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Abstract—We are motivated by problems that arise in a
number of applications such as Online Marketing and explosives
detection, where the observations are usually modeled using
Poisson statistics. We model each observation as a Poisson
random variable whose mean is a sparse linear superposition
of known patterns. Unlike many conventional problems ob-
servations here are not identically distributed since they are
associated with different sensing modalities. We analyze the
performance of a Maximum Likelihood (ML) decoder, which
for our Poisson setting involves a non-linear optimization but
yet is computationally tractable. We derive fundamental sample
complexity bounds for sparse recovery when the measurements
are contaminated with Poisson noise. In contrast to the least-
squares linear regression setting with Gaussian noise, we observe
that in addition to sparsity, the scale of the parameters also
fundamentally impacts sample complexity. We introduce a novel
notion of Restricted Likelihood Perturbation (RLP), to jointly
account for scale and sparsity. We derive sample complexity
bounds for `1 regularized ML estimators in terms of RLP and
further specialize these results for deterministic and random
sensing matrix designs.

Index Terms—Poisson Model Selection, Sparse Recovery, Reg-
ularized Maximum Likelihood

I. INTRODUCTION

IN this paper, we study the problem of high dimensional
sparse model estimation under a Poisson model for ob-

servations. This problem is motivated by many practical ap-
plications where the observations are the counts of an event.
The mean count in these applications depends linearly on a
sparse subset of parameters. Our goal is to extract the sparse
subset from a potentially large number of parameters. Some
of the practical applications motivating our problem include
explosive identification based on photon counts in fluoroscopy
[1], and eMarketing based on website traffic [2].

We propose a general model that is applicable to a broad
class of problems involving Poisson statistics. We consider
the case where observations are obtained from heterogeneous
sensors or different measurement settings and therefore not
identically distributed. To simplify the model, we assume that
the rates of the underlying Poisson model for observations are
affine functions of some positive signal we want to estimate.
In other words, if the signal of interest is w∗ ∈ Rp+, the i-th
observation, yi, is distributed as follows:

∀i ∈ {1, . . . , n} : yi ∼ Poisson(λ0,i + a>i w
∗)

where λ0,i is the rate of the background Poisson noise and
assumed to be known, and each ai = [ai,1, . . . , ai,p]

> is a dis-
tinct vector corresponding to the i-th sensor. The collection of
these vectors form the sensing matrix, A = [a1, . . . , an]>. Our
goal is to recover the sparse vector, w∗, from {y1, . . . , yn}.

In this paper we analyze the performance of the `1 con-
strained Maximum Likelihood (ML) decoder. The ML decoder

in our Poisson setting is a convex optimization problem in-
volving non-linear objective function. We derive fundamental
sample complexity bounds for sparse recovery in the high-
dimensional setting.

In conventional sparse linear least squares regression setting,
sample complexity is primarily determined by sparsity for
many random sensing matrix designs. While the scale of
the parameter vector does influences sample complexity, its
impact is somewhat beneficial. Sample complexity improves
with scale of the ground truth parameter w∗ for a fixed
level of noise. In contrast, for our Poisson setting, sample
complexity degrades with the scale of the parameter vector.
Specifically, sparsity level k := ‖w∗‖0, and parameter am-
plitude s := ‖w∗‖1 plays a significant role in determining
sample complexity. One difference is that the variance of
observations grows with s in the Poisson case. A more
fundamental reason is that the curvature of the likelihood
function decreases with the scale s of the parameter vector.
Indeed, for large values of s, partial changes ∂ŵ = ŵ−w∗ in
the parameter vector translate to significantly smaller changes
of the likelihood function resulting in lack of identifiability.
Consequently, unlike the conventional case we inevitably have
to suffer the effects of scale for the Poisson case.

We summarize the main objectives of this paper based on
the above discussion. We first characterize sample complexity
in terms of constants that account for both sparsity and scale
effects of likelihood functions encountered in Poisson type
settings. Next by relating these constants to existing eigenvalue
based characterizations of sensing matrices we derive sample
complexity bounds for different designs.

We consider the high-dimensional (p > n) setting in this
paper. High dimensional setting leads to fundamental issues
even in the conventional setting. For instance, in least-squares
linear regression setting [3], [4] the Hessian is singular. To
overcome these issues the loss function is optimized with
`1 constraints (or the loss function is regularized with an `1
penalty) on the parametric space. Following along these lines
we also consider optimizing the Poisson likelihood function
under `1 constraints. These constraints (or penalty) have the
effect of constraining the error patterns to a cone of feasible
directions (descent cone):

ŵ − w∗ ∈ C := {u : ‖uSc‖1 ≤ ‖uS‖1, |S| ≤ k}
As a result it turns out that we need to ensure that the loss
function is “well-behaved” only on the feasible cone. A recent
important development [3] in this context is to impose strong
convexity of the loss function on the feasible cone. While
this requirement is generally satisfied for many loss functions
including least-squares losses, unfortunately as it turns out, our
Poisson case does not satisfy the strong convexity assumption.
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Strong-convexity of the loss function amounts to the assump-
tion we see a non-trivial change in the loss function as a result
of underlying parameter variation regardless of the ground
truth w∗. This requirement can be viewed as the requirement
that the curvature of the loss function is non-vanishing on the
cone. In the Poisson case the perturbation in the loss function
behaves linearly in large s regimes (i.e. the curvature vanishes
in the limit) and so the loss function is no longer strongly
convex on the cone.

This issue motivates us to introduce a Restricted Likelihood
Perturbation (RLP) constant to characterizes the change in loss
function at various amplitudes and sparsity levels in terms of
the changes in the parameter vector (‖∂ŵ‖ = ε). We can view
RLP implicitly as a condition on sensing matrices. We show
that if for some sensing matrix A with bounded elements,
the proposed RLP condition is satisfied, then `1 constrained
ML estimator would converge to w∗ with an exponential
convergence rate.

A main drawback of RLP is that it is difficult to directly ver-
ify for well-known deterministic and random constructions. A
natural condition that has emerged recently in sparse recovery
literature is the so called restricted eigenvalue (RE) condition.
The RE constant γk is described as

1

n
‖A(ŵ − w∗)‖2 ≥ γk‖ŵ − w∗‖2, ∀ ŵ − w∗ ∈ C

A wide variety of sensing matrices ranging from deterministic
to random designs can be shown to satisfy this requirement.

This motivates us to express RLP constant in terms of the
RE parameter γk. We then obtain an expression that relates
RLP constant as a function of γk and amplitude s. This leads to
an explicit expression for sample complexity in terms of scale
and sparsity making the dependence transparent. It follows
that for a fixed scale the sample complexity is completely
determined by sparsity and is simply a function of the sensing
matrix. This dependence is generally similar to that obtained
for CS for bounded positive sensing matrices. On the other
hand for a fixed sparsity level our results shows that sample
complexity has an inverse relationship to scale.

In particular our results apply to both deterministic and
random sensing matrices and we present several results for
both cases. We also conduct several synthetic and real-
world experiments and demonstrate the tightness of the oracle
bounds on error as well as the efficacy of our method.
Specifically, it has been suggested in the literature that LASSO
can handle exponential family noise such as that arises in our
application [5]. It turns out that `1 constrained ML estimator
uniformly outperforms LASSO and has significantly superior
performance in many interesting regimes.

The paper is organized as follows: In Section II, we in-
troduce the notation and state our sparse estimation problem.
Section III describes our theoretical results on the convergence
of the regularized ML decoder. The proofs are briefly sketched
in Section IV. The numerical results for different interesting
scenarios are demonstrated in Section V. Finally, the detailed
proof of the main theorems and lemmas are provided in
Section VII.

A. Related Work

Parameter estimation for non-identical Poisson distributions
has been studied in the context of Generalized Linear Models
(GLMs). However, our model is inherently different from the
exponential family of GLM models that has been studied in
[6], [7], [8], [9]. In particular the GLM model corresponding
to the Poisson distributed data studied in the literature has the
following form:

Model I : Pr(yi = k) = Poisson(exp
(
a>i w

)
)

∝ exp
(
k
(
a>i w

))
exp

(
− exp

(
a>i w

))

Therefore, the log likelihood has the form:

L1(w) =

n∑

i=1

yi
(
a>i w

)
− exp

(
a>i w

)

In contrast, in the setting we are interested in, the observations
are modeled as follows:

Model II : Pr(yi = k) = Poisson(λ0,i + a>i w)

∝
(
λ0,i + a>i w

)k
exp

(
−
(
λ0,i + a>i w

))

and the log likelihood function has the form:

L2(w) =

n∑

i=1

yi log
(
λ0,i + a>i w

)
−
(
λ0,i + a>i w

)

As a statistical model there are several differences between
the two models. We observe that imposing sparsity on w
in Model I corresponds to smaller number of multiplicative
terms. On the other hand, w being sparse in Model II results
in fewer number of additive terms in the Poisson rate of the
corresponding model. At a more fundamental level the loss
function (negative log-likelihood) for Model I has an exponen-
tial term (exp

(
a>i w

)
). The assumptions of strong convexity

on the feasible cone are readily satisfied. Consequently, unlike
our case, the issue of signal amplitude no longer arises for this
model. Therefore, we can view this model as an instance of
a general class of sparse problems. Indeed, [8] studies the
convergence behavior of `1 regularized ML for exponential
family distributions and GLM in this context. The bounds on
error for sparse recovery of the parameter are based on the
RE condition. Moreover, in order to get useful bounds on
estimation error of GLM, they additionally need the natural
sufficient statistic of the exponential family to be sub-gaussian.
This condition could clearly be violated in our setting where
the data is Poisson distributed and there is no constraint on
the sensing matrix to be sub-gaussian.

More generally [6] describes a unified framework for anal-
ysis of regularized M− estimators in high dimensions. They
also mention extension of their framework to GLMs and
describe “strong convexity” of the objective function as a suf-
ficient condition to obtain consistency of M-estimators under
Model I. As we described this requirement of strong-convexity
is not consistent with our model. In addition the statistical
aspects in that work requires that the components of the
sensing matrix be characterized by sub-Gaussian distributions,
which we do not require here.
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Statistical guarantees for sparse recovery in settings similar
to model II have been provided in [10], [11], [12] in the
context of photon limited measurements. They assume that
the observations are distributed as follows

yi ∼ Poisson(a>i w
∗)

where elements of the signal w∗ and sensing matrix are
positive, and the sensing matrix satisfies the so-called Flux
Preserving assumption:

n∑

i=1

(Aw∗)i ≤
n∑

i=1

w∗i .

The latter assumption arises in some photon counting ap-
plications, like imaging under Poisson noise, where the total
number of expected measured photons cannot be larger than
the intensity of the original signal. The upper bound on
reconstruction error of the constrained ML estimator is given
in the paper [11]. Surprisingly, the upper bound scales linearly
with the number of measurements. However, this sounds
reasonable under the Flux Preserving assumption. In fact this
behavior is due to the fact that for a fixed signal intensity, more
measurements lead to lower SNR for each observation. As a
result, unlike conventional compressive sensing bounds, the
estimates do not converge to the ground truth with increasing
the sample size. Nevertheless, Flux Preserving constraint does
not arise in our setting and consequently the application and
methods of analysis are different.

In summary the fundamental differences in the underlying
model as well as the different assumptions in the sensing
matrices from the previous work warrants new analysis tech-
niques which is the subject of this paper.

B. Applications

In the sequel, we will introduce two applications, which
motivate the model described earlier:

1. Explosive Identification: In the explosive identification
example, an unknown mixture of explosives is exposed
to different fluorophores. The goal is then to estimate the
mixture components based on the observed fluorophores
photon counts. Here yi and λ0,i could be considered as the
photon counts and background emission rates for fluorophore
i. λ0,i is measured before the exposure of the explosive
mixture and is known. aij < 0 represents a quenching effect
of explosive j on fluorophore i, and w∗j is the weight of
explosive j in the mixture [1].

2. eMarketing: In the eMarketing example [2], weekly traf-
fic of different websites within the same market are measured.
The traffic of site i, denoted by yi, is assumed to be affected
by the number of bought links to it on different advertisement
websites. Each advertisement website j is also assumed to
contribute to the visiting rate by a fixed weight w∗j . These
weights could be viewed as measures of popularity/dominance
of advertisement website j. Moreover, λ0,i is the average
traffic that visits website i directly (not through intermediate

Google.com

Amazon.com

Pinterest.com

Ideeli.com

Tumblr.com

Ebay.com

Facebook.com

Blogger.com

Twitter.com

Gap.com

Guess.com

CalvinKlein.com

ae.com

a11

a13a21

a23

y1

y2

yn-1

yn

w1

w2

w3

w4

w5

wp

wp-1

wp-2

wp-3

Fig. 1. Our eMarketing model: right nodes are the business websites, left
nodes are the advertisement websites. A connecting edge, aij , is the number
of backward links purchased by the business website i from the advertisement
website j.

advertisement website) and is acquired through online statis-
tics of the website. ai,j > 0 is the number of backward links
that business website i has bought from advertisement website
j. Estimation of w∗j ’s can lead to discovery of dominant
advertisement websites in some industry. Fig. 1 illustrates this
eMarketing model.

II. PROBLEM SETUP

A. Notation

We will use the following notation in this paper. First, we
assume that w∗ ∈ Rp+ is the vector of true parameters that
generates Model II. For ease of exposition we assume elements
of A to be positive, although similar bounds could be obtained
for the case that ai,j’s are negative. Let ai’s be the rows of
the sensing matrix A, and consider the following simplifying
notations for later use:

• amax := maxi,j ai,j
• λw∗,i := λ0,i + a>i w

∗

• λ0 := maxi λ0,i

• k := ‖w∗‖0, s := ‖w∗‖1
• λmax := maxi,w∗ λw∗,i = λ0 + samax
• λmin := mini λw∗,i

We consider n independent Poisson distributed observations
generated as:

∀i ∈ {1, . . . , n} : yi ∼ Poisson(λw∗,i)

This model arises in applications where the measurements
are superposition of independent arrival processes of interest
contaminated by some independent background arrival.

We define Q as the normalized negative log-likelihood for
these observations :

Q(w) := − 1

n

n∑

i=1

yi log(λ0,i + a>i w)− a>i w (1)
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Moreover we define Q(w) as the expected value of Q(w) :

Q(w) := E(Q(w)) = − 1

n

n∑

i=1

(λw∗,i) log(λ0,i + a>i w)− a>i w

(2)
Finally, note that all probabilities are calculated conditional

on the true parameters vector, w∗. In other words, for any
event A:

Pr{A} := Pr{A|w∗} (3)

B. Problem Formulation

Our goal is to recover k-sparse weight vector, w∗, from the
observations yi’s, the sensing matrix A, and the background
noise rates λ0,i’s. Although yi’s are non-identically distributed,
their distributions are related through w∗. Hence, estimating
the weight vector w∗ can be interpreted as a parameter
estimation problem using n independent non-identical Poisson
distributed samples, which are related through k non-zero
elements of w∗.

We study the high dimensional problem where the number
of parameters p can grow rapidly with n, and k can scale with
p. Our goal is to prove that under appropriate conditions on
ai’s, ŵ, the `1 regularized ML estimate of w∗ from yi’s, is
consistent with the ground truth:

lim
n→∞

Pr{‖ŵ − w∗‖2 ≥ ε} = 0

where this probability is conditional on w∗ as described in
Eqn. (3). Moreover, we want to show exponential rate of
convergence with respect to the number of observations:

Pr{‖ŵ − w∗‖2 ≥ ε} ≤ C ′ exp(−nC)

where C and C ′ are some positive constants.

C. Regularized Maximum Likelihood

We first describe sparse sets and amplitude-constrained sets
for later use. Let Γk be the set of k-sparse signals:

Γk = {w|w ≥ 0, ‖w‖0 ≤ k}
Let Θs denote amplitude-constrained sets of scale s:

Θs = {w|w ≥ 0,

p∑

j=1

w ≤ s}

Note that in our problem, the observations are independent
and follow a Poisson distribution. With this in mind we
propose the following constrained ML estimation:

ŵ = arg max
w∈Θs

Q(w)
∆
= arg max

w∈Θs
log p(y1, . . . , yn|w) (4)

The constrained maximization problem defined in Eqn. (4)
is equivalent to the following minimization problem for a
suitably chosen ηs, through a Lagrangian formulation:

ŵ = arg min
i:wi≥0

Q(w) + ηs

p∑

j=1

wj (5)

These problems are convex and can be solved efficiently
by conventional optimization algorithms to find the global

optimum. It needs to be mentioned that yi’s are not identically
distributed so the consistency of the resulting estimates does
not trivially follow from the consistency of ordinary maximum
likelihood. In the next section, we will describe sufficient
conditions on consistency of regularized ML estimation.

III. MAIN RESULTS

We will first abstractly state general results for deterministic
sensing matrices. We will then relate these results to specific
sensing designs. In this context we introduce a new notion that
jointly accounts for scale as well as sparsity.

A. Restricted Likelihood Perturbation

We introduce the notion of Restricted Likelihood Perturba-
tion to jointly account for scale and sparsity.

Definition 1. Restricted Likelihood Perturbation,
RLP (A, βs,k) : Let δs,k(ε) denote:

δs,k(ε) := min
‖w−w∗‖2=ε

w∈Θs, w∗∈Γk∩Θs

Q(w)−Q(w∗) (6)

The sensing matrix A is said to satisfy RLP condition, when
for each s and k, there exist a constant βs,k such that
δs,k(ε)/ε2 ≥ βs,k.

Note that βs,k is the minimum perturbation rate in the
averaged loss function Q caused by the change in the pa-
rameter value ŵ − w∗. The following result characterizes the
estimation error in terms of βs,k.

Theorem 1. Suppose that A satisfies RLP (A, βs,k),
λw∗,i ≥ λmin, λ0 = O(1), ai,j ≤ amax = O(1) for all i
and j, and e be a real number with 0 < e < 1. Suppose
further that the number of measurements n satisfies

n ≥ c1s log2(s) log 2
e

β2
s,kε

4

and ε is small enough such that

0 < ε ≤
√

c2λmin log s

βs,k max(c′,
√
s)
.

Then the probability of error for the constrained ML estimate
of Eq. 4 being greater than ε can be bounded as follows :

Pr{‖ŵ − w∗‖2 ≥ ε} ≤ e
where c1, c2, and c′ are universal constants, which do not
depend on A or w.

We note that if the background rate λmin approaches
zero the admissible ε’s approach zero as well. In the limit
this implies that the sample complexity approaches infinity.
This makes sense because as λmin approaches zero, we lose
identifiability in the limit.

Remark: Theorem 1 suggests that the sample complexity
hinges mainly on two factors: s and βs,k. The effect of
amplitude s could be explained intuitively as follows. For ŵ
to be within a close distance of w∗ with high probability,
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Q should converge in some notion to Q. Since the variances
of the Poisson distributed observations are equal to the rates
λw∗,i, more samples are required for Q to concentrate around
Q for large λmax = O(s). This effect does not appear in
conventional compressive sensing where Gaussian distributed
samples are used.

Note that βs,k conceptually measures the curvature of the
objective function Q around w∗. A small curvature is detri-
mental in that Q would be more tightly concentrated around
Q for a given ‖∂ŵ‖ = ‖ŵ − w∗‖ = ε. Consequently small
curvature degrades sample complexity.
βs,k could also be viewed as a measure of identifiability of

w∗. If βs,k is zero or close to zero, there would be no unique
solution to the likelihood maximization problem, and hence
there would be no hope for ŵ to converge to w∗ in the worst
case. �

Relationship to Restricted Eigenvalue Condition:
Although RLP precisely accounts for sample complexity, it
is hard to verify for well-known deterministic and random
constructions. On the other hand, there has been a significant
amount of literature on the so called Restricted Eigenvalue
condition (RE) for sensing matrices. RE is the basis for
analysis of many noisy sparse recovery methods. Our goal
is to find a relationship between RLP and RE here so that our
sample complexity results are transparent for many of these
constructions.

Definition 2. Restricted Eigenvalue condition, RE(A, γk):
There exists a constant γk > 0, such that for any set of indices
S satisfying |S| ≤ k, and vector

u ∈ C(S) := {u 6= 0 : ‖uS‖1 ≥ ‖uSc‖1},

we have:
1

n
‖Au‖22 ≥ γk‖u‖22 (7)

where uS is the restriction of the vector u to the indices in S,
and Sc = {1, . . . , p} \ S.

Remark : The 1/n factor on the left hand side of Eqn. (7)
can be considered as a column normalization of A, i.e. each
column is divided by

√
n.

RE condition is a well known sufficient condition for
consistency of several sparse recovery algorithms. Specifically,
its various forms were used to derive the oracle inequalities
for LASSO and Dantzig selector [3], [13].

There are a number of well known results for random de-
signs A, for which Definition 1 holds with high probability in
terms of n [14]. For example, consider the case that elements
of A are i.i.d. samples from a subgaussian distribution. Then,
Definition 1 is satisfied for all n ≥ ck log(p), with probability
at least 1 − c1 exp(−c2n), where c, c1, and c2 are universal
constants [15]. Moreover, in these cases γk is invariant to
sparsity level k, so long as n ≥ ck log(p).

In our experimental data, however, matrix A is deterministic
and given to us. In general, testing RE condition is an NP-
hard problem. Nevertheless, our numerical results still show
fast rate of convergence for regularized ML. �

The following result characterizes the relationship between
RLP and RE conditions.

Theorem 2. Suppose that RE(A, γk) holds, elements of A are
bounded, and λ0 = O(1). Then, A satisfies RLP (A, βs,k) for
the following value of βs,k:

βs,k =
cγk
s

where c is a universal constant.

Remark: Note that the impact of the sparsity and scale
parameter s is now transparent. Indeed sparsity and scale are
separately captured by the expression. It follows that for a
fixed scale the sample complexity is completely determined
by sparsity and is simply a function of the sensing matrix.
On the other hand for a fixed sparsity level the constant βs,k
decreases with scale s.

Corollary 1. Under the conditions of Theorems 1 and 2, if

n ≥ c1s
3 log2(s) log 2

e

γ2
kε

4

and,

0 < ε ≤
√

c′λmins log s

max(c2,
√
s)γk

then
Pr{‖ŵ − w∗‖2 ≥ ε} ≤ e

where c1, c2, and c′ are universal constants and 0 < e < 1.

Remark: Theorem 2 suggests that under the RE condi-
tion, βs,k decreases with the increase in the signal ampli-
tude λmax = O(s). This can be attributed to the fact that
Q(w)−Q(w∗) as function of Xi := (w−w∗)>ai behaves sub-
quadratically (and in fact almost linearly) for large Xi. In fact,
the perturbation in Q could be shown to scale in proportion
to −λw∗,i log(1 + Xi/λw∗,i) + Xi. However, RE condition
lower bounds a quadratic function of Xi’s. Therefore, if RE
condition is to be used to lower bound the perturbation rate
in Q, an extra factor involving the signal `1 intensity would
inevitably appear in the lower bound of perturbation. This
factor does not arise in conventional compressive sensing as
the objective functions there are quadratic in Xi’s.

We illustrate this point in Fig. 2. The plot depicts perturba-
tion in Q and compares it to a quadratic loss function. We see
that Q is essentially linear for large s. This issue can also be
seen from Fig. 3. Here an approximation of βs,k is obtained
by taking the minimum of perturbation rates in Q over 106

random points in the cone of feasible directions. Fig. 3 clearly
demonstrates the inverse relationship between βs,k and s. �

The result in the last corollary gives the number of required
samples for a certain level of accuracy. Alternatively, it is
possible to restate the result to find a high probability oracle
on the error:

Corollary 2. Under the conditions of Theorems 1 and 2, if

n ≥
(
C0s

λmin

) 5
2

(8)
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Fig. 2. Q behaves like − log(1+X)+X . It scales almost linearly for large
X. Therefore, to be lower bounded by a quadratic function, an extra scale
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can take, which would be proportional to 1/s in our problem setting.
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Fig. 3. β̂s,k is an approximation to βs,k for p = 200, k = 10, and n = 40.
Entries of A are i.i.d. instantiations of the uniform distribution between 0
and 1. The plot shows that β̂s,k decreases with the increase of parameter
amplitude s.

the `2 error of regularized maximum likelihood estimation
follows:

‖ŵ − w∗‖2 ≤
C ′s

3
4 log

1
2 (s)

γ
1
2

k n
1
5

(9)

with probability of at least 1 − C1 exp(−C2n
1
5 ), where C0,

C1, C2, and C ′ are constants.

Rate of Convergence: Unlike traditional compressed sensing
where error scales with n−

1
2 , the error here scales with n−

1
5 .

We have experimentally verified the tightness of this result in
section V-A.
Impact of Background λ0,i: For the sake of exposition we
have assumed λ0,i’s are bounded. When λ0,i’s are variable
we would have to replace s by λmax := λ0 +amaxs in all the
equations, with λ0 := maxi λ0,i and amax := maxi,j Ai,j .
Assuming that λ0,i’s are equal, the minimum Poisson rate

changes with λ0, i.e. λmin ≥ λ0. The impact of λ0 on the error
is subtle. On the one hand for large λ0, the lower bound on n
in Eq. (8) decreases leading to a wider ranger of admissible
sample sizes. On the other hand, the upper bound on error
in Eq. (9) scales as λ3/4

max log1/2 λmax, larger λ0 results in a
larger error bound. Still when the sample size is sufficiently
small, the first effect dominates the second one, i.e. large λ0

appears to be beneficial. For large sample size estimation error
generally increases with λ0.

B. Random Design

It has been so far assumed that the measurement matrix
A satisfies the RE condition. The next theorem gives the
error bound for random matrix constructions with bounded
and positive elements.

Theorem 3. If elements of A are i.i.d. samples from a
distribution with bounded support on R+, then for a suitable
choice of Θs (or equivalently, if ηs is chosen appropriately),
any

n ≥ max

(
c1k

2 log(p) log3(c2k log(p)) log

(
1

e

)
,

c′k2s3 log2(s) log 4
e

ε4

)

and

0 < ε ≤
√
c4k2λmins log s

max(c3,
√
s)

,

we have:
Pr{‖ŵ − w∗‖2 ≥ ε} ≤ e

where c′, c1, . . . , c4 are constants.

Remark: We observe that unlike the traditional settings the
sample complexity grows primarily with k2 for this particular
sensing matrix. The main reason that underlies this effect is the
requirement that A’s elements have to be supported on a set
of positive numbers. This constraint precludes the possibility
of sub-gaussian constructions of A. However, most of the
known random design constructions with linear measurement
complexity O(k) require A’s element to be at least sub-
gaussian for RE condition to be satisfied. If A’s elements are
not sub-gaussian, the best known result requires at least O(k2)
measurements to satisfy RE condition with high probability
[16]. Therefore, if the positivity requirement is eliminated, the
usual O(k) measurement complexity would be possible.

IV. PROOF SKETCH

A. Restricted Likelihood Perturbation

We use the idea of Extremum Estimators in our proof. These
are a broad class of estimators for parametric models calcu-
lated through maximization (or minimization) of an objective
function Q(w), which depends on the data [17].
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Lemma 1. If ŵ and w∗ are the minimizers of Q(w) and Q(w)
respectively subject to w ∈ Θs, it follows that:

Pr{‖w∗ − ŵ‖2 ≥ ε} ≤ Pr

{
sup
w∈Θs

|Q(w)−Q(w)| ≥ δs,k(ε)

2

}

(10)

where δs,k(ε) is defined in Eq. (6)

Proof. The detailed proof is provided in Appendix A.

Intuitively, δs,k in Lemma 1 represents the minimum in-
crease in the function Q(ŵ), when ŵ ∈ Θs is ε far away from
the function minimizer w∗. When the function Q(ŵ)−Q(w∗)
is strongly convex in terms of u := ŵ − w∗, δs,k would
be strictly positive, for ε > 0. Strong convexity is a strong
condition in high dimensional settings. However, in our setting
u could be shown to belong to a feasible cone (see Section 1).
Therefore we require strong convexity only on a restricted set
of directions for a fixed scale s. Assuming that δs,k > 0, if
Q is uniformly convergent to Q on Θs, the right hand side of
(10) will converge to zero for a fixed s. Then, this will imply
the consistency of ŵ.

It can be seen that w∗ is the minimizer of Q over Θs. Hence
if δs,k > 0, preconditions of Lemma 1 are satisfied and we
may use the upper bound in Eqn. (10).

Next, we are going to upper bound the right hand side of
Eqn. (10) using the following lemma :

Lemma 2. For 0 < δ ≤ c1λmin log(λmax)
max(c′,

√
s)

and λ0 = O(1), Q
is uniformly concentrated around Q:

Pr

{
sup
w∈Θs

|Q(w)−Q(w)| ≥ δ

2

}
≤ exp

(−c2nδ2

s log2 s

)
(11)

where c1, c2, and c′ are two universal constants.

Proof. The detailed proof is provided in Appendix A.

Theorem 1 could be proved by first noting that according to
RLP (A, βs,k), δs,k(ε) could be replaced in all of the bounds
in two last lemmas by βs,kε2, and then combining the results
of the two lemmas. To prove Theorem 2, we approximate the
perturbation in Q by its truncated taylor series in terms of
a>i u, where u = ŵ − w. As elements of A are assumed to
be bounded, a>i u would be bounded too, and the perturbation
would be lower bounded by a quadratic function in a>i u’s.
Then, we use RE condition to lower bound the quadratic
function in the last step. The detailed proof is given in the
Appendix A.

Corollary 1 is the direct consequence of combining The-
orems 1 and 2. Corollary 2 is obtained by first rewriting
Corollary 1 as:

Pr(‖ŵ − w‖2 ≥ ε) ≤ 2 exp

(−cnε4γ2
k

s3 log2 s

)

Then, by setting ε = C ′s
3
4 log

1
2 /(γ

1
2

k n
1
5 ), the desired bound

on the `2 error would be obtained by a probability of at least
1− C1 exp(−C2n

1
5 ).

B. Random Design

As Theorem 2 requires RE condition as well as elements
of A to be bounded, one may extend these results to case that
A is chosen randomly and the preconditions are satisfied with
high probability. RE condition can be guaranteed with high
probability for various classes of random designs. Specifically,
if rows of A are drawn from an ensemble of isotropic subgaus-
sian random variables (or a linear transformation of them), it
is well known that RE condition will be satisfied with over-
whelming probability (1−2 exp(−cn)) when n = Ω(k log(p))
with γk = Ω(1)[15].

However, our setting needs all entries of A to be positive,
which is not satisfied for a sub-gaussian ensemble. Therefore,
we use the following Lemma from [16], which guarantees RE
condition for the case that elements of A are i.i.d. samples
from a bounded random variable (a variation of Theorem 1.8
to adapt to our definition of RE condition and notations).

Lemma 3. If elements of A are i.i.d. samples
from a distribution with bounded support, and
n = Ω(k2 log(p) log3(k log(p))), then A satisfies RE
condition with γk = Ω( 1

k ) with probability at least
1− exp(−cn/k), where c is a constant.

Based on Lemma 3, Theorem 3 can be obtained from
Corollary 1, by conditioning the probability of error on the
fact that A satisfies RE with γk = Ω(1/k). Then, applying
a union bound on the probability of the previous event and
the event that A satisfies RE, the convergence rate of error in
Theorem 3 would be obtained.

V. NUMERICAL RESULTS

A. Tightness of the Error Bounds

In this section, our goal is to experimentally verify the
importance of amplitude effect described in Corollary 2. We
sample elements of A from a uniform distribution over the unit
interval from 0 to 1. In addition, we consider the following
values for different parameters: F dimensionality p is 100,
sample size n changes from 10 to 2000, the sparsity level k is
5, signal intensity s ranges from 1 to 5. w∗ is picked at random
from uniform distribution on k-sparse vectors and then scaled
to have `1 intensity of s. The recovery error is averaged for
each s and n using 10 Monte-Carlo Simulations. The averaged
`2 error is plotted against the upper bound given by Corollary
2 in Fig. 4. This figure demonstrates that the derived bound
is almost tight as the points show almost a linear relationship
between error and the upper bound.

B. Rescaled LASSO vs. Regularized ML

Parameter estimation based on LASSO for the Poisson
setting has been studied in [5]. The idea is to view the problem
as an additive noise problem, where noise belongs to an
exponential family of distributions. Alternatively, in [5] the
problem is viewed as an additive Gaussian noise problem with
noise variance being equal to its mean to mimic “Poisson like”
behavior. This results in a rescaled version of LASSO, which
is then used to estimate model parameters. This amounts to
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Fig. 4. `2 error against the upper bound for the error in Corollary 2 for
parameter amplitude values s and sample sizes n. Evidently, our derived
bound of Eq. 9 is tight as the points show almost a linear relationship between
error and the upper bound.

scaling the loss function associated with each observation by
the mean (or equivalently the variance).

This approach motivates us to compare the regularized ML
method against re-scaled LASSO for poisson distributed data,
to highlight the essence of using regularized ML instead of
rescaled LASSO for our setting. In this section we will demon-
strate that our regularized ML outperforms re-scaled LASSO
in several regimes including low SNR, high dimensions, and
moderate to low sparsity levels.

To compare the performance of regularized ML and rescaled
LASSO, we first generate a random sensing matrix A ∈ Rn×p
where each element ai,j is an independent truncated Gaussian
random variable. According to Lemma 3, when the number
of rows satisfies n = o(k2 log(p) log3(k log p)), matrix A
satisfies RE with high probability. We also generate a random
value λ0, such that λ0,i = λ0 for all i, and some sparse vector
w∗ ∈ Rp, with ‖w∗‖1 = s. To recover w, we generate n
Poisson distributed data with coefficients specified in A as:

yi = Poisson(λ0 + a>i w
∗)

We first solve the non linear optimization where w is con-
strained to be in Θs.

ŵML = arg min
w∈Θs

− 1

n

n∑

i=1

yi log(λ0 + a>i w)− a>i w

For the purpose of comparison we compute the rescaled
LASSO estimator.

ŵLS = arg min
w∈Θs

1

n

n∑

i=1

(yi − λ0 − a>i w)2

λ0 + a>i w

For comparison purposes we then threshold the solution by
zeroing out components of ŵML and ŵLS below a pre-defined
small threshold t. We average the estimation performance over
100 Monte Carlo loops. The performance of the two methods
are compared in Fig. 5 and Fig. 6. The results are compared
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Fig. 5. Probability of successful support recovery as a function of n for
p = 400, λ0 = 100, k = 40, t = 10−4, and m = 100 Monte Carlo
loops. This figure illustrates twice faster convergence of probability of success
with respect to number of observations for Regularized ML in comparison to
Rescaled LASSO.
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Fig. 6. Probability of successful support recovery as a function of k for
p = 200, λ0 = 100, n = 100, and m = 100 Monte Carlo loops. As
this figure suggests, probability of successfull recovery drops faster when the
sparsity level increases for Rescaled LASSO in comparison to Regularized
ML. This shows robustness of ML approach to model parameters.

in terms of number of observations n, and different sparsity
levels k, respectively.

In Fig. 5, we compare the result of regularized ML estima-
tion with rescaled LASSO as a function of n. We fix λ0 = 100,
p = 400, t = 10−4 and k = 40. At each iteration, we estimate
w∗ based on n observations where n varies from 2 to 400.
We compare the performance of the two approaches based on
probability of successful recovery of the support set. This error
is 0 if the thresholded support set of the estimation is equal
to that of the ground truth and 1 otherwise. We average this
error over 100 samples of w∗ for a fixed A.

In Fig. 6, we compare the result of regularized ML estima-
tion with rescaled LASSO for different sparsity levels, k. This
time, we fix λ0 = 100, p = 200, and n = 100. For each k,
we generate 100 samples of k-sparse w∗’s and recover them
from n observations. Since ‖w∗‖1 = 1 for all values of k,
we threshold each element of w by t = 0.01

k , to obtain their
sparse support set. We measure the performance of the two
estimators based on average probability of successful recovery
of the thresholded support set for each value of k.

Notice that the error bars in Fig. 5 and Fig. 6 indicate
that the difference between the methods is indeed statistically
significant.

In Fig. 7, we compare the result of regularized ML estima-
tion with rescaled LASSO in terms of the ROC curves. In an
ROC curve, the average number of true detections is plotted
against the average number of false alarms. True detections are
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Fig. 7. ROC curve for Regularized ML and Rescaled LASSO for n = 100,
p = 200, k = 20, λ = 100, and m = 100 Monte Carlo loops. This
figure illustrates the superiority of Regularized ML in comparison to Rescaled
LASSO for parameter estimation under Poisson models.

indices that are common in the thresholded estimated support
set and that of the Ground Truth, whereas, false alarms are the
indices in the thresholded estimated support set that are not
included in the support set of the Ground Truth. This time,
we fix λ0 = 100, p = 200, n = 100, and k = 20. We
fix a sensing matrix A, and generate 100 random w∗’s. By
applying different thresholds t = 1

k to t = 0.001
k we obtain the

different points in the ROC plot. We average Probability of
Detection (PD) and Probability of False alarm (PF) over 100
Monte Carlo loops.

C. Explosive Identification

In this experiment, we first measure the light intensities
of different fluorophores before and after separate exposures
to a unit weight of different explosives. The intensities are
measured by counting the number of photons received at
each photo-sensor. Each explosive j has a unique quenching
effect in the fluorescence property of each fluorophore i,
which we denote by ai,j . In the experimental setting, λi
is the before exposure intensity for fluorophore i and is
estimated by averaging the before exposure photon counts
from multiple experiments. Therefore, the λi’s can be assumed
to be known. We model the after exposure intensity yi as :
yi = Poisson(λi(1− aij))

In the next step, fluorophores are exposed to an unknown
mixture of these explosives. The goal is to recover which and
how much of each explosive is contained in that mixture.

The physics of the problem suggests that when the fluo-
rophore is exposed to a mixture of explosives, the quenching
effects are additive in the regime where the mixture weights
are small [1]. Therefore, our observations are best modeled
by a Poisson distribution with additive rate model for each
fluorophore:

yi ∼ Poisson


λi(1−

p∑

j=1

aijw
∗
j )




where p is the total number of basic explosives and w∗j is
the amount of the explosive j in the mixture. We solve this
problem through Regularized ML and Rescaled LASSO and
compare the results.

In this problem, matrix A, the responses of n = 8 fluo-
rophores to p = 12 basic explosives is given. Based on this

Ground Truth Weights recovered from Regularized ML Weights recovered from Rescaled LASSO

Fig. 8. Sparse recovery results for k ≤ 3. From left to right: Ground Truth,
w∗, ML estimate of w , LASSO estimate of w. Columns: Basic explosives.
Rows: Synthesized mixtures with k basic explosives. Non-black squares at
each row show the explosives that the corresponding mixture is composed of.
lighter colors show larger amounts.

given data and our additive model for mixtures, we generated
10 mixtures by combining up to 3 random explosives. We
used Regularized ML and Rescaled LASSO to identify these
mixtures through their effect on fluorescence property of our
fluorophores. The result is shown in the form of a 10 × 12
grid in Fig. 8. In this grid, rows are different mixtures and
columns are different explosives. Dark squares indicate the
absence (or negligible contribution), whereas lighter squares
indicate higher amount of the corresponding explosive in the
associated mixture.

Since in this example photon count rates are of the order
of 105, Normal distribution could be considered as a good ap-
proximation to the corresponding Poisson distribution. Hence
Regularized ML and Rescaled LASSO show similar behavior
in this example.

D. Internet Marketing Application

In this application, our goal is to identify the most effective
advertisement websites that result in higher website traffic in
the clothing market. Our assumption is that the website traffic
is generated as a superposition of the traffic generated from
current customers and the traffic from advertisement through
backward links (links in advertisement websites that are linked
to these business websites). In general, big business websites
typically buy a total of 1000-1500 backward links from a
number of advertisement websites. However, the hypothesis is
that only a few of these advertisement websites are efficiently
directing costumers. Our goal is to identify those dominant
advertisement websites.

We model the number of daily visits, yi, by:

yi = Poisson(λi,0 + a>i w
∗)

where λ0,i models the current customers who visit the site
directly and is obtained through online statistics of the website.
Specifically, a long run average of traffic which is not referred
by the advertisement website gives a reasonable estimate and
so we can assume that λ0,i to be known. This traffic could be
logged and acquired through online statistics of the business
websites.

Moreover, ai,j is the number of backwards link for the
website i in the advertisement website j. Our model assumes
that each of the backward links brings independent traffic
to the website. Therefore, we used the Poisson distributed
random variable described earlier to model the number of
visits to a business website.
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Our observations are the daily online visits to 50 top
clothing brands. From the information provided in alexia.com,
we chose the top 150 advertisement websites for these brands
along with the number of backward links for each website.
Our goal is to recover the weight vector w∗, where w∗j is a
measure of dominance for advertisement website j in clothing
market. We recover w∗ via regularized ML and rescaled
LASSO (weights smaller than 0.01 are theresholded to 0).
The result is provided in Table 1. In this table, we illustrate
the corresponding score for each popular website based on
their dominance in advertising for clothing brands.

TABLE I
TOP BACKWARDLIST WEBSITES FOR CLOTHING BRANDS USING

REGULARIZED ML AND RESCALED LASSO

Backward link ML estimated weight
Amazon 0.32
Twitter 0.21
Pinterest 0.17
Google 0.15
Blogger 0.06
Bing 0.05
douban 0.01
tumblr 0.01
Backward link Lasso estimated weight
Amazon 0.35
Pinterest 0.17
Twitter 0.16
Google 0.16
Bing 0.13

To compare the result of the two approaches mentioned
above, we use the Bayes factor [18] and predictive held-
out log likelihood comparison mentioned in [19]. It should
be mentioned that these tests are interpretable only when
the number of parameters are comparable in the hypothesis
models. In our problem, in fact, the two models have equal
number of parameters.

Given a set of observed data y1, . . . , yn, and a model
selection problem in which we have to choose between two
models, Bayesian inference compares the plausibility of the
two different models M1 and M2 through a likelihood test:

Pr (y1, . . . , yn|M1)

Pr (y1, . . . , yn|M2)
≶ 1

When the parameters of models M1 and M2 are not known a
priori, in Bayes factor test, we estimate them from y1, . . . , yn
and then use those estimations in computing the likelihood
ratio. On the other hand, in predictive held-out log likelihood
comparison, we divide the data into two groups. We estimate
the model parameters for M1, and M2 using the first group
of data, and we compare the likelihoods for the second part
of data given M1 and M2 specified by the first group.

Since Poisson is a PMF distribution on integers, to compare
the two models using Bayes factor, we need to superimpose the
Gaussian distribution on a histogram defined on integer valued
yi’s. For a Gaussian distribution characterized by N (µ, σ), the
value of the histogram at each integer valued y is computed
as:

hist(y) =
1

Q(µσ )
×
(
Q

(
y − µ
σ

)
−Q

(
y + 1− µ

σ

))
(12)
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Fig. 9. The Bayes Factor Ratio for regularized ML and rescaled LASSO. As
we can see, higher Bayes Factor for Regularized ML suggests that Poisson is
the right model for this problem.

It is easy to show that this histogram corresponds to a valid
PMF. We denote this PMF by N (µ, σ).

After this conversion, the Bayes factor as a function of
sparsity level, k, is calculated as:

BFk =
Pr
(
y1, . . . , yn|yi ∼ Poisson(λ0 +AŵkML)

)

Pr
(
y1, . . . , yn|yi ∼ N (λ0 +AŵkLS , λ+AŵkLS)

)

where ŵkML and ŵkLS are k sparse theresholded approxi-
mations of ŵML and ŵLS , respectively. The Bayes factor
log curve as a function of sparsity is presented in Fig. 9.
To compute the predictive held-out log likelihood for each
method, we first use 80% of the data (40 training data) to
calculate an estimation of the parameters, w̃ML and w̃LS .
We use w̃ML and w̃LS for each model to compute the log
likelihood function for the remaining 20% of data (10 test
data):

LML =

10∑

i=1

−λi − a>i w̃ML + yi log(λi + a>i w̃ML)− log(yi!)

LLASSO =

10∑

i=1

− log

(
Q(
√
λi + a>i w̃LS)

)
+

log

(
Q

(
yi − λi − a>i w̃LS√

λi + a>i w̃LS

)
−Q

(
yi + 1− λi − a>i w̃LS√

λi + a>i w̃LS

))

Intuitively, the model that is closer to the ground truth results
in higher log likelihood value. The log likelihood values for the
two approaches are shown in Fig. 10. The large gap between
the predictive log likelihood of the two models implies that
Poisson is a better underlying model for this application.

E. Dynamics of Online Marketing

In the previous section, our results show that ML estimator
and Poisson model outperforms LASSO approach for the prob-
lem of online marketing. Therefore, in this section, we apply
ML method to estimate the weights, w∗, for the advertisement
websites over time.

A brief look at Table II shows how w’s have changed
dramatically over time. To study this change closely, we
estimated w’s for different advertisement websites from 2004
to 2013. We group the Social networks, such as facebook.com,
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Fig. 11. Dynamics of SEM and SMM over time for clothing market. This
figure gives a quantitative comparison of the two most controversial methods
of online marketing.

twitter.com, pinterest.com, etc, together to study the effect
of Social Media Marketing (SMM). We also group search
engines, such as google.com, yahoo.com, bing.com, etc, to-
gether to represent Search Engine Marketing (SEM). We
add the scores of the corresponding websites in each group.
Fig. 11 demonstrate the dynamics of SMM and SEM, the
most controversial forms of online marketing, over time [2].
Although SEM has been thought to be the most powerful me-
dia marketing tool, recent empirical studies show the growing
influence of SMM during the last couple of years [20]. The
gigantic size of social media coupled with the relatively low
cost per impression and the so called word of mouth have
made SMM a powerful marketing tool. Our results confirm
the significant influence of SMM relative to SEM since 2012.

VI. CONCLUSIONS

We provided convergence guarantees for the solution of `1
regularized ML decoder of a high dimensional sparse param-
eter for heterogeneous Poisson distributed data. Unlike least-
squares linear regression setting, scale of the parameter has a
significant effect on sample complexity. A new condition, Re-
stricted Likelihood Perturbation (RLP), for successful recovery
is introduced, which captures this effect. We then derived an
expression relating RLP to the well-known restricted eigen-
value conditions. These expressions led us to deriving sample
complexity bounds for several sensing matrix constructions. In
our experiments, we verified the signal amplitude effect and
tightness of the bounds. We also compared rescaled LASSO

TABLE II
TOP ADVERTISEMENT WEBSITES FOR CLOTHING MARKET IN 2013 AND

2008

Backward link Estimated weights in 2013 Estimated weights in 2008
Twitter.com 0.18 0.02
Facebook.com 0.18 0.02
Pinterest.com 0.14 0.00
Amazon.com 0.28 0.22
Google.com 0.15 0.52
Bing.com 0.05 0.00
Yahoo.com 0.00 0.11

against our regularized ML to justify the essence of regularized
ML in recovery based on our proposed observation model.

VII. APPENDIX A

A. Useful Bounds:

To show an exponential rate of convergence for Poisson
distributed data, we need a tool to bound the tail probability.
We build this tool from Bernstein inequality for Poisson
distribution:

Lemma 4. (Bernstein inequality)[21] Let y1, . . . , yn be in-
dependent random variables with means µ1, . . . , µn. Suppose
that ∃L > 0 such that ∀k ∈ N and k > 1:

E[|(yi − µi)k|] ≤
1

2
E[(yi − µi)2]Lk−2k!

Then, we have:

Pr

{
1

n

N∑

i=1

|yi − µi| ≥
2t

n

√∑
E[(yi − µi)2]

}
≤ 2 exp (−t2)

where 0 < t ≤
√∑

E[(yi−µi)2]

2L

Lemma 5. For yi’s distributed as:

yi ∼ Poisson(λi)

There exists a number L > 0, such that ∀k ∈ N and k > 1:

E[|(yi − λi)k|] ≤
1

2
E[(yi − λi)2]Lk−2k!

Moreover, L = max(1,
√
λmax).

Remark: The proof of this Lemma is partly provided in [8]
and is based on the fact that moment generating function for
Poisson distribution with rate λ,

M(t) = exp (λ(exp(t)− 1)− λt)

is an analytic function, which means that its Taylor series
converges around t = 0 on an open set in R. Therefore, the k-
th coefficient of Taylor series exists and is bounded. If λ ≤ 1,
it could be shown that all Taylor coefficients of M(t) are less
than or equal to 1

2 . If λ > 1, we replace t by t/
√
λ. Then,

all Taylor coefficients could be shown to be less than 1
2 . This

completes the proof.
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B. Proof of Lemma 1

Now, we need to show that for any ε > 0, and the corre-
sponding δs,k(ε) defined in Eq. (6), we have:

Pr {‖ŵ − w∗‖2 ≥ ε} ≤ Pr

{
2 sup
w∈Θs

|Q(w)−Q(w)| ≥ δs,k
}

The proof of this part, can be shown by combining two
Lemmas:

Lemma 6. For any ε > 0, we have:

Pr {‖ŵ − w∗‖2 ≥ ε} ≤ Pr
{
|Q(ŵ)−Q(w∗)| ≥ δs,k

}
(13)

Lemma 7. For any δ > 0, we have:

Pr
{
|Q(ŵ)−Q(w∗)|≥δ

}
≤ Pr

{
sup
w∈Θs

|Q(w)−Q(w)| ≥ δ

2

}

Proof of Lemma 6:
Consider

Event P : ‖ŵ − w∗‖2 ≥ ε

and
Event Q : |Q(ŵ)−Q(w∗)| ≥ δs,k(ε)

We have:
(P ⇒ Q) =⇒ Pr(P) ≤ Pr(Q)

Note that Q(w) is a convex function. Hence its minimum
over a concave set ‖w − w∗‖2 ≥ ε is on the boundary
‖w − w∗‖2 = ε. Finally, by the definition in Eq. (6), the
minimum value on the boundary is lower bounded by δs,k.
Therefore, P implies Q, which completes the proof. �

Proof of Lemma 7:
Based on the definition of Q(w):

w∗ = arg min
w∈Θs

Q(w)

Therefore:

|Q(ŵ)−Q(w∗)| = Q(ŵ)−Q(w∗)

Pr
{
|Q(ŵ)−Q(w∗)| ≥ δ

}

= Pr
{
Q(ŵ)−Q(ŵ) +Q(ŵ)−Q(w∗) ≥ δ

}

Note that according to the definition:

ŵ = arg min
w∈Θs

Q(w)

Therefore Q(ŵ) ≤ Q(w∗), and we have the following inequal-
ities:

Pr
{
Q(ŵ)−Q(ŵ) +Q(ŵ)−Q(w∗) ≥ δ

}

≤ Pr
{
Q(ŵ)−Q(ŵ) +Q(w∗)−Q(w∗) ≥ δ

}

≤ Pr

{
2 sup
w∈Θs

|Q(w)−Q(w)| ≥ δ
}

which proves our claim.�

C. Proof of Lemma 2
We start with:

Pr

{
sup
w∈Θs

|Q(w)−Q(w)| ≥ δ

2

}

≤ Pr

{
sup
w∈Θs

1

n
|
n∑

i=1

(yi − λw∗,i) log(λw,i)| ≥
δ

2

}
(14)

≤ Pr

{
| 1
n

n∑

i=1

(yi − λw∗,i)| ≥
δ

2| log(λmax)|

}
(15)

To apply the result of Lemma 4, we have to set:

δ

2| log(λmax)| =
2t

n

√√√√
n∑

i=1

λw∗,i (16)

where

t ≤
√∑n

i=1 λw∗,i
2L

(17)

and L := max(1,
√
λmax). Combining Eqn. (16) and Eqn.

(17), we have:

nδ

4| log(λmax)|
√∑n

i=1 λw∗,i
≤
√∑n

i=1 λw∗,i
2L

(18)

Therefore, δ must be upper bounded by:

δ ≤ 2λmin| log(λmax)|
L

to guarantee:

Pr

{
sup
w∈Θs

|Qn(w)−Qn(w)| ≥ δ

2

}

≤ 2 exp

(
− nδ2

16 log2(λmax)λmax

)
(19)

Finally, note that as λmax = O(s), we may replace λmax by
s at the cost of getting some extra universal constants.

D. Proof of Theorem 2
Lets assume u := ŵ − w∗. We have:

Q(ŵ)−Q(w∗) =
1

n

n∑

i=1

−λw∗,i log

(
1 +

a>i u

λw∗,i

)
+ a>i u

︸ ︷︷ ︸
f(u)

(20)

where λw∗,i = λ0,i + a>i w
∗.

Our goal is to find a lower bound on δs,k defined earlier as:

min
‖u‖2=ε

ŵ∈Θs, w∗∈Γk∩Θs

f(u)

We use the following inequality to lower bound f :

a ≤ b⇒ a log(1 + x/a) ≤ b log(1 + x/b) (21)

Hence

f(u) ≥ 1

n

n∑

i=1

−λmax log

(
1 +

a>i u

λmax

)
+ a>i u (22)

≥λmax
n

n∑

i=1

− log

(
1 +

a>i u

λmax

)
+

a>i u

λmax
(23)
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and from inequality − log(1+x) ≥ −x, we can show that for
all u, f(u) ≥ 0. Next, from Eqn. (22) we have:

δs,k ≥ min
‖u‖2=ε

ŵ∈Θs ,w∗∈Γk∩Θs

λmax
n

n∑

i=1

− log

(
1 +

a>i u

λmax

)
+

a>i u

λmax

(24)

We make by the following change of variables:

Xi =
a>i u

λmax

Before we proceed to apply the result of Definition 1, we need
to check that ‖uS‖1 ≥ ‖uSc‖1. We know:

‖uS‖1 = ‖ŵS − w∗‖1 ≥ ‖w∗‖1 − ‖ŵS‖1

Moreover, from ‖ŵ‖1 ∈ Θs, we have:

‖ŵS‖1 + ‖ŵSc‖1 = ‖ŵ‖1 ≤ s = ‖w∗‖1

Therefore,

‖uSc‖1 = ‖ŵSc‖1 ≤ ‖w∗‖1 − ‖ŵS‖1 ≤ ‖uS‖1

Now, from Definition 1, we have:

1

n
‖X‖22 =

1

n

n∑

i=1

X2
i =

1

n

n∑

i=1

(a>i u)2

λ2
max

≥ γk
ε2

λ2
max

Now, by applying Taylor series expansions around Xi = 0 to
each term in the sum in Eq. (24), we have:

− log (1 +Xi) +Xi = −Xi +
1

(1 + X̃i)2
X2
i +Xi

where |X̃i| lies between 0 and |Xi|:

|X̃i| = |c× 0 + (1− c)×Xi| ≤ |Xi| ≤
2samax
λmax

where the last inequality follows from the fact that ‖u‖1 ≤ 2s.
Therefore, we can rewrite Eqn. (24) as

δs,k ≥ min
‖X‖2≥γk nε2

λ2max

1

n
λmax

n∑

i=1

1

(1 + 2samax
λmax

)2
X2
i

≥ λmax

(1 + 2samax
λmax

)2
min

‖X‖2≥γk nε2

λ2max

1

n

n∑

i=1

X2
i

≥ γk
λmaxε

2

λ2
max(1 + 2samax

λmax
)2

= γk
λ3
maxε

2

λ2
max(λmax + 2samax)2

≥ γk
λ3
maxε

2

λ2
max(λmax + 2λmax)2

=
γkε

2

9λmax

Finally, as λmax = O(s), we replace λmax by s and
introduce some constants in the equation.
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