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Abstract

Distributed, online data mining systems have emerged as a result of applications requiring analysis of large
amounts of correlated and high-dimensional data produced by multiple distributed data sources. We propose a
distributed online data classification framework where data is gathered by distributed data sources and processed
by a heterogeneous set of distributed learners which learn online, at run-time, how to classify the different data
streams either by using their locally available classification functions or by helping each other by classifying each
other’s data. Importantly, since the data is gathered at different locations, sending the data to another learner to
process incurs additional costs such as delays, and hence this will be only beneficial if the benefits obtained from
a better classification will exceed the costs. We model the problem of joint classification by the distributed and
heterogeneous learners from multiple data sources as a distributed contextual bandit problem where each data is
characterized by a specific context. We develop a distributed online learning algorithm for which we can prove
sublinear regret. Compared to prior work in distributed online data mining, our work is the first to provide analytic
regret results characterizing the performance of the proposed algorithm.

I. INTRODUCTION

A plethora of Big Data applications (network security, surveillance, health monitoring etc.) are emerging which
require online classification of large data sets collected from distributed network and traffic monitors, multimedia
sources, sensor networks, etc. This data is heterogeneous and dynamically evolves over time. In this paper, we
introduce a distributed online learning framework for classification of high-dimensional data collected by distributed
data sources.

The distributedly collected data is processed by a set of decentralized heterogeneous learners equipped with
classification functions with unknown accuracies. In this setting communication, computation and sharing costs
make it infeasible to use centralized data mining techniques where a single learner can access the entire data set.
For example, in a wireless sensor surveillance network, nodes in different locations collect different information
about different events. The learners/machines at each node of the network may run different classification algorithms,
may have different resolution, processing speed, etc.

The input data stream and its associated context can be time-varying and heterogeneous. We use the term “context”
generically, to represent any information related to the input data stream such as time, location and type (e.g., data
features/characteristics/modality) information. Each learner can process (label) the incoming data in two different
ways: either it can exploit its own information and its own classification functions or it can forward its input stream
to another learner (possibly by incurring some cost) to have it labeled. A learner learns the accuracies of its own
classification functions or other learners in an online way by comparing the result of the predictions with the true
label of its input stream which is revealed at the end of each slot. The goal of each learner is to maximize its
long term expected total reward, which is the expected number of correct labels minus the costs of classification.
In this paper the cost is a generic term that can represent any known cost such as processing cost, delay cost,
communication cost, etc. Similarly, data is used as a generic term. It can represent files of several Megabytes size,
chunks of streaming media packets or contents of web pages. A key differentiating feature of our proposed approach
is the focus on how the context information of the captured data can be utilized to maximize the classification
performance of a distributed data mining system. We consider cooperative learners which classify other’s data when
requested, but instead of maximizing the system utility function, a learner’s goal is to maximize its individual utility.
However, it can be shown that when the classification costs capture the cost to the learner which is cooperating
with another learner to classify its data, maximizing the individual utility corresponds to maximizing the system
utility.
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To jointly optimize the performance of the distributed data mining system, we design a distributed online learning
algorithm whose long-term average reward converges to the best distributed solution which can be obtained for
the classification problem given complete knowledge of online data characteristics as well as their classification
function accuracies and costs when applied to this data. We define the regret as the difference between the expected
total reward of the best distributed classification scheme given complete knowledge about classification function
accuracies and the expected total reward of the algorithm used by each learner. We prove a sublinear upper bound
on the regret, which implies that the average reward converges to the optimal average reward. The upper bound
on regret gives a lower bound on convergence rate to the optimal average reward. To illustrate our approach,
we provide numerical results by applying our learning algorithm to the classification of network security data and
compare the results with existing state-of-the-art solutions.

The remainder of the paper is organized as follows. In Section II we describe the related work and highlight
the differences from our work. In Section III we describe the decentralized data classification problem, the optimal
distributed classification scheme given the complete system model, its computational complexity, and the regret of
a learning algorithm with respect to the optimal classification scheme. Then, we consider the model with unknown
system statistics and propose a distributed online learning algorithm with uniform contextual partitioning in Section
IV. Using a network security application we provide numerical results on the performance of our distributed online
learning algorithm in Section V. Finally, the concluding remarks are given in Section VI.

II. RELATED WORK

Related work can be divided into two categories: Online learning for data mining and multi-armed bandit methods
aimed at learning how to act.

Online learning in distributed data classification systems aims to address the informational decentralization,
communication costs and privacy issues arising in these systems. For example in [1]–[4], various solutions are
proposed for distributed data mining problems of horizontally distributed data, while in [5], [6] ensemble learning
techniques are developed that exploit the correlation between the local learners for vertically distributed data. Several
cooperative distributed data mining techniques are proposed in [6]–[9], where the goal is to improve the prediction
accuracy with costly communication between local predictors. In this paper, we take a different approach: instead
of focusing on the characteristics of a specific data stream, we focus on the characteristics of data streams with the
same context information. This novel approach allows us to deal with both horizontally and vertically distributed
data in a unified manner within a distributed data mining system. Although our framework and illustrative results
are depicted using horizontally distributed data, if context is changed to be the set of relevant features, then our
framework and results can operate on vertically distributed data. Moreover, we assume no prior knowledge of the
data and context arrival processes and classification function accuracies, and the learning is done in a non-Bayesian
way.

Most of the prior work in distributed data mining provides algorithms which are asymptotically converging to
an optimal or locally-optimal solution without providing any rates of convergence. On the contrary, we do not only
prove convergence results, but we are also able to explicitly characterize the performance loss incurred at each
time step with respect to the optimal solution. In other words, we prove regret bounds that hold uniformly over
time. Some of the existing solutions (including [3], [4], [10]–[15]) propose ensemble learning techniques including
bagging, boosting, stacked generalization and cascading, where the goal is to use classification results from several
classifiers to increase the prediction accuracy. In our work we only consider choosing the best classification function
(initially unknown) from a set of classification functions that are accessible by decentralized learners. However, our
proposed distributed learning method can easily be adapted to perform ensemble learning. We provide a detailed
comparison to our work in Table I.

Other than distributed data mining, our learning framework can be applied to any problem that can be formulated
as a decentralized contextual bandit problem. Contextual bandits have been studied before in [16]–[19] in a single
agent setting, where the agent sequentially chooses from a set of alternatives with unknown rewards, and the rewards
depend on the context information provided to the agent at each time step. To the best of our knowledge, our work
is the first to address the decentralized contextual bandit problem in a system of cooperative learning agents.
In [20], a contextual bandit algorithm named LinUCB is proposed for recommending personalized news articles,
which is variant of the UCB algorithm [21] designed for linear payoffs. Numerical results on real-world Internet
data are provided, but no theoretical results on the resulting regret are derived. A perceptron based algorithm is
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[3], [8], [13]–[15] [7], [9] [5] This work
Aggregation non-cooperative cooperative cooperative no
Message none data training data and label
exchange residual only if improves

performance
Learning offline/online offline offline Non-bayesian
approach online
Correlation N/A no no yes
exploitation
Information from no all all only if improves
other learners accuracy
Data partition horizontal horizontal vertical horizontal
Bound on regret, no no no yes - sublinear
convergence rate

TABLE I
COMPARISON WITH RELATED WORK IN DISTRIBUTED DATA MINING

[16]–[19] [23]–[25] [26] This work
Multi-user no yes yes yes
Cooperative N/A yes no yes
Contextual yes no no yes
Data arrival arbitrary i.i.d. or Markovian i.i.d. i.i.d or arbitrary
process
Regret sublinear logarithmic may be linear sublinear

TABLE II
COMPARISON WITH RELATED WORK IN MULTI-ARMED BANDITS

used with upper confidence bounds in [22] in a centralized single user setting that achieves sublinear regret when
the instances are chosen by an adversary and the learning algorithm receives binary feedback about the true label
instead of the true label itself. Previously, distributed multi-user learning is only considered in the standard finite
armed bandit problem. In [23], [24] distributed online learning algorithms that converge to the optimal allocation
with logarithmic regret are proposed, given that the optimal allocation is an orthogonal allocation in which each
user selects a different action. This is generalized in [25] to dynamic resource sharing problems and logarithmic
regret results are also proved for this case. Alternatively, in this paper, we consider distributed online learning in
a contextual bandit setting. We provide a detailed comparison between our work and related work in multi-armed
bandit learning in Table II. Our decentralized contextual learning framework can be seen as an important extension
of the centralized contextual bandits framework [16]. The main difference is that: (i) a three phase learning algorithm
with training, exploration and exploitation phases are needed instead of the standard two phase, i.e., exploration
and exploitation phases, algorithms used in centralized contextual bandit problems; (ii) the adaptive partitions of the
context space should be formed in a way that each learner can efficiently utilize what is learned by other learners
about the same context. In the distributed contextual framework, the training phase is necessary since the context
arrivals to learners are different which makes the learning rates of the learners for different context different.

III. PROBLEM FORMULATION

The system model is shown in Figure 1. There are M learners which are indexed by the setM = {1, 2, . . . ,M}.
Let M−i = M− {i}. These learners work in a discrete time setting t = 1, 2, . . . , T , where the following events
happen sequentially, in each time slot: (i) a data stream si(t) with a specific context xi(t) arrives to each learner
i ∈ M, (ii) each learner chooses one of its own classification functions or another learner to send its data and
context, and produces a label based on the prediction of its own classification function or the learner to which its
sent its data and context, (iii) the truth (true label) is revealed eventually, perhaps by events or by a supervisor,
only to the classifier where the data arrived.

Each learner i ∈ M has access to a set of classification functions Fi which it can invoke to classify the data.
Classifier i knows the functions in Fi and costs of calling them1, but not their accuracies, while it knows the set
of other learners M−i and costs of calling them but does not know the functions Fk, k ∈ M−i, but only knows
an upper bound on the number of classification functions that each learner has, i.e., Fmax on |Fk|2, k ∈ M−i.
Classifier i can either invoke one of its classification functions or forward the data to another learner to have it
labeled. We assume that for learner i calling each classification function k ∈ Fi incurs a cost dk. For example,
if the application is delay critical this can be the delay cost, or this can represent the computational cost and

1Alternatively, we can assume that the costs are random variables with bounded support whose distribution is unknown. In this case, the
learners will not learn the accuracy but they will learn accuracy minus cost.

2For a set A, let |A| denote the cardinality of that set.
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Fig. 1. Operation of the distributed data classification system from the viewpoint of learner 1

power consumption associated with calling a classification function. Since the costs are bounded, without loss of
generality we assume that costs are normalized, i.e., dk ∈ [0, 1]. We assume that a learner can only call a single
function for each input data in order to label it. This is a reasonable assumption when the application is delay
sensitive since calling more than one classification function increases the delay. A learner i can also send its input
to another learner in M−i in order to have it labeled. Because of the communication cost and the delay caused
by processing at the recipient, we assume that whenever a data stream is sent to another learner k ∈ M−i a cost
of dk is incurred. The learners are cooperative which implies that learner k ∈ M−i will return a label to i when
called by i. Similarly, when called by k ∈M−i, learner i will return a label to k. We do not consider the effect of
this on i’s learning rate, however, since our results hold for the case when other learners are not helping i to learn
about its own classification functions, they will hold when other learners help i to learn about its own classification
functions. If we assume that dk also captures the cost to learner k to classify and sent the label to learner i, then
maximizing i’s own utility corresponds to maximizing the system utility. Let Ki = Fi ∪M−i. We call Ki the set
of arms (alternatives).

We assume that each classification function produces a binary label3. The data stream at time t arrives to
learner i with context information xi(t). The context may be generated as a result of pre-classification or a header
of the data stream. For simplicity we assume that the context space is X = [0, 1]d, while our results will hold for
any bounded d dimensional context space. We also note that the data input is high dimensional and its dimension
is greater than d (in most of the cases its much larger than d) . For example, the network security data we use in
numerical results section has 42 features, while the dimension of the context we use is at most 1.

Each classification function k ∈ ∪i∈MFi has an unknown accuracy πk(x) ∈ [0, 1], depending on the context
x. The accuracy πk(x) represents the probability that an input stream with context x will be labeled correctly
when classification function k is used to label it. Different classification functions can have different accuracies
for the same context. Although we do not make any assumptions about the classification accuracy πk(x) and the
classification cost dk, in general one can assume that classification accuracy increases with classification cost (e.g.,
classification functions with higher resolution, better processing). We assume that each classifier has similar
accuracies for similar contexts; we formalize this in terms of a (uniform) Lipschitz condition.

Assumption 1: For each k ∈ ∪i∈MFi, there exists L > 0, α > 0 such that for all x, x′ ∈ X , we have |πk(x)−
πk(x

′)| ≤ L||x− x′||α, where ||.|| denotes the Euclidian norm in Rd.
Assumption 1 indicates that the accuracy of a classification function for similar contexts will be similar to

each other. Even though the Lipschitz condition can hold with different constants Lk and αk for each classification
function, taking L to be the largest among Lk and α to be the smallest among αk we get the condition in Assumption
1. For example, the context can be the time of the day or/and the location from which the data originates. Therefore,

3In general we can assume that labels belong to R and define the classification error as the mean squared error or some other metric. Our
results can be adapted to this case as well.
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the relation between the classification accuracy and time can be written down as a Lipschitz condition. We assume
that α is known by the learners. In the bandit setting this is referred to as similarity information [16], [27].

The goal of learner i is to explore the alternatives in Ki to learn the accuracies, while at the same time exploiting
the best alternative for the context xt arriving at each time step t that balances the accuracy and cost to minimize
its long term loss due to uncertainty. Learner i’s problem can be modeled as a contextual bandit problem [16]–[19].
After labeling the input at time t, each learner observes the true label and updates the sample mean accuracy of
the selected arm based on this. Accuracies translate into rewards in bandit problems. In the next subsection we
formally define the benchmark solution which is computed using perfect knowledge about classification accuracies.
Then, we define the regret which is the performance loss due to uncertainty about classification accuracies.

A. Optimal Classification with Complete Information

Our benchmark when evaluating the performance of the learning algorithm is the optimal solution which selects
the classification function k with the highest accuracy minus cost for learner i from the set ∪j∈MFj given context
xt at time t. We assume that the costs are normalized so the tradeoff between accuracy and cost is captured without
using weights. Specifically, the optimal solution we compare against is given by

k∗(x) = arg max
k∈Ki

πk(x)− dk, ∀x ∈ X . (1)

Knowing the optimal solution means that learner i knows the classification function in ∪i∈MFi that yields the
highest expected accuracy for each x ∈ X . Choosing the best classification function for each context x requires to
evaluate the accuracy minus cost for each context and is computationally intractable, because the context space X
has infinitely many elements.

B. The Regret of Learning

In this subsection we define the regret as a performance measure of the learning algorithm used by the learners.
Simply, the regret is the loss incurred due to the unknown system dynamics. Regret of a learning algorithm for
learner i is defined with respect to the best arm k∗(x) given in (1). The regret of a learning algorithm is given by

R(T ) :=

T∑
t=1

πk∗(xt)(xt)− E

[
T∑
t=1

(I(k(xt) = yt)− dk(xt))

]
,

where k(xt) denotes the classification function or other learner chosen at time t, yt denotes the true label and
the expectation is taken with respect to the random selection made by the learning algorithm. Regret gives the
convergence rate of the total expected reward of the learning algorithm to the value of the optimal solution given
in (1). Any algorithm whose regret is sublinear, i.e., R(T ) = O(T γ) such that γ < 1, will converge to the optimal
solution in terms of the average reward. In the following section we will propose a distributed learning algorithm
with sublinear regret.

IV. A DISTRIBUTED UNIFORM CONTEXT PARTITIONING ALGORITHM

In this section we consider a uniform partitioning algorithm. Assume that each learner runs the learning algorithm
Classify or Send for Classification (CoS) given in Figure 2. Let mT be the slicing parameter of CoS that determines
the partition of the context space X . Basically, choosing a large mT will improve classification accuracy while
increasing the number of explorations. We will analyze the performance for a fixed mT and then optimize over
it. CoS forms a partition of [0, 1]d consisting of (mT )d sets where each set is a d-dimensional hypercube with
dimensions 1/mT × 1/mT × . . .× 1/mT . Let PT = {P1, P2, . . . , P(mT )d} denote this partition where each Pl is a
hypercube. When clear from the context, we will use l instead of Pl to denote the hypercube. The set of arms for
learner i consists of its classification functions and the set of learners it can send the data to, which is denoted by
Ki.

For each set in the partition PT , learner i keeps several counters for each arm in Ki. Any time step t can be in
one of the three phases: training phase in which learner i trains another learner by sending its own data, exploration
phase in which learner i updates the estimated reward of an arm in Ki by selecting it, and exploitation phase in
which learner i selects the arm with the highest estimated reward. The pseudocodes of these phases are given in
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Classify or Send for Classification (CoS for learner i):
1: Input: D1(t), D2(t), D3(t), T , mT

2: Initialize: Partition [0, 1]d into (mT )d sets. Let PT = {P1, . . . , P(mT )d} denote the sets in this partition. N i
k,l = 0, ∀k ∈ Ki, Pl ∈ PT ,

N i
1,k,l = 0, ∀k ∈M−i, Pl ∈ PT .

3: while t ≥ 1 do
4: for l = 1, . . . , (mT )d do
5: if xi(t) ∈ Pl then
6: if ∃k ∈ Fi such that N i

k,l ≤ D1(t) then
7: Run Explore(k, N i

k,l, r̄k,l)
8: else if ∃k ∈M−i such that N i

1,k,l ≤ D2(t) then
9: Obtain Nk

l (t) from k, set N i
1,k,l = Nk

l (t)−N i
k,l

10: if N i
1,k,l ≤ D2(t) then

11: Run Train(k, N i
1,k,l)

12: else
13: Go to line 15
14: end if
15: else if ∃k ∈M−i such that N i

k,l ≤ D3(t) then
16: Run Explore(k, N i

k,l, r̄k,l)
17: else
18: Run Exploit(M i

l , r̄l, Ki)
19: end if
20: end if
21: end for
22: t = t+ 1
23: end while

Fig. 2. Pseudocode for the CoS algorithm

Train(k, n):
1: select arm k
2: Receive reward rk(t) = I(k(xi(t)) = yt)− dk(xi(t))

3: n+ +
Explore(k, n, r):
1: select arm k
2: Receive reward rk(t) = I(k(xi(t)) = yt)− dk(xi(t))

3: r =
nr+rk(t)

n+1
4: n+ +

Exploit(n, r, Ki):
1: select arm k ∈ arg maxj∈Ki rj
2: Receive reward rk(t) = I(k(xi(t)) = yt)− dk(xi(t))

3: r̄k =
nk r̄k+rk(t)

nk+1

4: nk + +

Fig. 3. Pseudocode of the training, exploration and exploitation modules

Figure 3. Upon each data arrival, learner i first checks to which set in the partition PT the context belongs. Let
N i
l (t) be the number of data arrivals in Pl of learner i by time t. For k ∈ Fi, let N i

k,l(t) be the number of times
arm k is selected in response to a data arriving to set Pl in the partition PT by learner i by time t. Note that learner
i does not know anything about learner k’s classification functions. Therefore, before forming estimates about the
reward of k, it needs to make sure that k will almost always select its optimal classification function when called by
i. This is why the training phase is needed for learners k ∈M−i. To separate training, exploration and exploitation
phases, learner i keeps two counters for k ∈M−i. The first one, i.e., N i

1,k,l(t), counts the number of data arrivals
to learner k in set l by time t which includes data arrivals with context xk(t′) ∈ Pl, t′ < t and data arrivals from
learner i to k in the training phases of i. The second one, i.e., N i

2,k,l(t), counts the number of data arrivals to learner
k that are used in i’s reward estimation of k. This is the number of times data is sent from learner i to learner k
in the exploration phase or exploitation phase of learner i. For simplicity of notation we let N i

k,l(t) := N i
2,k,l(t)

for k ∈ M−i. The values of these counters are random variables when the context arrival process is stochastic.
Based on the values of these counters at time t, learner i either trains, explores or exploits an arm in Ki. This three
phase learning structure is one of the major components of our learning algorithm which makes it different than
the algorithms proposed for the contextual bandits in the literature which only have exploration and exploitation
phases.

When a context xi(t) ∈ Pl arrives, in order to make sure that all classification functions of all learners are
explored sufficiently, learner i checks if the following set is nonempty.

Si,l :=
{
k ∈ Fi such that N i

k,l(t) ≤ D1(t) or k ∈M−i
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such that N i
1,k,l(t) ≤ D2(t) or N i

2,k,l(t) ≤ D3(t)
}
.

For k ∈ M−i, let E ik,l(t) be the set of rewards collected from selections of arm k in set l by time t for which
N i

1,k,l(t) > D2(t). We note that, learner i does not have to communicate with learner k at each time step to update
N i

1,k,l(t). It only needs to communicate when N i
1,k,l(t) ≤ D2(t). To obtain the correct value of N i

1,k,l(t) it needs
to know Nk

l (t), since N i
1,k,l(t) = Nk

l (t)−N i
2,k,l(t). For k ∈ Fi, let E ik,l(t) the set of rewards collected from arm

k by time t. If Si,l 6= ∅, then learner i explores by choosing randomly an arm α(t) ∈ Si,l. If Si,l = ∅, this implies
that all classification functions have been explored sufficiently, so that learner i exploits by choosing the arm with
the highest sample mean estimate, i.e.,

α(t) ∈ arg max
k∈Ki

r̄ik,l(t), (2)

where r̄ik,l(t) is the sample mean of the rewards in set E ik,l(t). Explicitly, r̄ik,l(t) = (
∑

r∈Eik,l(t) r)/|E
i
k,l(t)|, where

each r ∈ E ik,l(t) is equal to 1− dk if the classification is correct and −dk if the classification is wrong. When there
is more than one maximizer of (2), one of them is randomly selected. The exploration control functions D1(t),
D2(t) and D3(t) ensure that each classification function is selected sufficiently many number of times so that the
sample mean estimates r̄ik,l(t) are accurate enough. In the following subsection we prove an upper bound on the
regret of CoS.
A. Analysis of the regret of CoS

Let µk(x) = πk(x) − dk, and βa =
∑∞

t=1 1/ta. For each Pl ∈ PT let µk,l := supx∈Pl µk(x) and µ
k,l

:=

infx∈Pl µk(x). Let x∗l be the context at the center of the hypercube Pl. We define the optimal arm for Pl as
k∗(l) := arg maxk∈Ki µk(x

∗
l ). Let

Liθ(t) :=
{
k ∈ Ki such that µ

k∗(l),l
− µk,l > a1t

θ
}
,

be the set of suboptimal arms for learner i at time t, where θ < 0, a1 > 0. The learners are not required to know
the values of the parameters θ and a1. They are only used in our analysis of the regret. First, we will give regret
bounds that depend on values of θ and a1 and then we will optimize over these values to find the best bound.

The regret given in (1) can be written as a sum of three components:

R(T ) = E[Re(T )] + E[Rs(T )] + E[Rn(T )],

where Re(T ) is the regret due to training and explorations by time T , Rs(T ) is the regret due to suboptimal arm
selections in exploitations by time T and Rn(T ) is the regret due to near optimal arm selections in exploitations
by time T , which are all random variables. In the following lemmas we will bound each of these terms separately.
The following lemma bounds E[Re(T )]. Due to space constraints some of the proofs are not included in the paper.
For the complete proofs please see the online appendix [].

Lemma 1: When CoS is run by learner i with parameters D1(t) = tz log t, D2(t) = Fmaxt
z log t, D3(t) = tz log t

and mT = dT γe4, where 0 < z < 1 and 0 < γ < 1/d, we have

E[Re(T )] ≤
(mT )d∑
l=1

(|Fi|+ (M − 1)(Fmax + 1))T z log T

+ (|Fi|+ 2(M − 1))(mT )d

≤ 2d(|Fi|+ (M − 1)(Fmax + 1))T z+γd log T

+ 2d(|Fi|+ 2(M − 1))T γd .

Proof: Since time step t is a training or an exploration step if and only if Si,l(t) 6= ∅, up to time T , there
can be at most dT z log T e exploration steps in which a classification function in k ∈ Fi is selected by learner i,
dFmaxT

z log T e training steps in which learner i selects learner k ∈ M−i, dT z log T e exploration steps in which
learner i selects learner k ∈M−i. Result follows from summing these terms and the fact that (mT )d ≤ 2dT γd for
any T ≥ 1.

4For a number r ∈ R, let dre be the smallest integer that is greater than or equal to r.
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From Lemma 1, we see that the regret due to explorations is linear in the number of hypercubes (mT )d, hence
exponential in parameter γ and z. We conclude that z and γ should be small enough to achieve sublinear regret
in exploration steps. For any k ∈ Ki and Pl ∈ PT , the sample mean r̄k,l(t) represents a random variable which is
the average of the independent samples in set E ik,l(t). Different from classical finite-armed bandit theory [21], these
samples are not identically distributed. In order to facilitate our analysis of the regret, we generate two different
artificial i.i.d. processes to bound the probabilities related to r̄k,l(t), k ∈ Ki. The first one is the best process in
which rewards are generated according to a bounded i.i.d. process with expected reward µk,l, the other one is the
worst process in which the rewards are generated according to a bounded i.i.d. process with expected reward µ

k,l
.

Let rbest
k,l (z) denote the sample mean of the z samples from the best process and rworst

k,l (z) denote the sample mean
of the z samples from the worst process. We will bound the terms E[Rn(T )] and E[Rs(T )] by using these artificial
processes along with the similarity information given in Assumption 1. The following lemma bounds E[Rs(T )].

Lemma 2: When CoS is run with parameters D1(t) = tz log t, D2(t) = Fmaxt
z log t, D3(t) = tz log t and

mT = dT γe, where 0 < z < 1 and 0 < γ < 1/d, given that

2L(
√
d)αt−γα + 6t−z/2 ≤ a1t

θ,

we have
E[Rs(T )] ≤ 2d+1(M − 1 + |Fi|)β2T

γd

+
2d+2(M − 1)Fmaxβ2

z
T γd+z/2

Proof: Let Ω denote the space of all possible outcomes, and w be a sample path. The event that the algorithm
exploits at time t is given by

W i
l (t) := {w : Si,l(t) = ∅}.

We will bound the probability that the algorithm chooses a suboptimal arm in an exploitation step. Using that
we can bound the expected number of times a suboptimal arm is chosen by the algorithm. Note that every time
a suboptimal arm is chosen, since πk(x) − dk ∈ [−1, 1], the loss is at most 2. Therefore 2 times the expected
number of times a suboptimal arm is chosen in an exploitation step bounds the regret due to suboptimal choices
in exploitation steps. Let V ik,l(t) be the event that a suboptimal action k is chosen at time t. We have

Rs(T ) ≤
∑
l∈PT

T∑
t=1

∑
k∈Liθ(t)

I(V ik,l(t),W i
l (t)).

Taking the expectation

E[Rs(T )] ≤
∑
l∈PT

T∑
t=1

∑
k∈Liθ(t)

P (V ik,l(t),W i
l (t)) (3)

Let Bik,l(t) be the event that at most tφ samples in E ik,l(t) are collected from suboptimal classification functions
of the k-th arm. Obviously for any k ∈ Fi, Bik,l(t) = Ω, while this is not always true for k ∈M−i. We have

{V ik,l(t),W i
l (t)} ⊂

{
r̄k,l(t) ≥ r̄k∗(l),l(t),W i

l (t),Bik,l(t)
}
∪
{
r̄k,l(t) ≥ r̄k∗(l),l(t),W i

l (t),Bik,l(t)c
}

⊂
{
r̄k,l(t) ≥ µk,l +Ht,W i

l (t),Bik,l(t)
}
∪
{
r̄k∗(l),l(t) ≤ µk∗(l),l −Ht,W i

l (t),Bik,l(t)
}

∪
{
r̄k,l(t) ≥ r̄k∗(l),l(t), r̄k,l(t) < µk,l +Ht, r̄k∗(l),l(t) > µ

k∗(l),l
−Ht,W i

l (t),Bik,l(t)
}

∪ Bik,l(t)c, (4)

for some Ht > 0. This implies that

P
(
V ik,l(t),W i

l (t)
)
≤ P

(
r̄k,l(t) ≥ µk,l +Ht,W i

l (t),Bik,l(t)
)

+ P
(
r̄k∗(l),l(t) ≤ µk∗(l),l −Ht,W i

l (t),Bik,l(t)
)
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+ P
(
r̄k,l(t) ≥ r̄k∗(l),l(t), r̄k,l(t) < µk,l +Ht, r̄k∗(l),l(t) > µ

k∗(l),l
−Ht,W i

l (t),Bik,l(t)
)

+ P (Bik,l(t)c). (5)

We have for any suboptimal arm k ∈ Ki

P
(
r̄k,l(t) ≥ r̄k∗(l),l(t), r̄k,l(t) < µk,l +Ht, r̄k∗(l),l(t) > µ

k∗(l),l
−Ht,W i

l (t),Bik,l(t)
)

≤ P

(
r̄best
k,l (|E ik,l(t)|) ≥ r̄worst

k∗(l),l(|E
i
k∗(l),l(t)|)− t

φ−1, r̄best
k,l (|E ik,l(t)|) < µk,l + L

(√
d

mT

)α
+Ht + tφ−1,

r̄worst
k∗(l),l(|E

i
k∗(l),l(t)|) > µ

k∗(l),l
− L

(√
d

mT

)α
−Ht,W i

l (t)

)
.

Since k is a suboptimal arm, when

2L

(√
d

mT

)α
+ 2Ht + 2tφ−1 − a1t

θ ≤ 0, (6)

the three inequalities given below

µ
k∗(l),l

− µk,l > a1t
θ,

r̄best
k,l (|E ik,l(t)|) < µk,l + L

(√
d

mT

)α
+Ht + tφ−1,

r̄worst
k∗(l),l(|E

i
k,l(t)|) > µ

k∗(l),l
− L

(√
d

mT

)α
−Ht,

together imply that

r̄best
k,l (|E ik,l(t)|) < r̄worst

k∗(l),l(|E
i
k,l(t)|)− tφ−1,

which implies that for a suboptimal arm k ∈ Ki, we have

P
(
r̄k,l(t) ≥ r̄k∗(l),l(t), r̄k,l(t) < µk,l +Ht, r̄k∗(l),l(t) > µ

k∗(l),l
−Ht,W i

l (t),Bik,l(t)
)

= 0. (7)

Let Ht = 2tφ−1. Then a sufficient condition that implies (6) is

2L(
√
d)αt−γα + 6tφ−1 ≤ a1t

θ. (8)

Assume that (8) holds for all t ≥ 1. Using a Chernoff-Hoeffding bound, for any k ∈ Liθ(t), since on the event
W i
l (t), |E ik,l(t)| ≥ tz log t, we have

P
(
r̄k,l(t) ≥ µk,l +Ht,W i

l (t),Bik,l(t)
)
≤ P

(
r̄best
k,l (|E ik,l(t)|) ≥ µk,l +Ht,W i

l (t)
)

≤ e−2(Ht)2tz log t = e−8t2φ−2tz log t , (9)

and

P
(
r̄k∗(l),l(t) ≤ µk∗(l),l −Ht,W i

l (t),Bik,l(t)
)

≤ P
(
r̄worst
k∗(l),l(|E

i
k∗(l),l(t)|) ≤ µk∗(l),l −Ht + tφ−1,W i

l (t)
)

≤ e−2(Ht−tφ−1)2tz log t = e−2t2φ−2tz log t. (10)

In order to bound the regret, we will sum (9) and (10) for all t up to T . For regret to be small we want the sum to
be sublinear in T . This holds when 2φ−2+z ≥ 0. We want z to be small since regret due to explorations increases
with z, and we also want φ to be small since we will show that our regret bound increases with φ. Therefore we



10

set 2φ− 2 + z = 0, hence

φ = 1− z/2. (11)

When (11) holds we have

P
(
r̄k,l(t) ≥ µk,l +Ht,W i

l (t),Bik,l(t)
)
≤ 1

t2
, (12)

and

P
(
r̄k∗(l),l(t) ≤ µk∗(l),l −Ht,W i

l (t),Bik,l(t)
)
≤ 1

t2
. (13)

Finally, for k ∈ Fi obviously we have P (Bik,l(t)c) = 0. For k ∈ M−i, let Xi
k,l(t) denote the random variable

which is the number of times a suboptimal classification function for arm k is chosen in exploitation steps when
the context is in set Pl by time t. We have {Bik,l(t)c,W i

l (t)} = {Xi
k,l(t) ≥ tφ}. Applying the Markov inequality

we have

P (Bik,l(t)c,W i
l (t)) ≤

E[Xi
k,l(t)]

tφ
,

Let Ξik,l(t) be the event that a suboptimal classification function m ∈ Fk is called by learner k ∈M−i, when it is
invoked by learner i for the t-th time in the exploitation phase of learner i. We have

Xi
k,l(t) =

Eik,l(t)∑
t′=1

I(Ξik,l(t
′)),

and

P
(
Ξik,l(t)

)
≤
∑
m∈Lkθ

P
(
r̄m,l(t) ≥ r̄∗kl (t)

)
≤
∑
m∈Lkθ

(
P
(
r̄m,l(t) ≥ µm,l +Ht,W i

l (t)
)

+ P
(
r̄∗kl (t) ≤ µ∗k

l
−Ht,W i

l (t)
)

+P
(
r̄m,l(t) ≥ r̄∗kl (t), r̄m,l(t) < µm,l +Ht, r̄

∗k
l (t) > µ∗k

l
−Ht,W i

l (t)
))

.

When (8) holds, since φ = 1 − z/2, the last probability in the sum above is equal to zero while the first two
inequalities are upper bounded by e−2(Ht)2tz log t. This is due to the second phase of the exploration algorithm
which requires at least tz log t samples from the second exploration phase for all learners before the algorithm
exploits any learner. Therefore, we have

P
(
Ξik,l(t)

)
≤
∑
m∈Lkθ

2e−2(Ht)2tz log t ≤ 2|Fk|
t2

.

These together imply that

E[Xi
k,l(t)] ≤

∞∑
t′=1

P (Ξik,l(t
′)) ≤ 2|Fk|

∞∑
t′=1

1

t2
.

Therefore from the Markov inequality we get

P (Bik,l(t)c,W i
l (t)) = P (Xi

k,l(t) ≥ tφ) ≤ 2|Fk|β2

t1−z/2
. (14)

Then using (7), (12), (13) and (14) we have

P
(
V ik,l(t),W i

l (t)
)
≤ 2

t2
+

2|Fk|β2

t1−z/2
,
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for any k ∈M−i, and

P
(
V ik,l(t),W i

l (t)
)
≤ 2

t2
,

for any k ∈ Fi. By (3), we have

E[Rs(T )] ≤ 2dT γd

(
2(M − 1 + |Fi|)β2 + 2(M − 1)Fmaxβ2

T∑
t=1

1

t1−z/2

)
(15)

≤ 2d+1(M − 1 + |Fi|)β2T
γd +

2d+2(M − 1)Fmaxβ2

z
T γd+z/2, (16)

where (16) follows from Appendix A.
From Lemma 2, we see that the regret increases exponentially with parameters γ and z, similar to the result of
Lemma 1. These two lemmas suggest that γ and z should be as small as possible, given the condition

2L(
√
d)αt−γα + 6t−z/2 ≤ a1t

θ,

is satisfied.
Each time learner i selects another learner k to label its data, learner k calls one of its classification functions.

There is a positive probability that learner k will call one of its suboptimal classification functions, which implies
that even if learner k is near optimal for learner i, selecting learner k may not yield a near optimal outcome. We
need to take this into account, in order to bound E[Rn(T )]. For k ∈M−i, let Xi

k,l(t) denote the random variable
which is the number of times a suboptimal classification function for arm k is chosen in exploitation steps when
the context is in set Pl by time t. The next lemma bounds the expected number of times a suboptimal classification
functions is chosen when learner i calls a near optimal learner.

Lemma 3: When CoS is run with parameters D1(t) = tz log t, D2(t) = Fmaxt
z log t, D3(t) = tz log t and

mT = dT γe, where 0 < z < 1 and 0 < γ < 1/d, given that

2L(
√
d)αt−γα + 6t−z/2 ≤ a1t

θ,

we have

E[Xi
k,l(t)] ≤ 2Fmaxβ2.

Proof: Let Ξik,l(t) be the event that a suboptimal classification function m ∈ Fk is called by learner k ∈M−i,
when it is invoked by learner i for the t-th time in the exploitation phase of learner i. We have

Xi
k,l(t) =

Eik,l(t)∑
t′=1

I(Ξik,l(t
′)),

and

P
(
Ξik,l(t)

)
≤
∑
m∈Lkθ

P
(
r̄m,l(t) ≥ r̄∗kl (t)

)
≤
∑
m∈Lkθ

(
P
(
r̄m,l(t) ≥ µm,l +Ht,W i

l (t)
)

+ P
(
r̄∗kl (t) ≤ µ∗k

l
−Ht,W i

l (t)
)

+P
(
r̄m,l(t) ≥ r̄∗kl (t), r̄m,l(t) < µm,l +Ht, r̄

∗k
l (t) > µ∗k

l
−Ht,W i

l (t)
))

.

Let Ht = 2t−z/2. Similar to the proof of Lemma 2, the last probability in the sum above is equal to zero while
the first two inequalities are upper bounded by e−2(Ht)2tz log t. This is due to the second phase of the exploration
algorithm which requires at least tz log t samples from the second exploration phase for all learners before the
algorithm exploits any learner. Therefore, we have

P
(
Ξik,l(t)

)
≤
∑
m∈Lkθ

2e−2(Ht)2tz log t ≤ 2|Fk|
t2

.
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These together imply that

E[Xi
k,l(t)] ≤

∞∑
t′=1

P (Ξik,l(t
′)) ≤ 2|Fk|

∞∑
t′=1

1

t2
.

We will use Lemma 3 in the following lemma to bound E[Rn(T )].
Lemma 4: When CoS is run with parameters D1(t) = tz log t, D2(t) = Fmaxt

z log t, D3(t) = tz log t and
mT = dT γe, where 0 < z < 1 and 0 < γ < 1/d, given that

2L(
√
d)αt−γα + 6t−z/2 ≤ a1t

θ,

we have

E[Rn(T )] ≤ 2a1T
1+θ

1 + θ
+ 4(M − 1)Fmaxβ2.

Proof: If a near optimal arm in Fi is chosen at time t, the contribution to the regret is at most a1t
θ. If a near

optimal arm in k ∈M−i is chosen at time t, and if k classifies according to one of its near optimal classification
functions than the contribution to the regret is at most 2a1t

θ. Therefore the total regret due to near optimal arm
selections in Ki by time T is upper bounded by

2a1

T∑
t=1

tθ ≤ 2a1T
1+θ

1 + θ
,

by using the result in Appendix A. Each time a near optimal arm in k ∈ M−i is chosen in an exploitation step,
there is a small probability that the classification function called by arm k is a suboptimal one. Given in Lemma
3, the expected number of times a suboptimal classification function is called is bounded by 2|Fk|β2. Each time a
suboptimal classification function is chosen the regret can be at most 2.
From Lemma 4, we see that the regret due to near optimal arms depends exponentially on θ which is related to
negative of γ and z. Therefore γ and z should be chosen as large as possible to minimize the regret due to near
optimal arms.

Combining the above lemmas, we obtain the finite time, uniform regret bound given in the following theorem.
Theorem 1: Let the CoS algorithm run with exploration control functions D1(t) = t2α/(3α+d) log t, D2(t) =

Fmaxt
2α/(3α+d) log t, D3(t) = t2α/(3α+d) log t and slicing parameter mT = T 1/(3α+d). Then,

E[R(T )] ≤ T
2α+d

3α+d

(
2(2Ldα/2 + 6)

2α+d
3α+d

+ 2dZi log T

)

+ T
α+d

3α+d
2d+2(M − 1)Fmaxβ2

2α
3α+d

+ T
d

3α+d 2d(2Ziβ2 + |Ki|) + 4(M − 1)Fmaxβ2,

where Zi = Fi + (M − 1)(Fmax + 1).
Proof: The highest orders of regret come from explorations and near optimal arms which are O(T γd+z) and

O(T 1+θ) respectively. We need to optimize them with respect to the constraint

2Ldα/2t−γα + 6t−z/2 ≤ a1t
θ,

which is assumed in Lemmas 2 and 4. The values that minimize the regret for which this constraint hold is
θ = −z/2, γ = z/(2α) a1 = 2Ldα/2 + 6 and z = 2α/(3α + d). Result follows from summing the bounds in
Lemmas 1, 2 and 4.

Remark 1: Although the parameter mT of CoS depends on T and hence we require T as an input to the algorithm,
we can make CoS run independent of the final time T and achieve the same regret bound by using a well known
doubling trick (see, e.g., [16]). Consider phases τ ∈ {1, 2, . . .}, where each phase has length 2τ . We run a new
instance of algorithm CoS at the beginning of each phase with time parameter 2τ . Then the regret of this algorithm
up to any time T will be O

(
T (2α+d)/(3α+d)

)
.
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The regret bound proved in Theorem 1 is sublinear in time which guarantees convergence in terms of the average
reward, i.e., limT→∞E[R(T )]/T = 0. For example, when α = 1 and d = 1, the order of the regret is O

(
T 3/4

)
.

This implies that the convergence rate to the optimal average reward is O
(
T−1/4

)
. For a fixed α, the regret

becomes linear in the limit as d goes to infinity. On the contrary, when d is fixed the regret decreases, and in the
limit as α goes to infinity it becomes O(T 2/3). This is intuitive since increasing d means that the dimension of
the context increases and therefore the number of hypercubes to explore increases. While increasing α means that
the level of similarity between any two pairs of contexts increases, i.e., knowing the accuracy of a classification
function k in one context yields more information about its accuracy in another context.

B. Regret of CoS for online learning classification functions

In our analysis we assumed that given a context x, the classification function accuracy πk(x) is fixed. This holds
when the classification functions are trained a priori, but the learners do not know the accuracy because k is not
tested yet. By using our contextual framework, we can also allow the classification functions to learn over time
based on the data. Usually in Big Data applications we cannot have the classifiers being pre-trained as they are often
deployed for the first time in a certain setting. For example in [28], Bayesian online classifiers are used for text
classification and filtering. We do this by introducing time as a context, thus increasing the context dimension to
d+ 1. Time is normalized in interval [0, 1] such that 0 corresponds to t = 0, 1 corresponds to t = T and each time
slot is an interval of length 1/T . For an online learning classifier, intuitively the accuracy is expected to increase
with the number of samples, and thus, πk(x, t) will be non-decreasing in time. On the other hand, the increase
in the accuracy in a single time step should be bounded. Otherwise, the online learning classifier will be able to
classify all possible data streams without any error after a finite number of steps. Because of this, in addition to
Assumption 1, the following should hold for an online learning classifier:

πk(x, (t+ 1)/T ) ≤ πk(x, t/T ) + LT−α,

for some L and α. Then we have the following theorem when online learning classifiers are present.
Theorem 2: Let the CoS algorithm run with exploration control functions D1(t) = t2α/(3α+d+1) log t, D2(t) =

Fmaxt
2α/(3α+d+1) log t, D3(t) = t2α/(3α+d+1) log t and slicing parameter mT = T 1/(3α+d+1). Then,

E[R(T )] ≤ T
2α+d+1

3α+d+1

(
2(2L(d+ 1)α/2 + 6)

2α+d+1
3α+d+1

+ 2d+1Zi log T

)

+ T
α+d+1

3α+d+1
2d+3(M − 1)Fmaxβ2

2α
3α+d+1

+ T
d

3α+d+1 2d+1(2Ziβ2 + |Ki|) + 4(M − 1)Fmaxβ2,

where Zi = Fi + (M − 1)(Fmax + 1).
The above theorem implies that the regret in the presence of classification functions that learn online based on the
data is O(T (2α+d+1)/(3α+d+1)). From the result of Theorem 2, we see that our notion of context can capture any
relevant information that can be utilized to improve the classification. Compared to Theorem 1, in Theorem 2, the
exploration rate is reduced from O(T 2α/(2α+d)) to O(T 2α/(2α+d+1)), while the memory requirement is increased
from O(T d/(3α+d)) to O(T (d+1)/(3α+d+1)).

C. Computational complexity of CoS

For each set Pl ∈ PT , classifier i keeps the sample mean of rewards from |Fi|+M−1 arms, while for a standard
centralized bandit algorithm, the sample mean of the rewards of | ∪k∈M Fk| arms needs to be kept in memory.
Since the number of sets in PT is upper bounded by 2dT d/(3α+d), the memory requirement is upper bounded by

(|Fi|+M − 1)2dT d/(3α+d). (17)

This means that the memory requirement is sublinearly increasing in T and thus, in the limit T → ∞ goes to
infinity, however, CoS can be modified so that the available memory provides an upper bound on mT . However,
in this case the regret bound given in Theorem 1 may not hold. The following example illustrates that for a data



14

Learner 1 2 3 4
Classification Naive Bayes, Always 1, RBF Network, Random Tree,
Function (S1) Logistic Voted Perceptron J48 Always 0
Error 47, 53, 47, 47,
percentage (S1) 3 4 47 47
Classification Naive Bayes, Always 1, RBF Network, Random Tree,
Function (S2) Random Random J48 Always 0
Error 47, 53, 47, 47,
percentage (S2) 50 50 47 47

TABLE III
SIMULATION SETUP

D1(t) D2(t) D3(t) mT

(C1) CoS t1/8 log t 2t1/8 log t t1/8 log t dT e1/4

(C2) CoS t1/2 log t 2t1/2 log t t1/2 log t dT e1/4

TABLE IV
PARAMETERS FOR COS

set with a reasonable size, the memory requirement is not very high. For example for α = 1, d = 1, we have
2dT d/(3α+d) = 2T 1/4. If classifier i learned through T = 108 samples, and if M = 100, |Fk| = 100, for all
k ∈ M, CoS only need to store at most 40000 sample mean estimates, while a standard bandit algorithm which
does not exploit any context information requires to keep 10000 sample mean estimates. Although, the memory
requirement is 4 times higher than the memory requirement of a standard bandit algorithm, CoS is suitable for a
distributed implementation, and classifier i does not require any knowledge about the classification functions of
other classifiers (except an upper bound on the number of classification functions of other classifiers). Moreover, the
regret of CoS is sublinear with respect to the best distributed classification scheme, while the regret of a standard
bandit algorithm is only sublinear with respect to the best fixed classifier.

V. NUMERICAL RESULTS

In this section we provide numerical results for CoS using network security data from KDD Cup 1999 data set.
We compare the performance of our learning algorithm with AdaBoost [29] and the online version of AdaBoost
called sliding window AdaBoost [30].

The network security data has 42 features. The goal is to predict at any given time if an attack occurs or not
based on the values of the features. We run the simulations for three different context information; (i) context is
the label at the previous time step, (ii) context is the feature named srcbytes, which is the number of data bytes
from source to destination, (iii) context is time. All the context information is normalized to be in [0, 1]. There are
4 local learners. Each local learner has 2 classification functions. Classification costs dk is set to 0 for all k ∈ K1.

All classification functions are trained using 5000 consecutive samples from different segments of the network
security data. Then, they are tested on T = 20000 consecutive samples. We run simulations for two different sets
of classifiers. In our first simulation S1, there are two good classifiers that have low number of errors on the test
data, while in our second simulation S2, there are no good classifiers. The types of classification functions used
in S1 and S2 are given in Table III along with the number of errors each of these classification functions made
on the test data. From Table III we can observe that the error percentage of the best classification function is 3
in S1, while it is 47 in S2. A situation like in S2 can appear when the distribution of the data changes abruptly
so that the classification functions trained on the old data becomes inaccurate for the new data. In our numerical
results we will show how the context information can be used to improve the performance in both S1 and S2. The
accuracies of the classifiers on the test data are unknown to the learners so they cannot simply choose the best
classification function. In all our simulations, we assume that the test data sequentially arrives to the system and
the label is revealed with a one step delay.

Since we only consider single dimensional context, d = 1. However, due to the bursty, non-stochastic nature of
the network security data we cannot find a value α for which Assumption 1 is true. Nevertheless, we consider two
cases, C1 and C2, given in Table IV, for CoS parameter values. In C2, the parameters for CoS are selected according
to Theorem 1, assuming α = 1. In C1, the parameter values are selected in a way that will limit exploration and
training. However, the regret bound in Theorem 1 may not hold for these values.

In our simulations we consider the performance of learner 1. Table V shows under each simulation and parameter
setup the percentage of errors made by CoS and the percentage of time steps spent in training and exploration
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Error % Training % Exploration %
(C1,S1) CoS 0.7, 4.6, 4.8 0.3, 3, 2.8 1.4, 6.3, 8.5
(C1,S2) CoS 0.9, 39, 10 0.3, 3, 2.8 1.5, 6.5, 8.6
(C2,S1) CoS 16, 14, 41 8.5, 16, 79 55 27 20
(S1, S2) AdaBoost 4.8, 53
(S1, S2) SWA (w = 100) 2.4, 2.7
(S2, S2) SWA (w = 1000) 11, 11

TABLE V
SIMULATION RESULTS

phases for learner 1. We compare the performance of CoS with AdaBoost and sliding window AdaBoost (SWA)
whose error rates are also given in Table V. AdaBoost and SWA are trained using 20000 consecutive samples
from the data set different from the test data. SWA re-trains itself in an online way using the last w observations,
which is called the window length. Both AdaBoost and SWA are ensemble learning methods which require learner
1 to combine the predictions of all the classification functions. Therefore, when implementing these algorithms
we assume that learner 1 has access to all classification functions and their predictions, whereas when using our
algorithm we assume that learner 1 only has access to its own classification functions and other learners but not
their classification functions. Moreover, learner 1 is limited to use a single prediction in CoS. This may be the case
in a real system when the computational capability of local learners are limited and the communication costs are
high.

First, we consider the case when the parameter values are as given in C1. We observe that when the context
is the previous label, CoS performs better than AdaBoost and SWA for both S1 and S2. This result shows that
although CoS only uses the prediction of a single classification function, by exploiting the context information it
can perform better than ensemble learning approaches which combine the predictions of all classification functions.
We see that the error percentage is smallest for CoS when the context is the previous label. This is due to the
bursty nature of the attacks. When the context is the feature of the data or the time, for S1, CoS performs better
than AdaBoost while SWA with window length w = 100 can be slightly better than CoS. But again, this difference
is not due to the fact that CoS makes too many errors. It is because of the fact that CoS explores and trains
other classification functions and learners. AdaBoost and SWA does not require these phases. But they require
communication predictions of all classification functions and communication of all local learners with each other
at each time step. Moreover, SWA re-trains itself by using the predictions and labels in its time window, which
makes it computationally inefficient. Another observation is that using the feature as context is not very efficient
when there are no good classifiers (S2). However, the error percentage of CoS (39%) is still lower than the error
percentage of the best classifier in S2 which is 47%.

We observe that CoS performs poorly when the set of parameters is given by C2. This is due to the fact that
the percentage of training and exploration phases is too large for C2, thus CoS cannot exploit the information
it gathered efficiently. Another important reason for the poor performance is the short time horizon. As the time
horizon grows, we expect the exploration and training rates to decrease, and the exploitation rate to increase which
will improve the performance.

VI. CONCLUSION

In this paper we developed a novel online learning algorithm for decentralized Big Data classification using
context information about the high dimensional data. We proved sublinear regret results for this algorithm and
showed via numerical results that it outperforms ensemble learning approaches in a network security application.

APPENDIX A
A BOUND ON DIVERGENT SERIES

For p > 0, p 6= 1,
T∑
t=1

1

tp
≤ 1 +

T 1−p − 1

1− p

Proof: See [31].
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