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Abstract—We consider the multiple-input multiple-output
(MIMO) wiretap channel under a minimum receiver-side power
constraint in addition to the usual maximum transmitter-side
power constraint. This problem is motivated by energy harvesting
communications with wireless energy transfer, where an added
goal is to deliver a minimum amount of energy to a receiver in ad-
dition to delivering secure data to another receiver. In this paper,
we characterize the exact secrecy capacity of the MIMO wiretap
channel under transmitter and receiver-side power constraints.
We first show that solving this problem is equivalent to solving
the secrecy capacity of a wiretap channel with a double-sided
correlation matrix constraint on the channel input. We show
the converse by extending the channel enhancement technique
to our case. We present two achievable schemes that achieve the
secrecy capacity: the first achievable scheme uses a Gaussian
codebook with a fixed mean, and the second achievable scheme
uses artificial noise (or cooperative jamming) together with a
Gaussian codebook. The role of the mean or the artificial noise
is to enable energy transfer without sacrificing from the secure
rate. This is the first instance of a channel model where either
the use of a mean signal or use of channel prefixing via artificial
noise is strictly necessary in the MIMO wiretap channel.

I. INTRODUCTION

Most existing literature on Gaussian channels is based on
a transmitter-side average power constraint. This constraint
models the maximum allowable power at the transmitter-side.
Gastpar [1] was the first to consider a receiver-side power
constraint. In [1], he considered a maximum receiver-side
power constraint motivated by the desire to limit the received
interference in a band in a cognitive radio application. He
observed that, while the solution does not change with respect
to a classical transmitter-side power constraint for a single-
input single-output (SISO) channel, it changes significantly
for a multiple-input multiple-output (MIMO) channel. Sub-
sequently, Varshney [2] considered a minimum receiver-side
power constraint motivated by the desire to transport both
information and energy simultaneously over a wireless chan-
nel. This minimum receiver-side power constraint signified
the power (in addition to data) transferred to the receiver
by the same physical signal. Varshney as well observed
that while the solution does not change with respect to a
classical transmitter-side power constrained SISO channel, it
changes significantly with respect to a classical transmitter-
side amplitude constrained SISO channel [3].
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In this paper, we consider a multi-user and multi-objective
version of the problem considered by Gastpar and Varshney.
In particular, we consider a MIMO wiretap channel where
the transmitter wishes to have secure communication with
a legitimate receiver in the presence of an eavesdropper. In
this model, messages need to be sent at the highest reliable
rate to the legitimate receiver with perfect secrecy from the
eavesdropper. We impose the usual transmitter-side power
constraint in addition to a receiver-side power constraint.
While we can impose two receiver-side power constraints,
one at the legitimate receiver, and one at the eavesdropper, in
this paper, we limit our presentation to imposing a receiver-
side power constraint only at one of the receivers, which we
choose as the eavesdropper. Therefore, our model generalizes
the receiver-side power constraint of Gastpar and Varshney
from a single-user setting to a multi-user scenario of a wiretap
channel with three nodes, and also to a multi-objective setting
where we have both reliability and security constraints.

The wiretap channel was first considered by Wyner in
[4], where he determined the rate-equivocation region of a
degraded wiretap channel. This model was generalized to
arbitrary, not necessarily degraded, channels by Csiszar and
Korner in [5], where they determined the rate-equivocation
region of the most general wiretap channel. The SISO Gaus-
sian wiretap channel, which is degraded, was considered under
a transmitter-side power constraint in [6], which showed that
Gaussian signalling is optimal. The MIMO Gaussian wiretap
channel was considered for the 2-2-1 case in [7], for the gen-
eral case in [8], [9], under a transmitter-side power constraint.
These references showed that channel prefixing is not needed,
even though the MIMO wiretap channel is not degraded, and
Gaussian signalling is optimal. An interesting alternative proof
is given in [10] based on the channel enhancement technique
developed in [11]. Reference [10] considers the MIMO wiretap
channel under a transmitter-side covariance constraint which
is more general than a transmitter-side power constraint.

In this paper, we characterize the secrecy capacity of the
general MIMO wiretap channel under a receiver-side power
constraint at the eavesdropper. The extensions to receiver-side
power constraint at the legitimate receiver, and dual receiver-
side power constraints at both receivers are not presented in
this paper due to space constraints. In this paper, we first
show that, solving the secrecy capacity of the MIMO wiretap
channel under a transmitter-side maximum power constraint



and a receiver-side minimum power constraint is equivalent to
solving the secrecy capacity of a MIMO wiretap channel under
a double-sided correlation matrix constraint on the channel
input at the transmitter. This is a generalization of the approach
of [10], [11], which states that solving the capacity under
a transmitter-side maximum power constraint is equivalent
to solving the capacity under a transmitter-side maximum
covariance constraint. We then generalize the channel en-
hancement technique of [10], [11] to the case of double-sided
correlation matrix constraint. This gives us the converse. We
next show that the rates given in the converse can be achieved
by two different achievable schemes: a mean based scheme
where the transmitter uses a Gaussian codebook with a fixed
mean, and an artificial noise (or cooperative jamming [12])
based scheme, which uses Gaussian channel prefixing with a
Gaussian codebook. The role of the mean or the artificial noise
is to enable energy transfer without sacrificing from the secure
rate; this helps achieving the receiver-side power constraint by
sending non-message carrying signals. This is the first instance
of a channel model where either the use of a mean signal or the
use of channel prefixing via artificial noise is strictly necessary
in the canonical MIMO wiretap channel. Note that while [13,
Section III] shows an alternative way of achieving MIMO
secrecy capacity using artificial noise, this is valid in the case
of a covariance constraint, and the use of artificial noise in
the MIMO wiretap channel under a transmitter-side power
constraint is sub-optimal. Finally, we note that, in related work,
references [14], [15] consider simultaneous information and
energy transfer in a MISO wiretap channel, and focus on
optimizing the performance of a specific artificial noise based
achievable scheme with no claim of optimality.

II. SYSTEM MODEL AND PRELIMINARIES

The MIMO wiretap channel with Nt antennas at the trans-
mitter, Nr antennas at the legitimate receiver and Ne antennas
at the eavesdropper is given by,

Y = HX+W1 (1)
Z = GX+W2 (2)

where X ∈ RNt is the channel input, Y ∈ RNr is the
legitimate receiver’s channel output, and Z ∈ RNe is the
eavesdropper’s channel output; W1 and W2 are independent
Gaussian random vectors with zero-mean and identity covari-
ance matrix. The channel matrices of legitimate receiver H and
the eavesdropper G are real-valued matrices of dimensions
Nr × Nt and Ne × Nt, respectively. The channel matrices
are fixed and known to all entities. The channel input is
constrained by the usual maximum average power constraint

tr(E[XXT ]) ≤ P (3)

where P is the average power constraint. In this paper, we
additionally impose a receiver-side minimum average power
constraint

tr(E[ZZT ]) ≥ E (4)
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Fig. 1. Gaussian MIMO wiretap channel with receiver-side power constraint.

where E is the minimum power level that should be main-
tained at the eavesdropper’s receiver. In addition, we have the
following reliability constraint at the legitimate receiver

P[Ŵ ̸= W ] ≤ ϵ (5)

where Ŵ is the estimate of the legitimate receiver of the
transmitted message W based on its observation Yn, and the
secrecy constraint on the confidential message W as

lim
n→∞

1

n
I(W ;Zn) = 0 (6)

Although, we will determine the secrecy capacity under a
maximum transmitter-side power constraint in (3) and a min-
imum receiver-side power constraint in (4), we will initially
characterize the secrecy capacity under a general double-sided
correlation matrix constraint as

S1 ≼ Q ≼ S2 (7)

for S1 ≺ S2, where ≼ denotes the partial ordering of positive
semi-definite matrices, and Q = E[XXT ] is the channel
input correlation matrix. We will show in a similar way to
[11, Section II.B] that the secrecy capacity with a maxi-
mum transmitter-side power constraint in (3) and a minimum
receiver-side power constraint in (4) can be obtained from the
secrecy capacity with a more general double-sided correlation
constraint in (7) by maximizing this secrecy capacity over all
correlation matrices S1 ≺ S2 that lie in the compact set SPE

SPE = {S : tr(S) ≤ P, tr(GSGT ) ≥ Ẽ} (8)

where Ẽ = E −Ne.
We evaluate the secrecy capacity based on Csiszar-Korner

secrecy capacity expression [5]

Cs = max
V,X

I(V ;Y)− I(V ;Z) (9)

where V carries the message signal and X is the channel
input. The maximization is over all jointly distributed (V,X)
that satisfy the Markov chain V → X → Y,Z.

III. MAIN RESULT

The main result of this paper is the exact characterization
of the secrecy capacity of the MIMO wiretap channel under



the transmitter-side power constraint in (3) and receiver-side
power constraint in (4).

Theorem 1 The secrecy capacity of a MIMO wiretap channel
with a transmitter-side power constraint P and a receiver-side
power constraint E, C(E,P,H,G), is given as

C(E,P,H,G) = max
Q,µ

1

2
log |I+HQHT |

− 1

2
log |I+GQGT |

s.t. tr(Q+ µµT ) ≤ P

tr(G(Q+ µµT )GT ) ≥ Ẽ (10)

where Ẽ = E − Ne. This secrecy capacity is achieved by
X ∼ N (µ,Q), i.e., with a mean but no channel prefixing.

Alternatively, the secrecy capacity, C(E,P,H,G), is also
given as

C(E,P,H,G) = max
Q1,Q2

1

2
log

|I+H(Q1 +Q2)H
T |

|I+HQ2HT |

− 1

2
log

|I+G(Q1 +Q2)G
T |

|I+GQ2GT |
s.t. tr(Q1 +Q2) ≤ P

tr(G(Q1 +Q2)G
T ) ≥ Ẽ (11)

where X = V+U, with jointly Gaussian V ∼ N (0,Q1) and
U ∼ N (0,Q2), i.e., with Gaussian channel prefixing.

IV. ACHIEVABILITY SCHEMES

In this section, we provide two coding schemes that achieve
the secrecy capacity of the MIMO wiretap with transmitter and
receiver-side power constraints.

A. Gaussian Coding with Fixed Mean

The first achievable scheme is Gaussian coding with fixed
mean, i.e., X ∼ N (µ,Q1). In this case, the fixed mean will
not play a role in evaluating the secrecy capacity except for
consuming part of the overall correlation matrix and only
provides the required power level at the receiver side. Then,
we choose V = X, i.e., no channel prefixing. Hence, we have

C(S1,S2,H,G)

≥ max
Q1,µ

I(X;Y)− I(X;Z)

= max
Q1,µ

1

2
log |I+HQ1H

T | − 1

2
log |I+GQ1G

T |

s.t. S1 ≼ Q1 + µµT ≼ S2 (12)

In the converse proof, we call Q2 = µµT . In order to have
a feasible coding scheme, Q2 must be constrained to unit-rank
correlation matrices. In the converse proof, we ignore this unit-
rank constraint. Although, the solution of Q2 is generally not
unit-rank for arbitrary correlation matrices S1,S2, we show
in the following lemma that for the special case of maximum
transmitter-side power constraint P , and minimum receiver-
side power constraint E, the solution is guaranteed to be of
unit-rank, and hence the coding scheme is feasible.

Lemma 1 The coding scheme X ∼ N (V(Q∗
2),Q

∗
1) is achiev-

able for the wiretap channel under transmitter-side power
constraint P and receiver-side power constraint E given that
the matrix GTG has unique maximum eigenvalue. The secrecy
rate is characterized by the following optimization problem:

max
Q1,Q2

1

2
log |I+HQ1H

T | − 1

2
log |I+GQ1G

T |

s.t. Q1 ≽ 0

Q2 ≽ 0

tr(Q1 +Q2) ≤ P

tr(G(Q1 +Q2)G
T ) ≥ Ẽ (13)

where V(Q∗
2) denotes the eigenvector of matrix Q∗

2.

Proof: We note that Q2 does not appear in the objective
function; it only appears in the constraint set. Therefore, its
only role is to enlarge the feasible set for Q1 as much as
possible. Thus, Q2 must be chosen such that, when the third
line of the feasible set of (13) is fixed, it maximizes the feasible
set for Q1 in the fourth line, i.e., Q2 must be the solution of

max
Q2

tr(GQ2G
T )

s.t. tr(Q2) = P̃ (14)

Eigenvector decomposition for Q2, which is symmetric, is

Q2 =
r∑

i=1

λiqiq
T
i (15)

where r, λi, qi are the rank, ith eigenvalue and the correspond-
ing orthonormal eigenvector of Q2, respectively. Thus, we can
write the constraint as tr(Q2) =

∑r
i=1 λi = P̃ . Moreover, the

objective function can be written as

tr(GQ2G
T ) = tr

(
G

(
r∑

i=1

λiqiq
T
i

)
GT

)
(16)

=
r∑

i=1

λi∥Gqi∥2 (17)

Hence, the optimization problem in (14) can be written as

max
λi,qi

r∑
i=1

λi∥Gqi∥2

s.t.
r∑

i=1

λi = P̃ (18)

which is a linear program in λi. The optimum solution is
λm = P̃ , and λi = 0 for i ̸= m, where

m = argmax
i

∥Gqi∥2 (19)

Hence, the optimal solution for this problem is to beam-
form all the available power P̃ to the direction of the largest
∥Gqi∥2. In this case, Q2 = P̃qmqT

m, i.e., it is unit-rank with
eigenvector µ =

√
P̃qm, and the problem is feasible. �



B. Gaussian Coding with Gaussian Artificial Noise
The second achievable scheme is Gaussian coding with

Gaussian artificial noise. In this case, we choose X = V+U,
where V, U are independent and V ∼ N (0,Q1) and
U ∼ N (0,Q2). Here, V carries the message, X is the channel
input, and U is the artificial noise (or cooperative jamming
[12]) signal. In this case, we use channel prefixing, hence
V ̸= X. The extra randomness U is sent by the transmitter to
provide extra noise floor at both receivers, and confuses the
eavesdropper. The added significance of this artificial noise in
our problem is to provide a suitable level of received power
at the receiver, i.e., we utilize the artificial noise as a source
of power. In this case, the secrecy capacity is

C(S1,S2,H,G) ≥ max
Q1,Q2

I(V;Y)− I(V;Z)

= max
Q1,Q2

1

2
log

|I+H(Q1 +Q2)H
T |

|I+HQ2HT |

− 1

2
log

|I+G(Q1 +Q2)G
T |

|I+GQ2GT |
s.t. S1 ≼ Q1 +Q2 ≼ S2 (20)

V. CONVERSE PROOF

In this section, we prove the reverse implication using the
channel enhancement technique [10], [11]. We will consider
the case of having S2 ≻ S1 ≻ 0 and aligned MIMO
case which implies that the channel matrices are square and
invertible. The general MIMO case follows directly from the
limiting arguments in [10], as the additional receiver-side
power constraint is irrelevant in the limit. Therefore, we focus
on the aligned case here. The aligned MIMO model is obtained
by multiplying by the inverse of the channel matrices as

Ỹ = X+H−1W1 = X+ W̃1 (21)

Z̃ = X+G−1W2 = X+ W̃2 (22)

where W̃1 and W̃2 are the equivalent zero-mean Gaussian
random vectors with covariance matrices N1 = H−1H−T

and N2 = G−1G−T , respectively.

A. Equivalance of a Double-Sided Correlation Constraint
For the MIMO broadcast and wiretap channels under a

transmitter-side maximum power constraint, references [10],
[11] showed that it is sufficient to prove the converse under a
maximum covariance constraint on the channel input. We first
note here that in our case with maximum transmitter-side and
minimum receiver-side power constraints, a single correlation
constraint on the channel input, i.e., Q ≼ S, is not sufficient.
Next, we show the equivalence of solving our problem with
a double-sided correlation matrix constraint on the channel
input, i.e., S1 ≼ Q ≼ S2. Then, our problem can be solved
in two stages: the inner problem finds the capacity under
fixed correlation matrices S1 and S2 constraints, and the outer
problem finds the optimal S1,S2 ∈ SPE in (8). Finally, we
modify the original channel enhancement technique [10], [11]
to prove the optimality of the achievable schemes presented
in the previous section.

We first note that solving the problem for Q ≼ S, where
S ∈ SPE is insufficient. Consider solving the secrecy capacity
under maximum transmitter-side and minimum receiver-side
power constraints in two stages, first, solving the problem
under a fixed correlation matrix S, and then choosing the
optimal S ∈ SPE , i.e.,

max
S∈SPE

max
Q≼S

Rs (23)

Since Q ≼ S, we have GQGT ≼ GSGT and hence
tr(GQGT ) ≤ tr(GSGT ). Then, although any S ∈ SPE

satisfies the minimum receiver-side power constraint, i.e.,
tr(GSGT ) ≥ Ẽ, the input correlation matrix Q is not
guaranteed to satisfy tr(GQGT ) ≥ Ẽ. Hence, the single
correlation constraint is not sufficient for solving problems
involving minimum receiver-side power constraints.

Lemma 2 Since SPE is a compact set of positive semi-
definite matrices, and C(S1,S2,H,G) is continuous with
respect to S2, we have

C(E,P,H,G) = max
S1,S2∈SPE ,S1≺S2

C(S1,S2,H,G) (24)

Proof: To see

C(E,P,H,G) ≥ max
S1,S2∈SPE ,S1≺S2

C(S1,S2,H,G) (25)

we note that for any S1 ≼ Q ≼ S2 where S1,S2 ∈ SPE , we
have Q ∈ SPE .

To see

C(E,P,H,G) ≤ max
S1,S2∈SPE ,S1≺S2

C(S1,S2,H,G) (26)

we should prove that C(E,P,H,G) = C(S1,S2,H,G)
for some S1,S2 ∈ SPE [11]. If R = C(E,P,H,G) is
achievable, then there exists an infinite sequence of code-
books C(ni,S0i , R, ϵi), i = 1, . . . with rate R and decreasing
probability of error ϵi → 0 as i → ∞. Choose S1 ≼
S0i∀i, S1 ∈ SPE . As SPE is compact [16], [17], for any
infinite sequence of points in SPE , there must be sub-sequence
that converges to a point S0 ∈ SPE . Hence, for any arbitrary
δ > 0, we can find an increasing subsequence i(k) such that
S1 ≼ S0i(k)

≼ S0 + δI.
This implies that we can find a sequence of codebooks

C(nk,S0 + δI, R, ϵk) with S0 ∈ SPE ,S0 ≽ S1 achieving
small probability of error. Therefore, for every δ > 0, we
have R = C(S1,S0 + δI,H,G). Since C(S1,S0 + δI,H,G)
is continuous [11], with respect to its second argument, then
we have that every ϵ-ball around R contains C(S1,S0,H,G)
and therefore R is a limit point of C(S1,S0,H,G) and hence
C(E,P,H,G) = C(S1,S0,H,G). �

B. Converse Proof for Gaussian Coding with Fixed Mean

First, we begin with writing the equivalent optimiza-
tion problem corresponding to the achievability scheme
in the aligned MIMO case with Gaussian coding X ∼



N (V(Q∗
2),Q

∗
1):

max
Q1,Q2

1

2
log

|Q1 +N1|
|N1|

− 1

2
log

|Q1 +N2|
|N2|

s.t. Q1 ≽ 0

Q2 ≽ 0

Q1 +Q2 ≽ S1

Q1 +Q2 ≼ S2 (27)

The Lagrangian of this optimization problem can be written
as:

L = log
|Q1 +N2|

|N2|
− log

|Q1 +N1|
|N1|

− tr(Q1M1)− tr(Q2M2)− tr((Q1 +Q2 − S1)M3)

+ tr((Q1 +Q2 − S2)M4) (28)

where M1 ≽ 0,M2 ≽ 0,M3 ≽ 0 and M4 ≽ 0 are the
Lagrange multipliers for each constraint. The corresponding
KKT optimality conditions can be written as complementary
slackness conditions

Q∗
1M1 = 0 (29)

Q∗
2M2 = 0 (30)

(Q∗
1 +Q∗

2 − S1)M3 = 0 (31)
(S2 −Q∗

1 −Q∗
2)M4 = 0 (32)

the stationarity condition of Q∗
1

(Q∗
1 +N2)

−1 − (Q∗
1 +N1)

−1 −M1 −M3 +M4 = 0
(33)

and the stationary conditions for Q∗
2

−M2 −M3 +M4 = 0

M2 = M4 −M3 ≽ 0 (34)

Now, using the optimality condition (33) and (34), we can
construct an enhanced channel that can serve as an upper
bound for the original legitimate receiver’s channel and at the
same time, the eavesdropper’s channel is degraded with respect
to it. The covariance of the enhanced channel is chosen as Ñ
such that

(Q∗
1 +N2)

−1 +M2 = (Q∗
1 +N1)

−1 +M1 = (Q∗
1 + Ñ)−1

(35)
Using this definition of the enhanced channel, we explore
various characteristics of Ñ.

First, to prove the validity of the covariance matrix Ñ, we
note that

Ñ = [(Q∗
1 +N1)

−1 +M1]
−1 −Q∗

1 (36)

= (I+N1M1)
−1(Q∗

1 +N1)−Q∗
1 (37)

= (I+N1M1)
−1[(Q∗

1 +N1)− (I+N1M1)Q
∗
1] (38)

= (I+N1M1)
−1N1 (39)

= (N−1
1 +M1)

−1 ≽ 0 (40)

and hence the covariance matrix of the constructed enhanced

channel is positive semi-definite, and hence it is a feasible
covariance matrix.

Next, we want to show that the constructed channel is
enhanced with respect to N1, i.e., N1 ≽ Ñ. To show that we
note from (40) that Ñ = (N−1

1 +M1)
−1 and hence, N1 ≽ Ñ.

Similarly by considering (Q∗
1 +N2)

−1 +M2 = (Q∗
1 + Ñ)−1

we note that N2 ≽ Ñ. Hence, we conclude that the en-
hanced channel has better channel conditions than the original
legitimate user’s channel, therefore the constructed channel
is an upper bound for the legitimate receiver. Moreover,
the eavesdropper’s channel is degraded with respect to the
constructed channel. Consequently the secrecy capacity of
the enhanced channel is known. In other words, we have
Ỹ = X + W̃ such that W̃ ∼ N (0, Ñ) and X → Ỹ → Y
and X → Ỹ → Z.

In order to have a meaningful upper bound, we need to
show that the rate is preserved between the original problem
and the constructed channel. To show that, we have

(Q∗
1 + Ñ)−1Ñ = (Q∗

1 + Ñ)−1(Ñ+Q∗
1 −Q∗

1) (41)

= I− (Q∗
1 + Ñ)−1Q∗

1 (42)

= I− [(Q∗
1 +N1)

−1 +M1]Q
∗
1 (43)

= I− (Q∗
1 +N1)

−1Q∗
1 (44)

= (Q∗
1 +N1)

−1N1 (45)

where (43) follows from the definition of the enhanced channel
and (44) follows from the complementary slackness condition
(29). Therefore, we have

|Ñ+Q∗
1|

|Ñ|
=

|N1 +Q∗
1|

|N1|
(46)

To show a similar rate preservation argument for the degraded
channel N2, we will need the following lemma.

Lemma 3 The optimal covariance matrix for the achievable
scheme with Gaussian signaling with a fixed mean Q∗

1 satisfies
(S2 −Q∗

1)M2 = 0.

Proof: We return to the KKT conditions. Considering the
correlation constraint, three cases can possibly occur.

The first case: the correlation constraint is satisfied with
equality, consequently S2 − Q∗

1 = Q∗
2. In this case, (S2 −

Q∗
1)M2 = Q∗

2M2 = 0 from (30).
The second case: the correlation constraint is strictly loose,

i.e, Q1 + Q2 ≺ S2. In this case, we can define a matrix
∆ = S2 −Q∗

1 −Q∗
2 ≻ 0, and therefore ∆ is full rank matrix.

Thus, M4 = 0 and from (34), we have M2 = −M3. The
matrices M2, M3 are both positive semi-definite matrices.
Therefore, we must have M2 = M3 = 0.

Finally, the third case: the correlation constraint is partially
loose, that is we have ∆ = S2 − Q1 − Q2 ≽ 0, hence ∆
is not a full-rank matrix. We define Σ = S2 − S1 ≻ 0, i.e.,
S1 = S2 −Σ. In this case, we sum the KKT conditions (31)



and (32) to obtain the following implications:

(Q∗
1 +Q∗

2)(M3 −M4)− S1M3 + S2M4 = 0 (47)
(Q∗

1 +Q∗
2)(M3 −M4)− S2M3 +ΣM3 + S2M4 = 0 (48)

(S2 −Q∗
1 −Q∗

2)(M4 −M3) = −ΣM3 (49)
(S2 −Q∗

1 −Q∗
2)M2 = −ΣM3 (50)

(S2 −Q∗
1)M2 = −ΣM3 (51)

where (50) follows from (34) and (51) follows from (30). Since
(S2 −Q∗

1)M2 ≽ 0 and ΣM3 ≽ 0, or at least (S2 −Q∗
1)M2

and ΣM3 have the same number of non-negative eigenvalues
of M2 and M3, respectively [18], the only way to satisfy (51)
is to have all the eigenvalues of both matrices equal zero, i.e,
(S2 − Q∗

1)M2 = −ΣM3 = 0. Hence, we conclude that for
all three cases we have

(S2 −Q∗
1)M2 = 0 (52)

completing the proof of Lemma 3. �
Hence, using Lemma 3, we write:

(Ñ+ S2)(Q
∗
1 + Ñ)−1

= (S2 −Q∗
1)(Q

∗
1 + Ñ)−1 + I (53)

= (S2 −Q∗
1)[(Q

∗
1 +N2)

−1 +M2] + I (54)

= (S2 −Q∗
1)(Q

∗
1 +N2)

−1 + I (55)

= [(N2 + S2)− (Q∗
1 +N2)](Q

∗
1 +N2)

−1 + I (56)

= (N2 + S2)(Q
∗
1 +N2)

−1 (57)

where (54) follows from the definition of the enhanced channel
(35), and (55) follows from Lemma 3. Hence, we have

|S2 + Ñ|
|S2 +N2|

=
|Q∗

1 + Ñ|
|Q∗

1 +N2|
(58)

Now, we upper bound the secrecy capacity of the MIMO
wiretap channel with receiver-side power constraint by the
secrecy capacity of the enhanced channel. Since S2 ∈ SPE ,
S2 satisfies the receiver power constraint for the enhanced
channel. Therefore, the receiver constraint is valid with the up-
per bounding argument. The secrecy capacity of the enhanced
channel C̃s is given by

C̃s =
1

2
log

|S2 + Ñ|
|Ñ|

− 1

2
log

|S2 +N2|
|N2|

(59)

=
1

2
log

|S2 + Ñ|
|S2 +N2|

· |N2|
|Ñ|

(60)

=
1

2
log

|Q∗
1 + Ñ|

|Q∗
1 +N2|

· |N2|
|Ñ|

(61)

=
1

2
log

|Q∗
1 + Ñ|
|Ñ|

− 1

2
log

|Q∗
1 +N2|
|N2|

(62)

=
1

2
log

|Q∗
1 +N1|
|N1|

− 1

2
log

|Q∗
1 +N2|
|N2|

(63)

= C(S1,S2,H,G)

where (61) follows from (58) and (63) follows from (46), com-
pleting the converse proof for the case of Gaussian signalling

with fixed mean.

C. Converse Proof for Gaussian Coding with Gaussian Arti-
ficial Noise

In this section, we follow a similar channel enhancement
technique as in Section V-B. The optimization problem corre-
sponding to the Gaussian coding scheme with artificial noise
in the aligned model is

max
Q1,Q2

1

2
log

|Q1 +Q2 +N1|
|Q2 +N1|

− 1

2
log

|Q1 +Q2 +N2|
|Q2 +N2|

s.t. Q1 ≽ 0

Q2 ≽ 0

Q1 +Q2 ≽ S1

Q1 +Q2 ≼ S2 (64)

The Lagrangian for this optimization problem is given by:

L = log
|Q1 +Q2 +N2|

|Q2 +N2|
− log

|Q1 +Q2 +N1|
|Q2 +N1|

− tr(Q1M1)− tr(Q2M2)− tr((Q1 +Q2 − S1)M3)

+ tr((Q1 +Q2 − S2)M4) (65)

The complementary slackness conditions (29)-(32) are still the
same due to the same set of constraints for both problems (64)
and (27). The stationarity condition for Q∗

1 is

(Q∗
1 +Q∗

2 +N2)
−1 − (Q∗

1 +Q∗
2 +N1)

−1

−M1 −M3 +M4 = 0 (66)

which is equivalent to:

M1 = (Q∗
1+Q∗

2+N2)
−1− (Q∗

1+Q∗
2+N1)

−1−M3+M4

(67)
The stationarity condition for Q∗

2 is:

(Q∗
1 +Q∗

2 +N2)
−1 − (Q∗

2 +N2)
−1 − (Q∗

1 +Q∗
2 +N1)

−1

+ (Q∗
2 +N1)

−1 −M2 −M3 +M4 = 0 (68)

Using (67), we can write (68) as:

M1 − (Q∗
2 +N2)

−1 + (Q∗
2 +N1)

−1 −M2 = 0 (69)

In this case, we again construct an enhanced channel with
similar steps as in Section V-B. The enhanced channel is
constructed as:

(Q∗
2 +N1)

−1 +M1 = (Q∗
2 +N2)

−1 +M2 = (Q∗
2 + Ñ)−1

(70)
which is the same as in the previous section. Therefore, it
follows that Ñ ≽ 0, Ñ ≼ N1, Ñ ≼ N2. Similarly, we can
prove that the rate is preserved for the eavesdropper (as in the
set of equations (41)-(46) with Q∗

2 instead of Q∗
1, i.e.,

|Ñ+Q∗
2|

|Ñ|
=

|N2 +Q∗
2|

|N2|
(71)

To prove the rate preservation for the legitimate receiver, we
will need the following lemma.



Lemma 4 To achieve positive secrecy rate using Gaussian
coding with artificial noise, S2 must be fully used, i.e., S2 =
Q∗

1 + Q∗
2, and the optimal covariance matrix used for the

artificial noise component, Q∗
2, satisfies (S2 −Q∗

2)M1 = 0.

Proof: We start by proving the first part of the lemma by
contradiction. Assume that a positive secrecy rate can be
achieved using artificial noise coding scheme, and S2 is
partially used. Then, we have two cases.

The first case: ∆ = S2 − Q∗
1 − Q∗

2 ≻ 0. Hence, ∆ is a
full-rank matrix, then M4 = 0. From (66), we can write

(Q∗
1 +Q∗

2 +N1)
−1 +M1 +M3 = (Q∗

1 +Q∗
2 +N2)

−1

(72)

and hence, (Q∗
1 +Q∗

2 +N1)
−1 ≼ (Q∗

1 +Q∗
2 +N2)

−1, which
results in N2 ≼ N1. This means that the legitimate channel is
degraded with respect to the eavesdropper channel and hence
no positive secrecy rate can be achieved. This contradicts our
assumption.

The second case: ∆ is not full-rank. Due to the similarity of
the complementary slackness conditions for the artificial noise
setting and the Gaussian coding with fixed mean, we will have
also equation (49), and from (66), we have

M4 −M3

= (Q∗
1 +Q∗

2 +N1)
−1 − (Q∗

1 +Q∗
2 +N2)

−1 +M1

(73)

substituting this in (49), we have the following implications:

∆(Q∗
1 +Q∗

2 +N1)
−1 −∆(Q∗

1 +Q∗
2 +N2)

−1

+∆M1 = −ΣM3 (74)

∆(Q∗
1 +Q∗

2 +N1)
−1 −∆(Q∗

1 +Q∗
2 +N2)

−1

= −∆M1 −ΣM3 (75)

∆[(Q∗
1 +Q∗

2 +N2)
−1 − (Q∗

1 +Q∗
2 +N1)]

−1] ≽ 0 (76)

Then, (Q∗
1 +Q∗

2 +N2)
−1− (Q∗

1 +Q∗
2 +N1)]

−1 ≽ 0 to have
the product (76) hold true [19], and then we have N2 ≼ N1

as the previous case, which also contradicts the assumption of
having positive secrecy rate. Hence,

Q∗
1 +Q∗

2 = S2 (77)

For the second part of the lemma, we now have S2 −
Q∗

2 = Q∗
1, and from the complementary slackness condition

Q∗
1M1 = 0. Then, we conclude that (S2 − Q∗

2)M1 = 0,
completing the proof of Lemma 4. �

Using the results of Lemma 4, we can prove the rate
preservation for the legitimate receiver as follows:

(Ñ+ S2)(Q
∗
2 + Ñ)−1

= (S2 −Q∗
2)(Q

∗
2 + Ñ)−1 + I (78)

= (S2 −Q∗
2)[(Q

∗
2 +N1)

−1 +M1] + I (79)

= (S2 −Q∗
2)(Q

∗
2 +N1)

−1 + I (80)

= [(N1 + S2)− (Q∗
2 +N1)](Q

∗
2 +N1)

−1 + I (81)

= (N1 + S2)(Q
∗
2 +N1)

−1 (82)

where (79) follows from the definition of the enhanced channel
(70), and (80) follows from Lemma 4. Therefore, we have

|S2 + Ñ|
|Q∗

2 + Ñ|
=

|S2 +N1|
|Q∗

2 +N1|
(83)

Hence, the enhanced channel secrecy capacity is given by

C̃s =
1

2
log

|S2 + Ñ|
|Ñ|

− 1

2
log

|S2 +N2|
|N2|

(84)
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log
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(85)
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log
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|Q∗
2 + Ñ|

(86)

=
1

2
log

|S2 + Ñ|
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∗
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|S2 +N2|
(87)

=
1

2
log
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|Q∗

2 +N1|
· |Q

∗
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|S2 +N2|
(88)

=
1

2
log

|S2 +N1|
|Q∗

2 +N1|
− 1

2
log

|S2 +N2|
|Q∗

2 +N2|
(89)

=
1

2
log

|Q∗
1 +Q∗

2 +N1|
|Q∗

2 +N1|
− 1

2
log

|Q∗
1 +Q∗

2 +N2|
|Q∗

2 +N2|
(90)

= C(S1,S2,H,G) (91)

where (86) follows from (71), (88) follows from (83), and (90)
follows from (77), completing the converse proof for the case
of Gaussian signalling with Gaussian artificial noise.

VI. NUMERICAL RESULTS

In this section, we present simple simulation results for the
secrecy capacity of the MIMO wiretap channel with maximum
transmitter-side power constraint and minimum receiver-side
(eavesdropper-side) power constraint. In these simulations, the
average transmit power at the transmitter is taken as P = 10
and the noise variances at all antennas at both receivers is
taken as σ2 = 1.

Fig. 2 shows a secrecy capacity receiver-side power con-
straint region for a MISO 4-1-1 system, i.e, a system with
4 antennas at the transmitter and single antenna at both the
legitimate receiver and the eavesdropper. The figure shows the
optimality of the Gaussian signalling with a mean and Gaus-
sian coding with Gaussian artificial noise coding schemes; in
particular, the region corresponding to the mean and artificial
noise coding schemes are identical. Moreover, the secrecy
capacity receiver-side power region of the standard Gaussian
coding scheme with no mean or no artificial noise is noticeably
smaller than the optimal schemes. Note that this is the optimal
scheme without any receiver-side power constraints. That is,
the standard Gaussian signaling scheme is strictly sub-optimal
for the case of receiver-side power constraints. In addition, we
observe that, as the receiver-side power constraint is increased,
the secrecy capacity decreases, i.e., there is a trade-off between
the power that should be delivered to the eavesdropper’s
receiver and the confidentiality that can be provided for the
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Fig. 2. Secrecy capacity receiver-side power constraint region for a 4-1-1
MISO wiretap channel.

legitimate receiver. This is because, when the receiver-side
power constraint is increased, the problem becomes more con-
fined and more power should be concentrated for the receiver-
side power constraint, which decreases the set of signalling
choices for the secrecy communications. Fig. 3 shows similar
observations for the 2-2-2 MIMO wiretap system.

VII. CONCLUSIONS

We considered the MIMO wiretap channel with the usual
transmitter-side maximum power constraint and the additional
receiver-side minimum power constraint. For the converse, we
first proved that the problem is equivalent to solving a secrecy
capacity problem with a double-sided correlation matrix con-
straint on the channel input. We then extended the channel
enhancement technique to our setting. For the achievability, we
proposed two optimum schemes that achieve the converse rate:
Gaussian signalling with a fixed mean and Gaussian signalling
with Gaussian channel prefixing (artificial noise). This is the
first instance of a problem where transmission with a mean
and channel prefixing are strictly necessary for a MIMO
wiretap channel under power constraints. The transmission
scheme with a mean enables us to deliver the needed power
to the receiver without creating interference to the legitimate
receiver as it is a deterministic signal. On the other hand,
the transmission scheme with Gaussian artificial noise, both
jams the eavesdropper contributing to the secrecy as well as
delivering the needed power to the receiver. We note that the
optimal coding scheme for the MIMO wiretap channel under
a transmitter-side power constraint only, which is Gaussian
signalling with no channel prefixing or mean, is strictly sub-
optimal when we impose a receiver-side power constraint,
showing similar to the cases of [1], [2], that receiver-side
power constraints may change the solution significantly and
may introduce non-trivial trade-offs.
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