
1

A Fast Hadamard Transform for Signals with
Sub-linear Sparsity in the Transform Domain

Robin Scheibler, Student Member, IEEE Saeid Haghighatshoar, Student Member, IEEE
Martin Vetterli, Fellow, IEEE

Abstract—A new iterative low complexity algorithm has been
presented for computing the Walsh-Hadamard transform (WHT)
of an N dimensional signal with a K-sparse WHT, where N is
a power of two and K = O(Nα), scales sub-linearly in N for
some 0 < α < 1. Assuming a random support model for the non-
zero transform domain components, the algorithm reconstructs
the WHT of the signal with a sample complexity O(K log2(

N
K
)),

a computational complexity O(K log2(K) log2(
N
K
)) and with a

very high probability asymptotically tending to 1.
The approach is based on the subsampling (aliasing) property

of the WHT, where by a carefully designed subsampling of the
time domain signal, one can induce a suitable aliasing pattern in
the transform domain. By treating the aliasing patterns as parity-
check constraints and borrowing ideas from erasure correcting
sparse-graph codes, the recovery of the non-zero spectral values
has been formulated as a belief propagation (BP) algorithm
(peeling decoding) over a sparse-graph code for the binary
erasure channel (BEC). Tools from coding theory are used to
analyze the asymptotic performance of the algorithm in the “very
sparse” (α ∈ (0, 1

3
]) and the “less sparse” (α ∈ (1

3
, 1)) regime.

Index Terms—Walsh-Hadamard, Transform, sparse, sparse
FFT, sub-linear, peeling decoder.

I. INTRODUCTION

THE fast Walsh-Hadamard transform (WHT) is a well-
known signal processing tool with application in areas

as varied as image compression and coding [1], spreading
sequence for multi-user transmission in cellular networks
(CDMA) [2], spectroscopy [3] as well as compressed sensing
[4]. It has also nice properties studied in different areas of
mathematics [5]. Its recursive structure, similar to the famous
fast Fourier transform (FFT) algorithm for computing the
discrete Fourier transform (DFT) of the signal, allows a fast
computation with complexity O(N log2(N)) in the dimension
of the signal N [6], [7].

A number of recent publications have addressed the par-
ticular problem of computing the DFT of an N dimensional
signal under the assumption of K-sparsity of the signal in
the frequency domain [8], [9], [10], [11], [12]. In particular, it
has been shown that the well known computational complexity
O(N log2(N)) of the FFT algorithm can be strictly improved.
Such algorithms are generally known as sparse FFT (sFFT)

R. Scheibler, S. Haghighatshoar and Martin Vetterli are with the School
of Computer and Communication Sciences École Polytechnique Fédérale de
Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

Email: {robin.scheibler, saeid.haghighatshoar, martin.vetterli}@epfl.ch
The research of Robin Scheibler was supported by ERC Advanced In-

vestigators Grant: Sparse Sampling: Theory, Algorithms and Applications
SPARSAM no. 247006.

A short version of this paper was presented at the 51st Annual Allerton
Conference on Communication, Control, and Computing, Monticello, 2013.

algorithms. The authors in [13] by extending the results of
[12], gave a very low complexity algorithm for computing
the 2D-DFT of a

√
N ×

√
N signal. In a similar line of

work, based on the subsampling property of the DFT in the
time domain resulting in aliasing in the frequency domain,
the authors in [14], [15] developed a novel low complexity
iterative algorithm to recover the non-zero frequency elements
using ideas from sparse-graph codes [16].

In this paper, we develop a fast algorithm to compute the
WHT of data sparse in the Hadamard domain. We first develop
some useful properties of the WHT, specially the subsampling
and the modulation property, that will later play a vital role
in the development the algorithm. In particular, we show the
subsampling in time domain allows to induce a well-designed
aliasing pattern over the transform domain components. In
other words, it is possible to obtain a linear combination
of a controlled collection of transform domain components
(aliasing), which creates interference between the non-zero
components if more than one of them are involved in the
induced linear combination. Similar to [15] and borrowing
ideas from sparse-graph codes, we construct a bipartite graph
by considering the non-zero values in the transform domain as
variable nodes and interpreting any induced aliasing pattern as
a parity check constraint over the variables in the graph. We
analyze the structure of the resulting graph assuming a random
support model for the non-zero coefficients in the transform
domain. Moreover, we give an iterative peeling decoder to re-
cover those non-zero components. In a nutshell, our proposed
sparse fast Hadamard transform (SparseFHT) consists of a set
of deterministic linear hash functions (explicitly constructed)
and an iterative peeling decoder that uses the hash outputs
to recover the non-zero transform domain variables. It recov-
ers the K-sparse WHT of the signal in sample complexity
(number of time domain samples used) O(K log2(NK)), total
computational complexity O(K log2(K) log2(NK)) and with a
high probability approaching 1 asymptotically, for any value
of K.

Notations and Preliminaries: For m an integer, the set of
all integers {0, 1, . . . ,m − 1} is denoted by [m]. We use the
small letter x for the time domain and the capital letter X for
the transform domain signal. For an N dimensional real-valued
vector v, with N = 2n a power of two, the i-th components
of v is equivalently represented by vi or vi0,i1,...,in−1 , where
i0, i1, . . . , in−1 denotes the binary expansion of i with i0
and in−1 being the least and the most significant bits. Also
sometimes the real value assigned to vi is not important for

ar
X

iv
:1

31
0.

18
03

v2
 [

cs
.I

T
]

 2
9

D
ec

 2
01

3

2

us and by vi we simply mean the binary expansion associated
to its index i, however, the distinction must be clear from the
context. F2 denotes the binary field consisting of {0, 1} with
summation and multiplication modulo 2. We also denote by Fn2
the space of all n dimensional vectors with binary components
and addition of the vectors done component wise. The inner
product of two n dimensional binary vectors u, v is defined by
〈u , v〉 =

∑n−1
t=0 utvt with arithmetic over F2 although 〈 , 〉 is

not an inner product in exact mathematical sense, for example,
〈u , u〉 = 0 for any u ∈ Fn2 .

For a signal X ∈ RN , the support of X is defined as
supp(X) = {i ∈ [N] : Xi 6= 0}. The signal X is called
K-sparse if | supp(X)| = K, where for a set A ⊂ [N], |A|
denotes the cardinality or the number of elements of A. For
a collection of N dimensional signals SN ⊂ RN , the sparsity
of SN is defined as KN = maxX∈SN | supp(X)|.

Definition 1. A class of signals of increasing dimension
{SN}∞N=1 has sub-linear sparsity if there is 0 < α < 1 and
some N0 ∈ N such that for all N > N0, KN ≤ Nα. The
value α is called the sparsity index of the class.

II. MAIN RESULTS

Let us first describe the main result of this work in the
following theorem.

Theorem 1. Let 0 < α < 1, N = 2n a power of two and
K = Nα. Let x ∈ RN be a time domain signal with a WHT
X ∈ RN . Assume that X is a K-sparse signal in a class of
signals with sparsity index α whose support is uniformly at
random selected among all possible

(
N
K

)
subsets of [N] of size

K. For any value of α, there is an algorithm that can compute
X and has the following properties:

1) Sample complexity: The algorithm uses CK log2(NK)
time domain samples of the signal x. C is a function of
α and C ≤ (1

α ∨
1

1−α) + 1, where for a, b ∈ R+, a ∨ b
denotes the maximum of a and b.

2) Computational complexity: The total number of oper-
ations in order to successfully decode all the non-zero
spectral components or announce a decoding failure is
O(CK log2(K) log2(NK)).

3) Success probability: The algorithm correctly computes
the K-sparse WHT X with very high probability asymp-
totically approaching 1 as N tends to infinity, where the
probability is taken over all random selections of the
support of X .

Remark 1. To prove Theorem 1, we distinguish between the
very sparse case (0 < α ≤ 1

3) and less sparse one (1
3 < α < 1).

Also, we implicitly assume that the algorithm knows the value
of α which might not be possible in some cases. As we will
see later if we know to which regime the signal belongs and
some bounds on the value of the α, it is possible to design an
algorithm that works for all those values of α. However, the
sample and computational complexity of that algorithm might
increase compared with the optimal one that knows the value
of α. For example, if we know that the signal is very sparse,
α ∈ (0, α∗] with α∗ ≤ 1

3 , it is sufficient to design the algorithm
for α∗ and it will work for all signals with sparsity index less

that α∗. Similarly, if the signal is less sparse with a sparsity
index α ∈ (1

3 , α
∗), where α∗ < 1, then again it is sufficient

to design the algorithm for α∗ and it will automatically work
for all α ∈ (1

3 , α
∗).

Remark 2. In the very sparse regime (0 < α ≤ 1
3), we prove

that for any value of α the success probability of the optimally
designed algorithm is at least 1−O(1/K3(C/2−1)), with C =
[1
α] where for u ∈ R+, [u] = max{n ∈ Z : n ≤ u}. It is

easy to show that for every value of α ∈ (0, 1
3) the success

probability can be lower bounded by 1−O(N−
3
8).

III. WALSH-HADAMARD TRANSFORM AND ITS
PROPERTIES

Let x be an N = 2n dimensional signal indexed with
elements m ∈ Fn2 . The N dimensional WHT of the signal
x is defined by

Xk =
1√
N

∑
m∈Fn2

(−1)〈k ,m〉xm,

where k ∈ Fn2 denote the corresponding binary index of
the transform domain component. Also, throughout the paper,
borrowing some terminology from the DFT, we call transform
domain samples Xk, k ∈ Fn2 frequency or spectral domain
components of the time domain signal x.

A. Basic Properties

This subsection is devoted to reviewing some of the basic
properties of the WHT. Some of the properties are not directly
used in the paper and we have included them for the sake of
completeness. They can be of independent interest. The proofs
of all the properties are provided in Appendix A.

Property 1 (Shift/Modulation). Let Xk be the WHT of the
signal xm and let p ∈ Fn2 . Then

xm+p
WHT←→ Xk(−1)〈p , k〉.

The next property is more subtle and allows to partially
permute the Hadamard spectrum in a specific way by applying
a corresponding permutation in the time domain. However, the
collection of all such possible permutations is limited. We give
a full characterization of all those permutations. Technically,
this property is equivalent to finding permutations π1, π2 :
[N] → [N] with corresponding permutation matrices Π1,Π2

such that
Π2HN = HNΠ1, (1)

where HN is the Hadamard matrix of order N and where
the permutation matrix corresponding to a permutation π is
defined by (Π)i,j = 1 if and only if π(i) = j, and zero
otherwise. The identity (1) is equivalent to finding a row
permutation of HN that can be equivalently obtained by a
column permutation of HN .

Property 2. All of the permutations satisfying (1) are de-
scribed by the elements of

GL(n,F2) = {A ∈ Fn×n2 |A−1 exists},

3

the set of n× n non-singular matrices with entries in F2.

Remark 3. The total number of possible permutations in
Property 2, is

∏n−1
i=0 (N − 2i), which is a negligible fraction

of all N ! permutation over [N].

Property 3 (Permutation). Let Σ ∈ GL(n,F2). Assume that
Xk is the WHT of the time domain signal xm. Then

xΣm
WHT←→ XΣ−T k.

Remark 4. Notice that any Σ ∈ GL(n,F2) is a bijection from
Fn2 to Fn2 , thus xΣm is simply a vector obtained by permuting
the initial vector xm.

The last property is that of downsampling/aliasing. No-
tice that for a vector x of dimension N = 2n, we index
every components by a binary vector of length n, namely,
xm0,m1,...,mn−1

. To subsample this vector along dimension i,
we freeze the i-th component of the index to either 0 or 1. For
example, x0,m1,...,mn−1 is a 2n−1 dimensional vector obtained
by subsampling the vector xm along the first index.

Property 4 (Downsampling/Aliasing). Suppose that x is a
vector of dimension N = 2n indexed by the elements of Fn2
and assume that B = 2b, where b ∈ N and b < n. Let

Ψb =
[
0b×(n−b) Ib

]T
, (2)

be the subsampling matrix freezing the first n− b components
in the index to 0. If Xk is the WHT of x, then

xΨbm
WHT←→

√
B

N

∑
j∈N(ΨTb)

XΨbk+j ,

where xΨbm is a B dimensional signal labelled with m ∈ Fb2.

Notice that Property 4 can be simply applied for any
matrix Ψb that subsamples any set of indices of length b not
necessarily the b last ones.

Remark 5. The group Fn2 can be visualized as the vertices
of the n-dimensional hypercube. The downsampling property
just explained implies that downsampling along some of the
dimensions in the time domain is equivalent to summing up
all of the spectral components along the same dimensions in
the spectral domain. This is illustrated visually in Fig. 1 for
dimension n = 3.

Remark 6. In a general downsampling procedure, one can
replace the frozen indices by an arbitrary but fixed binary
pattern. The only difference is that instead of summing the
aliased spectral components, one should also take into account
the suitable {+,−} sign patterns, namely, we have

xΨbm+p
WHT←→

√
B

N

∑
j∈N(ΨTb)

(−1)〈p , j〉XΨbk+j , (3)

where p is a binary vector of length n with b zeros at the end.

(0,0,0) (0,1,0)

(1,0,1)

(1,1,1)(1,1,0)(1,0,0)

(0,0,1) (0,1,1)

(0,0,0) (0,1,0)

(1,0,1) (1,1,1)

(1,1,0)
(1,0,0)

(0,0,1) (0,1,1)

WHT

Fig. 1. Illustration of the downsampling property on a hypercube forN = 23.
The two cubes are the time-domain and Hadamard-domain signals on the left
and right, respectively. We decide to drop all nodes whose third coordinate is
’1’. We illustrate this by adding an ’×’ on the edges connecting these vertices
through the third coordinate. This is equivalent to summing up vertices along
the corresponding edges in the Hadamard domain.

IV. HADAMARD HASHING ALGORITHM

By applying the basic properties of the WHT, one can design
suitable hash functions in the spectral domain. The main idea
is that one does not need to have access to the spectral values
and the output of all hash functions can be simply computed
by low complexity operations on the time domain samples of
the signal.

Proposition 1 (Hashing). Assume that Σ ∈ GL(n,F2) and
p ∈ Fn2 . Let N = 2n, b ∈ N, B = 2b and let m, k ∈ Fb2
denote the time and frequency indices of a B dimensional
signal and its WHT defined by

uΣ,p(m) =

√
N

B
xΣΨbm+p.

Then, the length B Hadamard transform of uΣ,p is given by

UΣ,p(k) =
∑

j∈Fn2 |Hj=k
Xj (−1)〈p , j〉, (4)

where H is the index hashing operator defined by

H = ΨT
b ΣT , (5)

where Ψb is as in (2). Note that the index of components in
the sum (4) can be explicitely written as function of the bin
index k

j = Σ−TΨbk + q, q ∈ N (H).

The proof simply follows from the properties 1, 3, and 4.
Based on Proposition 1, we give Algorithm 1 which com-

putes the hashed Hadamard spectrum. Given an FFT-like fast
Hadamard transform (FHT) algorithm, and picking B bins
for hashing the spectrum, Algorithm 1 requires O(B logB)
operations.

Algorithm 1 FastHadamardHashing(x,N,Σ, p, B)

Require: Signal x of dimension N = 2n, Σ and p and given
number of output bins B = 2b in a hash.

Ensure: U contains the hashed Hadamard spectrum of x.
um = xΣΨbm+p, for m ∈ Fb2.

U =
√

N
B FastHadamard(um, B).

4

A. Properties of Hadamard Hashing

In this part, we review some of the nice properties of the
hashing algorithm that are crucial for developing an iterative
peeling decoding algorithm to recover the non-zero spectral
values. We explain how it is possible to identify collisions
between the non-zero spectral coefficients that are hashed to
the same bin and also to estimate the support of non-colliding
components.

Let us consider UΣ,p(k) for two cases: p = 0 and some
p 6= 0. It is easy to see that in the former UΣ,p(k) is obtained
by summing all of the spectral variables hashed to bin k –
those whose index j satisfies Hj = k – whereas in the latter
the same variables are added together weighted by (−1)〈p , j〉.
Let us define the following ratio test

rΣ,p(k) =
UΣ,p(k)

UΣ,0(k)
.

When the sum in UΣ,p(k) contains only one non-zero com-
ponent, it is easy to see that |rΣ,p(k)| = 1 for ‘any value’
of p. However, if there is more than one component in the
sum, under a very mild assumption on the the non-zero
coefficients of the spectrum (i.e. they are jointly sampled from
a continuous distribution), one can show that |rΣ,p(k)| 6= 1 for
at least some values of p. In fact, n− b well-chosen values of
p allow to detect whether there is only one, or more than one
non-zero components in the sum.

When there is only one Xj′ 6= 0 hashed to the bin k
(hΣ(j′) = k), the result of the ratio test is precisely 1 or
−1, depending on the value of the inner product between j′

and p. In particular, we have

〈p , j′〉 = 1{rΣ,p(k)<0}, (6)

where 1{t<0} = 1 if t < 0, and zero otherwise. Hence, if for
n−b well-chosen values of p, the ratio test results in 1 or −1,
implying that there is only one non-zero spectral coefficient
in the corresponding hash bin, by some extra effort it is even
possible to identify the position of this non-zero component.
We formalize this result in the following proposition proved
in Appendix B.

Proposition 2 (Collision detection / Support estimation). Let
Σ ∈ GL(n,F2) and let σi, i ∈ [n] denote the columns of Σ.

1) If for all d ∈ [n− b], |rΣ,σd(k)| = 1 then almost surely
there is only one non-zero spectral value in the bin
indexed by k. Moreover, if we define

v̂d =

{
1{rΣ,σd (k)<0} d ∈ [n− b],
0 otherwise,

the index of the unique non-zero coefficient is given by

j = Σ−T (Ψb k + v̂). (7)

2) If there exists a d ∈ [n−b] such that |rΣ,σd(k)| 6= 1 then
the bin k contains more than one non-zero coefficient.

V. SPARSE FAST HADAMARD TRANSFORM

In this section, we give a brief overview of the main idea of
Sparse Fast Hadamard Transform (SparseFHT). In particular,
we explain the peeling decoder which recovers the non-zero
spectral components and analyze its computational complexity.

A. Explanation of the Algorithm

Assume that x is an N = 2n dimensional signal with a
K-sparse WHT X , where K = O(Nα) scales sub-linearly
with N with index α. As H−1

N = HN , taking the inner
product of the vector X with the i-th row of the Hadamard
matrix HN gives the time domain sample xi. Using the
terminology of Coding theory, it is possible to consider the
spectral components X as variables nodes (information bits
in coding theory) where the inner product of the i-th row of
HN is like a parity check constraint on X . For example, the
first row of the Hadamard matrix is the all-one vector which
implies that the sum of all of the components of X must be
equal to the first time domain sample. A similar interpretation
holds for the other rows. Thus, the WHT can be imagined as
a code over a bipartite graph. With this picture in mind, one
can consider the recovery of the non-zero spectral values as
a decoding problem over this bipartite graph. If we consider
the WHT, it is easy to see that the induced bipartite graph
on the non-zero spectral values is a complete (dense) bipartite
graph because any variable node is connected to all of the
check nodes as has been depicted in the left part of Fig. 2,
where {X1, X8, X11} are the only non-zero variables in the
spectral domain and each check constraint correspond to the
value of a time domain sample. It is also implicitly assumed
that one knows the support of X , {1, 8, 11} in our case. At
the moment, it is not clear how one can obtain the position of
the non-zero variables. As we will explain, in the final version
of the algorithm this can be done by using Proposition 2.

For codes on bipartite graphs, there is a collection of
low complexity belief propagation algorithms to recover the
variable nodes given the value of check nodes. Most of these
algorithms perform well assuming the sparsity of the under-
lying bipartite graph. Unfortunately, the graph corresponding
to WHT is dense, and probably not suitable for any of these
belief propagation algorithms to succeed.

As explained in Section IV, by subsampling the time domain
components of the signal it is possible to hash the spectral
components in different bins as depicted for the same signal
X in the right part of Fig. 2. The advantage of the hashing
operation must be clear from this picture. The idea is that
hashing ‘sparsifies’ the underlying bipartite graph. It is also
important to notice that in the bipartite graph induced by
hashing, one can obtain all of the values of parity checks (hash
outputs) by using low complexity operations on a small set of
time domain samples as explained in Proposition 1.

We propose the following iterative algorithm to recover the
non-zero spectral variables over the bipartite graph induced by
hashing. The algorithm first tries to find a degree one check
node. Using the terminology of [15], we call such a check
node a singleton. Using Proposition 2, the algorithm is able

5

Fig. 2. On the left, bipartite graph representation of the WHT for N = 8 and K = 3. On the right, the underlying bipartite graph after applying C = 2
different hashing produced by plugging Σ1, Σ2 in (5) with B = 4. The variable nodes (•) are the non-zero spectral values to be recovered. The white check
nodes (�) are the original time-domain samples. The colored squares are new check nodes after applying Algorithm 1.

Fig. 3. A block diagram of the SparseFHT algorithm in the time domain. The downsampling plus small size low complexity FHT blocks compute different
hash outputs. Delay blocks denote an index shift by σi before hashing. The S/P and P/S are serial-parallel and parallel-serial blocks to emphasize that the
FHT operates on the whole signal at once. The collision detection/support estimation block implements Proposition 2 to identify if there is a collision. Index
i is not valid when there is a collision.

to find the position and the value of the corresponding non-
zero component and, thus the algorithm can subtract (peel off)
this variable from all other check nodes that are connected
to it. In particular, after this operation the corresponding
singleton check node gets value zero, namely, it is satisfied.
Equivalently, we can update the underlying graph by removing
the mentioned variable node from the graph along with all
the edges connected to it. This creates an isolated (degree
zero) check node which we call a zeroton. Also notice that
by removing some of the edges from the graph, the degree of
the associated checks decreases by one, thus there is a chance
that another singleton be found.

The algorithm proceeds to peel off a singleton at a time
until all of the check nodes are zeroton (decoding succeeds)
or all of the remaining check nodes have degree greater than
one (we call them multiton) and the algorithm fails to identify
all of the non-zero spectral values.

A more detailed pseudo-code of the proposed iterative
algorithm is given in Algorithm 2.

B. Complexity Analysis

Figure 3 shows a full block diagram of the SparseFHT
algorithm. Using this block diagram, it is possible to prove part
1 and 2 of Theorem 1 about the sample and the computational
complexity of the SparseFHT algorithm. The proof of the last
part of Theorem 1, regarding the success probability of the
algorithm, is the subject of Sections VI and VII for the very
and less sparse regimes, respectively.

Computational Complexity: As will be further clarified
in Sections VI and VII, depending on the sparsity index of
the signal α, we will use C different hash blocks, where
C ≤ (1

α ∨
1

1−α) + 1 each with B = 2b different output bins.
We always select B = K to keep the average number of non-
zero components per bin β = K

B equal to 1. This implies that
computing the hash outputs via an FHT block of size B needs
B log2(B) operations which assuming K = B, has a computa-
tional complexity K log2(K). Moreover, we need to compute
any hash output with n−b = log2(NB) different shifts in order
to do collision detection/support estimation, thus, the compu-
tational cost for each hash is K log2(K) log2(NK). As we need
to compute C different hash blocks, the total computational
complexity for each iteration will be CK log2(K) log2(NK).
We will explain later that the algorithm terminates in a fixed
number of iterations independent of the value of α and the
dimension of the signal N . Therefore, the total computational
complexity of the algorithm will be O(CK log2(K) log2(NK)).

Sample Complexity: Assuming K = B, computing each
hash with n − b different shifts needs K log2(NK) time do-
main samples. Therefore, the total sample complexity will be
CK log2(NK).

VI. PERFORMANCE ANALYSIS OF THE VERY SPARSE
REGIME

In this section, we consider the very sparse regime, where
0 < α ≤ 1

3 . In this regime, we show that assuming a random
support model for non-zero spectral components and a careful

6

Algorithm 2 SparseFHT(x,N,K,C,L,Σ)

Require: Input signal x of length N = 2n. Sparsity K. Hash
count C. Number of iterations of decoder L. Array Σ of C
matrices in GL(n,F2), Σc = [σc,1 | · · · |σc,n], σc,i ∈ Fn2 .

Ensure: X contains the sparse Hadamard spectrum of x.
B = O(K)
D = n− b+ 1
for c = 1, . . . , C do
Uc,0 = FastHadamardHashing(x,N,Σc, 0, B)
for d = 1, . . . , D do
Uc,d = FastHadamardHashing(x,N,Σc, σc,d, B)

end for
end for
for l = 1, . . . , L do

for c = 1, . . . , C do
for k = 0, . . . , B − 1 do

if Uc,0,k = 0 then
continue to next k

end if
v̂ ← 0
for d = 1, . . . , D do

if Uc,d,k/Uc,0,k = −1 then
v̂d−1 ← 1

else if Uc,d,k/Uc,0,k 6= 1 then
continue to next k

end if
end for
i← Σ−Tc (Ψb k + v̂)
Xi ← Uc,0,k
for c′ = 1, . . . , C do
j ← ΨT

b ΣTc′ i
Uc′,0,j ← Uc′,0,j −Xi

for d′ = 1, . . . , D do
Uc′,d′,j ← Uc′,d′,j −Xi(−1)〈σc′,d′ , i〉

end for
end for

end for
end for

end for

design of hash functions, it is possible to obtain a random
bipartite graph with variable nodes corresponding to non-zero
spectral components and with check nodes corresponding to
outputs of hash functions. We explicitly prove that asymptot-
ically this random graph behaves similarly to the ensemble
of LDPC bipartite graph. Running the peeling decoder to
recover the spectral components is also equivalent to the belief
propagation (BP) decoding for a binary erasure channel (BEC).
Fortunately, there is a rich literature in coding theory about
asymptotic performance of the BP decoder. Specially, it is
possible to show that the error (decoding failure) probability
can be asymptotically characterized by a ‘Density Evolution’
(DE) equation allowing a perfect analysis of the peeling
decoder.

We use the following steps to rigorously analyze the per-
formance of the decoder in the very sparse regime:

1) We explain construction of suitable hash functions de-
pending on the value of α ∈ (0, 1

3].
2) We rigorously analyze the structure of the induced

bipartite graph obtained by treating the non-zero spectral
components as variable nodes and the output of hash
functions as check nodes. In particular, we prove that
the resulting graph is a fully random left regular bipartite
graph similar to the regular LDPC ensemble. We also
obtain variable and check degrees distribution polyno-
mials for this graph.

3) At every stage, the peeling decoder recovers some of the
variable nodes, removing all the edges incident to those
variable nodes. We use Wormald’s method given in [17]
to prove the concentration of the number of unpeeled
edges around its expected value, which we also charac-
terize. Wormald’s method as exploited in [18], uses the
differential equation approach to track the evolution of
the number of edges in the underlying bipartite graph.
Specifically, it shows that the number of edges at every
step of the algorithm is very well concentrated around
the solution of the associated differential equations.

4) Wormald’s method gives a concentration bound to the
number of remaining edges as far as their count is a
fixed ratio γ ∈ (0, 1) of the initial edges in the graph.
Another expander argument as in [18] is necessary to
show that if the peeling decoder peels 1 − γ ratio of
the edges successfully, it can continue to peel off all the
remaining edges with very high probability.

A. Hash Construction

For the very sparse regime, 0 < α ≤ 1
3 , consider those

values of α equal to 1
C for some positive integer C ≥ 3.

We will explain later how to cover the intermediate values.
For α = 1

C , we will consider C different hash functions as
follows. Let x be an N dimensional time domain signal with
a WHT X , where N = 2n and let b = n

C . As we explained
before, the components of the vector X can be labelled by
n dimensional binary vector from Fn2 . We design C different
subsampling operator, where the i-th one returns all of the
variables with indices i b up to (i+ 1)b− 1 kept and the other
indices set to zero. Using the terminology of Proposition 1, we
let Σi be the identity matrix with columns circularly shifted
by (i+ 1)b to the left. Then, the hash operator given by (5) is

Hi = ΨT
b ΣTi = [0b×ib Ib 0b×(n−(i+1)b)],

where Ib is the identity matrix of order b and Φb is defined
in (2). To give further intuition about hash construction,
let us label the elements of the vector x with their binary
representation xn−1

0 ∈ Fn2 . Equivalent to the C different
subsampling operators, we can consider functions hi, i ∈ [C]
where hi(xn−1

0) = (xi b, xi b+1, . . . , xi b+b−1). The important
point is that with this construction, the outputs of different hi
depend on non overlapping portions of the labeling binary in-
dices. In particular, labeling the transform domain components
by Xn−1

0 ∈ Fn2 and ignoring the multiplicative constants, it is
seen from Equation (4) that every spectral component Xn−1

0

is hashed to the bin labelled with hi(Xn−1
0) ∈ Fb2 in hash i.

7

In terms of complexity, to obtain the output of each hash bin,
we only need to compute the WHT of a smaller subsampled
signal of dimension B. Note that by hash construction, K = B
which implies that all of the hash functions can be computed
in CK log2(K) operations. As we will explain later, we need
at least C = 3 hashes for the peeling algorithm to work
successfully and that is the main reason why this construction
works for α ≤ 1

3 . For intermediate values of α, those not
equal to 1

C for some integer C, one can construct [1
α] hashes

with B = 2[nα] output bins and one hash with smaller number
of output bins, thus obtaining a computational complexity of
order (1 + [1

α])K log2(K).

B. Random Bipartite Graph Construction

1) Random Support Model: For an N dimensional signal
x ∈ RN , the support of x is defined as supp(x) = {i ∈ [N] :
xi 6= 0}. The signal x is called K sparse if | supp(x)| =
K, where for A ⊂ [N], |A| denotes the cardinality of A.
For a given (K,N), RS1(K,N) is the class of all stochastic
signals whose support is uniformly at random selected from
the set of all

(
N
K

)
possible supports of size K. We do not

put any constraint on the non-zero components; they can be
deterministic or random. Model RS1 is equivalent to selecting
K out of N objects at random without replacement. If we
assume that the selection of the indices for the support is done
independently but with replacement, we obtain another model
that we call RS2(K,N). In particular, if Vi, i ∈ [K] are i.i.d.
random variables uniformly distributed over [N], a random
support in RS2(K,N) is given by the random set {Vi : i ∈
[K]}. Obviously, the size of a random support in RS2(K,N)
is not necessarily fixed but it is at most K. The following
proposition, proved in Appendix C, shows that in the sub-
linear sparsity regime, RS1 and RS2 are essentially equivalent.

Proposition 3. Consider the random support model
RS2(K,N), where K = Nα for some fixed 0 < α < 1 and
let H be the random size of the support set. Asymptotically
as N tends to infinity H

K converges to 1 in probability.

2) ‘Balls and Bins’ Model G(K,B,C): Consider C disjoint
sets of check nodes S1, S2, . . . , SC of the same size |Si| = B.
A graph in the ensemble of random bipartite graphs G with
K variable nodes at the left and C × B check nodes ∪Ci=1Si
at the right is generated as follows. Each variable node v in
G, independently from other variable nodes, is connected to
check nodes {s1, s2, . . . , sC} where si ∈ Si is uniformly at
random selected from Si and selection of si’s are independent
of one another. Every edge e in G can be labelled as (v, c),
where v ∈ [K] is a variable node and c is a check node in
one of S1, S2, . . . , SC . For a variable node v, the neighbors
of v denoted by N (v) consists of C different check nodes
connected to v, each of them from a different Si. Similarly,
for a check node c ∈ ∪Ci=1Si, N (c) is the set of all variable
nodes connected to c.

By construction, all of the resulting bipartite graphs in
the ensemble are left regular with variable degree C but the
check node degree is not fixed. During the construction, it
might happen that two variable nodes have exactly the same

neighborhood. In that case, we consider them as equivalent
variables and keep only one of them and remove the other, thus
the number of variable nodes in a graph from the ensemble
G(K,B,C) might be less than K.

This model is a variation of the Balls and Bins model, where
we have K balls, C buckets of different color each containing
B bins and every ball selects one bin from each bucket at
random independent of the other balls.

Here we also recall some terminology from graph theory
that we will use later. A walk of size ` in graph G starting
from a node v ∈ [K] is a set of ` edges e1, e2, . . . , e`,
where v ∈ e1 and where consecutive edges are different,
ei 6= ei+1, but incident with each other ei ∩ ei+1 6= ∅. A
directed neighborhood of an edge e = (v, c) of depth ` is the
induced subgraph in G consisting of all edges and associated
check and variable nodes in all walks of size ` + 1 starting
from v with the first edge being e1 = (v, c). An edge e is
said to have a tree neighborhood of depth ` if the directed
neighborhood of e of depth ` is a tree.

3) Ensemble of Graphs Generated by Hashing: In the
very sparse regime (0 < α < 1

3), in order to keep the
computational complexity of the hashing algorithm around
O(K log2(K)), we constructed C = 1

α different surjective
hash functions hi : Fn2 → Fb2, i ∈ [C], where b ≈ nα
and where for an x ∈ Fn2 with binary representation xn−1

0 ,
hi(x

n−1
0) = (xi b, xi b+1, . . . , xi b+b−1). We also explained

that in the spectral domain, this operation is equivalent to
hashing spectral the component labeled with Xn−1

0 ∈ Fn2
into the bin labelled with hi(X

n−1
0). Notice that by this

hashing scheme there is a one-to-one relation between a
spectral element X and its bin indices in different hashes
(h0(X), h1(X), . . . , hC−1(X)).

Let V be a uniformly distributed random variable over
Fn2 . It is easy to check that in the binary representation
of V , V n−1

0 are like i.i.d. unbiased bits. This implies that
h0(V), h1(V), . . . , hC−1(V) will be independent from one
another because they depend on disjoint subsets of V n−1

0 .
Moreover, hi(V) is also uniformly distributed over Fb2.

Assume that X1, X2, . . . , XK are K different variables in
Fn2 denoting the position of non-zero spectral components. For
these K variables and hash functions hi, we can associate
a bipartite graph as follows. We consider K variable nodes
corresponding to XK

1 and C different set of check nodes
S0, S1, . . . , SC−1 each of size B = 2b. The check nodes in
each Si are labelled by elements of Fb2. For each variable Xi

we consider C different edges connecting Xi to check nodes
labelled with hj(Xi) ∈ Sj , j ∈ [C].

Proposition 4. Let hi : Fn2 → Fb2, i ∈ [C] be as explained
before. Let V1, V2, . . . , VK be a set of variables generated
from the ensemble RS2(K,N), N = 2n denoting the position
of non-zero components. The bipartite graph associated with
variables V K1 and hash functions hi is a graph from ensemble
G(K,B,C), where B = 2b.

Proof: As V K1 belong to the ensemble RS2(N,K), they
are i.i.d. variables uniformly distributed in [N]. This implies
that for a specific Vi, hj(Vi), j ∈ [C] are independent from
one another. Thus, every variable node selects its neighbor

8

checks in S0, S1, . . . , SC−1 completely at random. Moreover,
for any j ∈ [C], the variables hj(V1), . . . , hj(VK) are also
independent, thus each variable selects its neighbor checks in
Sj independent of all other variables. This implies that in the
corresponding bipartite graph, every variable node selects its
C check neighbors completely at random independent of other
variable nodes, thus it belongs to G(K,B,C).

In Section V, we explained the peeling decoder over the
bipartite graph induced by the non-zero spectral components.
It is easy to see that the performance of the algorithm always
improves if we remove some of the variable nodes from the
graph because it potentially reduces the number of colliding
variables in the graph and there is more chance for the peeling
decoder to succeed decoding.

Proposition 5. Let α, C, K, hi, i ∈ [C] be as explained
before. Let G be the bipartite graph induced by the random
support set V K1 generated from RS1 and hash functions hi. For
any ε > 0, asymptotically as N tends to infinity, the average
failure probability of the peeling decoder over G is upper
bounded by its average failure probability over the ensemble
G(K(1 + ε), B, C).

Proof: Let Gε be a graph from ensemble G(K(1 +
ε), B,C). From Proposition 3, asymptotically the number of
variable nodes in Gε is greater than K. If we drop some of
the variable nodes at random from Gε to keep only K of them
we obtain a graph from ensemble G. From the explanation
of the peeling decoder, it is easy to see that the performance
of the decoder improves by removing some of the variable
nodes because in that case less variables are collided together
in different bins and there is more chance to peel them off.
This implies that peeling decoder performs strictly better over
G compared with Gε.

Remark 7. If we consider the graph induced by V K1 from
RS1 and hash functions hi, the edge connection between
variable nodes and check nodes is not completely random
thus it is not compatible with Balls-and-Bins model explained
before. Proposition 5 implies that asymptotically the failure
probability for this model can be upper bounded by the failure
probability of the peeling decoder for Balls-and-Bins model of
slightly higher number of edges K(1 + ε).

4) Edge Degree Distribution Polynomial: As we explained
in the previous section, assuming a random support model
for non-zero spectral components in the very sparse regime
0 < α < 1

3 , we obtained a random graph from ensemble
G(K,B,C). We also assumed that nα ∈ N and we selected
b = nα, thus K = B. Let us call β = K

B to be the average
number of non-zero components per a hash bin. In our case,
we designed hashes so that β = 1. As the resulting bipartite
graph is left regular, all of the variable nodes have degree C
whereas for a specific check node the degree is random and
depends on the graph realization.

Proposition 6. Let G(K,B,C) be the random graph ensemble
as before with β = K

B fixed. Then asymptotically as N tends
to infinity the check degree converges to a Poisson random
variable with parameter β.

Proof: Construction of the ensemble G shows that any
variable node has a probability of 1

B to be connected to a
specific check node, c, independent of all other variable nodes.
Let Zi ∈ {0, 1} be a Bernoulli random variable where Zi = 1
if and only if variable i is connected to check node c. It is
easy to check that the degree of c will be Z =

∑K
i=1 Zi. The

Characteristic function of Z can be easily obtained:

ΦZ(ω) = E
[
ejωZ

]
=

K∏
i=1

E
[
ejωZi

]
=

(
1 +

1

B
(ejω − 1)

)βB
→ eβ(ejω−1),

showing the convergence of Z to a Poisson distribution with
parameter β.

For a bipartite graph, the edge degree distribution poly-
nomial is defined by ρ(α) =

∑∞
i=1 ρiα

i−1 and λ(α) =∑∞
i=1 λiα

i−1, where ρi (λi) is the ratio of all edges that are
connected to a check node (variable node) of degree i. Notice
that we have i − 1 instead of i in the formula. This choice
makes the analysis to be written in a more compact form as
we will see.

Proposition 7. Let G be a random bipartite graph from the
ensemble G(K,B,C) with β = K

B . Then λ(α) = αC−1 and
ρ(α) converges to e−β(1−α) as N tends to infinity.

Proof: From left regularity of a graph from ensemble
G, it results that all of the edges are connected to variable
nodes of degree C, thus λ(α) = αC−1 and the number of
edges is equal to C K. By symmetry of hash construction, it
is sufficient to obtain the edge degree distribution polynomial
for check nodes of the first hash. The total number of edges
that are connected to the check nodes of the first hash is equal
to K. Let Ni be the number of check nodes in this hash with
degree i. By definition of ρi, it results that

ρi =
iNi
K

=
iNi/B

K/B
.

Let Z be the random variable as in the proof of Proposition
6 denoting the degree of a specific check node. Then, as N
tends to infinity one can show that

lim
N→∞

Ni
B

= lim
N→∞

P {Z = i} =
e−ββi

i!
a.s.

Thus ρi converges almost surely to e−ββi−1

(i−1)! . As ρi ≤ 1, for
any α : |α| < 1 − ε, |ρiαi−1| ≤ (1 − ε)i−1 and applying
the Dominated Convergence Theorem, ρ(α) converges to∑∞
i=1

e−ββi−1

(i−1)! α
i−1 = e−β(1−α).

5) Average Check Degree Parameter β: In the very sparse
regime, as we explained assuming that b = nα is an integer we
designed independent hashes with B = 2b output bins so that
β = K

B = 1. As we will see the performance of the peeling
decoder (described later by the DE equation in (8)) depends on
the parameter β. The less β the better the performance of the
peeling decoder. Also notice that decreasing β via increasing
B increases the time complexity O(B log2(B)) of computing
the hash functions. For the general case, one can select B such
that β ∈ [1, 2) or at the cost of increasing the computational

9

complexity make β smaller for example β ∈ [1
2 , 1) to obtain

a better performance.

C. Performance Analysis of the Peeling Decoder

Assume that G is the random bipartite graph resulting from
applying C hashes to signal spectrum. As we explained in
Section V, the iterative peeling algorithm starts by finding a
singleton (check node of degree 1 which contains only one
variable node or non-zero spectral components). The decoder
peels off this variable node and removes all of the edges
connected to it from the graph. The algorithm continues by
peeling off a singleton at each step until all of the check nodes
are zeroton; all of the non-zero variable nodes are decoded,
or all of the remaining unpeeled check nodes are multiton in
which case the algorithm fails to completely decode all the
spectral variables.

1) Wormald’s Method: In order to analyze the behavior
of the resulting random graphs under the peeling decoding,
the authors in [18] applied Wormald’s method to track the
ratio of edges in the graph connected to check nodes of
degree 1 (singleton). The essence of Wormald’s method is
to approximate the behavior of a stochastic system (here the
random bipartite graph), after applying suitable time normal-
ization, by a deterministic differential equation. The idea is
that asymptotically as the size of the system becomes large
(thermodynamic limit), the random state of the system is,
uniformly for all times during the run of the algorithm, well
concentrated around the solution of the differential equation.
In [18], this method was applied to analyze the performance
of the peeling decoder for bipartite graph codes over the BEC.
We briefly explain the problem setting in [18] and how it can
be used in our case.

Assume that we have a bipartite graph G with k variable
nodes at the left, c k check nodes at the right and with edge
degree polynomials λ(x) and ρ(x). We can define a channel
code C(G) over this graph as follows. We assign k independent
message bits to k input variable nodes. The output of each
check node is the module 2 summation (XOR or summation
over F2) of the all of the message bits that are connected to
it. Thus, the resulting code will be a systematic code with k
message bits along with c k parity check bits. To communicate
a k bit message over the channel, we send k message bits
and all of the check bits associated with them. While passing
through the BEC, some of the message bits or check bits are
erased independently. Assume a specific case in which the
message bits and check bits are erased independently with
probability δ and δ′ respectively. Those message bits that pass
perfectly through the channel are successfully transmitted,
thus, the decoder tries to recover the erased message bits
from the redundant information received via check bits. If we
consider the induced graph after removing all variable nodes
and check nodes corresponding to the erased ones from G, we
end up with another bipartite graph G′. It is easy to see that
over the new graph G′, one can apply the peeling decoder to
recover the erased bits.

In [18], this problem was fully analyzed for the case of
δ′ = 0, where all of the check bits are received perfectly but

δ ratio of the message bits are erased independently from one
another. In other words, the final graph G′ has on average kδ
variable nodes to be decoded. Therefore, the analysis can be
simply applied to our case, by assuming that δ → 1, where
all of the variable nodes are erased (they are all unknown
and need to by identified). Notice that from the assumption
δ′ = 0 no check bit is erased as is the case in our problem.
In particular, Proposition 2 in [18] states that

Proposition 2 in [18]: Let G be a bipartite graph with edge
degrees specified by λ(x) and ρ(x) and with k message bits
chosen at random. Let δ be fixed so that

ρ(1− δλ(x)) > 1− x, for x ∈ (0, 1].

For any η > 0, there is some k0 such that for all k > k0, if the
message bits of C(G) are erased independently with probability
δ, then with probability at least 1 − k

2
3 exp(− 3

√
k/2) the

recovery algorithm terminates with at most ηk message bits
erased.

Replacing δ = 1 in the proposition above, we obtain the
following performance guarantee for the peeling decoder.

Proposition 8. Let G be a bipartite graph from the ensemble
G(K,B,C) induced by hashing functions hi, i ∈ [C] as
explained before with β = K

B and edge degree polynomials
λ(x) = xC−1 and ρ(x) = e−β(1−x) such that

ρ(1− λ(x)) > 1− x, for x ∈ (0, 1].

Given any ε ∈ (0, 1), there is a K0 such that for any K > K0

with probability at least 1 − K
2
3 exp(− 3

√
K/2) the peeling

decoder terminates with at most εK unrecovered non-zero
spectral components.

Proposition 8 does not guarantee the success of the peeling
decoder. It only implies that with very high probability, it can
peel off any ratio η ∈ (0, 1) of non-zero components but
not necessarily all of them. However, using a combinatorial
argument, it is possible to prove that with very high probability
any graph in the ensemble G is an expander graph, namely,
every small enough subset of left nodes has many check
neighbors. This implies that if the peeling decoder can decode
a specific ratio of variable nodes, it can proceed to decode all
of them. A slight modification of Lemma 1 in [18] gives the
following result proved in Appendix D.

Proposition 9. Let G be a graph from the ensemble
G(K,B,C) with C ≥ 3. There is some η > 0 such that with
probability at least 1 − O(1

K3(C/2−1)), the recovery process
restricted to the subgraph induced by any η-fraction of the
left nodes terminates successfully.

Proof of Part 3 of Theorem 1 for α ∈ (0, 1
3]: In the very

sparse regime α ∈ (0, 1
3], we construct C = [1

α] ≥ 3 hashes
each containing 2nα output bins. Combining Proposition 8
and 9, we obtain that the success probability of the peeling
decoder is lower bounded by 1−O(1

K3(C/2−1)) as mentioned
in Remark 2.

2) Analysis based on Belief Propagation over Sparse
Graphs: In this section, we give another method of analysis
and further intuition about the performance of the peeling

10

decoder and why it works very well in the very sparse regime.
This method is based on the analysis of BP decoder over sparse
locally tree-like graphs. The analysis is very similar to the
analysis of the peeling decoder to recover non-zero frequency
components in [15]. Consider a specific edge e = (v, c)
in a graph from ensemble G(K,B,C). Consider a directed
neighborhood of this edge of depth ` as explained is VI-B2.
At the first stage, it is easy to see that this edge is peeled off
from the graph assuming that all of the edges (c, v′) connected
to the check node c are peeled off because in that case check
c will be a singleton allowing to decode the variable v. This
pictorially shown in Figure 4.

v

c

v0

c0

Fig. 4. Tree-like neighborhood an an edge e = (v, c). Dashed lines show
the edges that have been removed before iteration t. The edge e is peeled
off at iteration t because all the variable nodes v′ connected to c are already
decoded, thus c is a singleton check.

One can proceed in this way in the directed neighborhood
to find the condition under which the variable v′ connected
to c can be peeled off and so on. Assuming that the directed
neighborhood is a tree, all of the messages that are passed
from the leaves up to the head edge e are independent from
one another. Let p` be the probability that edge e is peeled
off depending on the information received from the directed
neighborhood of depth ` assuming a tree up to depth `. A
simple analysis similar to [15], gives the following recursion

pj+1 = λ(1− ρ(1− pj)), j ∈ [`], (8)

where λ and ρ are the edge degree polynomials of the
ensemble G. This iteration shows the progress of the peeling
decoder in recovering unknown variable nodes. In [15], it was
proved that for any specific edge e, asymptotically with very
high probability the directed neighborhood of e up to any
fixed depth ` is a tree. Specifically, if we start from a left
regular graph G from G(K,B,C) with KC edges, after `
steps of decoding, the average number of unpeeled edges is
concentrated around KCp`. Moreover, a martingale argument
was applied in [15] to show that not only the average of
unpeeled edges is approximately KCp` but also with very high
probability the number of those edges is well concentrated
around KCp`.

Equation (8) is in general known as density evolution
equation. Starting from p0 = 1, this equation fully predicts
the behavior of the peeling decoding over the ensemble G.
Figure 5 shows a typical behavior of this iterative equation
for different values of the parameter β = K

B .

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Fig. 5. Density Evolution equation for C = 3 and different values of β = K
B

For very small values of β, this equation has only a fixed
point 0 which implies that asymptotically the peeling decoder
can recover a ratio of variables very close to 1. However, for
large values of β, i.e. β & 2.44 for C = 3, this equation has a
fixed point greater than 0. The largest fixed point is the place
where the peeling decoder stops and can not proceed to decode
the remaining variables. It is easy to see that the only fixed
point is 0 provided that for any p ∈ (0, 1], p > λ(1−ρ(1−p)).
As λ : [0, 1]→ [0, 1], λ(x) = xC−1 is an increasing function
of x, by change of variable x = λ−1(p), one obtains that
x > 1− ρ(1− λ(x)) or equivalently

ρ(1− λ(x)) > 1− x, for x ∈ (0, 1].

This is exactly the same result that we obtained by applying
Wormald’s method as in [18]. In particular, this analysis
clarifies the role of x in Wormald’s method.

Similar to Wormald’s method, this analysis only guaranties
that for any ε ∈ (0, 1), asymptotically as N tends to infinity,
1−ε ratio of the variable nodes can be recovered. An expander
argument is again necessary to guarantee the full recovery of
all the remaining variables.

VII. PERFORMANCE ANALYSIS OF THE LESS SPARSE
REGIME

For the less sparse regime (1
3 < α < 1), similar to

the very sparse case, we will first construct suitable hash
functions which guarantee a low computational complexity
of order O(K log2(K) log2(NK)) for the recovery of non-zero
spectral values. Assuming a uniformly random support model
in the spectral domain, similar to the very sparse case, we
can represent the hashes by a regular bipartite graph. Over
this graph, the peeling algorithm proceeds to find singleton
checks and peel the associated variables from the graph until
no singleton remains. The recovery is successful if all of the
variables are peeled off, thus, all of the remaining checks are
zeroton otherwise some of the non-zero spectral values are not
recovered and the perfect recovery fails.

As we will explain, the structure of the induced bipartite
graph in this regime is a bit different than the very sparse
one. The following steps are used to analyze the performance
of the peeling decoder:

11

1) Constructing suitable hash functions
2) Representing hashing of non-zero spectral values by an

equivalent bipartite graph
3) Analyzing the performance of the peeling decoder over

the resulting bipartite graph
For simplicity, we consider the case where α = 1− 1

C for some
integer C ≥ 3. We will explain how to deal with arbitrary
values of C and α, especially those in the range (1

3 ,
2
3), in

Section VII-D.

A. Hash Construction

Assume that α = 1 − 1
C for some integer C ≥ 3. Let x

be an N dimensional signal with N = 2n and let X denote
its WHT. For simplicity, we label the components of X by
a binary vector Xn−1

0 ∈ Fn2 . Let t = n
C and let us divide

the set of n binary indices Xn−1
0 into C non-intersecting

subsets r0, r1, . . . , rC−1, where ri = X
(i+1)t−1
i t . It is clear

that there is a one-to-one relation between each binary vector
Xn−1

0 ∈ Fn2 and its representation (r0, r1, . . . , rC−1). We
construct C different hash function hi, i ∈ [C] by selecting
different subsets of (r0, r1, . . . , rC−1) of size C − 1 and
appending them together. For example

h1(Xn−1
0) = (r0, r1, . . . , rC−2) = X

(C−1)t−1
0 ,

and the hash output is obtained by appending C−1 first ri, i ∈
[C]. One can simply check that hi, i ∈ [C] are linear surjective
functions from Fn2 to Fb2, where b = (C−1)t. In particular, the
range of each hash consists of B = 2b different elements of
Fb2. Moreover, if we denote the null space of hi by N (hi), it is
easy to show that for any i, j ∈ [C], i 6= j, N (hi)∩N (hj) =
0 ∈ Fn2 .

Using the subsampling property of the WHT and similar
to the hash construction that we had in Subsection VI-A, it is
seen that subsampling the time domain signal and taking WHT
of the subsampled signal is equivalent to hashing the spectral
components of the signal. In particular, all of the spectral
components Xn−1

0 with the same hi(Xn−1
0) are mapped into

the same bin in hash i, thus, different bins of the hash can be
labelled with B different elements of Fb2.

It is easy to see that, with this construction the average
number of non-zero elements per bin in every hash is kept at
β = K

B = 1 and the complexity of computing all the hashes
along with their n − b shifts, which are necessary for col-
lision detection/support estimation, is CK log2(K) log2(NK).
The sample complexity can also be easily checked to be
CK log2(NK).

B. Bipartite Graph Representation

Similar to the very sparse regime, we can assign a bipartite
graph with the K left nodes (variable nodes) corresponding
to non-zero spectral components and with CB right nodes
corresponding to different bins of all the hashes. In particular,
we consider C different set of check nodes S1, S2, . . . , SC
each containing B nodes labelled with the elements of Fb2 and
a specific non-zero spectral component labelled with Xn−1

0 is
connected to nodes si ∈ Si if and only if the binary label

assigned to si is hi(Xn−1
0). In the very sparse regime, we

showed that if the support of the signal is generated according
to the RS2(K,N), where K random positions are selected
uniformly at random independent from one another from [N],
then the resulting graph is a random left regular bipartite
graph, where each variable nodes select its C neighbors in
S1, S2, . . . , SC completely independently. However, in the less
sparse regime, the selection of the neighbor checks in different
hashes is not completely random. To explain more, let us
assume that α = 2

3 , thus C = 3. Also assume that for a
non-zero spectral variable labelled with Xn−1

0 , ri denotes
X

(i+1)t−1
i t , where t = n

C . In this case, this variable is
connected to bins labelled with (r0, r1), (r1, r2) and (r0, r2)
in 3 different hashes. This has been pictorially shown in Figure
6.

Fig. 6. Bipartite graph representation for the less sparse case α = 2
3

, C = 3

If we assume that Xn−1
0 is selected uniformly at random

from Fn2 then the bin numbers is each hash, i.e. (r0, r1) in
the first hash, are individually selected uniformly at random
among all possible bins. However, it is easily seen that the joint
selection of bins is not completely random among different
hashes. In other words, the associated bins in different hashes
are not independent from one another. However, assuming the
random support model, where K variable V K1 are selected
independently as the position of non-zero spectral variables,
the bin association for different variables Vi is still done
independently.

C. Performance Analysis of the Peeling Decoder

As the resulting bipartite graph is not a completely random
graph, it is not possible to directly apply Wormald’s method
as we did for the very sparse case as in [18]. However, an
analysis based on the DE for the BP algorithm can still be
applied. In other words, setting p0 = 1 and

pj+1 = λ(1− ρ(1− pj)), j ∈ [`],

as in (8) with λ and ρ being the edge degree polynomials of the
underlying bipartite graph, it is still possible to show that after
` steps of decoding the average number of unpeeled edges is
approximately KCp`. A martingale argument similar to [15]
can be applied to show that the number of remaining edges
is also well concentrated around its average. Similar to the
very sparse case, this argument asymptotically guarantees the
recovery of any ratio of the variables between 0 and 1. Another

12

argument is necessary to show that if the peeling decoder
decodes a majority of the variables, it can proceed to decode
all of them with very high probability. To formulate this, we
use the concept of trapping sets for the peeling decoder.

Definition 2. Let α = 1 − 1
C for some integer C ≥ 3 and

let hi, i ∈ [C] be a set of hash functions as explained before.
A subset of variables T ⊂ Fn2 is called a trapping set for the
peeling decoder if for any v ∈ T and for any i ∈ [C], there
is another vi ∈ T , v 6= vi such that hi(v) = hi(vi), thus
colliding with v in the i-th hash.

Notice that a trapping set can not be decoded because all
of its neighbor check nodes are multiton. We first analyze
the structure of the trapping set and find the probability that
a specific set of variables build a trapping set. Let X be a
spectral variable in the trapping set with the corresponding
binary representation Xn−1

0 and assume that C = 3. As we
explained, we can equivalently represent this variable with
(r0, r1, r2), where ri = X

(i+1)t−1
it with t = n

C . We can
consider a three dimensional lattice whose i-th axis is labelled
by all possible values of ri. In this space, there is a simple
interpretation for a set T to be a trapping set, namely, for any
(r0, r1, r2) ∈ T there are three other elements (r′0, r1, r2),
(r0, r

′
1, r2) and (r0, r1, r

′
2) in T that can be reached from

(r0, r1, r2) by moving along exactly one axis. Notice that in
this case each hash is equivalent to projecting (r0, r1, r2) onto
two dimensional planes spanned by different coordinates, for
example, h1(r0, r1, r2) = (r0, r1) is a projection on the plane
spanned by the first and second coordinate axes of the lattice.
A similar argument holds for other values of C > 3, thus,
larger values of α.

For C ≥ 3, the set of all C-tuples (r0, r1, . . . , rC−1) is
a C-dimensional lattice. We denote this lattice by L. The
intersection of this lattice by the hyperplane Ri = ri is a
(C − 1) dimensional lattice defined by

L(Ri = ri) = {(r0, . . . , ri−1, ri+1, . . . , rC−1) :

(r0, r1, . . . , ri−1, ri, ri+1, . . . , rC−1) ∈ L}.

Similarly for S ⊂ L, we have the following definition

S(Ri = ri) = {(r0, . . . , ri−1, ri+1, . . . , rC−1) :

(r0, r1, . . . , ri−1, ri, ri+1, . . . , rC−1) ∈ S}.

Obviously, S(Ri = ri) ⊂ L(Ri = ri). We have the following
proposition whose proof simply follows from the definition of
the trapping set.

Proposition 10. Assume that T is a trapping set for the C
dimensional lattice representation L of the non-zero spectral
domain variables as explained before. Then for any ri on the
i-th axis, T (Ri = ri) is either empty or a trapping set for the
(C − 1) dimensional lattice L(Ri = ri).

Proposition 11. The size of the trapping set for a C dimen-
sional lattice is at least 2C .

Proof: We use a simple proof using the induction on
C. For C = 1, we have a one dimensional lattice along
a line labelled with r0. In this case, there must be at least
two variables on the line to build a trapping set. Consider a

trapping set T of dimension C. There are at least two points
(r0, r1, . . . , rC−1) and (r′0, r1, . . . , rC−1) in T . By Proposition
10, T (R0 = r0) and T (R0 = r′0) are two (C−1) dimensional
trapping sets each consisting of at least 2C−1 elements by
induction hypothesis. Thus, T has at least 2C elements.

Remark 8. The bound |T | ≥ 2C on the size of the trapping
set is actually tight. For example, for i ∈ [C] consider ri, r′i
where ri 6= r′i and let

T = {(a0, a1, . . . , aC−1) : ai ∈ {ri, r′i}, i ∈ [C]}.

It is easy to see that T is a trapping set with 2C elements
corresponding to the vertices of a C dimensional cube.

We now prove the following proposition which implies that
if the peeling decoder can decode all of the variable nodes
except a fixed number of them, with high probability it can
continue to decode all of them.

Proposition 12. Let s be a fixed positive integer. Assume
that α = 1− 1

C for some integer C ≥ 3 and consider a hash
structure with C different hashes as explained before. If the
peeling decoder decodes all except a set of variables of size s,
it can decode all of the variables with very high probability.

Proof: The proof in very similar to [15]. Let T be a
trapping set of size s. By Proposition 11, we have s ≥ 2C .
Let pi be the number of distinct values taken by elements of
T along the Ri axis and let pmax = maxi∈[C] pi. Without
loss of generality, let us assume that the R0 axis is the one
having the maximum pi. Consider T (R0 = r0) for those
pmax values of r0 along the R0 axis. Proposition 10 implies
that each T (R0 = r0) is a trapping set which has at least
2C−1 elements according to Proposition 11. This implies that
s ≥ 2C−1pmax or pmax ≤ s

2C−1 . Moreover, T being the
trapping set implies that there are subsets Ti consisting of
elements from axes Ri and all of the elements of T are
restricted to take their i-th coordinate values along Ri from
the set Ti. Considering the way that we generate the position
of non-zero variables Xn−1

0 with the equivalent representation
(r0, r1, . . . , rC−1), the coordinate of any variable is selected
uniformly and completely independently from on another and
from the coordinates of the other variables. This implies that

P {Fs} ≤ P {For any variables in T , ri ∈ Ti, i ∈ [C]}

≤
C−1∏
i=0

(
Pi
pi

)
(
pi
Pi

)s ≤
C−1∏
i=0

(
Pi

s/2C−1

)
(

s

2C−1Pi
)s,

where Fs is the event that the peeling decoder fails to decode
a specific subset of variables of size s and where Pi denotes
the number of all possible values for the i-th coordinate of a
variable. By our construction all Pi are equal to P = 2n/C =

13

2n(1−α) = N (1−α), thus we obtain that

P {Fs} ≤
(

P

s/2C−1

)C (s

2C−1P

)sC
≤
(

2C−1Pe

s

)sC/2C−1 (s

2C−1P

)sC
≤

(
se1/(2C−1−1)

2C−1P

)sC(1−1/2C−1)

.

Taking the union bound over all
(
K
s

)
possible ways of selection

of s variables out of K variables, we obtain that

P {F} ≤
(
K

s

)
P {Fs}

≤
(
ePC−1

s

)s(
se1/(2C−1−1)

2C−1P

)sC(1−1/2C−1)

= O(1/P
s(1− C

2C−1))

≤ O(1/P (2C−2C)) = O(1/N
2C

C −2).

For C ≥ 3, this gives an upper bound of O(N−
2
3).

D. Generalized Hash Construction

The hash construction that we explained only covers values
of α = 1 − 1

C for C ≥ 3 which belongs to the region α ∈
[2
3 , 1). We will explain a hash construction that extends to any

value of C and α ∈ (0, 1), which is not necessarily of the
form 1 − 1

C . This construction reduces to the very and less
sparse regimes hash constructions when α = 1

C , α ∈ (0, 1/3],
and α = 1− 1

C , α ∈ [2/3, 1), respectively.
In the very sparse regime α = 1

3 , we have C = 3 different
hashes and for a non-zero spectral variable X with index
Xn−1

0 = (r0, r1, r2), hi(Xn−1
0) = ri thus the output of

different hashes depend on non overlapping parts of the binary
index of X whereas for α = 2

3 the hash outputs are (r0, r1),
(r1, r2) and (r0, r2) which overlap on a portion of binary
indices of length n

3 . Intuitively, it is clear that in order to
construct different hashes for α ∈ (1

3 ,
2
3), we should start

increasing the overlapping size of different hashes from 0 for
α = 1

3 to n
3 for α = 2

3 . We give the following construction
for the hash functions

hi(X
n−1
0) = Xi t+b

i t , i ∈ [C],

where t = n
C and the values of the indices are computed

modulo n, for example Xn = X0. In the terminology of
Section IV, we pick Hi = ΨT

b ΣTi ∈ Fk×n2 , where Σi ∈ Fn×n2

is the identity matrix with columns circularly shifted by (i+1)b
to the left. It is clear that each hash is a surjective map from
Fn2 into Fnα2 . Therefore, if we pick b = nα, the number of
output bins in each hash is B = 2nα = Nα = K, thus the
average number of non-zero variables per bin in every hash
is equal to β = K

B = 1. In terms of decoding performance
for the intermediate values of α ∈ (1

3 ,
2
3), one expects that the

performance of the peeling decoder for this regime is between
the very sparse regime α = 1

3 and the less sparse one α = 2
3 .

1/3 2/3

12

9

6

3

0

0.2

0.4

0.6

0.8

1

Fig. 7. Probability of success of the algorithm in the very sparse regime as a
function of α and C. The dimension of the signal is N = 222. The black line
corresponds to α = 1

C
and α = 1− 1

C
in the very and less sparse regimes,

respectively. We fix β = 1. The hashing matrices are deterministically picked
as described in Section VII-D.

1/3 2/3

12

9

6

3

0

0.2

0.4

0.6

0.8

1

Fig. 8. Probability of success of the algorithm in the very sparse regime as a
function of α and C. The dimension of the signal is N = 222. The black line
corresponds to α = 1

C
and α = 1− 1

C
in the very and less sparse regimes,

respectively. We fix β = 1. The hashing matrices are picked at random for
every trial.

VIII. EXPERIMENTAL RESULTS

In this section, we empirically evaluate the performance of
the SparseFHT algorithm for a variety of design parameters.
The simulations are implemented in C programming language
and the success probability of the algorithm has been estimated
via sufficient number of trials. We also provide a comparison
of the run time of our algorithm and the standard Hadamard
transform.

• Experiment 1: We fix the signal size to N = 222 and
run the algorithm 1000 times to estimate the success
probability for α ∈ (0, 1

3] and 1 ≤ C ≤ 12. The
hashing scheme used is as described in Section VII-D.
Fig. 7 shows the simulation result. Albeit the asymptotic
behavior of the error probability is only guaranteed for
C = (1

α ∨
1

1−α), we observe much better results in
practice. Indeed, C = 4 already gives a probability of
success very close to one over a large range of α, and
only up to C = 6 seems to be required for the largest
values of α.

• Experiment 2: We repeat here experiment 1, but instead of
deterministic hashing matrices, we now pick Σi, i ∈ [C],

14

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Fig. 9. Probability of success of the algorithm in the less sparse regime as
a function of β = K/B. We fix N = 222, B = 217, C = 4, and vary α in
the range 0.7 to 0.9.

uniformly at random from GL(n,F2). The result is shown
in Fig. 8. We observer that this scheme performs at least
as well as the deterministic one.

• Experiment 3: In this experiment, we investigate the
sensitivity of the algorithm to the value of the parameter
β = K/B; the average number of non-zero coefficients
per bin. As we explained, in our hash design we use
β ≈ 1. However, using larger values of β is appealing
from a computational complexity point of view. For the
simulation, we fix N = 222, B = 217, C = 4, and vary
α between 0.7 and 0.9, thus changing K and as a result
β. Fig. 9 show the simulation results. For β ≈ 0.324,
the algorithm succeeds with probability very close to
one. Moreover, for values of β larger than 3, success
probability sharply goes to 0.

• Runtime measurement: We compare the runtime of the
SparseFHT algorithm with a straightforward implemen-
tation of the fast Hadamard transform. The result is shown
in Fig. 10 for N = 215. SparseFHT performs much faster
for 0 < α < 2/3.
It is also intersting to identify the range of α for which
SparseFHT has a lower runtime than the conventional
FHT. We define α∗, the largest value of α such that
SparseFHT is faster than FHT for any lower value of
α. That is

α∗ = sup
α∈(0,1)

{α : ∀α′ ≤ α, TFHT (n) > TSFHT (α′, n)},

where TFHT and TSFHT are the runtimes of the conven-
tional FHT and SparseFHT, respectively. We plot α∗ as
a function of n = log2N in Fig. 11.

Remark 9. In the computation of the complexity in Sec-
tion V-B, we have assumed that matrix-vector multiplications
in Fn2 can be done in O(1). In general, it is not true. However,
the deterministic hashing scheme of the algorithm is nothing
but a circular bit shift that can be implemented in a constant
number of operations, independent of the vector size n.

If one is given Σ, some matrix from Fn×n2 , and its inverse
transpose Σ−T , the overall complexity of the algorithm would

1/3 2/3
0

0.5

1

1.5

Fig. 10. Comparison of the Median runtime in ms of the SparseFHT and
conventional FHT for N = 215 and for different values of α. Confidence
interval where found to be negligible and are omitted here. Lower runtime is
better.

6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

Fig. 11. In this figure, we plot n = log2N against α∗, the largest value of
α such that SparseFHT runs faster than the conventional FHT for all values
of α smaller or equal. When FHT is always faster, we simply set α∗ = 0.
Larger values are better.

nonetheless be unchanged. First, we observe that it is possible
to compute the inner product of two vectors in constant time
using bitwise operations and a small look-up table1. Now,
given the structure of Ψb, computing ΣΨbm in Algorithm 1
only requires log2K inner products. Thus the complexity
of Algorithm 1 is unchanged. Finally, (7) can be split into
pre-computing Σ−TΨbk at the same time as we subsample
the signal (in O(log2K)), and computing the inner product
between v̂ and the n − b first columns of Σ when doing the
decoding (O(log2

N
K)).

IX. CONCLUSION

We presented a new algorithm to compute the Hadamard
transform of a signal of length N which is K-sparse in the
Hadamard domain. The algorithm presented has complexity
O(K log2K log2

N
K) and only requires O(K log2

N
K) time-

domain samples. We show that the algorithm correctly re-
constructs the Hadamard transform of the signal with high
probability asymptotically going to one.

1http://graphics.stanford.edu/∼seander/bithacks.html#ParityLookupTable

15

The performance of the algorithm is also evaluated empiri-
cally through simulation, and its speed is compared to that of
the conventional fast Hadamard transform. We find that con-
siderable speed-up can be obtained, even for moderate signal
length (e.g. N = 210) with reasonnable sparsity assumptions.

However, from the statement of Proposition 2, it will be ap-
parent to the reader that the algorithm is absolutely not robust
to noise. In fact, at very large signal size, the machine noise,
using double-precision floating point arithmetic, proved to be
problematic in the simulation. To make the algorithm fully
practical, a robust estimator is needed to replace Proposition 2,
and is, so far, left for future work.

REFERENCES

[1] W. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image
coding,” in Proceedings of the IEEE, 1969, pp. 58–68.

[2] 3GPP TS 25.213 V11.4.0 Release 11, “Spreading and modulation (fdd),”
2013.

[3] K. J. Horadam, Hadamard Matrices and Their Applications. Princeton
University Press, 2007.

[4] S. Haghighatshoar and E. Abbe, “Polarization of the Rényi information
dimension for single and multi terminal analog compression,” arXiv
preprint arXiv:1301.6388, 2013.

[5] A. Hedayat and W. Wallis, “Hadamard matrices and their applications,”
The Annals of Statistics, pp. 1184–1238, 1978.

[6] M. H. Lee and M. Kaveh, “Fast Hadamard transform based on a simple
matrix factorization,” Acoustics, Speech and Signal Processing, IEEE
Transactions on, vol. 34, no. 6, pp. 1666–1667, 1986.

[7] J. R. Johnson and M. Pueschel, “In search of the optimal Walsh-
Hadamard transform,” in Acoustics, Speech, and Signal Processing,
2000. ICASSP ’00. Proceedings. 2000 IEEE International Conference
on, 2000, pp. 3347–3350.

[8] A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss,
“Near-optimal sparse fourier representations via sampling,” in Proceed-
ings of the thiry-fourth annual ACM symposium on Theory of computing.
ACM, 2002, pp. 152–161.

[9] A. C. Gilbert, M. J. Strauss, and J. A. Tropp, “A Tutorial on Fast Fourier
Sampling,” Signal Processing Magazine, IEEE, vol. 25, no. 2, pp. 57–66,
2008.

[10] D. Lawlor, Y. Wang, and A. Christlieb, “Adaptive sub-linear Fourier
algorithms,” arXiv.org, Jul. 2012.

[11] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and practical
algorithm for sparse Fourier transform,” Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1183–1194,
2012.

[12] ——, “Nearly optimal sparse Fourier transform,” Proceedings of the
44th symposium on Theory of Computing, pp. 563–578, 2012.

[13] B. Ghazi, H. Hassanieh, P. Indyk, D. Katabi, E. Price, and L. Shi,
“Sample-Optimal Average-Case Sparse Fourier Transform in Two Di-
mensions,” arXiv.org, Mar. 2013.

[14] S. Pawar and K. Ramchandran, “A hybrid DFT-LDPC framework for
fast, efficient and robust compressive sensing,” in Communication, Con-
trol, and Computing (Allerton), 2012 50th Annual Allerton Conference
on, 2012, pp. 1943–1950.

[15] ——, “Computing a k-sparse n-length Discrete Fourier Transform using
at most 4k samples and O(k log k) complexity,” arXiv.org, May 2013.

[16] T. Richardson and R. L. Urbanke, Modern coding theory. Cambridge
University Press, 2008.

[17] N. C. Wormald, “Differential Equations for Random Processes and
Random Graphs,” The Annals of Applied Probability, vol. 5, no. 4, pp.
1217–1235, Nov. 1995.

[18] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Efficient erasure correcting codes,” Information Theory, IEEE Trans-
actions on, vol. 47, no. 2, pp. 569–584, 2001.

APPENDIX A
PROOF OF THE PROPERTIES OF THE WHT

A. Proof of Property 1

∑
m∈Fn2

(−1)〈k ,m〉xm+p =
∑
m∈Fn2

(−1)〈k ,m+p〉xm.

And the proof follows by taking (−1)〈k , p〉 out of the sum and
recognizing the Hadamard transform of xm. �

B. Proof of Property 2

As we explained, it is possible to assign an N ×N matrix
Π to the permutation π as follows

(Π)i,j =

{
1 if j = π(i)⇔ i = π−1(j)

0 otherwise.
.

Let π1 and π2 be the permutations associated with Π1 and Π2.
Since (HN)i,j = (−1)〈i , j〉, the identity (1) implies that

(−1)〈π2(i) , j〉 = (−1)〈i , π
−1
1 (j)〉.

Therefore, for any i, j ∈ Fn2 , π1, π2 must satisfy 〈π2(i) , j〉 =〈
i , π−1

1 (j)
〉
. By linearity of the inner product, one obtains

that

〈π2(i+ k) , j〉 =
〈
i+ k , π−1

1 (j)
〉

=
〈
i , π−1

1 (j)
〉

+
〈
k , π−1

1 (j)
〉

= 〈π2(i) , j〉+ 〈π2(k) , j〉 .

As i, j ∈ Fn2 are arbitrary, this implies that π2, and by
symmetry π1, are both linear operators. Hence, all the permu-
tations satisfying (1) are in one-to-one correspondence with
the elements of GL(n,F2). �

C. Proof of Property 3

Since Σ is non-singular, then Σ−1 exists. It follows from
the definition of the WHT that∑

m∈Fn2

(−1)〈k ,m〉xΣm =
∑
m∈Fn2

(−1)〈k ,Σ
−1m〉xm

=
∑
m∈Fn2

(−1)〈Σ
−T k ,m〉xm.

This completes the proof. �

D. Proof of Property 4

∑
m∈Fb2

(−1)〈k ,m〉xΨbm

= 1√
N

∑
m∈Fb2

(−1)〈k ,m〉
∑
p∈Fn2

(−1)〈Ψbm, p〉Xp

= 1√
N

∑
p∈Fn2

Xp

∑
m∈Fb2

(−1)〈m, k+ΨTb p〉.

In the last expression, if p = Ψbk+ i with i ∈ N (ΨT
b) then it

is easy to check that the inner sum is equal to B, otherwise it
is equal to zero. Thus, by proper renormalization of the sums
one obtains the proof. �

16

APPENDIX B
PROOF OF PROPOSITION 2

We first show that if multiple coefficients fall in the same
bin, it is very unlikely that 1) is fulfilled. Let Ik = {j |Hj =
k} be the set of variable indices hashed to bin k. This set is fi-
nite and its element can be enumerated as Ik = {j1, . . . , jN

B
}.

We show that a set {Xj}j∈Ik is very unlikely, unless it
contains only one non-zero element. Without loss of generality,
we consider

∑
j∈Ik Xj = 1. Such {Xj}j∈Ik is a solution of

1 · · · 1

(−1)〈σ1 , j1〉 · · · (−1)

〈
σ1 , jN

B

〉
...

. . .
...

(−1)〈σn−b , j1〉 · · · (−1)

〈
σn−b , jN

B

〉




Xj1

...

XjN
B

 =


1

±1
...

±1

 ,

where σi, i ∈ {1, . . . , n} denotes the i-th column of the matrix
Σ. The left hand side matrix in the expression above, is (n−b+
1)×2n−b. As σ1, . . . , σn−b form a basis for Ik, all the columns
are different and are (omitting the top row) the exhaustive
list of all 2n−b possible ±1 vectors. Thus the right vector is
always one of the columns of the matrix and there is a solution
with only one non-zero component (1-sparse solution) to this
system whose support can be uniquely identified. Adding any
vector from the null space of the matrix to this initial solution
yields another solution. However, as we will show, due to its
structure this matrix is full rank and thus its null space has
dimension 2n−b−n+b−1. Assuming a continuous distribution
on the non-zero components Xi, the probability that {Xi}i∈Ik
falls in this null space is zero.

To prove that the matrix is indeed full rank, let us first focus
on the rank of the sub-matrix obtained by removing the first
row. This submatrix itself always contains M = −2I + 11T ,
where I is the identity matrix of order n− b and 1 is the all-
one vector of dimension (n − b). One can simply check that
M is a symmetric matrix, thus by spectral decomposition, it
has n − b orthogonal eigen-vectors vi, i ∈ [n − b]. It is also
easy to see that the normalized all-one vector v0 = 1√

n−b of
dimension n − b is an eigen-vector of M with eigen-value
λ0 = n − b − 2. Moreover, assuming the orthonormality of
the eigen-vectors, it results that vTi Mvi = λi = −2, where
we used vTi 1 = vTi v0 = 0 for i 6= 0. Thus, for n− b 6= 2 all
of the eigen-vlaues are non-zero and M is invertible, which
implies that the sub-matrix resulted after removing the first
row is full rank. In the case where n− b = 2, one can notice
that the Hadamard matrix of size 2 will be contained as a
submatrix, and thus the matrix will be full rank.

Now it remains to prove that initial matrix is also full rank
with a rank of n−b+1. Assume that the columns of the matrix
are arranged in the lexicographical order such that neglecting
the first row, the first and the last column are all 1 and all −1.
If we consider any linear combination of the rows except the
first one, it is easy to see that the first and the last element in
the resulting row vector have identical magnitudes but opposite
signs. This implies that the all-one row cannot be written as a
linear combination of the other rows of the matrix. Therefore,
the rank of the matrix must be n− b+ 1.

To prove (7), let ΣL and ΣR be the matrices containing
respectively the first n− b and the last b columns of Σ, such
that Σ = [ΣL ΣR]. If there is only one coefficient in the bin,
then (6) implies that v̂ = [(jTΣL) 0]T . Using definitions (2)
and (5), we obtain that ΨbHj = [0 (jTΣR)]T . We observe
that they sum to ΣT j and the proof follows. �

APPENDIX C
PROOF OF PROPOSITION 3

For t ∈ [K], let Ht denote the size of the random set
obtained by picking t objects from [N] independently and
uniformly at random with replacement. Let at and vt denote
the average and the variance of Ht for t ∈ [K]. It is easy to
see that {Ht}t∈[K] is a Markov process. Thus, we have

E [Ht+1 −Ht|Ht] = (1−Ht/N),

because the size of the random set increases if an only if we
choose an element from [N]\Ht. This implies that at+1 =
1 + γat, where γ = 1 − 1

N . Solving this equation we obtain
that

at =

t∑
r=0

γr =
1− γt+1

1− γ
= N(1− γt+1). (9)

In particular, aK = N(1 − (1 − 1
N)K), which implies that

E
[
HK
K

]
= N

K (1−(1− 1
N)K). One can check that for K = Nα,

0 < α < 1, as N tends to infinity E
[
HK
K

]
converges to 1. To

find the variance of Ht, we use the formula

Var(Ht+1) = Var(Ht+1|Ht) + Var(E [Ht+1|Ht)]). (10)

Therefore, we obtain that

Var(E [Ht+1|Ht]) = Var(1 + γHt) = γ2vt. (11)

Moreover, for the first part in (10), we have

Var(Ht+1|Ht) = EHt{Var(Ht+1|Ht = ht)}
= EHt{Var(Ht+1 −Ht|Ht = ht)}
(I)
= E

[
Ht

N

(
1− Ht

N

)]
=
at
N

+
a2
t + vt
N2

, (12)

where in (I) we used the fact that given Ht, Ht+1 − Ht

is a Bernoulli random variable with probability Ht
N , thus its

variance in equal to Ht
N (1 − Ht

N). Combining (11) and (12),
we obtain that

vt+1 =

(
γ2 +

1

N2

)
vt +

at
N

(
1 +

at
N

)
. (13)

From (9), it is easy to see that at is increasing in t. Moreover,
from (13) it is seen that vt+1 is increasing function of at, thus,
if we consider the following recursion

wt+1 =

(
γ2 +

1

N2

)
wt +

aK
N

(
1 +

aK
N
l
)
,

17

then for any t ∈ [K], vt ≤ wt. As wt is also an increasing
sequence of t, we obtain that

vK ≤ wK ≤ w∞ =
aK
N

(
1 +

aK
N

)
/

(
1− γ2 − 1

N2

)
=
aK
2

(
1 +

aK
N

)
/

(
1− 1

N

)
.

Using Chebyshev’s inequality, we obtain that for any ε > 0

P
{
HK

K
≥ (1 + ε)

}
≤ vK
K2(ε+ 1− aK

K)2
= Θ

(
1

ε2K

)
.

Obviously, HKK ≤ 1, thus HK
K converges to 1 in probability as

N and as a result K tend to infinity. �

APPENDIX D
PROOF OF PROPOSITION 9

Let S be any set of variable nodes of size at most ηK,
where we will choose η later. the average degree of variable
nodes in S is C. Let Ni(S), i ∈ [C] be the check neighbors
of G in hash i. If for at least one of the hashes i ∈ [C],
|Ni(S)| > |S|

2 , it results that there is at least one check node
of degree 1 (a singleton) among the neighbors, which implies
that the peeling decoder can still proceed to decode further
variable nodes.

Let E is denote the event that a specific subset A of size s
of variable nodes has at most s

2 check neighbors in hash i.
Also let Es = ∩Ci=1E is. By the construction of G, it is easy

to see that P {Es} =
∏C
i=1 P

{
E is
}

. Let T be any subset of
check nodes in hash i of size s

2 . The probability that all the
neighbors of A in hash i belong to a specific set T of size
s
2 is equal to (s

2B)s. Taking a union bound over
(
B
s/2

)
of all

such sets, it is seen that P {Es} ≤
(
B
s/2

)
(s

2B)s, which implies

that P
{
E is
}
≤
((

B
s/2

)
(s

2B)s
)C

. Taking a union bound over all
possible subsets of size s of variables, we obtain that

P {Fs} ≤
(
K

s

)
P {Es} ≤

(
K

s

)((
B

s/2

)(s

2B

)s)C
≤
(
eK

s

)s(
2eB

s

)sC/2 (s

2B

)sC
≤ usss(C/2−1)

Ks(C/2−1)
,

where u = eC/2+1(β2)C/2 and where Fs denotes the event that
the peeling decoder fail to decode a set of variables of size
s. We also used the fact that for n ≥ m,

(
n
m

)
≤ (n em)m and

P {F1} = P {F2} = 0. Selecting η = 1
2u2/(C−2) and applying

the union bound, we obtain that

P {F} ≤
ηK∑
s=1

P {Fs} =

ηK∑
s=3

P {Fs} =

ηK∑
s=3

usss(C/2−1)

Ks(C/2−1)

= O

(
1

K3(C/2−1)

)
+

ηK∑
s=4

(
1

2

)s
= O

(
1

K3(C/2−1)

)
,

where F is the event that the peeling decoder fails to decode
all the variables. This completes the proof. �

