atr \ A
(q′)(U)) +

|T |
∑

r=rq′+1

HX(Atr \ (A
(q′)(U) ∪A(rq′+1)({t1, . . . , tr})) (109)

≤ n





rq′
∑

r=1

C(Atr \ A
(q′)(U)) +

|T |
∑

r=rq′+1

C(Atr \ (A
(q′)(U) ∪A(rq′+1)({t1, . . . , tr}))



 (110)

= n





|T |
∑

r=1

C(Atr)−

rq′
∑

r=1

C(Atr ∩ A(q′)(U))−

|T |
∑

r=rq′+1

C(Atr ∩ (A(q′)(U) ∪ A(rq′+1)({t1, . . . , tr})))



 (111)

= n

( rq′
∑

r=1

C(A(r)(T ))− rq′C(A(q′)(U))

)

(112)

where (108) follows from the fact that the messages WItr
are functions of XAtr

so we have
HX,W(Atr , Itr) = HX(Atr) for any r ∈ [|U |] and the trivial inequalities

HX,W(Atr ∩A(q′)(U), Itr ∩ I(q
′)(U)) ≥ HX(Atr ∩A(q′)(U)), ∀r ∈ [rq′ ] (113)

and HX,W(Atr ∩ (A(q′)(U) ∪ A(rq′+1)({t1, . . . , tr})), Itr ∩ (I(q
′)(U) ∪ I(rq′+1)({t1, . . . , tr})))

≥ HX(Atr ∩ (A(q′)(U) ∪ A(rq′+1)({t1, . . . , tr}))); (114)

(109) follows from the independence bound on entropy; (110) follows from the link-capacity
constraints; and (111) and (112) follow from the fact that the capacity function C(·) is a modular
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function. Letting rq′ = q′ = qj and U = T in (112), we have

qj
∑

r=1

HX,W(A(r)(T ), I(r)(T ))−qjHX,W(A(qj)(T ), I(qj)(T ))

≤ n

(

qj
∑

r=1

C(A(r)(T ))− qjC(A(qj)(T ))

)

. (115)

Let

nQ(q, r) :=
∏

{p∈Q:p<r}

(p− 1)
∏

{p∈Q:r<p≤rq}

p (116)

and dQ(q) :=
∏

{p∈Q:p≤rq}

(p− 1) (117)

for any q ∈ Q and r ∈ [rq], and let Qi := {q ∈ Q : q ≤ rqi}. Note that nQ(q, r) and dQ(q)
are always positive. Multiplying both sides of (115) by nQ(qi, qj) and then summing over all
qj ∈ Qi, we have

|Qi|
∑

j=1

nQ(qi, qj)

(

qj
∑

r=1

HX,W(A(r)(T ), I(r)(T ))− qjHX,W(A(qj)(T ), I(qj)(T ))

)

≤ n





|Qi|
∑

j=1

nQ(qi, qj)

(

qj
∑

r=1

C(A(r)(T ))− qjC(A(qj)(T ))

)



 . (118)

Note that

|Qi|
∑

j=1

n(qi, qj)

qj
∑

r=1

HX,W(A(r)(T ), I(r)(T )) =

q|Qi|
∑

r=1





|Qi|
∑

j=j(r)

n(qi, qj)



HX,W(A(r)(T ), I(r)(T )) (119)

where

j(r) :=



















1, for 0 < r ≤ q1
2, for q1 < r ≤ q2
...

|Qi|, for q|Qi|−1 < r ≤ q|Qi|.

(120)

We can thus rewrite (118) as

q|Qi|
∑

r=1





|Qi|
∑

j=j(r)

n(qi, qj)− rnQ(qi, r)1{r∈Qi}



HX,W(A(r)(T ), I(r)(T ))

≤ n





q|Qi|
∑

r=1





|Qi|
∑

j=j(r)

n(qi, qj)− rnQ(qi, r)1{r∈Qi}



C(A(r)(T )



 . (121)
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Furthermore, letting q′ = qi and rq′ = rqi in (112) and multiplying both sides of the inequality
by dQ(qi), we have

rqi
∑

r=1

dQ(qi)HX,W(A(r)(T ), I(r)(T ))− rqidQ(qi)HX,W(A(qi)(U), I(qi)(U))

≤ n

(

rqi
∑

r=1

dQ(qi)C(A(r)(T ))− rqidQ(qi)C(A(qi)(U))

)

. (122)

Adding (121) and (122) gives

rqi
∑

r=1

n′
Q(qi, r)HX,W(A(r)(T ), I(r)(T ))− rqidQ(qi)HX,W(A(qi)(U), I(qi)(U))

≤ n

( rqi
∑

r=1

n′
Q(qi, r)C(A(r)(T ))− rqidQ(qi)C(A(qi)(U))

)

(123)

where

n′
Q(qi, r) =

{

∑|Qi|
j=j(r) nQ(qi, qj)− rnQ(qi, r)1{r∈Qi} + dQ(qi), if 1 ≤ r ≤ q|Qi|

dQ(qi), if q|Qi| < r ≤ rqi.
(124)

By (120), when qm−1 < r ≤ qm for some m = 1, . . . , |Qi| (q0 := 0 for convenience), we have
j(r) = m and hence

|Qi|
∑

j=j(r)

nQ(qi, qj) =

|Qi|
∑

j=m

nQ(qi, qj) (125)

=

|Qi|
∑

j=m





j−1
∏

l=1

(ql − 1)

|Qi|
∏

l=j+1

ql



 (126)

=

|Qi|
∑

j=m





j−1
∏

l=1

(ql − 1)

|Qi|
∏

l=j

ql −

j
∏

l=1

(ql − 1)

|Qi|
∏

l=j+1

ql



 (127)

=

|Qi|
∑

j=m





j−1
∏

l=1

(ql − 1)

|Qi|
∏

l=j

ql



−

|Qi|+1
∑

j=m+1





j−1
∏

l=1

(ql − 1)

|Qi|
∏

l=j

ql



 (128)

=
m−1
∏

l=1

(ql − 1)

|Qi|
∏

l=m

ql −

|Qi|
∏

l=1

(ql − 1) (129)

=

m−1
∏

l=1

(ql − 1)

|Qi|
∏

l=m

ql − dQ(qi). (130)
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Therefore, when r = qm for some m ∈ [|Qi|] we have

|Qi|
∑

j=m

nQ(qi, qj)− qmnQ(qi, qm) + dQ(qi) =

m−1
∏

l=1

(ql − 1)

|Qi|
∏

l=m

ql − qm

m−1
∏

l=1

(ql − 1)

|Qi|
∏

l=m+1

ql (131)

= 0; (132)

when qm−1 < r < qm for some m ∈ [|Qi|] we have

|Qi|
∑

j=m

nQ(qi, qj) + dQ(qi) =
m−1
∏

l=1

(ql − 1)

|Qi|
∏

l=m

ql (133)

= rqidQ(qi)αQ(qi, r); (134)

and when q|Qi| < r ≤ rqi we have αQ(qi, r) = 1/rqi and hence

dQ(qi) = rqidQ(qi)αQ(qi, r). (135)

Combining (132), (134), and (135), we conclude that

n′
Q(qi, r) = rqidQ(qi)αQ(qi, r), ∀r ∈ [rqi]. (136)

Dividing both sides of (123) by rqid(qi) and then summing over all qi ∈ Q, we have

∑

q∈Q

rq
∑

r=1

αQ(q, r)HX,W(A
(r)(T ), I(r)(T ))−

∑

q∈Q

HX,W(A(q)(U), I(q)(U))

≤ n

(

∑

q∈Q

rq
∑

r=1

αQ(q, r)C(A(r)(T ))−
∑

q∈Q

C(A(q)(U))

)

. (137)

Adding (102) and (137), we have

HW(I(1)(G)) +
∑

r∈{2,...,|U |}\Q

HX,W(A(r)(U), I(r)(U)) +
∑

q∈Q

rq
∑

r=1

αQ(q, r)HX,W(A(r)(T ), I(r)(T ))

≤ n



C(A(1)(G)) +
∑

r∈{2,...,|U |}\Q

C(A(r)(U)) +
∑

q∈Q

rq
∑

r=1

αQ(q, r)C(A(r)(T ))



 . (138)

Note that we trivially have

HX,W(A(r)(T ), I(r)(T )) ≥ HW(I(r)(T )) = nR(I(r)(T )), ∀q ∈ Q and r ∈ [rq]. (139)

Substituting (103), (104), and (139) into (138) and dividing both sides of the inequality by n
complete the proof of (84) for Q 6= ∅.

We have thus completed the proof of Theorem 2.
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a{1}

a{2}
a{3} a{1,2}

a{1,3} a{2,3}
a{1,2,3}

s

t1 t2 t3

v{1} v{2} v{3} v{1,2} v{1,3} v{2,3} v{1,2,3}

(W{1},W{2},W{3},W{1,2},W{1,3},W{2,3},W{1,2,3})

(Ŵ{1}, Ŵ{1,2}, Ŵ{1,3}, Ŵ{1,2,3})

(Ŵ{2}, Ŵ{1,2}, Ŵ{2,3}, Ŵ{1,2,3})

(Ŵ{3}, Ŵ{1,3}, Ŵ{2,3}, Ŵ{1,2,3})

Figure 3: Illustration of the general combination network with K = 3 sink nodes and a complete
message set.

5 Applications to Combination Networks

To demonstrate the tightness of the generalized cut-set bounds, let us consider a special class of
broadcast networks known as combination networks [11]. A combination network is a broadcast
network that consists of three layers of nodes (see Figure 3 for an illustration). The top layer
consists of a single source node s, and the bottom layer consists of K sink nodes tk, k = 1, . . . , K.
The middle layer consists of 2K−1 intermediate nodes, each connecting to the source node s and
a nonempty subset of sink nodes. While the links from the source node s to the intermediate
nodes may have finite capacity, the links from the intermediate nodes to the sink nodes are all
assumed to have infinite capacity. More specifically, denote by vU the intermediate node that
connects to the nonempty subset U of sink nodes and aU the link that connects the source node s
to the intermediate node vU . The link capacity for aU is denoted by CU . Note that when CU = 0,
the intermediate node vU can be effectively removed from the network. By construction, the
only interesting combinatorial structure for combination networks is cut. Therefore, combination
networks provide an ideal set of problems to understand the strength and the limitations of the
generalized cut-set bounds.

In Figure 3 we illustrate a general combination network with K = 3 sink nodes and a general
message set that consists of a total of seven independent messages

(W{1},W{2},W{3},W{1,2},W{1,3},W{2,3},W{1,2,3}),
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where the message WU , U ⊆ {1, 2, 3}, is intended for all sink nodes tk, k ∈ U . This network
coding problem was first introduced and solved by Grokop and Tse [5] in the context of charac-
terizing the latency capacity region [13] of the general broadcast channel with three receivers.
More specifically, it was shown in [5] that the capacity region of the network is given by the set
of nonnegative rate tuples

(R{1}, R{2}, R{3}, R{1,2}, R{2,3}, R{1,3}, R{1,2,3})

satisfying

R{1}+R{1,2} +R{1,3} +R{1,2,3} ≤ C{1} + C{1,2} + C{1,3} + C{1,2,3}, (140)

R{2}+R{1,2} +R{2,3} +R{1,2,3} ≤ C{2} + C{1,2} + C{2,3} + C{1,2,3}, (141)

R{3}+R{1,3} +R{2,3} +R{1,2,3} ≤ C{3} + C{1,3} + C{2,3} + C{1,2,3}, (142)

R{1} +R{2}+R{1,2} +R{2,3} +R{1,3} +R{1,2,3}

≤ C{1} + C{2} + C{1,2} + C{2,3} + C{1,3} + C{1,2,3}, (143)

R{2} +R{3}+R{1,2} +R{2,3} +R{1,3} +R{1,2,3}

≤ C{2} + C{3} + C{1,2} + C{2,3} + C{1,3} + C{1,2,3}, (144)

R{1} +R{3}+R{1,2} +R{2,3} +R{1,3} +R{1,2,3}

≤ C{1} + C{3} + C{1,2} + C{2,3} + C{1,3} + C{1,2,3}, (145)

R{1} +R{2} +R{3}+R{1,2} +R{2,3} +R{1,3} +R{1,2,3}

≤ C{1} + C{2} + C{3} + C{1,2} + C{2,3} + C{1,3} + C{1,2,3}, (146)

R{1} +R{2} +R{3}+2R{1,2} +R{2,3} +R{1,3} + 2R{1,2,3}

≤ C{1} + C{2} + C{3} + 2C{1,2} + C{2,3} + C{1,3} + 2C{1,2,3}, (147)

R{1} +R{2} +R{3}+R{1,2} + 2R{2,3} +R{1,3} + 2R{1,2,3}

≤ C{1} + C{2} + C{3} + C{1,2} + 2C{2,3} + C{1,3} + 2C{1,2,3}, (148)

R{1} +R{2} +R{3}+R{1,2} +R{2,3} + 2R{1,3} + 2R{1,2,3}

≤ C{1} + C{2} + C{3} + C{1,2} + C{2,3} + 2C{1,3} + 2C{1,2,3}, (149)

R{1} +R{2} +R{3}+2R{1,2} + 2R{2,3} + 2R{1,3} + 2R{1,2,3}

≤ C{1} + C{2} + C{3} + 2C{1,2} + 2C{2,3} + 2C{1,3} + 2C{1,2,3}, (150)

R{1} + 2R{2} + 2R{3}+2R{1,2} + 2R{2,3} + 2R{1,3} + 3R{1,2,3}

≤ C{1} + 2C{2} + 2C{3} + 2C{1,2} + 2C{2,3} + 2C{1,3} + 3C{1,2,3}, (151)

2R{1} +R{2} + 2R{3}+2R{1,2} + 2R{2,3} + 2R{1,3} + 3R{1,2,3}

≤ 2C{1} + 2C{2} + C{3} + 2C{1,2} + 2C{2,3} + 2C{1,3} + 3C{1,2,3}, (152)

2R{1} + 2R{2} +R{3}+2R{1,2} + 2R{2,3} + 2R{1,3} + 3R{1,2,3}

≤ 2C{1} + 2C{2} + C{3} + 2C{1,2} + 2C{2,3} + 2C{1,3} + 3C{1,2,3}, (153)

2R{1} + 2R{2} + 2R{3}+2R{1,2} + 2R{2,3} + 2R{1,3} + 3R{1,2,3}

≤ 2C{1} + 2C{2} + 2C{3} + 2C{1,2} + 2C{2,3} + 2C{1,3} + 3C{1,2,3}.
(154)

From the converse viewpoint, the inequalities (140)–(146) follow directly from the standard cut-
set bounds (1) by considering the following three basic cuts: A1 = {a{1}, a{1,2}, a{1,3}, a{1,2,3}},

20



A2 = {a{2}, a{1,2}, a{2,3}, a{1,2,3}}, and A3 = {a{3}, a{2,3}, a{1,3}, a{1,2,3}}. For the inequalities
(147)–(154), the proof provided in [5] was problem-specific and appears to be rather hand-
crafted. With the generalized cut-set bounds now in place, however, it is clear that the in-
equalities (147)–(149) follow directly from (24); the inequality (150) follows directly from (25);
the inequalities (151)–(153) follow directly from (26); and the inequality (154) follows directly
from (27). Thus, the standard and the generalized cut-set bounds together provide an exact
characterization of the capacity region of the general combination network with three sink nodes
and a complete message set.

Next, let us consider the general combination network with K sink nodes and symmetrical
link capacity constraints [13]:

CU = C|U |, ∀U ⊆ [K] (155)

i.e., the link-capacity constraint for arc aU depends on the subset U only via its cardinality.
Assume that the source s has access to a set of K +1 independent messages (W1, . . . ,WK,W0),
where Wk, k = 1, . . . , K, is a private message intended only for the sink node tk, and W0 is a
common message intended for all K sink nodes in the network. For this communication scenario,
note that Ak = {aU : U ∋ k} is a basic cut that separates the source node s from the sink node
tk for each k = 1, . . . , K. Applying Corollary 5 with U = [K], we have

KR0 +mRsp ≤ m

K
∑

r=1

(

K
r

)

Cr +

K
∑

r=m+1

K
∑

j=r

(

K
j

)

Cj (156)

= m
K
∑

r=1

(

K
r

)

Cr +
K
∑

r=m+1

(r −m)

(

K
r

)

Cr (157)

for any achievable rate tuple (R0, R1, . . . , RK) and any m = 1, . . . , K, where Rsp =
∑K

k=1Rk is
the sum of the private rates. It is clear that the outer bound given by the inequality (157) for
m = 1, . . . , K has exactly K + 1 corner points:

(

K
∑

i=r

(

K − 1
i− 1

)

Ci,
r−1
∑

i=1

(

K
i

)

Ci

)

, r = 1, . . . , K + 1.

The achievability of these corner points was proved in [13]. Therefore, the generalized cut-set
bounds also provide a tight characterization of the common-v.s.-sum-private capacity region of
the general symmetrical combination network.

Finally, let us make an explicit comparison between the common-v.s.-sum-private capacity
region of the general symmetrical combination network and the outer region given by just the
standard cut-set bounds for the case of K = 3 sink nodes. For K = 3, the common-v.s.-sum-
private capacity region of the network is given by all nonnegative (R0, Rsp) pairs satisfying

3R0 +Rsp ≤ 3C1 + 6C2 + 3C3,
3R0 + 2Rsp ≤ 6C1 + 6C2 + 3C3,

and R0 +Rsp ≤ 3C1 + 3C2 + C3.
(158)
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Rsp

R0

0

C1 + 2C2 + C3C3 C2 + C3 2C2 + C3

Figure 4: Capacity v.s. cut-set outer regions for K = 3 sinks. The boundary of the capacity
region is illustrated by solid lines, while the boundary of the cut-set outer region is illustrated
by dashed lines.

The standard cut-set bounds, in this case, are given by

R0 +R1 ≤ C1 + 2C2 + C3,
R0 +R2 ≤ C1 + 2C2 + C3,
R0 +R3 ≤ C1 + 2C2 + C3,

R0 +R1 +R2 ≤ 2C1 + 3C2 + C3,
R0 +R1 +R3 ≤ 2C1 + 3C2 + C3,
R0 +R3 +R2 ≤ 2C1 + 3C2 + C3,

R0 +R1 +R2 +R3 ≤ 2C1 + 3C2 + C3.

(159)

Substituting R1 = Rsp −R2−R3 into (159) and using Fourier-Motzkin elimination to eliminate
R2 and R3 from the inequalities in (159), we may explicitly write the outer region given by just
the standard cut-set bounds as the nonnegative (R0, Rsp) pairs satisfying

3R0 +Rsp ≤ 3C1 + 6C2 + 3C3,
2R0 +Rsp ≤ 3C1 + 5C2 + 2C3,

and R0 +Rsp ≤ 3C1 + 3C2 + C3.
(160)

In Figure 4 we illustrate the rate regions constrained by (158) and (160), respectively. Clearly,
even for the case with only K = 3 sink nodes, the standard cut-set bounds alone are not tight,
while the generalized cut-set bounds provide a precise characterization of the common-v.s.-sum-
private capacity region.
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6 Concluding Remarks

The paper considered the problem of coding over broadcast networks with multiple (multicast)
messages and more than two sink nodes. The standard cut-set bounds, which are known to be
loose in general, are closely related to union as a specific set operation to combine different basic
cuts of the network. A new set of network coding bounds (termed as generalized cut-set bounds),
which relate the basic cuts of the network via a variety of set operations (not just the union), were
established via the submodularity of the Shannon entropy. It was shown that the generalized
cut-set bounds (together with the standard cut-set bounds) provide a precise characterization of
the capacity region of the general combination network with three sink nodes and the common-
v.s.-sum-private capacity region of the general symmetrical combination network (with arbitrary
number of sink nodes).

Our ongoing work focuses primarily on further understanding the strength and the limitations
of the generalized cut-set bounds established in this paper. In particular, it would be interesting
to see whether the generalized cut-set bounds are tight for the symmetrical capacity region of
the general symmetrical combination network, which was recently characterized by Tian [13].

A Proof of Lemma 1

Fix two integers r′ and J such that 0 < r′ < J ≤ K. Let

Tr :=

{

∅, for r = 1, . . . , r′

S(r′+1)([r]), for r = r′ + 1, . . . , J,
(161)

and let Gr := Sr ∪ Tr for r = 1, . . . , J . By the standard multiway submodularity (9) and
modularity (10) we have

r′
∑

r=1

f(Sr) +

J
∑

r=r′+1

f(Sr ∪ S(r′+1)([r])) =

J
∑

r=1

f(Gr) ≥
J
∑

r=1

f(G(r)([J ])) (162)

if f is a submodular function, and

r′
∑

r=1

f(Sr) +
J
∑

r=r′+1

f(Sr ∪ S(r′+1)([r])) =
J
∑

r=1

f(Gr) =
J
∑

r=1

f(G(r)([J ])) (163)

if f is a modular function. Next, we shall show that

G(r)([J ]) =

{

S(r)([J ]), for r = 1, . . . , r′

S(r′+1)([J − r + r′ + 1]), for r = r′ + 1, . . . , J.
(164)

We shall consider the following two cases separately.
Case 1: r ∈ [r′]. Note that Sr ⊆ Gr for any r ∈ [J ], so we have S(r)([J ]) ⊆ G(r)([J ]) for any

r ∈ [J ]. On the other hand, since Tr ⊆ S(r′+1)([J ]) for all r ∈ [J ], we have Gr ⊆ Sr ∪S(r′+1)([J ])
and hence G(r)([J ]) ⊆ S(r)([J ]) ∪ S(r′+1)([J ]) for all r ∈ [J ]. Since S(r)([J ]) ⊇ S(r′+1)([J ]) for all
r ∈ [r′], we have G(r)([J ]) ⊆ S(r)([J ]) for all r ∈ [r′]. We thus conclude that G(r)([J ]) = S(r)([J ])
for all r ∈ [r′].

Case 2: r ∈ {r′ + 1, . . . , J}. For this case, we have the following fact.
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Fact 1. For any r ∈ {r′ + 1, . . . , J}, we have

G(r)([J ]) = ∪
min{r,r′+2}
m=1

(

S(m−1)([J − r +m− 1]) ∩ TJ−r+m

)

. (165)

Proof. Fix r ∈ {r′ + 1, . . . , J}. By definition,

G(r)([J ]) = ∪{U⊆[J ]:|U |=r} ∩k∈U Gk. (166)

Fix U ⊆ [J ] such that |U | = r. We have

∩k∈UGk = ∩k∈U (Sk ∪ Tk) (167)

= ∪U ′⊆U

(

(∩k∈U ′Sk) ∩ (∩k∈U\U ′Tk)
)

(168)

=
(

∪U ′⊂U

(

(∩k∈U ′Sk) ∩ Tk̄(U ′)

))

∪ (∩k∈USk) (169)

where k̄(U ′) is the smallest integer in U \ U ′, and (169) follows from the fact that

T1 ⊆ T2 ⊆ · · · ⊆ TJ . (170)

Write, without loss of generality, that U = {u1, . . . , ur} where 1 ≤ u1 < u2 < · · · < ur ≤ J . Fix
k̄(U ′) = um for some m ∈ [r]. Then we must have U ′ ⊇ {u1, . . . , um−1} for any such U ′. We
thus have from (169) that

∩k∈UGk =
(

∪r
m=1

(

(∩m−1
l=1 Sul

) ∩ Tum

))

∪ (∩r
l=1Sul

) . (171)

The right-hand side of (171) can be further simplified based on the following two observations.
First, for any r ∈ {r′ + 1, . . . , J} we have ur ≥ r ≥ r′ + 1 and hence

Tur
= S(r′+1)([ur]) ⊇ ∩r′+1

l=1 Sul
⊇ ∩r

l=1Sul
. (172)

We thus have

∩r
l=1Sul

⊆ (∩r−1
l=1Sul

) ∩ Tur
(173)

and hence

∩k∈UGk = ∪r
m=1

(

(∩m−1
l=1 Sul

) ∩ Tum

)

. (174)

Second, since ur′+2 ≥ r′ + 2, we have

∩r′+1
l=1 Sul

⊆ S(r′+1)([ur′+2]) = Tur′+2
(175)

and hence

(∩r′+1
l=1 Sul

) ∩ Tur′+2
= ∩r′+1

l=1 Sul
. (176)

It follows that for any m ≥ r′ + 2, we have

(∩m−1
l=1 Sul

) ∩ Tum
⊆ ∩r′+1

l=1 Sul
= (∩r′+1

l=1 Sul
) ∩ Tur′+2

. (177)

24



Substituting (177) into (174), we have

∩k∈UGk = ∪
min{r,r′+2}
m=1

(

(∩m−1
l=1 Sul

) ∩ Tum

)

. (178)

Finally, substituting (178) into (166), we have

G(r)([J ]) = ∪{U⊆[J ]:|U |=r}

(

∪
min{r,r′+2}
m=1

(

(∩m−1
l=1 Sul

) ∩ Tum

)

)

(179)

= ∪
min{r,r′+2}
m=1

(

∪{U⊆[J ]:|U |=r}

(

(∩m−1
l=1 Sul

) ∩ Tum

))

(180)

for any r ∈ {r′ + 1, . . . , J}. Note that for any U ⊆ [J ] such that |U | = r, the largest numerical
value that um can assume is J − r + m for any m ∈ [r]. By the ordering in (170), for any
m = 1, . . . , r we have

∪{U⊆[J ]:|U |=r}

(

(∩m−1
l=1 Sul

) ∩ TJ−r+m

)

=
(

∪{1≤u1<u2<···<um−1≤J−r+m−1} ∩
m−1
l=1 Sul

)

∩ TJ−r+m (181)

= S(m−1)([J − r +m− 1]) ∩ TJ−r+m. (182)

Substituting (182) into (180) completes the proof of the fact.

Further note that for any r ∈ {r′ + 1, . . . , J} we have

TJ−r+m ⊆ S(r′+1)([J − r +m]) ⊆ S(r′)([J − r +m− 1]) ⊆ S(m−1)([J − r +m− 1]) (183)

for any 2 ≤ m ≤ r′ + 1. When r = r′ + 1, substituting (170) and (183) into Fact 1 we have

G(r)([J ]) = ∪r
m=1TJ−r+m = TJ = S(r′+1)([J ]). (184)

When r ∈ {r′ + 2, . . . , J}, by Fact 1 we have

G(r)([J ]) = ∪r′+2
m=1

(

S(m−1)([J − r +m− 1]) ∩ TJ−r+m

)

(185)

=
(

∪r′+1
m=1

(

S(m−1)([J − r +m− 1]) ∩ TJ−r+m

)

)

∪
(

S(r′+1)([J − r + r′ + 1]) ∩ TJ−r+r′+2

)

(186)

=
(

∪r′+1
m=1TJ−r+m

)

∪
(

S(r′+1)([J − r + r′ + 1]) ∩ TJ−r+r′+2

)

(187)

= TJ−r+r′+1 ∪
(

S(r′+1)([J − r + r′ + 1]) ∩ TJ−r+r′+2

)

(188)

= S(r′+1)([J − r + r′ + 1]) ∪
(

S(r′+1)([J − r + r′ + 1]) ∩ S(r′+1)([J − r + r′ + 2])
)

(189)

= S(r′+1)([J − r + r′ + 1]) (190)

where (187) follows from (183), and (188) follows from the ordering in (170). Combining (184)
and (190) completes the proof of (164) for r ∈ {r′ + 1, . . . , J}.
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Finally, substituting (164) into (162) and (163) we have

r′
∑

r=1

f(Sr) +

J
∑

r=r′+1

f(Sr ∪ S(r′+1)([r])) ≥
r′
∑

r=1

f(S(r)([J ])) +

J
∑

r=r′+1

f(S(r′+1)([J − r + r′ + 1]))

(191)

=
r′
∑

r=1

f(S(r)([J ])) +
J
∑

r=r′+1

f(S(r′+1)([r])) (192)

if f is a submodular function, and

r′
∑

r=1

f(Sr) +
J
∑

r=r′+1

f(Sr ∪ S(r′+1)([r])) =
r′
∑

r=1

f(S(r)([J ])) +
J
∑

r=r′+1

f(S(r′+1)([r])) (193)

if f is a modular function. This completes the proof of Lemma 1.

B Proof of Lemma 3

Without loss of generality, we may assume that T = [|T |] such that tr = r for all r = 1, . . . , |T |.
Under this assumption, the inequality (21) can be written as

|T |
∑

r=1

f(Sr) + rqf(S
(q)(U))

≥

rq
∑

r=1

(

f(S(r)(T )) + f(Sr ∩ S(q)(U))
)

+

|T |
∑

r=rq+1

f(Sr ∩ (S(q)(U) ∪ S(rq+1)([r]))). (194)

Assume that f is a modular function. By the two-way submodularity (4) we have

|T |
∑

r=1

f(Sr) + rqf(S
(q)(U))

=

rq
∑

r=1

(

f(Sr) + f(S(q)(U))
)

+

|T |
∑

r=rq+1

(

f(Sr) + f(S(q)(U) ∪ S(rq+1)([r]))
)

−

|T |
∑

r=rq+1

f(S(q)(U) ∪ S(rq+1)([r])) (195)

≥

rq
∑

r=1

(

f(Sr ∩ S(q)(U)) + f(Sr ∪ S(q)(U))
)

+

|T |
∑

r=rq+1

(

f(Sr ∩ (S(q)(U) ∪ S(rq+1)([r]))) + f(Sr ∪ (S(q)(U) ∪ S(rq+1)([r])))
)

−

|T |
∑

r=rq+1

f(S(q)(U) ∪ S(rq+1)([r])). (196)
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Applying Corollary 2 with r′ = rq, J = |T |, and S0 = S(q)(U), we have

rq
∑

r=1

f(Sr ∪ S(q)(U)) +

|T |
∑

r=rq+1

f(Sr ∪ S(rq+1)([r]) ∪ S(q)(U))

≥

rq
∑

r=1

f(S(r)(T ) ∪ S(q)(U)) +

|T |
∑

r=rq+1

f(S(rq+1)([r]) ∪ S(q)(U)) (197)

=

rq
∑

r=1

f(S(r)(T )) +

|T |
∑

r=rq+1

f(S(rq+1)([r]) ∪ S(q)(U)) (198)

where (198) follows from the assumption S(rq)(T ) ⊇ S(q)(U) such that S(r)(T ) ⊇ S(q)(U) for any
r = 1, . . . , rq. Substituting (198) into (196) completes the proof of (194) and hence that of (21).

When f is a modular function, both inequalities (196) and (197) hold with an equality. This
completes the proof of (22) and hence that of the entire corollary.

C Proof of Corollary 4

Note that when Q = ∅, βQ(r) = 1 for all r ∈ [|U |]. In this case, the corollary follows directly from
(86). Now, assume that Q is nonempty. Write, without loss of generality, that Q = {q1, . . . , q|Q|}
where

1 =: q0 < q1 < q2 < · · · < q|Q| ≤ |U |. (199)

Note that

∑

q∈Q

q−1
∑

r=1

αQ(q, r)R(I(r)(U)) =

q|Q|−1
∑

r=1

β ′
Q(r)R(I(r)(U)) (200)

where

β ′
Q(r) =

|Q|
∑

l=m

αQ(ql, r) (201)

for any qm−1 ≤ r < qm for some m ∈ [|Q|]. When r = qm for some m ∈ [|Q| − 1], by (87) and
(201) we have αQ(ql, r) = 0 for any l = m, . . . , |Q| and hence

β ′
Q(r) = 0. (202)

When qm−1 < r < qm for some m ∈ [|Q|], by (87) and (201) we have

αQ(ql, r) =

∏m−1
t=1 (qt − 1)

∏l−1
t=m qt

∏l

t=1(qt − 1)
(203)
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for any l = m, . . . , |Q| and hence

β ′
Q(r) =

|Q|
∑

l=m

∏m−1
t=1 (qt − 1)

∏l−1
t=m qt

∏l

t=1(qt − 1)
(204)

=

∏m−1
t=1 (qt − 1)
∏|Q|

t=1(qt − 1)

|Q|
∑

l=m





l−1
∏

t=m

qt

|Q|
∏

t=l+1

(qt − 1)



 (205)

=

∏m−1
t=1 (qt − 1)
∏|Q|

t=1(qt − 1)

|Q|
∑

l=m



(ql − (ql − 1))
l−1
∏

t=m

qt

|Q|
∏

t=l+1

(qt − 1)



 (206)

=

∏m−1
t=1 (qt − 1)
∏|Q|

t=1(qt − 1)

|Q|
∑

l=m





l
∏

t=m

qt

|Q|
∏

t=l+1

(qt − 1)−
l−1
∏

t=m

qt

|Q|
∏

t=l

(qt − 1)



 (207)

=

∏m−1
t=1 (qt − 1)
∏|Q|

t=1(qt − 1)





|Q|
∏

t=m

qt −

|Q|
∏

t=m

(qt − 1)



 (208)

=

∏m−1
t=1 (qt − 1)

∏|Q|
t=m qt

∏|Q|
t=1(qt − 1)

− 1 (209)

=
βQ(r)

∏|Q|
t=1(qt − 1)

− 1, (210)

where (210) follows from the fact that

βQ(r) =

m−1
∏

t=1

(qt − 1)

|Q|
∏

t=m

qt, ∀qm−1 < r < qm (211)

by the definition (89) of βQ(r).
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By (200), (202), and (210), the left-hand side of (86) can be simplified as

∑

r∈[|U |]\Q

R(I(r)(U)) +
∑

q∈Q

q−1
∑

r=1

αQ(q, r)R(I(r)(U))

=
∑

r∈[|U |]\Q

R(I(r)(U)) +

q|Q|−1
∑

r=1

β ′
Q(r)R(I(r)(U)) (212)

=
∑

r∈[|U |]\Q

R(I(r)(U)) +
∑

r∈[q|Q|]\Q

(

βQ(r)
∏|Q|

t=1(qt − 1)
− 1

)

R(I(r)(U)) (213)

=
1

∏|Q|
t=1(qt − 1)





∑

r∈[q|Q|]\Q

βQ(r)R(I(r)(U)) +





|Q|
∏

t=1

(qt − 1)





|U |
∑

r=q|Q|+1

R(I(r)(U))





(214)

=
1

∏|Q|
t=1(qt − 1)





q|Q|
∑

r=1

βQ(r)R(I(r)(U)) +

|U |
∑

r=q|Q|+1

βQ(r)R(I(r)(U))



 (215)

=
1

∏|Q|
t=1(qt − 1)

|U |
∑

r=1

βQ(r)R(I(r)(U)), (216)

where (215) follows from the facts that βQ(r) = 0 for all r ∈ Q and that

βQ(r) =

|Q|
∏

t=1

(qt − 1), ∀r ≥ q|Q| + 1 (217)

by the definition (89) of βQ(r).
Similarly, the right-hand side of (86) can be simplified as

∑

r∈[|U |]\Q

C(A(r)(U)) +
∑

q∈Q

q−1
∑

r=1

αQ(q, r)C(A(r)(U)) =
1

∏|Q|
t=1(qt − 1)

|U |
∑

r=1

βQ(r)C(A(r)(U)). (218)

Substituting (216) and (218) into (86) and multiplying both sides of the inequality by
∏|Q|

t=1(qt−1)
complete the proof of Corollary 4.
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