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Abstract—We study the problem of optimal incentive design supply of electricity to some of their appliances (e.g., air
for voluntary participation of electricity customers ina Direct conditioners and pumps) during occasional contingencies.
Load Scheduling (DLS) program, a new form of Direct Load = commonly, DLC strategies take customer participation as a

Control (DLC) based on a three way communication protocol . . Il fixed t t ts f
between customers, embedded controls in flexible applianse given, assuming small fixed ex-ante monetary payments for

and the central entity in charge of the program. Participation all participants, regardless of the level of service theyvjate
decisions are made in real-time on an event-based basis, tit or the discomfort they experience. However, participation

every customer that needs to use a flexible appliance consid-in a DLC program presents risks for the customers and a
ering whether to join the program given current incentives. - yaigna) intelligent customer would not provide this segvi

Customers have different interpretations of the level of rsk tensivel thout iate fi ial i i s t
associated with committing to pass over the control over the extensively without appropriate financial incentives.

consumption schedule of their devices to an operator, and tse WOrk, we take a first step in addressing these inherent
risk levels are only privately known. The operator maximizes economic problems for designing day-to-day DLC incentives
his expected profit of operating the DLS program by posting the To avoid confusion with currently employed DLC pro-

right participation incentives for different appliance ty pes, in grams, in which the individual consumption of appliances

a publicly available and dynamically updated table. Custoners .
are then faced with the dynamic decision making problem of &'€ not observable, and feedback control strategies ark use

whether to take the incentives and participate or not. We defie  [3], we will refer to our proposed program as Direct Load
an optimization framework to determine the profit-maximizing Scheduling (DLS). DLS does not merely cut off the elec-
incentives for the operator. In doing so, we also investigatthe tricity supply of appliances. Rather, a control center can
utility that the operator expects to gain from recruiting different 5 yimga|ly plan the consumption within consumer-specified
types of dgwces. These ut|I|t|e§ also provide an upper-bowa on laxity limit hedulina the ch f an Electridiige
the benefits that can be attained from any type of demand '2XItY IMItS, €.9., SCheduling theé charge of an Electne
response program. (EV) by a deadline. Contrary to common DLC practice, cus-
tomers provide the DLS authority with an explicit expressio
of the service they need in an online fashion, leaving no
With the lack of utility-scale storage options in the powenncertainty in how the demand responds to control signals.
grid, the need to make electricity demand active is becomigpliances are recruited only on an event-based basis, i.e.
more pressing each day. In the research community, tbeery time they have to perform a task. Previous works have
most favored option to make this vision happen is regbroposed various cost-minimizing scheduling algorithis f
time pricing (RTP). Optimal real-time prices, if calculdte DLS, specifically for EVs, e.g.[[4]=[9]. The possibility of
correctly, would maximize the social surplus. Howeverréhe using Vehicle-to-Grid (V2G) services for regulation anéigr
are several barriers that currently hinder the realizaticthis support has also been studied, elg.l [10],] [11]. However,
vision: 1) End-use customers need to have certainty in pricgharge interruption and V2G could decrease EV battery life,
for a certain look-ahead horizon to plan consumption. Wittielay full charge and present risks to the customer, and
a wide-spread integration of renewables, calculatingbédi violate customer privacy. Thus, proper economic incestive
clearing prices hours ahead of operation is challenging; 8y participation should be studied.
the lack of concrete models for the consumption flexibility o We assume that the DLS program is run by the same entity
electricity consumers in today’s market, specifically witle that provides electricity to customers, hereafter reféne
granularity needed to allow high penetration of renewagbless theaggregator The aggregator is essentially an energy
and the time-inhomogeneity of these models due to varialitader. Following current practice, we assume that the aggre-
appliance arrival and flexibility patterns; 3) the strictiae gator buys electricity at time-varying wholesale pricesnir
bility requirements of power grid operations, allowing $mathe energy market and on sells this energy to end-use cus-
error margins in price design. A line of iterative methodatth tomers at flat rates, without being able to deny any eletyrici
actively ask for the customers’ collective response toerriservice requests. Thus, it essentially acts as intermediar
signals are being proposed to address these problemis]|[.1], f®de that shields the end-use customers from wholesale pric
One the opposite side of the spectrum, Direct Load Contrillictuations. With no demand flexibility, the aggregator has
(DLC) has proven to be a popular type of demand controb control over the profitability of his venture in the short
for grid operators, mostly due to the reliable and predietabrun. Rather, his profit is determined by 1) wholesale prices;
nature of the demand’s response to control signals. Cuyren®) the predetermined billing tariffs, which are flat, regath
customers providing DLC services to the power grid sigand change very slowly; 3) the consumption behavior of
long-term contracts that allow the provider to cut off theustomers, which is out of control of the aggregator. To
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overcome this issue, the aggregator runs a DLS progréoy ¢, has a so-called characteristic vectoy € C. The
and pays customers in return for directly scheduling thestements ofv; fully describe the nature of the task, which
appliances, i.e., it effectively buys flexibility from caeshers could simply be the charge duration and rate for an EV,
while keeping them on flat rates. This paper focuses on ttie desired temperature for a thermostatically contrdbed
design of a market for trading flexibility between a singl¢TCL). We further assume that; can only be chosen from
aggregator and a population of randomly arriving appliancea finite codebook’ = {c1, c2,...,cq}, designed to achieve
We model this market as a monopoly, in the sense that eacbounded and controllable load modeling error. This allows
customer has access to only one aggregator and is a priege-to cluster similar energy requests in a finite humber of
taker. Competition between aggregators is left to futurekwo classes, indexed by

II. MODEL ¢ €9Q={1,2,3,...,Q},

We consider a community with a large population of CUSVhich will help to highly reduce the computational effort of

até)r . L ..

. . . . . r algorithm. Thus, the consumption characteristics sk ta
The basic observation of this work is that directly contrgl z‘:re Snithuely de#ned by its clfus?elr index ISt

various types of appliances has different utilities for the The strategy set is defined by the laxity limits the customer

2ggrehga;0{h Th'ls l:t!l'%' IS a funcil_on O]f tlfr:owdﬂe_mblt_a andcommits to provide to the DLS program when recruited,
ow hig e electricity consumption of the device is, angescribed by the index

of the dynamic state of the grid at the time the appliance
is used. Thus, it is best if the incentive that the aggregator m; € My, =4{0,1,2,..., M},

pays to customers to recruit their appliances can vary dy- )

namically with time and appliance tyfle To allow for this and referred to as the applianceisode Mode m = 0

we assume that these incentive are posted by the aggreg%%gespondstoo laxity, i.e., th_e customer will not participate
in dynamically updated and publicly available tables fof' e program. These laxity limits could, for example,
all customers, which can be thought of emnuslisting correspond to the slack for an EV charge, or the width
the different incentives customers can receive. Custom@sthe comfort band for a TCL. The appliance embedded
planning to use controllable appliances would then respof@ntrolleris queried by the customer application, whictpma

to these posted incentives by deciding whether they want i Physical state of the appliance onto the set of modes that
participate or not, and how much laxity they wish to offeR® available for the customer to choose from and, possibly,
the aggregator. an indication of what is the flat rate cost with no laxity.

We would like to point out that having dynamically chang- The customer then chooses the mode after observing the

ing menus does not necessarily mean that the incentives hi\gentive menu. We denote b (m) the incentive the cus-
to be re-designed every hour of every day. In fact, inceativiPMer could receive for releasing the control of an appkanc

i i i t —
will exhibit similar daily or weekly cycles as market pricesil ClUsterg in modem at timet, with I, (0) = 0. We denote

We define this market under the following assumptions:the yector cpntaining all (non-trivial) incentives availa to
Assumption 1 The aggregator's revenue from recruitingtPPliances in clustey under modesn > 1 as

each appligqce ?s additive and independent of other appli- IZ _ [Ié(l),[é(?), . ,I;(Mq)]T.

ances’ participation;

Assumption 2 A customer’s initial choice to use an appli- We expect the customers in charge of making commitment
ance is perfectly inelastic and not affected by incentives; decisions to be onlypoundedly rationali.e., they are likely

Assumption 3 The aggregator’s load does not affect théo only spend a limited amount of effort in considering the

wholesale market clearing prices; economic utility of participation in the program or updatin
Assumption 4 The aggregator has access to ex-ante fortheir home energy management system’s parameters. How-
casts of expected wholesale prices. ever, in the rest of this section, we introduce an analytical

Assumptions 3 and 4 simplify the expression of the agnodel which is valid for rational customers. We do so with
gregator’s utility when recruiting appliances in the DL®+r the disclaimer that this model is not a necessary element of
gram. Next, we look at how customers respond to incentivesJr design and we present it solely to provide some intuition

. . _ into the nature of this decision making problem.
A. Individual Appliance DLS Commitment Problem Design constraint 1 (Diminishing Payoffs): Note that if

We model the electricity consumption of customers usingh appliance does not join the DLS program right after its
tasks that dynamically arrive, receive service, and depafkival time, it will lose some laxity. However, if consumers
at discrete time epochs indexed by= {1,2,3,...}. An have reasons to believe that taking some risk and waiting
arrival event corresponds to the earliest time at which it {§ participate in the DLS program later could increase their
possible for an appliance to start its job. Each task, indexexpected payoff, even though the amount of laxity they can

PR . . , offer decreases, they will do so. To avoid this situation,

While, in theory, the incentive could vary across differenistomers . . . .
offering the same service, here we assume that we want tieatines to we assume that the incentives will be de3|gned such that
be perceived as fair and not violate consumer privacy limits the customer’s payoff for the same level of risk (e.g., same



deadline) will be monotonically non-increasing in time.rFoB. The Aggregator Problem
example, if we assign a separate modeevery time the

laxity offered by a deferrable load is increased by one unit In order to recruit directly controliable appliances, the
we r>(laquire thaty y aggregator needs to design appropriate incentives foryever

possible mode in all possible clusters, i.é;(m),Vq €
Ii(m) < Ié—l(m +1). Q,vm € M,. The LSE participates in the electricity
wholesale market run on an hourly basis, where it buys
energy to serve its load, directly controllable or not. W wi
elaborate more on the nature of this market interactiom. late
For now, we take the the expected profit that the aggregator
Vi)t My, — R, can make, through wholesale market transactions, by Hirect

controlling an individual appliance from clusterin mode

which includes three terms: 1) The incentilfe(m.) avail- . a5 known. For a recruitment of clusterin mode m
able for modem;; 2) The commitment risk (disutility) 4 time ¢, we denote this utility bqut(m). The utility of

Ri(m;) associated with agreeipg to receive servi_ce undggi recruiting an appliance is zero, i.&[1(0) = 0. As per
modem;, modeled through a privately known function  Agsymption 1, we define this recruitment utility as additive
RY(): My, — RY, and independent, rendering the incentive design problem
) ) ) ) separable for individual appliances.
with Rj(0) = 0, i.e., there is no risk when the customer gjnce recruiting an appliance from clustein modem at

decides npt to participate in the DLS program. Without Ioﬁﬁnet comes at a cost equal f(j(m). the net revenue of the
of generality, we order the modes from low to high risk. Th'ﬁggregator from this recruitment, denotedNy(m), is
would result in monotonically non-decreasing individuakr

functions R!(m;); 3) the utility of receiving the standard th(m) — U;(m) _ [S(m). (2)
service of using electricity and finishing a job. This term is

a constant, since we assume it will eventually happen forHowever, note that the mode is chosen by the customer
every request, either through the DLS program under sorater seeing the incentiveg (), through [1). Since only
modem; > 1, or through the standard service model oftatistical information on the customers response styaiteg
the power grid fu; = 0). The disutility of not receiving available to the aggregator, only teepected net revenwan

this standard service in case of an emergency departurdoésmaximized. Denote the event that any customer in cluster
captured through the risk term. Thus, we eliminate this tergnpicks modem asqum(IfZ). This event happens if:

A Rational Customer ModelThe utility gained by the
customer from operating taskat time ¢t in each mode is
defined as a function

from the customer’s decision making model. « Individual rationality constraintlR):
Consequently, assuming that the risk function are chosen
such that they have the same unit as the monetary incentive, [;(m) — Rl(m) >0,

the customer’s utility is quasi-linear and is given by

« Incentive compatibility constraint3@):
Vi (ma) = It (i) — R (). patibilly ©

t t t t
Upon receiving the incentive informatid, (m;) from the I(m) = Rj(m) > Iy(m') — Ri(m'), ¥m' € M,.
aggregator, the customer would solve the following optaniz

tion to determine the best operating mode of appliaice Consequently, the expected net revenue of recruiting an

appliance of clustey, simply denoted byV?, is given by

max Vi (my). 1)
s Ni= Y P(Egm@)(Uim)—Ii(m), (3)
The customer will not participate in the DLS program;(= meM,

0) if none of theI;i (m;)'s for m; > 1 are at least marginally ) o
higher than the risk?!(m;). Otherwise, the customer wouldWhich the aggregator would like to maximize; i.. the aggre-
pick the mode such that the margin betwelgg(mi) and 9ator would want to design the incentives as follows:

: L . : .
Ri_(mi) is highest (highest residual worth). Ties are broken A ZNt' @)
uniformly at random. I a

Even if we assume that this model perfectly describes ‘
the decision making procedure of all customers, sifi¢e) The summation over time is required to find the optimal
is only privately known, the aggregator cannot predict thecentives in the presence of the diminishing payoff design
outcome of [() deterministically. Thus, to determine theonstraint. The reader could envision that for a real-time
incentives I'(m;), the aggregator is faced with an optiimplementation, the optimizatiol(4) could be solved over
mization problem with incomplete information. The goal of receding horizon.
the aggregator would be to maximize its expected profit, In order to solve[{(}), it is essential to have an understandin
given aggregate statistics about the population’s resptms of how P(Eqﬂn(lf])) changes with the incentivd%. Next,
incentives. we propose two different views for approaching this problem



1) Bayesian ApproachHere we assume that the aggreadjacent modes» + 1 and m — 1, he/she will also prefer
gator has access to statistically learned prior knowledgeodem over all modesn’ > m andm’ < m.
on the risk levels of customers in different clusters. With Design constraint 2 (Single-Crossing Incentive Profile):
this view, the incentive design problem would be similar ime will design the incentive profile such that, € M,, the
nature to optimal Bayesian unit-demand pricing, given thatsiq Z(m+1)—Ig(m) ;o non-increasing, i.e., incentives grow

the customers’ risk levels (valuations) for different msdeslowerrz(tﬁgr#)ﬁgﬁén%or higher modes

('.te”.‘s) _cannot be gssumed to be drawn from 'ndgpendenbroposition 2.1:1f the incentive profile is single-crossing,
distributions. The risk levels that a customer perceives feustomen‘ will pick modem > 1 simply iff
committing to the program with a single appliance under -

different modes are correlated. For example, in the case of 1.(m + 1) — I} (m) I (m) — I,(m — 1)
EVs or any other deferrable loads, the mode corresponds to rt(m+1) —ri(m) ~ Vi = rt(m) —rt(m — 1)’
the amount of laxity that accompanies the request. Clear\lkl/h i ) )

offering a higher consumption laxity entails an additiorisk ere the right hand inequality ensurés (6) andl (7), and

over that of offering a lower laxity, and these variablesrzztn € left hand inequality ensure] (8). To keep expression
be considered independent. (12) compact, we use a dummy moge = M, + 1, with

_ t __ at
We assume that the aggregator parameterizes the fska +k1) = llchMq)r’] angrq(_Mql +1) —_Tq(Mq)dfl- _
function of each appliancgin clusterg according to: We acknowle get_ att € single-crossing con _|t|on rdstn_c
the values that the incentive profile can take into a region

R(m) = ~;r} (m), (5) that may be suboptimal for the aggregator. However, it
) B ) ) considerably lowers the numerical effort to solizé (4).
where; is a task-specific non-negative continuous random -, jjjystrate the next steps required to solve the problem,
variable and repr;esents thgpe of an individual taski, gpecifically required for our numerical experiments, we as-
and the variables (m) are deterministic and shared by all ;e that the types for clusterq are drawn from a uniform

. . I =
appliances in the same cluster with 7, (0) = 0, and can gigyipytion overl0, 12, . We design the incentives such that
model the average attitude of population towards risk. T L(m+1)=1!(m) fall in th babilit

y fall in the probability space

S s o éﬂJ of the ratios-2
ensure that this is a realistic parameterization of the ri

(12)

g (mA1)—rg (m , i

function, the aggregator could suggest this specific siract ©f 7i- This happens if the incentives are positive and non-

as default to consumers when they pick their risk functiond&creasing wittn, and that the ratidg (1)/r; (1) is not above
We assume that the aggregator has access to statisficalx: -6 Someone might pick mode = 1. Consequently,

priors for the typey;, and we denote by¥ (g) the cumulative MPOSINg the diminishing pay-off constraints for defeteab

distribution of 7, for appliances in clusteq. With this new 0ds, [#) is written as,

notation,P(E,,,, (I%)) for all m > 1 is the probability of the

M
, : 1 :
following event: n}?xzt: Ni=—-3"% (th(m) - I};(m)) X

Ymax T el

t t _
IR —7; < Ij(m) = Ij(m) Ij(g), (6) Ij(m) = Ij(m —1)  Ij(m+1) — Ij(m)
qugm) TIqt(m)/ —74(0) ri(m) —rt(m—1) rt(m+1)—rl(m)
ICl—; < Zémi_ gém/;’ vi<m' <m (7)) st OSI;(m)Sléil(m‘f'l)a 1<m< M, —1,
ro.\m)—r:.\m
1 4 It(m+1) = It(m)  It(m)—1It(m—1)
It(m!) — It (m) ) 2 Lo n , m>1,
Co—ni> s s, W >, @) raln e D) =g ()~ rim = 1)
e e Ii(m) > I}(m — 1), m > 1,
so we should have; € [17,,(I), hY . (I,)], with (1)
T < Vo (13)
o ([ It(m) — It(m) re(1)
hy . (I,) = min ¢ () — 7 (1) lo<mi<m ¢s (9) , o . ,
Tg\m) —Tgm for which the objective function is quadratic i@ and the
- Ii(m') = I} (m) constraints are all affine.
lgm(Ig) = max rt(m’) _Té(m)|m/>m (10) The statistics on the risk functions can be obtained by

_ ) conducting market surveys or using learning techniques. Th
which gives, details are out of the scope of this work.
ENY _ arhY (TR (i (T 2) Model-free Learning Approachlif there is no single
PEqm (1)) = (hg 1)) = F (U5 (T,)) (1) underlying model that characterizes how costumers respond
However, due to the absence of any natural ordering, thaseparticipation incentives, or no information is avaikaln
constraints will render the optimization problefd (4) rathehe private risk functions of customers, model-free online
complex. Thus, next, we will impose a design constaitgarning techniques can be used to directly learn the prob-
that ensures thdtcal incentive compaibilitys sufficient for abilities P(Eqﬂn(Ig)). These approaches explore different
decision making, i.e., if the customer prefers madeover alternatives for the incentive signz-ll§. observe the response



of the population, an update their estimateRJ(qu_,m(Ig)) payoff by shifting the load away from peak hours:
accordingly. This requires that the event of a custonuar-

o - Ul(m) = ij 0L, (14)
sideringto join the program be observable to the aggregator, q g0l
which is not the case in our current design. This issue can
be addressed by asking the customers to mal@aanymous — min E T (/)Ltq

. . . m(L)eLt

query every time they need to look at the incentive menus

am oy
for a specific cluster. Remark 3.1: The consumption profile of flexible appli-
Next, we study the recruitment utility of different devicegnces that do not choose to join the DLS program, i.e.,
for the aggregator. L% o(¢), is a function of the tariff that the customers are
billed on. On a flat tariff, the customers do not need to spend

1. THE RECRUITMENT UTILITY FUNCTIONS any effort to find the best time at which they should consume

There are several options for an aggregator to proffectricity, and simply plug in an appliance at the request
from recruiting flexible appliances. Here we only study tharrival time.
possibility of load shifting based on the recruitment ofgen  Design constraint 3 Here we assume that for all de-
duration non interruptible deferrable appliances (e.ys,E ferrable loads, the mode index € M, is directly equivalent
washer/dryers ) or preheating and precooling of TCLs. t0 the amount of laxity (slack time) that accompanies the
In order to solve [4), the aggregator needs to knotduest.
beforehand how much utility it could expect from recruitin
an appliance in clustey in modem at timet. We denoted
this value byU!(m). In this Section, we specifically focus Here we look at appliances whose consumption profile can
on calculating this payoff for the case of load shiftingnerely be shifted in time, but cannot be modified in any way
with non-interruptible deferrable loads and Thermosgdigc once started. A classic example is that of a washing machine
Controlled Loads (TCL), with the numerical results focgsincycle. In this case, the control variable is thetivation time
specifically on Plug-in Hybrid Electric Vehicles (PHEV). Bu of the task, denoted by (See Fig. 1). The set of possible
to limited space, we leave the discussion of interruptibie a values ofa depends on the initial time at which the request
sheddable loads to future work. arrives, and the laxity that accompanies the request,e.,
Energy is traded on an hourly basis, and the demand isOnce activated, the appliance consumes a predetermined
modeled as constant in hourly intervals in the energy markamount of power, denoted by the time-shifted pulsg — )
The task of ensuring the sub-hourly balance of demaif@r appliances in clustey, with a length ofl’; epochs. This
and supply is left to ancillary service providers, which arulse varies on a sub-hourly basis as a function of the time
procured and dispatched by the grid operator to respofgochs;. To relate this with the variables required to solve
quickly (in a matter of minutes or seconds) to variations dhe optimization[(15), we need to map this sub-hourly vagyin
the demand. Traditionally, ancillary services are offebgd load to an hourly load profile, resulting in
fast ramping generators. (+1)S—1
In order to serve its’ load, the aggregator needs to purch%ie =L, (0) = Z gi—a)ft<a<t+m
a certain amount of energy for every hodrfrom the %™ em
wholesale energy market, which we denotellfy), and refer
to as thebase loadWe assume that the aggregator has accesdNotice the summations required to calculate the average
to ex-ante forecasts of the wholesale energy market cigarimourly consumption of the device from the sub-hourly load.
prices, and we denote the expected value of the price for hd@ravoid the inconvenience of going frogg(j —«) to hourly
¢ asm*(¢). We assume the aggregator’s load is small enoughnsumption valueg, , . (¢) when solving [(Ib), we simply
to not affect the price. The aggregator can save money in texpand the expected wholesale energy price vectf) to
wholesale energy market if it recruits flexible applianced a define virtual sub-hourly wholesale prices(;),
shifts their load to hours at which energy is cheaper. ] _ ZS
Denote the set of all feasibleourly load tracesof an Z 57 )s
individual task in cluster; under moden recruited at time

t as Ly, (f) € Ly, To obtain an hourly load profile for anyhere 11(.) denotes the unit pulse function betwefn1).
appllance with sub-hourly consumption variations, we $§Mp\yjith this new definition, we have
average out the total consumption of the device within each

hour. We denote ag, o(f) the consumption profile of the |5 1252
appliance if it is not recruited by the DLS program and starts Z 7 ()L, . (€)

%\. Deferrable Non-interruptible Appliances

j=¢8

(t+1)S—1

) Y gali—a)

its consumption at time Serving this power to the consumer ¢=| ¢ | =% j=ts
through buying energy from the wholesale market presents a+T,
a cost for the aggregator. By having direct control over this = Z 7 (1)g,(j — ). (15)

appliance, the aggregator can expect to gain the following j=a



Consequently, the expected utility of recruiting an applaggregator’s cost is the times at which to run the unit for

ance in cluster; under moden at timet is preheating. Due to the constant power of the device, the
t4T, amount of preheating is a direct consequence of this choice.
U; (m) = Z 7 ()gg(G — ) — However, we would_I|I_<e to pomt_ out that more sophisticated

= methods for determining the trajectory of the temperatare f
04T, pre_cooling/preheating exists in the Iitera.ture, both Uase.

min Z ()94 — ) optimal control thepry [_13]——[16], or learning and simudati

o - 4 [17]. The calculations in the section could be updated to
= account for any of these techniques.
S.t. t<a<t+m, (16)

In order for the temperature to be arourifi** at the time
where the first term refers to the cost incurred by thibat the building occupants arrive, we must have previously
aggregator if no demand control is exercised, whereas tihereased it enough in the preheating period. This premgati
second term mirrors the lowest possible cost with which thgocess can be done over multiple disjoint time intervals,
appliance can be served, considering a demand laxity. of whenever it is deemed as a cost-effective action.
time units. For appliances recruited at timg preheating can start
B. Thermostatically Controlled Loads right away aqd can .cor?tinue to the time at which puilding
) occupants arrive, which is equaltem, with the mode index

Another category of appliances that can help the aggrega-girectly mirroring the time laxity offered for preheating b

tor save money in the energy market are TCLs, which can Ugg customer. Thus, the optimization that needs to be solved

the inherent energy storage property of building thermasna, minimize the expected cost for this is
to shift their load to cheaper hours. A substantial poténtia

for intrahourly load shifting with heating and cooling des$ t+m

is through preheating and precooling of the air-conditibne Cgreheat(m) = min Z P (5)bi ()

space. To preheat a space, the temperature is increased b | =

above the comfort band of the user at off-peak hours, before s.t. Irqnax — 0 <zy(t+m) < Ifq“ax +6,
residents/employees arrive at home/work. The preheating bi(j) € [0,1] (18)

should be scheduled such that by the time the residentgarriv

the temperature is close to the highest acceptable tenwperafyheres > 0 should be picked such that at least one number

in the comfort band. While some commercial building utility, {he set [zmax — 5, zmax 4 6] lies within the control-

managers currently exercise this option during night hm”slability subspace of the dynamics that govery(t + m).

save on energy, with the integration of renewable resourceg \yrite these dynamics in closed form, we assume that

thebest time and amoumtf preheating would be variable ONy.(t) = z,4(t), i.e., we assume that the unit stays off long

a daily basis and needs coordination with the aggregator.enough when the building is vacant, and the temperature
We assume that each TCL is equipped with a thermoy) has already reached the ambient temperati®) when

stat that keeps the temperature in a certain comfort bagtneatig starts. Then, we can write the temporal evolution

[z, 2], with 2" and 2> representing the lower of the expected value of;(j) as

and upper thresholds chosen by the customers in cluster

g. Here, we adopt a simple first-order model proposed in j=1 .
[12] to explain the state dynamics of temperature. Lg&Y) zi(j) = ci(j) + Z(l — kg ) T Wb (w) (19)
(a representative temperature) characterize the statbeof t w=t
i-th heating devicey;(j) evolves according to the linear ' - _
stochastic difference equation with ¢;(j) = >0 — kq)ﬁwfl(xi(w)(l — kq) +
2 () =i (G—1) = —kg(2;(j—1)—2a (—1))+ Wb () +v:(§), kqxa(w)). Theb;(w)’s are the decision variables.
(17) In order to see how much benefit direct scheduling can
where we denote by provide to the aggregator, we need to compare the cost to the
« k, the average loss rate for buildings in clusier case when no preheating is exercised. In that case, heating
« z,(j) the ambient temperature; start; at +m, and it will take the TCLr,” units of time to
« W, the average rate of heat gain supplied by devices #@ntinuously work and get the temperaturerp™, where
clusterg; -
« b;(j) the operating state of the device at tihg1l for Sup 1 I < T ) (20)
"on” or O for "off"); a k, max — i;CV_: — 2.(t +m) :

« v;(j) a zero mean Wiener noise process.

We assume that, once on, the unit consumes a constaéhis assumes that the dynamics of the ambient temperature
power approximately equal t&, for clusterq. Thus, the is much slower than that of the TCL. The first heating cycle
only variable that needs to be chosen and can affect thight after turning on in the morning will have an expected



cost equal to

---Single Crossing Incentive Profile

tm4THP 1 || —Model-free brute force Iearn!ng (1000 days)
normal 3 » —~—Model-free brute force learning (30 days)
C = g 7P (j
q . (j) 0.04
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°
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for the aggaregator. Thus, the utility of recruting a TCL it
clusterq in modem at timet is given by:

U:If (m) — max {C;wrmal _ Ogreheat (m)’ 0}

Average Payoff per Interaction with PHEVS (in Dollars)

Note that providing any DLS service requires that the app n i
ance is submetered. Here this is essential since the ove Time (mhalihour pochs)

consumption of the device could be fairly increased and the
consumer should not be billed accordingly, Fig. 1. Comparison of aggregator payoff when offering irises designed

through different schemes to a PHEV population

IV. NUMERICAL CASE STUDY USING EV DATA

] . ) ~A. Comparison of Aggregator Payoff for Different Incentive
We simulate the interactions of one aggregator with Besign Schemes

population of Plug-in Hybrid EVs arriving at random to Th #X1) that th .
receive level-1 battery charge (1.1 kW instantaneous .rat e average payoff);) that the aggregator receives at

The arrival time, charge duration, and laxity data are tak fferent times of the day when interacting with the above-

from real PHEV charge events recorded and studied in [1 _scrib_ede:ustorgerﬁ lijnd%r the sin_?_le-cr?jssirrllg lincelnitfh/esb
This database includes 620 charge events that happen eve Wi Il'n _|g[ll( gsbe hre _curlve). 0 _stu gt '€ level of sub-
length of several months. However, we ignore the dates afigimality Imposed by the single-crossing esign C(_)rlstra| .
treat the plug-in events as if they happened on the same dgﬁcompare the outcome of the model-based incentive design

The aggregator interacts with the wholesale energy marlJ@t‘.:hn'q,ue to a brute-forced Iearnlng_ mgthod,_where ;everal
Scenarios are generated for the daily incentive profile and

Hourly LMPs for the one day of operation simulated her . :
are taken from 1SO New England’s Maine load zone o sted on the population to observe the response. With more

September 1st, 2013 to noon of September 2nd. trials, the aggregator would find better incentive profilég.

We translate the absolute charge laxity values in [18] in[% compares the aggregator's profit with the single-crossing
risk functionsby tuning the typey; in @) such tha\t it would profile with that of the brute-force learning method after 30

not be individually rational for the customer to offer lag# and 1000 days. The reader can see that the learning method is

that exceed their real departure time, given one samplesof &erformlng better than the single-crossing profile afte@@0

daily incentive profile. For lack of any meaningful alterinat days, but not in 30 days.
we taker}(m) = m. Denote the mode corresponding tq \velfare Effects
the maximum laxity that could be offered while allowing a

timely departure for the customer by,. Then we assume We define the consumer savings through a DSM technique

that for each charging event in clusterat time ¢, given as the expected change in the monetary value of maximum

sample incentivesft(m), the risk typev; of the useri is utility across different alternatives for receiving eléaty
such that 1 service. As explained before, since the basic service that

. is being received/provided through any demand manage-
(mq+ 1)y > Ij(ma+1). ment program is always the same as the normal operation
mode of the grid today, i.e., there is no change in overall
Next, in order to solve the optimizatioh (13), we fit aconsumption and only the timing of consumption changes,
uniform distribution on the customer types, resulting in  we ignore the utility of receiving the standard service of
electricity consumption in these calculations. The corsum
v ~ U(0,0.0721). savings by participating in the DLS program (under brute-
force optimized incentives after 1000 days) is equal to
One can use the Gershgorin circle theorem to show trfzgg(mi)—Rﬁ(mi). Saving impacts are individually calculated
the optimization problem[(13) is concave (with a negativier each charge request, and the sum of this value over the
semidefinite quadratic term). Incentives are designeddtir h 620 charging events is shown in Fig. 2 as a function of time
hour intervals, i.e.t = 1,...,48 for one full day. Remember of plug-in.
that the solution to this optimization is sub-optimal due to Now assume that, instead of going through a intermediary
the single-crossing condition and the uniform prior asstim@ode like the aggregator, the customer could have, through a
for the customer risk types;. hypothetical demand management scheme, directly inttact
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of providing ancillary services through collective effat
several appliances, and to study competition between alever
aggregators that can serve the same population, is left to
future work.

__Total consumer population savings
through DLS participation
_,_Total consumer savings through
a hypothetical optimal pricing scheme
---Consumer + Aggregator savings
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