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Abstract We present a method for dimensionality reduction of an affine variational inequal-
ity (AVI) defined over a compact feasible region. Centered around the Johnson Lindenstrauss
lemma [16], our method is a randomized algorithm that produces with high probability an ap-
proximate solution for the given AVI by solving a lower-dimensional AVI. The algorithm allows the
lower dimension to be chosen based on the quality of approximation desired. The algorithm can also
be used as a subroutine in an exact algorithm for generating an initial point close to the solution.
The lower-dimensional AVI is obtained by appropriately projecting the original AVI on a randomly
chosen subspace. The lower-dimensional AVI is solved using standard solvers and from this solu-
tion an approximate solution to the original AVI is recovered through an inexpensive process. Our
numerical experiments corroborate the theoretical results and validate that the algorithm provides
a good approximation at low dimensions and substantial savings in time for an exact solution.

Keywords Dimensionality reduction · Random projection · Affine variational inequality · Johnson
Lindenstrauss lemma

1 Introduction

Technological advancements have enabled the collection and storage of a tremendously large amount
of data. In parallel, the Internet has been changing the manner in which systems interact. As a
result of this, an overwhelming amount of information is being generated and stored. A report by
Harvard Magazine claims that, “the total data accumulation of just the past two years – a zettabyte
– dwarfs the prior record of human civilization” [29], aptly justifying the name Big Data.

This paper concerns a challenge thrown up by high-dimensional problems in optimization and
control that have arisen due to the growing prominence of such ‘big’ or very large data sets [26].
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Exact algorithms for such problems can be computationally burdensome even if the algorithm
has polynomial complexity. Whereas in contexts such as online optimization [33] a conceivable
requirement could be not of the exact solution, but rather of a quick approximation, in the spirit
of the Latin proverb bis das si cito das1. We are motivated by this specific need where speed is of
essence and accuracy can be sacrificed to some extent, if it means large savings in time.

This paper focuses on affine variational inequalities. Variational inequalities are a versatile class
of problems that generalize convex optimization [10], saddle-point problems, Nash games and gen-
eralized Nash games [9,21,19], amongst others [10]. We consider affine variational inequalities with
compact feasible regions. They are an important subclass, which include, e.g., constrained convex
quadratic programming with compact feasible regions. Such quadratic programs are useful problems
in their own right and are subproblems for the widely used sequential quadratic programming al-
gorithm for nonlinear programs [13,26]. Affine variational inequalities also capture commonly used
models for oligopolistic competition, such as Nash-Cournot games [10].

We present a dimensionality reduction technique for solving high-dimensional affine variational
inequalities approximately. The method is probabilistic in the sense that one can only guarantee that
it works with “high probability”. However, in exchange for this, we obtain a substantial saving in
time. For a polyhedral set K ⊆ R

n, a matrix M ∈ R
n×n and a vector q ∈ R

n, an affine variational
inequality (AVI) AVI(K,M, q) is the following problem,

AVI(K,M, q) Find x ∈ K such that (y − x)⊤(Mx+ q) ≥ 0 ∀ y ∈ K.

Given a high-dimensional (deterministic) AVI, the method derives a random AVI from it which is
low-dimensional. The lower-dimensional AVI is solved using standard solvers. Using the solution of
the lower-dimensional AVI, a candidate solution of the high-dimensional AVI is generated through
an inexpensive process. A probabilistic guarantee is obtained on the event that the error satisfies a
bound.

The lower-dimensional AVI is obtained by projecting the high-dimensional problem on a subspace
chosen uniformly at random. We implement this projection by multiplying by a suitably constructed
random matrix. By the celebrated Johnson Lindenstrauss Lemma (JL lemma) [16] we get that if a
set of m points in a high dimensional space, are projected this way to a k-dimensional subspace,
then the probability that pairwise distances are at most ǫ-distorted, concentrates. This probability
can be made to approach unity by appropriately choosing k. E.g., for this probability to be 1−δ, we

get k = O
(

ln(m/δ)
ǫ2

)
. When applied to our setting, approximate distance preservation also allows

for approximate preservation of inner products, which translates to an approximate solution of the
AVI.

Our main result is that with high probability the (deterministic) preimage (under the projec-
tion operation) of the solution of the lower-dimensional AVI approximately solves the given high-
dimensional AVI. We recover a random approximation to this deterministic preimage by solving a
linear program followed by a norm minimization quadratic program. Thanks to a remarkable result
of Candes and Tao [4] we get that the recovered solution approximates the required deterministic
preimage with high probability.

This framework also yields the following exact algorithm (with probabilistic guarantees): using
the above technique one generates a point that is close to the true solution and this point is supplied
to a standard solver as an initial point to obtain an exact solution. It is plausible that this method

1 Twice you give, if you give quickly.
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would improve the run-time for solvers that benefit from the “local” nature of the initial point. We
have found this to be the case for the PATH solver [7].

We emphasize that our algorithm does not assume any structure on the AVI such as monotonicity
(the only assumption on the AVI is that the set K is compact). It seems plausible that further
assumptions on the matrix M or on the set K may improve the theoretical results.

Our numerical computations support the theoretical results. In particular, the exact algorithm
(obtained by supplying the approximate solution as initial point) appears promising; in the examples
we tried, considerable savings were obtained. For the theoretical results to hold we require the
lower-dimensional problem to be of size O(ln η), where η is the number of extreme points of K. If K
described by m inequality constraints, then for fixed m, we have ln η = O(lnn) and in general ln η is
at most O(n), where n is dimension of the ambient space of K. Although in the worst case O(ln η)
may not be significantly smaller than n, in practice we have found that our algorithm performs well
even for small values of the lower dimension.

Conceptually speaking, this work exploits a delicate link between convex analysis and metric
embeddings. The JL lemma may be viewed as a metric embedding result [14], with no obvious
convex analytic properties. However in a Euclidean space, a metric embedding also implies the
ǫ-preservation of inner products, which under convexity allows optimality to be ǫ-preserved.

This paper is organized as follows. Following the introduction, we present some background
on the subject and define the desiderata of our algorithm. Section 2 formally introduces concepts
pertaining to random projections required for our main results. The algorithm is introduced in
Section 3. The proof of correctness is encompassed in Section 4. We discuss some aspects pertaining
to the algorithm, including the lower dimension, in Section 5. Section 6 contains numerical results
and we conclude in Section 7.

1.1 Background

For a closed convex set K ⊆ R
n and a continuous function F : Rn → R

n, a variational inequality
(VI) VI(K,F ) is the following problem [10],

VI(K,F ) Find x ∈ K such that (y − x)⊤F (x) ≥ 0 ∀ y ∈ K.

Solving a VI amounts to ensuring an angle condition: the solution is a point x ∈ K such that
F (x) makes an acute angle with all directions ‘y − x’ as y ranges over K. The solution of a convex
optimization can also be written in this form and is a special case of the VI. The Nash equilibrium of
a game is a simultaneous solution of several convex optimization problems and can also be captured
by a VI [10]. Recent results [9,21,19] have shown that certain equilibria of generalized Nash games
can also be captured by VIs. Besides these applications, VIs also generalize general equilibrium
models, frictional contact problems and problems in finance, even as new applications continue to
be considered. We refer the reader to [10] for more on this topic.

Solving VI(K,F ) is also equivalent to finding the zero of the function Fnat
K : Rn → R

n [10],

Fnat
K (x) = x−ΠK(x− F (x)), (1)

called the natural map of the VI. Fnat
K is a continuous function and hence ‖Fnat

K (x∗)‖ quantifies
the “quality” of an approximate solution x∗. Note that Fnat

K is nonlinear except in rare (possibly
uninteresting) cases.



4 Bharat Prabhakar, Ankur A. Kulkarni

In practice, VIs are solved using a host of techniques, making use of the natural map as well
as the normal map [10]. We are not explicitly concerned with algorithms for solving VIs, since our
method employs an off-the-shelf solver for solving the lower-dimensional AVI. We refer the reader
to [11] for more on algorithms and to [8,7] for implementations.

Our work is essentially about efficiently solving VIs. There is a large body of work on solving
large-dimensional optimization problems and variational inequalities with certain sparsity structure.
These include, for instance, Benders’ decomposition [3] and the host of applications it spawned to
stochastic optimization problems [31,20] and complementarity problems (see, e.g., [28] and refer-
ences therein). In a somewhat similar direction lie the series of works on splitting methods (see,
e.g., [24] and related works), and more recent decomposition methods, e.g., [23]. These lines of re-
search exploit the structure of the problem to decompose the larger problem into smaller subprob-
lems. The algorithms so developed are exact algorithms with deterministic guarantees. In contrast,
our algorithm does not assume any sparsity, but it is an approximate algorithm which works under
probabilistic guarantees. Further, as mentioned in the introduction, it may be used as a subroutine
in an exact algorithm.

To the best of our knowledge our work is the first application of random projections for di-
mensionality reduction in VIs. However, it has been preceded by many random projection-based
algorithms in the computer science community (see, e.g., the monograph by Vempala [32]). In the
operations research and control community, there are two applications of random projections we
are aware of. First [1], where a low-rank approximation is used to approximately find the zero of a
linear equation, and second [18] where a similar approximation is used within a Newton method-
based stochastic approximation. Our work differs from [1] in two fundamental ways. First, we seek
a low-dimensional approximation (rather than a low-rank one), and second, solving a VI reduces
to solving the nonlinear equation (1) whereas [1] critically relies on linearity.

1.2 Problem definition

We now formally define the problem we aim to solve. The objective of this paper is to solve
AVI(K,M, q), i.e., where K ⊆ R

n is a compact polyhedron (a polytope), M ∈ R
n×n and q ∈ R

n.
The case we are interested in is where n is large. We seek an approximation algorithm that satisfies
the following requirements

1. The most expensive step in the algorithm must involve solving a lower dimensional problem,
i.e., the algorithm must operate in a lower-dimensional space.

2. The lower dimensional problem should also be an affine variational inequality.
3. The algorithm may be approximate, i.e., the candidate solution generated by the algorithm need

not solve the problem exactly, but it should be a good approximation.
4. The guarantee for the algorithm need not be deterministic, i.e., probabilistic guarantees on the

solution would suffice.

With this specified, we now proceed with the main contents of the paper, beginning with an
overview of random projections in the following section.

2 Random Projections

In this section we review some results from the theory of random projections. Random projection
is a particular case of an embedding of one metric space into another, and is as such is a part of
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a deeper mathematical study [14]. We limit our survey here to operational aspects and to results
relevant to our algorithm.

2.1 How to randomly project

Random projection involves the projection of vectors lying in a higher dimensional space to a
randomly chosen lower-dimensional subspace. Note that this projection need not be Euclidean, i.e.,
the subspace need not be aligned with the basis vectors from the original space. A vector is projected
by multiplying the vector by a suitable random matrix; the choice of this matrix specifies the type
of randomness introduced in the projection.

Several different methods of constructing the random projection matrix have been studied in
the literature. In this paper, we project the vectors on a uniformly random k-dimensional subspace.
Such a subspace can be realized by choosing a uniformly random orthonormal matrix [32]. Below
we show how such a matrix can be constructed.

2.1.1 Constructing a uniformly random orthonormal matrix

An n × k-dimensional real valued orthonormal matrix R is uniformly random if R is uniformly
distributed over the manifold, called Stiefel manifold [30], of real n×k matrices such that R⊤R = I.
We construct our n× k-dimensional random projection matrix R as follows.

R 1. Construct a matrix R1 with each entry chosen independently from the distribution N(0, 1
k ).

R 2. Orthonormalize the columns of R1 using Gram-Schmidt process (QR-decomposition) and
form the required matrix R using these resultant vectors as columns.

We first observe that the matrix R1 above is full rank almost surely. This is formalized in the
following lemma.

Lemma 1 The n× k-dimensional random matrix R1 (where n > k), obtained in the step R 1 in
the construction described above, has a rank equal to k with probability 1.

Proof Consider the matrix Y formed by normalizing each column of R1 to a unit vector (each
column is not a 0-vector almost surely). It suffices to show that Y has rank k. Let the columns of
Y be denoted by Y k = (Y1, ...Yk). Recall that each vector Yi, 1 ≤ i ≤ k is a uniformly distributed
point on the unit sphere Sn−1 [17]. We prove the claim by induction. The first vector Y1 is linearly
independent with probability 1, as it is not a zero vector almost surely. Assume that 1 < r ≤ k and
that the first r−1 vectors are linearly independent with probability 1. Then with probability 1 these
r− 1 vectors span a subspace V of dimension r− 1, which intersects Sn−1 in an (r− 2)-dimensional
“subsphere” Sr−2

V . This subsphere forms a measure zero set under the uniform probability measure
on Sn−1. Therefore the probability that Yr lies in this subsphere is zero. It follows that with
probability 1 the vectors Y1, . . . Yr−1, Yr are linearly independent. Hence, by induction, rank(Y ) =
k.

From Lemma 1 it follows that the matrix R produced in Step R 2 is also of full column rank. To
show thatR is indeed uniformly distributed on the Steifel manifold, we invoke the “real” counterpart
of Lemma 2 from [30].
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Lemma 2 ([30]) Let H be an k × n real valued standard Gaussian matrix with n ≥ k. Denote
its QR-decomposition by H = Q̂R̂. The upper triangular matrix R̂ is independent of Q̂, which is
uniformly distributed over the manifold of k × n matrices such that Q̂Q̂⊤ = I.

This completes the construction of a matrix R that is uniformly distributed on the Steifel manifold
and has full column rank.

2.1.2 Projecting vectors and matrices

Consider a column vector x ∈ Rn (throughout this paper a vector is automatically to be assumed
as a column vector), then the projection of x is given by,

y =

√
n

k
R⊤x, (2)

The constant
√

n
k is multiplied to ensure that the expected length of y remains equal to that of

x (this property is needed by the Johnson Lindenstrauss lemma as we shall see ahead). Note that
the value of constant being multiplied may vary depending upon the construction of the random
projection matrix.

For an arbitrary random vector y and an arbitrary random matrix R, a vector x such that
y =

√
n
kR

⊤x would, in general, be sample-path dependent (i.e., random). However if y is indeed a
projection of a deterministic vector x, we call such an x its deterministic preimage.

Definition 1 If a vector y is a projection of some deterministic vector x as in (2), it’s deterministic
preimage is defined to be any deterministic vector xo, such that

√
n
kR

⊤xo = y.

The columns of a matrix Z ∈ R
n×d can be thought of as a collection of d n-dimensional vectors.

Thus, the projection of Z is given by,

Y =

√
n

k
R⊤Z,

where Y ∈ Rk×d.

2.2 The Johnson Lindenstrauss lemma

The Johnson Lindenstrauss lemma [16] is a landmark result that shows that for any finite set of
points there exists a mapping such that the distance between any pair of points is approximately
equal to the distance between their images under the mapping. A key improvement [12] obtained
later showed that if any finite set of points are projected randomly by multiplication with a random
orthonormal matrix, their pairwise distances are approximately preserved in the above sense. While
the original JL lemma only provides the existence of a distance preserving mapping, at the expense
of a probabilistic guarantee, the result from [12] provides a construction of this mapping.

For the purpose of our paper, we do not need this exact result but only its precursor below
which concerns approximately preserving the norm of a single vector; this latter result can be found
in [6]. Since the lemma below differs from the exact result in [6], we provide a sketch of the proof.
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Lemma 3 Let R ∈ Rn×k be a random matrix as constructed in Section 2.1.1, and let f(u) =√
n
kR

⊤u for u ∈ Rn. Then for any 0 < ǫ < 1,

P
(
(1− ǫ)‖u‖2 ≤ ‖f(u)‖2 ≤ (1 + ǫ)‖u‖2

)
≥ 1− 2e−(ǫ2/2−ǫ3/3)k/2

Proof Let u ∈ R
n and without loss of generality assume ‖u‖ = 1. The vector

√
n
kR

⊤u is the
projection of u on a k-dimensional subspace chosen uniformly at random. As observed in [6] the
distribution of R⊤u is the same as the distribution of the projection of a unit vector chosen uni-
formly at random to a fixed subspace. Thus, let X1, ...Xn be n independent Gaussian N(0, 1)
random variables and define Y = 1

‖X‖ (X1, ...Xn). As argued in Lemma 1, Y is a uniformly random

vector lying on the unit sphere Sn−1. Fix the projection subspace to be one spanned by the first k
coordinates and let Z ∈ Rk be the projection of Y on the first k coordinates. Define L := ‖Z‖2.
Clearly, E[L] = k/n. From [6] we get,

P (L ≤ (1− ǫ)E[L]) ≤ e−
kǫ2

4 and P (L ≥ (1 + ǫ)E[L]) ≤ e−
k(ǫ2/2−ǫ3/3)

2 .

Now since R⊤u has the same distribution as Z, ‖f(u)‖2 has the same distribution as L
E[L] , from

which the result follows.

It is important to note that unlike in the deterministic result of Johnson and Lindenstrauss, the
projection does not depend on the vector being projected (the projection only has to be uniformly
random). Further, since random projection here is a linear operator, the above result can easily
be converted into a distance preservation result by applying it to a vector corresponding to the
difference between two different vectors and then preserving its norm. By applying this projection
to a set of vectors and then taking a union bound leads us to the complete version of JL lemma
(see e.g., [32]).

Finally note that, the probability in Lemma 3 is for the event that the norm of the projected
vector lies within a factor of (1 ± ǫ) of the norm of original vector. Whereas in expectation, the
value of both these norms is the same, i.e., E[‖f(u)‖2] = ‖u‖2. This underlines the nature of the
JL lemma as a concentration phenomenon.

2.3 Preserving inner products via JL lemma

We now present the following lemma claiming that the inner products are approximately preserved
under random projection. It follows from the norm preserving JL lemma.

Lemma 4 Let R ∈ Rn×k be a random matrix as constructed in Section 2.1.1. Define a mapping
f(u) =

√
n
kR

⊤u for u ∈ Rn. Then for any two vectors u, v ∈ Rn, and 0 < ǫ < 1,

P (|u⊤v − f(u)⊤f(v)| ≤ ǫ‖u‖‖v‖) ≥ 1− 4e−( ǫ2

2 − ǫ3

3 )k/2

Proof Consider two vectors u′+ v′ and u′− v′, such that u′ = u
‖u‖ and v′ = v

‖v‖ . We try to preserve

the norms of both these vectors simultaneously. Let A and B denote the events

A := {(1− ǫ)‖u′ + v′‖2 ≤ ‖f(u′ + v′)‖2 ≤ (1 + ǫ)‖u′ + v′‖2}

B := {(1− ǫ)‖u′ − v′‖2 ≤ ‖f(u′ − v′)‖2 ≤ (1 + ǫ)‖u′ − v′‖2}
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We need to find a lower bound on P (A ∩ B), which is equivalent to finding an upper bound on
P (Ac ∪Bc). We have, P (A∩B) = 1−P (Ac ∪Bc) ≥ 1−P (Ac)−P (Bc), where the last inequality

follows from the union bound on P (Ac ∪ Bc). From Lemma 3, we have P(A) ≥ 1 − 2e−(ǫ2−ǫ3)k/4

and P(B) ≥ 1− 2e−(ǫ2−ǫ3)k/4. Consequently,

P (A ∩B) ≥ 1− 4e−( ǫ2

2 − ǫ3

3 )k/2. (3)

Now since, 4f(u′)⊤f(v′) = ‖f(u′ + v′)‖2 − ‖f(u′ − v′)‖2 we have from the definition of A,B,
that under the event A ∩B,

4f(u′)⊤f(v′) ≥ (1− ǫ)‖u′ + v′‖2 − (1 + ǫ)‖u′ − v′‖2

= 4(u′)⊤v′ − 2ǫ(‖u′‖2 + ‖v′‖2).

Since u′ and v′ are unit vectors, we get f(u′)⊤f(v′) ≥ (u′)⊤v′− ǫ. Similarly, under the event A∩B,

4f(u′)⊤f(v′) ≤ 4(u′)⊤v′ + 2ǫ(‖u′‖2 + ‖v′‖2),

whereby, f(u′)⊤f(v′) ≤ (u′)⊤v′ + ǫ. Since f is linear,

{|u⊤v − f(u)⊤f(v)| ≤ ǫ‖u‖‖v‖} ⊇ A ∩B.

Now using (3), we get the result.

The above lemma talks about preserving only one inner product. The following lemma general-
izes the result and ensures the preservation of a finitely many inner products simultaneously.

Lemma 5 For each i = 1, . . . ,m, let ui, vi be vectors R
n. Also, let R ∈ Rn×k be a random matrix

as constructed in Section 2.1.1, and define a mapping f(x) =
√

n
kR

⊤x for x ∈ R

n. Then for
0 < ǫ < 1,

P
(
|u⊤

i vi − f(ui)
⊤f(vi)| ≤ ǫ‖ui‖‖vi‖ ∀i = 1, . . . ,m

)
≥ 1− 4me−( ǫ2

2 − ǫ3

3 )k/2

Proof Let Ai denote the event {|u⊤
i vi − f(ui)

⊤f(vi)| ≤ ǫ‖ui‖‖vi‖} for i = 1, . . . ,m. Thus, from
Lemma 2.4 we get for all i = 1, . . . ,m,

P (Ac
i ) ≤ 4e−( ǫ2

2 − ǫ3

3 )k/2,

Similar to the analysis in the proof of Lemma 4, by the union bound,

P (A1 ∩ A2 · · · ∩Am) = 1− P (Ac
1 ∪Ac

2 · · · ∪ Ac
m),

≥ 1− [P (Ac
1) + P (Ac

2) + · · ·P (Ac
m)],

≥ 1− 4me−(ǫ2/2−ǫ3/3)k/2,

as required.

This completes the preliminaries pertaining to random projections. In the following section we
present our algorithm.
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3 Algorithm

Algorithm A below is our dimensionality reduction algorithm for solving a typically high-dimensional
affine variational inequality with a compact feasible region. It constructs a lower-dimensional AVI
and using the solution obtained to this lower dimensional problem, generates an approximate solu-
tion to our original problem. Our algorithm probabilistically guarantees that the solution vector it
generates, solves the original problem approximately.

Algorithm A

1. Input: AVI(K,M, q), i.e., M ∈ R
n×n, q ∈ R

n,K = {x|Ax ≤ b} where A ∈ R
m×n, b ∈ R

m.
2. Fix the error parameter ǫ ∈ (0, 1) and the success confidence parameter δ ∈ (0, 1]. Pick the lower

dimension value k such that k ≥
2 ln( 4η

δ )

( ǫ2

2 − ǫ3

3 )
, where η = |ext(K)| and ext(K) denotes the set of all

extreme points of K.
3. Construct an n× k dimensional random matrix R as described in Section 2.1.1.
4. Construct the corresponding lower-dimensional AVI(K̃, M̃, q̃). Define q̃ =

√
n
kR

⊤q and M̃ =

R⊤MR, and K̃ to be the projection of the polytope K, i.e., K̃ = {x̃ ∈ Rk|x̃ =
√

n
kR

⊤x, x ∈ K}.

5. Solve AVI(K̃, M̃ , q̃) to obtain a lower-dimensional solution x̃.
6. Solve the following ℓ1 norm minimization problem (can be converted into a linear program) to

obtain a vector x∗:

x∗ ∈ arg min
x∈Rn

‖x‖1 subject to

√
n

k
R⊤x = x̃

7. Project x∗ on K to obtain the final random approximate solution x#, i.e.,

x# = ΠK(x∗) , arg min
x∈K

‖x∗ − x‖2

8. Output: x#.

Our main result is as follows.

Theorem 1 Let ǫ ∈ (0, 1), δ ∈ (0, 1]. Let AVI(K,M, q) be an AVI where K is a compact polyhedron
and consider Algorithm A. Suppose x̃ is the lower-dimensional solution obtained in Step 5 and let
xo ∈ K be a deterministic preimage of x̃. Then the following claims hold.

1. If the lower dimension k satisfies k ≥
2 ln( 4η

δ )

( ǫ2

2 − ǫ3

3 )
, then with probability strictly greater than (1− δ),

xo solves AVI(K,M, q) approximately, i.e.,

(y − xo)
⊤(q +Mxo) ≥ ǫ̂, ∀y ∈ K,

where ǫ̂ = −

(
ǫ2

2 − ǫ3

3

)
n

2 ln( 4η
δ )

‖M‖B − ǫ ·D‖q‖ − ǫ ·D‖M‖B, where ‖M‖ denotes the ℓ2 induced norm

of M , D := maxx1,x2∈K ‖x1 − x2‖ is the diameter of K and B := maxx∈K ‖x‖.
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2. Let x# be the output generated by the algorithm A in Step 8, then with probability at least
1−O(n−1/α):

‖xo − x#‖2 ≤ CB′ · (k/ ln(n))−1/2,

where α > 0 is a sufficiently small number (less than an absolute constant) and C is a constant
depending only on α and B′ = maxx∈K ‖x‖1.

There are two parts to the above result. The first part shows that the deterministic preimage
xo of the lower-dimensional solution x̃ approximately solves the given problem AVI(K,M, q) in the
sense that the inner product (y − xo)

⊤(q + Mxo) as y ranges over K is at least ǫ̂. Here ǫ̂ is a
negative number that can be made arbitrarily close to zero by choosing ǫ to be small enough; for
an exact solution to the AVI we would require ǫ̂ ≥ 0. Notice though that this result in itself is not
computationally useful since xo cannot be computed from a single sample of x̃. Each run of the
algorithm produces a particular sample path: any process of “inverting” the relation

√
n
kR

⊤xo = x̃
would in general yield an xo that is sample-path dependent (and hence R-dependent). Steps 6-8 of
the algorithm produce a random approximation x# to (the deterministic approximate solution) xo.
The second part of the above theorem establishes that with high probability, these steps produce a
good approximation.

In the following section, we prove Theorem 1 and establish the correctness of the algorithm.

4 Correctness of the Algorithm

There are two parts that need to be established to show the correctness of the algorithm. The
first part showing the point xo is an approximate solution will be proved using the JL lemma. The
second part, showing that the recovered solution x# approximates xo will be showed using a result
of Candes and Tao [4]. Before we proceed with this analysis, we note that the lower-dimensional
problem is indeed an AVI and that it admits a solution.

The lower dimensional problem is a variational inequality, VI(K̃, F̃ ) where the mapping F̃ (x̃) ≡

q̃+M̃x̃ is affine. K̃ is a the projection of the polytope K. To show that this VI is an AVI, it suffices
to show that K̃ is also a polytope. For any set S we denote the set of its extreme points by ext(S).

Lemma 6 Let K ⊆ R
n,M ∈ R

n×n, q ∈ R
n be a polytope and suppose AVI(K,M, q) is provided as

an input to Algorithm A. Then the following are true,

1. The set K̃ generated in Step 4 of Algorithm A is also a polytope.
2. AVI(K̃, M̃, q̃) admits a solution.

Proof To show part 1, it suffices to show that there is a finite set of points in K̃ such that every point
in K̃ can be expressed as a convex combination of these points. To this end let ext(K) denote the set
of extreme points of K. Since K is a polytope, η := |ext(K)| < ∞. Then from Step 4 of Algorithm

A, we have, ∀x̃ ∈ K̃, ∃x ∈ K such that x̃ = R⊤x. Since K itself is a polytope, ∃α1, . . . , αη ≥ 0,∑
i αi = 1 such that x =

∑
i αixi, where x1, . . . , xη are the extreme points of K. This implies,

x̃ =
∑

i αi

√
n
kR

⊤xi. Thus, any vector x̃ ∈ K̃ can be expressed as a convex combination of the

points in the set S =
{√

n
kR

⊤x | x ∈ ext(K)
}
. Since S is finite, K̃ is a polytope. Consequently, K̃

is also compact. Standard results [10] now show that AVI(K̃, M̃, q̃) admits a solution.
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4.1 Problem reformulation

For a point to be a solution of a VI, by definition, (uncountably) infinitely many inequalities must
simultaneously hold. However for an AVI on a polytope, a reduction to a finite set of inequalities
is possible. This important reformulation is formalized in the following lemma.

Lemma 7 Let K ⊆ R
n be a polytope and q ∈ Rn, M ∈ Rn×n. A vector x∗ ∈ K is a solution of

AVI(K,M, q) if and only if:

(xe − x∗)⊤(q +Mx∗) ≥ 0, ∀xe ∈ ext(K), (4)

where ext(K) denotes the set of all the extreme points of K.

Proof “ =⇒ ” Let x∗ ∈ K solve AVI(K, q,M). Thus,

(y − x∗)⊤(q +Mx∗) ≥ 0, ∀y ∈ K.

Put y = xe where xe ∈ ext(K).Thus,

(xe − x∗)⊤(q +Mx∗) ≥ 0, ∀xe ∈ ext(K).

Hence, x∗ satisfies (4).
“ ⇐= ” Let ext(K) = x1, . . . , xη where η = |ext(K)|. Consider an arbitrary vector y ∈ K.

Since K is a polytope, there exists {αi}
η
i=1, such that

∑η
i=1 αi = 1, αi ≥ 0, ∀i ∈ 1, . . . , η, and

y =
∑η

i=1 αixi. Since x∗ solves (4), we get for all i,

αi(xi − x∗)⊤(q +Mx∗) ≥ 0.

Summing all the inequalities over i = 1, . . . , η and using that
∑η

i=1 αi = 1, we get that

(y − x∗)⊤(q +Mx) ≥ 0.

Since y ∈ K was an arbitrary vector, the above inequality is true for every y ∈ K. Hence, x∗ also
solves AVI(K,M, q).

4.2 Error analysis

The lower dimensional problem (AVI(K̃, M̃ , q̃)) as constructed in the algorithm is the following.

AVI(K̃, M̃ , q̃) Find x̃ ∈ K̃ such that (y − x̃)⊤(M̃x̃+ q̃) ≥ 0 ∀y ∈ K̃.

We have the following claim about the deterministic preimage of the solution of the problem
AVI(K̃, M̃ , q̃).

Lemma 8 Let ǫ ∈ (0, 1) and suppose AVI(K,M, q) is provided as input to Algorithm A. Let x̃ be

the solution of AVI(K̃, M̃, q̃) generated by Step 5 of Algorithm A and let xo be its deterministic

preimage. Then with probability greater than 1− 4ηe−( ǫ2

2 − ǫ3

3 )k/2, xo satisfies

(xe − xo)
⊤(q +Mxo) ≥

n

k
(xe − xo)

⊤RR⊤(M −M ′)xo − ǫ · ‖xe − xo‖‖q +Mxo‖

for every xe ∈ ext(K), where M ′ = MRR⊤ and η = |ext(K)|.
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Proof Let x̃ be a solution to AVI(K̃, M̃ , q̃) and xo be its deterministic preimage. This implies,

(ỹ − x̃)⊤(q̃ + M̃x̃) ≥ 0, ∀ỹ ∈ K̃.

Let M ′ = MRR⊤, then it follows from definition of K that,
√

n

k
(R⊤(y − xo))

⊤

√
n

k
R⊤(q +M ′xo) ≥ 0, ∀y ∈ K.

Consequently, for each xe ∈ ext(K),
√

n

k
(R⊤(xe − xo))

⊤

√
n

k
R⊤(q +M ′xo) ≥ 0.

On adding (
√

n
k (R

⊤(xe−xo))
⊤
√

n
kR

⊤(M −M ′)xo) on both sides we get that for any xe ∈ ext(K),

√
n

k
(R⊤(xe − xo))

⊤

√
n

k
R⊤(q +Mxo) ≥

√
n

k
(R⊤(xe − xo))

⊤

√
n

k
R⊤(M −M ′)xo (5)

=
n

k
(xe − xo)

⊤RR⊤(M −M ′)xo. (6)

Observe that the left hand side of (5) is the an inner product of the random projection of vectors

(xe − xo) and q +Mxo. Hence by Lemma 5, with probability greater than 1 − 4ηe−( ǫ2

2 − ǫ3

3 )k/2, xo

satisfies,

(xe − xo)
⊤(q +Mxo)

≥

√
n

k
(R⊤(xe − xo))

⊤

√
n

k
R⊤(q +Mxo)− ǫ‖xe − xo‖‖q +Mxo‖, ∀xe ∈ ext(K).

Now using (6), we get the result.

For AVI(K,M, q) and R, xo, ǫ as in Lemma 8 and a point xe ∈ ext(K), define the quantities,

µ1(xe) :=
n

k
(xe − xo)

⊤RR⊤(M −M ′)xo, (7)

µ2(xe) := −ǫ · ‖xe − xo‖ · ‖q +Mxo‖. (8)

Below we derive bounds on µ1, µ2.
To this end, recall that any matrix A ∈ R

m×n admits a unique pseudoinverse, which is a matrix
A+ ∈ R

n×n that satisfies a set of conditions [22]. Furthermore, if A has full column rank, then
A+ = (A⊤A)−1A⊤. By Lemma 1 and 2 the random matrix R constructed in Steps R 1 - R 2
has full column rank, whereby (R⊤R)−1R⊤ = R⊤ is the pseudoinverse of R. Furthermore, by the
singular value decomposition [15], since R has rank k, there exist orthogonal matrices U ∈ Rn×n

and V ∈ Rk×k (i.e., U⊤U = I, V ⊤V = I), such that

R = UΣV ⊤,

where Σ =
(
S 0
0 0

)
∈ Rn×k, S = diag(σ1, . . . , σk) ∈ R

k×k, and σ1 ≥ · · · ≥ σk > 0. This is because,
out of the singular values of R (diagonal entries of Σ), exactly k (the rank of R) values σ1, . . . , σk

must be nonzero [15]. Furthermore, the pseudoinverse R+ = R⊤ of R is given as [22],

R+ = V Σ+U⊤,
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where Σ+ =
(
S−1 0
0 0

)
∈ Rk×n.

Finally, recall that the ℓ2-induced norm on a matrix is unitarily invariant [15, p. 346, 357], i.e.,
if P ∈ Rm×m and Q ∈ Rm×m are two orthogonal matrices, i.e., P⊤P = I and Q⊤Q = I then for
any A ∈ Rm×m, ‖PAQ‖ = ‖A‖.

Lemma 9 Let AVI(K,M, q) and R, xo, ǫ be as in Lemma 8, let xe ∈ ext(K) and let µ1, µ2 be
defined as in (7) and (8). Then the following bounds hold:

1. µ1(xe) ≥ −n
kD · ‖M‖ ·B

2. µ2(xe) ≥ −ǫD‖q‖ − ǫD‖M‖B

where D := maxx1,x2∈K ‖x1 − x2‖ and B := maxx∈K ‖x‖.

Proof By Cauchy-Schwartz inequality,

µ1(xe) ≥ −
n

k
‖xe − xo‖ · ‖RR⊤(M −M ′)xo‖

≥ −
n

k
·D · ‖M‖ · ‖RR⊤‖ · ‖(I −RR⊤)‖ ·B

where D = max
x1,x2∈K

‖x1 − x2‖ and B = maxx∈K ‖x‖. Let the singular value decomposition of R be

R = UΣV ⊤, where U,Σ, V are as above. Consequently,

‖RR⊤‖ = ‖UΣV ⊤V Σ+U⊤‖
(a)
= ‖U⊤UΣΣ+U⊤U‖ = ‖ΣΣ+‖,

where (a) follows from noting that V ⊤V = I and the unitary invariance of the ℓ2-induced norm.
Similarly,

‖(I −RR⊤)‖ = ‖I − UΣV ⊤V Σ+U⊤‖ = ‖U⊤U − U⊤UΣΣ+U⊤U‖ = ‖I − ΣΣ+‖.

Since R has rank k (cf. Lemma 1), ΣΣ+ is an n× n matrix with only k of its diagonal entries as 1
and the remaining all entries being 0. Therefore ‖ΣΣ+‖ = 1. Likewise, ‖I −ΣΣ+‖ = 1. This gives
the required bound on µ1.

For the other term µ2 we have by triangle inequality and by definitions of D,B,

µ2(xe) ≥ −ǫ ·D · (‖q‖+ ‖Mxo‖) ≥ −ǫ ·D · ‖q‖ − ǫ ·D · ‖M‖ ·B,

which completes the proof.

Recall thatD,B in the above lemma are finite sinceK is compact (cf. Lemma 6). In the following
section, we complete the proof of Theorem 1.

4.3 Proof of Theorem 1

To prove Theorem 1, we require the following result due to Candes and Tao [4] on optimal recovery
from random measurements.
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Theorem 2 Suppose that f ∈ Rn obeys ‖f‖1 ≤ C1, and let α > 0 be a sufficiently small number
(less than an absolute constant). Assume that we are given k random measurements yi = 〈f, Ψi〉,
where i ∈ Ω, |Ω| = k and {Ψi} is a set of k- uniformly random orthonormal vectors. Then with
probability 1, we have a unique minimizer f# to the following problem:

min
x∈Rn

‖x‖1 subject to yi = 〈x, Ψi〉, ∀i = 1, . . . , k.

Furthermore, with probability at least 1−O(n−1/α), we have the approximation

‖f − f#‖2 ≤ C · C1 · (k/ ln(n))
−1/2.

Here, C is a fixed constant depending on α but not on anything else. The implicit constant in
O(n−1/α) is allowed to depend on α.

We now complete the proof of our main result, Theorem 1.

Proof (Proof of Theorem 1) Let x̃ be generated by Step 5 by solving the lower-dimensional AVI(K̃, M̃ , q̃)
and let xo ∈ K be a deterministic preimage of x̃. From Lemma 8 and Lemma 9 that with probability

greater than p := (1− 4ηe−( ǫ2

2 − ǫ3

3 )k/2), xo satisfies

(xe − xo)
⊤(q +Mxo) ≥ −

n

k
‖M‖B − ǫ ·D‖q‖ − ǫ ·D‖M‖B, ∀xe ∈ ext(K). (9)

Consider any y ∈ K. There exist α1, . . . , αη ≥ 0 such that
∑

i α = 1 such that y =
∑

i xi where
x1, . . . , xη are the extreme points of K. Multiplying the inequality in (9) corresponding to each
xi ∈ ext(K) by αi, and adding over all i, we get that under the event that (9) is true, the event

(y − xo)
⊤(q +Mxo) ≥ −

n

k
‖M‖B − ǫ ·D‖q‖ − ǫ ·D‖M‖B, ∀y ∈ K, (10)

is true. Consequently, xo satisfies (10) with probability at least p. Since δ is the confidence parameter,

we set p > (1−δ). This necessitates that k >
2 ln( 4η

δ )

( ǫ2

2 − ǫ3

3 )
. Consequently, with probability strictly greater

than (1− δ), xo satisfies,

(y − xo)
⊤(q +Mxo) ≥ −

(
ǫ2

2 − ǫ3

3

)
n

2 ln(4ηδ )
‖M‖B − ǫ ·D‖q‖ − ǫ ·D‖M‖B, ∀y ∈ K.

This proves the first statement of the theorem.
To prove the second statement, let x∗ be the vector generated by Step 6 of Algorithm A and let

α > 0 be a small number as required by Theorem 2. By Theorem 2, we have with probability at
least 1−O(n−1/α),

‖x0 − x∗‖ ≤ C‖x0‖1 ≤ CB′

(
k

ln(n)

)−1/2

, (11)

where B′ := maxx∈K ‖x‖1. Let x# be the output of Algorithm A. Since xo ∈ K and since the
ℓ2-projection on the closed convex set K in Step 7 is non-expansive [10], we have

‖xo − x#‖ = ‖ΠK(xo)−ΠK(x∗)‖ ≤ ‖xo − x∗‖. (12)

Combining (11) and (12), we get the second statement. The proof is complete.

With this we conclude the theoretical portion of the paper. In the following section we point
out some remarks about the algorithm, following which we present numerical results.
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5 Some remarks about the algorithm

5.1 Solving the lower dimensional AVI

Although the lower-dimensional problem AVI(K̃, M̃, q̃) is indeed an AVI, there is a practical diffi-
culty in processing it. AVI solvers typically require the polyhedron defining the constraints to be
given in its half-space representation and we do not have direct access to the half-space represen-
tation of K̃. Following are two approaches to this issue.

First approach: We augment extra variables and convert the lower-dimensional AVI to a sparse
larger-dimensional AVI. Define a new augmented variable v = (x̃, x) ∈ R

n+k. Instead of AVI(K̃, M̃ , q̃),
the solver is supplied problem AVI(K̂, M̂ , q̂), where

q̂ =
[

q̃

0n×1

]
, M̂ =

[
M̃ 0k×n

0n×k 0n×n

]
, and K̂ = {v ∈ R

n+k|Cv = 0, Dv ≤ b},

where C = [I| − R⊤], D = [0|A]}. Although the problem now becomes a larger dimensional one,
there is an enormous amount of sparsity in the formulation which can potentially be exploited by
AVI solvers to solve this problem rather quickly. We have found this to be the case with the PATH
solver and have used it in our numerical results.

Second approach: Alternatively, one may try and deduce the half-space representation of K̃. To
do so, first, complete the random projection matrix R by filling in the remaining entries (denote
these entries by ∆n×(n−k)) by picking the remaining set of (n− k) uniformly random orthonormal
vectors in exactly the same manner as described in Section 2.1.1. Let this complete n × n matrix

be denoted by R̂. If K = {x ∈ R
n|Ax ≤ b}, let K̂ = {y ∈ R

n|Ây ≤ b}, where Â =
√

k
nA((R̂

⊤)−1.

Note that R̂ = [R∆n×(n−k)], which implies that the first k components of a vector y ∈ K̂ comprise

the vector x̃ =
√

n
kR

⊤x which is an element of K̃.

Thus the required polytope K̃ is the Euclidean projection of K̂ on the first k components.
To obtain the half-space representation for this polytope one may make use of a method such as
Fourier-Motzkin elimination [5]. Unfortunately, Fourier-Motzkin elimination is known to have poor
complexity and could potentially nullify any advantages of dimensionality reduction.

Converting the half-space representation of a polyhedron to its vertex-representation and vice-
versa is a fundamental combinatorial problem. Indeed, a side-story of our algorithm is the bringing
to fore of the combinatorial nature of polyhedra and indeed of the AVI, which has otherwise been
suppressed in “continuous” optimization efforts.

5.2 On the lower-dimension

The lower dimension k is required to be of the order of ln(η/δ)/ǫ2. By introducing slack variables
if necessary, we may assume without loss of generality that the polytope K is represented as
{x′ | A′x′ = b′, x′

I ≥ 0} where x′
I = (x′

i)i∈I and that the given AVI(K,M, q) is specified in the space
of x′. Suppose n the dimension of x′. If A′ is full row rank, then η = |ext(K)| ≤

(
n
m

)
where m is

the number of rows of A′ (this follows from the argument used for bounding the number of basis
feasible solutions in a linear program; see example [2, Ch. 3]). Consequently, for fixed m, we have
ln(η) = O(lnn) and the lower dimension k = O(lnn/δ)/ǫ2. In general, by Stirling’s approximation,
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n k m Natural Map Residual Angle Difference Norm Major Low Minor Low Major High Minor High
100 5 10 8.68 142.20 5.34 4 9 7 2468
100 10 10 9.22 141.75 2.50 4 9 7 2468
100 30 10 7.84 141.38 1.80 4 11 7 2468
100 50 10 7.68 141.05 5.90 5 15 7 2468
100 70 10 6.43 142.14 7.27 5 15 7 2468
100 90 10 4.87 141.71 11.71 7 239 7 2468
150 5 15 12.12 141.55 6.09 4 12 3 1736
150 10 15 11.26 140.69 1.30 4 12 3 1736
150 30 15 11.05 141.94 2.96 5 16 3 1736
150 50 15 10.51 141.65 1.58 5 15 3 1736
150 80 15 9.03 141.70 2.83 6 21 3 1736
150 110 15 7.42 142.21 1.42 5 160 3 1736
150 135 15 5.27 140.33 6.36 7 113 3 1736
200 5 16 12.68 141.68 1.46 5 15 2 2201
200 10 16 12.39 141.59 1.47 4 13 2 2201
200 30 16 12.33 142.22 2.13 5 19 2 2201
200 50 16 12.32 141.61 1.90 5 22 2 2201
200 80 16 11.65 141.37 2.18 6 29 2 2201
200 110 16 9.92 141.44 1.29 5 21 2 2201
200 140 16 8.74 140.94 3.74 6 53 2 2201
200 180 16 5.51 141.28 3.13 8 128 2 2201
250 5 25 15.03 141.87 2.27 4 14 3 3031
250 10 25 14.75 141.22 4.22 4 17 3 3031
250 30 25 14.98 141.75 2.43 4 19 3 3031
250 50 25 14.16 141.28 3.82 5 22 3 3031
250 70 25 13.84 141.65 2.33 5 28 3 3031
250 100 25 13.20 141.03 6.31 6 45 3 3031
250 130 25 12.13 140.69 2.42 5 28 3 3031
250 160 25 10.88 141.25 2.33 5 27 3 3031
250 190 25 9.49 141.31 13.29 6 230 3 3031
250 225 25 2.58 141.49 496.15 8 140 3 3031

Table 1: Performance of Algorithm A on randomly generated test problems where each entry of
M, q,A, b was chosen from N(0, 1).

ln
(
n
m

)
≃ nH

(
m
n

)
where H(t) ≡ −t ln t− (1− t) ln(1− t) is the entropy function [25, p. 2], and hence

ln
(
n
m

)
is at most n (this is an approximate statement, the quality of which depends on the quality

of Stirling’s approximation).
The term η appears because to solve the AVI, we have to satisfy η-many inequalities, and η-many

inner products have to be simultaneously preserved in the JL lemma. Notice, however, that each
fixed y ∈ K can be written as a convex combination of n+1 points from ext(K) (by Caratheodory’s
theorem [27]). Thus for each y ∈ K, we only need to simultaneously preserve n+ 1 inner products.
Thus for any y ∈ K the inequality

(y − xo)
⊤(Mxo + q) ≥ 0,

holds with probability 1 − 4(n + 1)e−( ǫ2

2 − ǫ3

3 )k/2, whereby for this event to hold with probability

> 1−δ, we need k to be only of the order of ln
(

4(n+1)
δ

)
/ǫ2. It is for showing that “(y−xo)

⊤(Mxo+

q) ≥ 0” holds for all y ∈ K that one requires k ∼ ln(η/δ)/ǫ2. One may interpret this issue also to
be a manifestation of the combinatorial nature of the polyhedron.

Another way one may interpret this matter is via the V-representation of polyhedra [34]. In the
V-representation the shape of K is defined by its η extreme points and η is thus the indicator of the
“complexity” of this shape. On the other hand in the H-representation, the shape of the polyhedron
is determined by the number of half-spaces necessary to describe it.
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n k m Natural Map Residual Angle Difference Norm Major Low Minor Low Major High Minor High
100 5 10 2.54 131.67 1.08 4 9 2 1132
100 10 10 2.55 123.58 1.04 4 9 2 1132
100 30 10 2.44 122.26 1.97 5 11 2 1132
100 50 10 2.01 125.92 1.01 5 12 2 1132
100 70 10 1.82 119.70 2.76 8 17 2 1132
100 90 10 1.15 107.13 125.55 7 911 2 1132
150 5 15 3.06 124.51 1.33 4 11 7 3404
150 10 15 3.17 123.56 2.02 4 12 7 3404
150 30 15 3.13 118.31 2.82 5 14 7 3404
150 50 15 3.04 120.46 3.37 6 18 7 3404
150 80 15 2.58 120.34 2.70 6 21 7 3404
150 110 15 2.02 108.59 4.24 7 16 7 3404
150 135 15 1.36 109.33 4.93 5 47 7 3404
200 5 16 3.59 119.97 1.03 4 9 3 2332
200 10 16 3.59 123.81 1.09 5 13 3 2332
200 30 16 3.75 115.21 12.22 6 214 3 2332
200 50 16 3.63 120.52 1.24 5 15 3 2332
200 80 16 3.35 118.66 1.41 6 16 3 2332
200 110 16 3.05 114.44 1.27 6 18 3 2332
200 140 16 2.35 113.24 165.33 8 33 3 2332
200 180 16 1.62 106.38 1.84 8 1287 3 2332
250 5 25 4.14 119.08 1.44 4 14 3 2929
250 10 25 4.03 119.81 1.32 4 16 3 2929
250 30 25 4.15 117.70 2.12 5 13 3 2929
250 50 25 4.08 116.17 1.70 6 20 3 2929
250 70 25 3.90 118.32 1.50 6 29 3 2929
250 100 25 3.61 115.63 9.64 7 34 3 2929
250 130 25 3.39 114.22 2.15 8 37 3 2929
250 160 25 2.97 111.25 4.20 8 364 3 2929
250 190 25 2.57 109.61 2.92 8 79 3 2929
250 225 25 1.79 104.41 1.49 7 1381 3 2929

Table 2: Performance of Algorithm A on randomly generated test problems where each entry of
M, q,A, b was chosen from U [0, 1].

5.3 Construction of M̃

Notice that while q̃ and K̃ are projections (in the sense of Section 2.1) of q and K, respectively, M̃

is not a projection of M. Rather M̃ may be viewed as the projection of a matrix that is akin to a
least squares approximation to M. We explain this below.

For the lower-dimensional problem to be an AVI, we require that in addition to M̃ being a
projection of some matrix, M̃ must also be compatible with right-multiplication by x̃ =

√
n
kR

⊤x.

Thus M̃ must be of the form M̃ = R⊤M ′, where M ′ = XR⊤ and X is the matrix to be determined.
Now since the eventual error depends on ‖M −M ′‖, in our construction we further let M ′ to be
of the form MZR⊤ where now Z is to be determined. To minimize the error, we require Z to be
such that ZR⊤ is as close to the identity as possible, i.e., Z must solve the following “least-squares”
optimization problem:

min
Z∈Rn×k

‖ZR⊤ − I‖2.

The solution of the above problem is Z = R(R⊤R)−1 = R, since R is orthonormal. This gives the

construction of M̃ as M̃ = R⊤MR. In addition to being suitable for minimizing the error, we note
that M̃ enjoys the property that M̃ is positive semidefinite if M is positive definite.
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n k m Natural Map Residual Angle Difference Norm Major Low Minor Low Major High Minor High
150 30 15 11.53 142.05 13.61 8 39 3 1736
150 30 15 9.98 142.24 1.11 3 8 3 1736
150 30 15 9.22 140.96 1.03 4 8 3 1736
150 30 15 11.67 143.69 2.12 6 19 3 1736
150 30 15 9.84 140.42 1.04 3 9 3 1736
150 30 15 10.30 141.12 5.62 7 24 3 1736
150 30 15 9.91 143.82 1.13 4 14 3 1736
150 30 15 10.14 143.04 1.13 4 16 3 1736
150 30 15 10.53 141.18 1.23 3 9 3 1736
150 30 15 11.25 140.83 1.61 4 11 3 1736

Table 3: Results for Algorithm A with different samples of the random projection (for a test problem
generated by taking each entry of M, q,A, b from N(0, 1)).

6 Numerical Results

We now present numerical results to show how our algorithm performs in practice.
To keep the trials generic, test problems were generated randomly. The input to the algorithm

was given as AVI(K,M, q) where we took K = {x ∈ Rn|Ax ≤ b, L ≤ x ≤ U}. The bounds L,U on
x were introduced to ensure that K is compact. To generate a random input problem, all the entries
of q, M , A and b were generated randomly with entries drawn from distributions N(0, 1) and U [0, 1];
−L,U were set to be large. We applied our algorithm with various choices of the lower dimension
k, for each value of the higher dimension n. All AVIs were solved using the PATH solver [7].

The sections below show the performance of the algorithm for two applications. Section 6.1
discusses results for obtaining an approximate solution to the given AVI (i.e., Algorithm A). In
Section 6.2, we apply Algorithm A to solve the given AVI exactly by using Algorithm A to generate
an initial point for the solver.

6.1 Performance for an approximate solution

Table 1 contains results pertaining to Algorithm A. To benchmark the performance of the algorithm,
the given AVI was approximately by Algorithm A and also solved exactly. Since the projections
were random, the results reported for each test problem are the average of the results over 10
random choices of R. Table 3 shows the behavior across different random trials for a representative
test problem.

The columns of Tables 1, 2 and 3 contain the following entries.

– n – dimension of the AVI(K,M, q) given as input to Algorithm A; m – number of rows of the
matrix A in the definition of K; k – dimension to which we project the given AVI.

– Natural Map Residual =
‖Fnat

K (x#)‖
‖x#‖+1

, where x# is the output of Algorithm A. This quantity should

be 0 for x# to be a solution. We normalize by (‖x#‖ + 1) in order to allow for comparisons
across difference values of n, k.

– Angle – the largest angle between q +Mx# and a vector y − x# as y ranges over K, where x#

is as above. Define β = min
y∈K

(y − x#)⊤(q + Mx#) and let y∗ be the corresponding minimizer,

then

Angle = arccos

(
β

‖y∗ − x#‖ · ‖q +Mx#‖

)
.
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n k m Major High Minor High Major Additional Minor Additional Major Total Minor Total
100 5 10 40 9885 16 3699 19 3708
100 10 10 40 9885 2 690 6 700
100 25 10 40 9885 9 2478 14 2494
100 50 10 40 9885 10 2784 15 2802
100 75 10 40 9885 16 4088 21 4107
125 5 12 12 4354 4 1821 9 1834
125 10 12 12 4354 7 2873 12 2886
125 25 12 12 4354 11 4223 16 4236
125 50 12 12 4354 7 2693 12 2712
125 75 12 12 4354 8 3392 14 3414
125 100 12 12 4354 8 3185 14 3205
150 5 15 19 7356 5 2574 10 2587
150 10 15 19 7356 8 3940 12 3952
150 30 15 19 7356 5 2521 9 2535
150 60 15 19 7356 4 2252 9 2272
150 75 15 19 7356 7 3468 13 3495
150 90 15 19 7356 4 2004 12 2037
150 120 15 19 7356 4 2011 10 2101

Table 4: Performance of the exact algorithm (test problems generated by choosing each entry of
M, q,A, b independently from N(0, 1))

– Difference Norm – norm of the difference between x# and the exact solution computed by solving
the AVI directly (denoted x̄), normalized by the norm of the exact solution, i.e.,

Difference Norm =
‖x# − x̄‖

‖x̄‖+ 1
.

– Major/Minor Low - number of major/minor iterations reported by PATH [7] to obtain a solution
using our algorithm

– Major/Minor High - number of major/minor iterations reported by PATH [7] to solve the higher
dimensional problem directly

For every tuple (n,m, k), 10 independent simulations were carried out, realizing a different
random matrix R each time. All the parameters in Table 1 and Table 2 are the average values over
the set of 10 trials. The results are as given in Table 1 (for test problems generated from N(0, 1))
and Table 2 (for test problems generated from U [0, 1]).

6.1.1 Key observations

The first observation to be made from Tables 1 and 2 is that the algorithm produces only an ap-
proximation, which is evident from the fact that the natural map residual is non-zero and “Angle” is
greater than 90o. However, for each n, the normalized natural map residual decreases monotonically
with the value of lower dimension k. Clearly, as we increase the value of the lower dimension, the
natural map residual decreases towards zero. Furthermore, in Table 2, one sees a decrease in the
“Angle” with increasing k, for each n. Interestingly, this decrease is not seen in Table 1. We do not
know of a way of explaining this.

The most important observation is that for every case, the number of minor iterations (minor
low) consumed by our algorithm is significantly lower than the case where the high dimensional
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problem is attempted to solve directly (minor high). Though results corresponding to major iter-
ations are inconclusive on a whole, this validates our approach of finding a quick approximation.
Notice that “Difference norm” is not monotonic. This may be due to possible non-uniqueness of
the solution of the AVI.

Recall that Tables 1 and 2 are average values of multiple trials of R. For a fixed problem and a
fixed n, k and m, a representative set of results from different choices of R are reported in Table 3.
One can see that the variation across different trials is relatively small and the average values
reported Tables 1 and 2 are representative.

6.2 Performance for an exact solution

For these results, the computation was carried out in two steps. First, an approximate solution
was obtained using our algorithm, like in the previous section. Next, this vector was supplied as
an initial point into the AVI solver and an exact solution to the original AVI was computed. The
original problem was independently solved using the solver directly with a random initial point,
and the performance was compared. The results for this case have been tabulated in terms of the
following parameters:

– n, k,m and Major/Minor High as in Section 6.1
– Major/Minor Total - total number of major/minor iterations reported by PATH to obtain a

final solution with our approximate solution as an initial point
– Major/Minor Additional - number of extra major/minor iterations reported by PATH to solve

the higher dimensional problem after the initial point has been supplied from our algorithm

6.2.1 Key observations

Notice that the solution obtained in this case exactly solves our original high dimensional AVI. Minor
Total is lower in all the test cases than the corresponding number for when the problem is solved
directly. The additional iterations, both major and minor, consumed on the higher dimensional
problem, are significantly lower than the corresponding values for when the problem is solved
directly. This implies that when our recovered solution is supplied as an initial point to the solver, it
computes an exact solution faster than the direct case, where an initial point is generated randomly.

7 Conclusions

Motivated by emerging problems in ‘Big Data’, this paper has presented a new method for dimen-
sionality reduction of AVIs with compact feasible regions. The method yields with high probability
an approximate solution to the given AVI by solving an AVI of a lower dimension; the latter is
formed by appropriately projecting the given AVI on a lower-dimensional space. Using the approx-
imate solution as an intial point, the method can also be used to ‘hot start’ a solver for the given
problem and thereby find an exact solution. We presented numerical results to demonstrate that
the method is indeed effective in practice.
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